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11 Introduction and ResultsThe present paper is a sequel to [38], where the ground state mass shell and the bottom of thecontinuous energy-momentum spectrum of the translation invariant massive Nelson model wasstudied. The massive Nelson model was introduced in [42] as a toy model for nucleon-mesoninteractions. It is similar in structure to the large polaron model of H. Fröhlich [14], describingelectrons in polar crystals, interacting with longitudinal optical phonons. In [40], the results of[38] were in fact extended to cover a larger class of models encompassing both the massive Nelsonmodel and the large polaron model.With the pioneering works of Hübner-Spohn [32, 33] and Bach-Fröhlich-Sigal [5, 6] in themid 90's, it became apparent that many of the techniques developed to deal with spectral andscattering problems for many-body quantum mechanics were in fact also applicable to models ofquantized matter interacting with second quantized �elds, sometimes called non-relativistic QFT.These models range from �nite level systems interacting with scalar �elds, e.g. the spin-bosonmodel, to models of atoms and molecules minimally coupled to a second quantized Maxwell �eld.They include models from solid state physics describing electrons interacting with vibrationalmodes of crystals, i.e. phonons. We recall that acoustic phonons are modeled by massless �elds,and optical phonons by massive �elds.The purpose of this sequel to [38, 40] is to study the structure of the continuous energy-momentum regime. More precisely the region supporting at most one asymptotic boson, i.e.the region below the threshold for energetic support of states with two (or more) asymptoticbosons. This is what is meant with `two-boson threshold' in the title. In particular we prove that�ber Hamiltonians in this energy regime have isolated thresholds, non-threshold eigenvalues have�nite multiplicity and can only accumulate at thresholds, and there is no singular continuousspectrum. Our results do not depend on the strength of the particle-�eld coupling. The maintool is the construction of an energy-momentum dependent relative velocity �eld, describing at�xed total momentum the di�erence of velocities of a single asymptotically free boson and aninteracting e�ective particle (e.g. polaron). This velocity �eld goes into the construction of amodi�ed generator of dilation, which induces a second quantized conjugate operator in the senseof Mourre, admitting a positive commutator with the �ber Hamiltonian. Our work can be seen asa fusion of the spectral theory part of [11] by Derezi«ski-Gérard and the paper [25] by Gérard-Nieron analytically �bered operators. A simpler version of the construction and results of this paperformed a part of the Ph.D. thesis of the second author [44].We distinguish between the bare particle entering into the model via its dispersion relation
Ω: Rν → [0,∞), and the e�ective particles described by the interacting model. In the polaronmodel, this is even hammered home by the word `polaron' used to refer to the e�ective particleassociated with the ground state, and the word `electron' reserved for the (bare) band electronentering into the Fröhlich Hamiltonian. While only the bare quantities enter into the constructionof the Hamiltonian, for an observer the bare particle is a mythical entity which never appears ina scattering experiment. Only e�ective particles are manifest as identi�able quantities.In relativistically invariant �eld theories, the particle content of a theory is determined byeigenvalues of the mass operator. That only the mass characterizes the e�ective particles is dueto Poincaré invariance, which ensures that the dispersion relations of the e�ective particles areforced to be of the form √

k2 +M2, whereM is an eigenvalue of the mass operator. In our setup,the model is non-relativistic and only invariance under translations and spatial rotations remains.This means that the dispersion relations of the e�ective particles are not determined by a singlenumber, but a priori by a function on (a subinterval of) the half-line. Very little is known aboutthe general structure of the e�ective dispersion relations, or mass shells, even for the ground state.This is a source of complications since we have to take into account the following features: (A)There may be multiple species of e�ective particles, i.e. mass shells. (B) The e�ective dispersions



2 1 INTRODUCTION AND RESULTSmay not be convex, nor are they a priori forced to be radially increasing. (C) Excited mass shellsmay cross making it ambiguous how to assign velocity to a state constructed by energy-momentumlocalizations.Let us give a heuristic explanation for the role of the e�ective dispersions in the analysis of thecontinuous energy-momentum spectrum. The continuous spectrum pertains to scattering statesof the Hamiltonian, and scattering states should at large times look like (superpositions of) aninteracting bound e�ective particle plus a number of free asymptotic bosons, with the sum ofmomenta and energies of the constituents summing up to the total momentum and energy ofthe initial state. The dynamics for such compound asymptotic systems at total momentum ξ isgoverned by a kinetic energy of the form
S(n)(ξ; k1, . . . , kn) := S(ξ − k1 − · · · − kn) + ω(k1) + · · · + ω(kn), (1.1)where S is the dispersion relation for an e�ective particle, ω is that of the bosons, and k1, · · · , kn la-bels the momenta of n asymptotic bosons. We observe from this expression that we get thresholdsat energies where (k1, . . . , kn) → S(n)(ξ; k1, . . . , kn) has critical points. Computing the gradientwe see that this happens when ∇S(ξ− k1 − · · · − kn) = ∇ω(kj) for all j, i.e. when all the asymp-totic bosons have group velocity equal to the group velocity of the e�ective particle. As a �rststep we ensure that the threshold set is small. Secondly starting from a given total momentumand energy (ξ, E) below the two-boson threshold, we ensure that we can unambiguously assign anon-vanishing relative velocity �eld to the scattering states sitting in a small energy-momentumregion near (ξ, E). To translate non-vanishing of the relative velocity �eld into a positive com-mutator estimate, we develop a method to extract from the Hamiltonian, expressed in terms ofthe bare particle dispersion only, the e�ective dispersions used to construct the relative velocity�eld.To �x ideas, let us �rst discuss the form of the vector �eld under the simplifying assumptionthat the ground state mass shell is the only (isolated) mass shell, and that it extends to in�nity intotal momentum. Denote by R

ν 3 ξ → Σ0(ξ) ∈ R, the ground state mass shell, and by Σ(1)
0 (ξ; k)the associated e�ective dispersion relation, cf. (1.1), pertaining to one-boson scattering. In thissimple setup one can simply pick the relative velocity vector �eld to be vξ(k) = ∇kΣ

(1)
0 (ξ; k). Inthe presence of multiple mass shells one has to stitch the associated vector �elds together, usingan energy localization, to ensure that for a given k only one shell is available for decay due toenergy-momentum conservation. This is feasible in the absence of level crossings. If mass shellsdo cross, there will be multiple channels accessible and one has to go through a somewhat morepainful analysis to ensure that regardless of which channel is chosen, the system breaks up withpositive velocity.We remark that in the weak coupling regime there are results in the literature about thestructure of the continuous energy-momentum spectrum both for massive and massless bosons.Angelescu-Minlos-Zagrebnov and Minlos [4, 37] study polaron type models and prove absenceof embedded mass shells below the two-boson threshold at small coupling using a Feshbachreduction to a (generalized) Friedrichs model also studied in [1]. For what appears to be technicalreasons only, the papers [1, 4, 37] cover neither the Nelson nor the polaron model, due to �eldenergy and form factor restrictions, respectively. The Friedrichs model itself, corresponding tocutting the Fock space down to the vacuum and one-particle sectors, was studied for all couplingsin [19, 27]. For massless bosons (photons) De Roeck-Fröhlich-Pizzo [9] show that in the weakcoupling regime, (necessarily) interacting `large and regular' embedded mass shells must lie closeto the bottom of the continuous energy-momentum spectrum, and outside a natural cylinderaround zero total momentum. In a narrower cylinder Chen-Faupin-Fröhlich-Sigal establish in [8]the absence of singular continuous spectrum. For su�ciently small energies and momenta, theseresults were previously established in [17] under the additional assumption that soft bosons are



1.1 The Hamiltonian and its Energy-Momentum Spectrum 3non-interacting.We stress that our results are valid also outside a weak coupling regime, which necessitates �to put it in somewhat poetic terms � a �nal goodbye to the electron and a full embrace of thepolaron.Together with Wojciech Dybalski, the authors are currently working on applying the construc-tions of this paper to prove asymptotic completeness below the two-boson threshold for modelsof the type considered in this paper.In the remaining part of Section 1 we introduce the Hamiltonian and its energy-momentumspectrum, formulate our main results, and at the end we give a geometric picture describing ourcentral construction in a nutshell. In Section 2 we introduce the Ck(A) classes of self-adjointoperators, cf. [3], and prove that the �ber Hamiltonians of our model is of class C2(A), whenever
A is a second quantized (modi�ed) generator of dilation. In Section 3 we prove our main theorems.We begin with an analysis of the threshold set, followed by a geometric analysis of level crossingsneeded to patch together the relative velocity �elds of potentially several e�ective particle species.Finally we prove a Mourre estimate for �ber Hamiltonians, �rst for a comparison Hamiltoniandescribing an interacting system plus a free boson, and subsequently for the Hamiltonian itself.Acknowledgments:J. S. Møller thanks Denis Chéniot for some clarifying discussions about strati�cations we hadwhile visiting Dokuz Eylül University in Izmir, Turkey. Both authors thank Wojciech Dybalskifor locating a number of bugs and misprints.1.1 The Hamiltonian and its Energy-Momentum SpectrumWe consider a bare quantum particle, moving in Rν and linearly coupled to a scalar �eld ofmassive bosons. The particle Hilbert space is

K := L2(Rνy)where y is the particle position. The bare particle Hamiltonian is Ω(Dy), where Dy := −i∇y.The one-boson Hilbert space is
hbo := L2(Rνk)where k denotes boson momentum, and the one-boson dispersion relation is ω(k). See Condi-tion 1.2 below for the conditions we impose on the dispersion relations Ω and ω.The Hilbert space for the �eld is the bosonic Fock space

F = Γ(hbo) :=
∞⊕

n=0

F (n), where (1.2)
F

(n) = Γ(n)(hbo) := hbo
⊗sn. (1.3)Here hbo

⊗sn is the symmetric tensor product of n copies of hbo. We write |0〉 = (1, 0, 0, . . . ) forthe vacuum state. The creation and annihilation operators a∗(k) and a(k) satisfy the followingdistributional form identities, known as the canonical commutation relations.
[a∗(k), a∗(k′)] = [a(k), a(k′)] = 0,

[a(k), a∗(k′)] = δ(k − k′) and (1.4)
a(k)|0〉 = 0.



4 1 INTRODUCTION AND RESULTSThe free �eld energy is the second quantization of the one-boson dispersion relation,
dΓ(ω) =

∫

Rν

ω(k)a∗(k)a(k) dk. (1.5)The Hilbert space of the combined system is
H := K ⊗ F . (1.6)The free and coupled Hamiltonians for the combined system are

H0 := Ω(Dy) ⊗ 1F +1K ⊗ dΓ(ω) and (1.7)
H := H0 + V (1.8)where the interaction V is given by

V :=

∫

Rν

(
e−ik·y g(k)1K ⊗ a∗(k) + eik·y g(k)1K ⊗ a(k)

)
dk. (1.9)Here g ∈ hbo = L2(Rν) is a coupling function.The total momentum of the combined system is given by

P = Dy ⊗ 1F + 1K ⊗ dΓ(k). (1.10)The operators H0 and H commute with P , i.e. H0 and H are translation invariant. This impliesthat H0 and H are �bered operators. Using the unitary transform ILLP �rst introduced by Lee-Low-Pines in [35] and given by
ILLP := (F ⊗ 1F) ◦ Γ(e−ik·y) (1.11)we can identify the �bers of H0 and H , respectively. Here F is the Fourier transform and Γ thesecond quantization functor. We get

ILLPH0 I
∗
LLP =

∫ ⊕

Rν

H0(ξ) dξ and
ILLP H I∗LLP =

∫ ⊕

Rν

H(ξ) dξ,where H0(ξ) and H(ξ) are operators on F and given by
H0(ξ) = dΓ(ω) + Ω(ξ − dΓ(k)) and
H(ξ) = H0(ξ) + φ(g).Here φ(g) is the �eld operator evaluated at y = 0

φ(g) =

∫

Rν

(
g(k) a∗(k) + g(k) a(k)

)
dk.See also [46, 47] and [11] for general constructions related to bosonic Fock space.Remark 1.1. Above we introduced the unitary operator Γ(e−ik·y) on H. This is in fact a slightabuse of notation since the functor Γ a priori only maps contractions on hbo to contractions on

F . Here q = e−ik·y is a contraction on K ⊗ hbo.



1.1 The Hamiltonian and its Energy-Momentum Spectrum 5Suppose now that q is a contraction on K⊗h (with K and h Hilbert spaces). Introduce for each
n ≥ 2 and j = 1, . . . , n a unitary operator E(n)

j on G(n) := K ⊗ h⊗n (full n-fold tensor product)by the following prescription on simple tensors
E

(n)
j

(
f ⊗ u1 ⊗ · · · ⊗ uj ⊗ · · · ⊗ un

)
= f ⊗ uj ⊗ u1 ⊗ · · · ⊗ uj−1 ⊗ uj+1 · · · ⊗ un.Note that E(n)

1 = 1G(n) . We extend q to contractions on G(n) setting qj = E
(n)∗
j q ⊗ 1h⊗n−1 E

(n)
j .Using this construction we can de�ne a contraction G(n)(q) = q1 · · · qn on G(n). Let G(0)(q) = 1K,

G(1)(q) = q, and construct the direct sum G(q) = ⊕∞
n=0G

(n)(q) to get a contraction on G =
K ⊗⊕∞

n=0h
⊗n. If q is unitary, the contraction G(q) is in fact unitary on G.Letting Ps denote the projection onto the symmetric Fock space F inside ⊕∞

n=0h
⊗n we cannow de�ne Γ(q) = (1K⊗Ps)G(q)(1K⊗Ps) as a contraction on H. We warn the reader that forunitary q, if qi and qj do not commute, the contraction Γ(q) may not be unitary! �The following minimal conditions will be imposed on the dispersion relations and couplingfunction throughout the paper, and often without explicit reference. We will in particular formu-late and use results from the literature under these minimal conditions although they may in facthold true under weaker assumptions. The reader is asked to consult the literature for optimalformulations of known results. The notation 〈k〉 is an abbreviation of the function √1 + |k|2. Wewill use the same notation for numbers, vectors, and self-adjoint operators.Condition 1.2 (Minimal Conditions). There exist sΩ ∈ [0, 2] and C > 0 such that the dis-persion relations and coupling satisfy:(MC1) ω ∈ C(Rν), Ω ∈ C2(Rν) and g ∈ L2(Rν).(MC2) m := infk∈Rν ω(k) > 0.(MC3) ∀k ∈ Rν we have ω(k) ≤ C〈k〉, Ω(k) ≥ C−1〈k〉sΩ − C.(MC4) |∂αη Ω(η)| ≤ C〈k〉sΩ−|α|, for all multi-indices α with 0 ≤ |α| ≤ 2.(MC5) ∀k1, k2 ∈ Rν we have ω(k1 + k2) < ω(k1) + ω(k2).(MC6) Either lim|k|→∞ ω(k) = ∞ or: supk∈Rν ω(k) <∞ and lim|k|→∞ Ω(k) = ∞.Since Ω is bounded from below by (MC3), we can assume without loss of generality that

Ω ≥ 0.Remark 1.3. The translation invariant massive Nelson model as well as Fröhlich's polaron modelsatisfy the above conditions, both with non-relativistic and relativistic electron dispersion relation.We recall that the physical interactions g, up to a constant multiple, are 1/
√
ω(k), with

ω(k) =
√
k2 +m2, for the Nelson model, and 1/|k| for the polaron model in three dimensions.The phonon dispersion relation in the polaron model is taken to be a positive (material dependent)constant function.For both models we are required to impose a UV cuto� on the physical interaction. However,there does not seem to be a fundamental obstacle to consider also the UV-renormalized models(if Ω(η) = η2) as in [2], although an extension to the model without a UV cuto� is likely to be adelicate task. �In the remaining part of this section we list a number of known properties of H and itsenergy-momentum spectrum

Σ =
{
(ξ, E) ∈ R

ν × R
∣∣E ∈ σ(H(ξ))

}
. (1.12)



6 1 INTRODUCTION AND RESULTSThese properties have a long history, see e.g. [7, 15, 26, 36, 38, 40, 42, 49], with the most completeresults in [40], where the reader can also �nd a comprehensive discussion of the literature on thesubject.Let
C := Γfin(C

∞
0 (Rν)) ⊂ F , (1.13)where Γfin(V) denotes the algebraic direct sum of the algebraic tensor products V⊗sn, where

V ⊂ hbo. In fact, when tensor products appear between spaces not all of which are complete(as Hilbert spaces) an algebraic tensor product is implicitly understood. The operator H0 isessentially self-adjoint on C∞
0 (Rν)⊗C, and V is an in�nitesimally small perturbation in the senseof Kato-Rellich. Hence H is also essentially self-adjoint on C∞

0 (Rν) ⊗ C, and the domain of theclosures, which we as usual denote by the same symbols, coincide.SimilarlyH0(ξ) is essentially self-adjoint on C and φ(g) is an in�nitesimally small perturbation,hence H(ξ) is also essentially self-adjoint on C. Not only do their domains coincide, they areindependent of total momentum ξ, and we denote the common domain of self-adjointness by
D := D(H0(ξ)) = D(H(ξ)). (1.14)One can easily verify that ξ → (H(ξ) − i)−1 is norm continuous, and hence we observe by anorm resolvent convergence argument, cf [46, Theorem VIII.23], that Σ is a closed set.We pause to introduce some notation. We denote the bottom of the spectrum of the �berHamiltonians by

Σ0(ξ) := inf σ(H(ξ)), (1.15)and the bottom of the spectrum of the full operator by
Σ0 := inf

ξ∈Rν
Σ0(ξ) > −∞. (1.16)Let n ∈ N be some positive integer and k = (k1, . . . , kn) ∈ Rnν . We introduce the least energy ofa composite system consisting of a copy of an interacting system at momentum ξ −∑n

j=1 kj and
n non-interacting photons with momenta kj

Σ(n)
0 (ξ; k) := Σ0(ξ −

∑n
j=1 kj) +

∑n
j=1 ω(kj). (1.17)The following functions are the so-called n-boson thresholds, i.e. the least energy needed tosupport an interacting state and n free bosons at a given total momentum

Σ(n)
0 (ξ) := inf

k∈Rnν
Σ(n)

0 (ξ; k). (1.18)Abusing notation, we write Σ(n)
0 both for the function and for its graph. We should warn thereader that the terminology `threshold' carries a dual meaning. The use of `the n-boson threshold'to describe Σ(n)

0 (ξ) refers to its literal meaning as the lowest energy supporting an interactingsystem and n free bosons. It is in fact also `an n-boson threshold' in the physical sense of theword threshold as an energy at which the system can form an interacting bound state plus n freebosons, with zero breakup velocity. We stress that these are in general not the only (physical)thresholds of the system.With the above notation the HVZ Theorem takes the form
σess(H(ξ)) = [Σ(1)

0 (ξ),∞), (1.19)and below Σ(1)
0 (ξ) the spectrum of H(ξ) consists of locally �nitely many eigenvalues all of �nitemultiplicity, that may only accumulate at Σ(1)

0 (ξ). We will often write Σess(ξ) = Σ(1)
0 (ξ) to



1.2 Extended Objects 7emphasize the role of the one-boson threshold as the bottom of the essential energy-momentumspectrum. We remark that the assumption (MC6) ensures that the essential energy-momentumspectrum does not have holes.Due to the subadditivity assumption (MC5) on ω, the n-boson thresholds are increasing in n,i.e.
∀n > m : Σ(n)

0 (ξ) ≥ Σ(m)
0 (ξ). (1.20)If lim|k|→∞ ω(k) = ∞ the inequality is strict. If M = supk∈Rν ω(k) < ∞, then the inequalityremains strict under the extra assumption 2 lim inf |k|→∞ ω(k) > M , satis�ed obviously by theconstant polaron dispersion, cf. [40]. This can be considered a remark on non-triviality of ourresults, since we work in the energy-momentum region between the graphs of Σ(1)

0 and Σ(2)
0 .Finally we remark that isolated ground states of H(ξ) are non-degenerate, in particular theground state mass shell does not cross any possibly existing isolated excited mass shells. Verylittle is known about the structure of the discrete spectrum when we are away from the weakcoupling regime. In fact, we rely only on some symmetry observations and Kato's general analyticperturbation theory, which applies to the family {H(ξ)}ξ∈Rν . In the weak coupling regime onecan compare with the uncoupled model and derive stronger results [4]. It is still an open problemto produce a veri�able condition under which an excited mass shell exists, cf. however [36].It is a curious fact that in dimensions ν = 1, 2 the ground state energy Σ0(ξ) is an isolatedeigenvalue for all ξ [38, 40, 49]. In dimensions ν = 3 and higher the ground state mass shell isexpected to vanish into the continuous energy-momentum spectrum at some critical momentum,something only known as a fact in the weak coupling regime [4, 36, 37] (not including the physicalcombinations of dispersions and couplings).We identify distinct mass shells, as functions of total momentum ξ → S(ξ), with e�ectiveparticles with dispersion relation given by S. In the case of the polaron model, it is the groundstate which in the literature is referred to as the Fröhlich polaron.1.2 Extended ObjectsIn this subsection we introduce a new Hamiltonian which plays the role of the generator of thedynamics for a system of one interacting particle and a number of free bosons. The interactingparticle and the free bosons are not coupled. Operators of this type were also used in [2, 11, 12,16, 17, 38, 40]. This is a natural object in the context of scattering theory, where one expectsscattering states to decay into interacting bound states under emission of asymptotically freebosons.We abbreviate

Fx = F ⊗ F and Hx = H⊗ F = K ⊗ Fx.For a self-adjoint operator a on hbo, we extend the second quantization operation to Fx by theconstruction
dΓx(a) = dΓ(a) ⊗ 1F +1F ⊗ dΓ(a).Note that dΓx(a) is essentially self-adjoint on Γx

fin(D) = Γfin(D) ⊗ Γfin(D), if D ⊂ hbo is adomain of essential self-adjointness for a, cf. [46]. We can now de�ne the Hamiltonian describingan interacting system together with free (asymptotic) bosons. It is given by
Hx = H ⊗ 1F +1H⊗ dΓ(ω) = Ω(Dy) ⊗ 1Fx +1K⊗ dΓx(ω) + V ⊗ 1F (1.21)as an operator on the Hilbert space Hx. The free operator, with g = 0, is essentially self-adjointon

Cx = C ⊗ Γfin

(
C∞

0 (Rν)
)
, (1.22)



8 1 INTRODUCTION AND RESULTSand so is Hx by a Kato-Rellich argument.We adopt the terminology from [11] and callHx the extended Hamiltonian andHx the extendedHilbert space. We remark that Hx commutes with the extended total momentum operator
P x = P ⊗ 1F +1H⊗ dΓ(k) = Dy ⊗ 1Fx +1K⊗ dΓx(k). (1.23)We extend the functor Γ from Remark 1.1 as follows. Denote by E the exchange involutionon Hx de�ned on simple tensors as E(f ⊗ ψ ⊗ ϕ) = f ⊗ ϕ⊗ ψ, where f ∈ K and ψ, ϕ ∈ F . For acontraction q on K ⊗ hbo we de�ne

Γx(q) =
(
Γ(q) ⊗ 1F)E(Γ(q) ⊗ 1F)E .This is only a good de�nition if the qi's commute, cf. Remark 1.1. Denote by P (n) the projection of

Hx onto H⊗F (n) and observe that P (n)Γx(q) = Γx(q)P (n). Abbreviate Γ(n)(q) = P (n)Γx(q)P (n)as a contraction on H ⊗ F (n).We now build the extended Hamiltonian Hx, cf. (1.21), from the inside out as an explicitly�bered operator. Recall that Hx commutes with the extended total momentum P x, cf. (1.23).First we introduce �ber Hamiltonians for an interacting system at total momentum ξ, and nasymptotically free bosons with momenta k = (k1, . . . , kn). These are self-adjoint operators on Fgiven by
H(n)(ξ; k) = H(ξ −∑n

j=1 kj) +
(∑n

j=1 ω(kj)
)1F .From these operators we construct self-adjoint �ber operators on L2
sym(Rnν ;F) ' F ⊗ F (n) bythe direct integral construction

H(n)(ξ) =

∫ ⊕

Rnν

H(n)(ξ; k) dk.Here the subscript `sym' indicates that the functions are symmetric under permutation of the
n variables, re�ecting Bose statistics. Finally, by another direct integral construction and anapplication of an extended version of ILLP, cf. (1.11), we can de�ne

H(n) = I
(n)∗

LLP

(∫ ⊕

Rν

H(n)(ξ) dξ
)
I(n)
LLP,as an operator on the Hilbert space H(n) = H⊗F (n). Here I(n)

LLP = (F ⊗1F⊗F(n))Γ(n)(eik·y). Thefull extended Hamiltonian can now be expressed as a direct sum
Hx = H ⊕

( ∞⊕

n=1

H(n)
)as an operator on the extended Hilbert space Hx = H⊗ F = H ⊕ (⊕∞

n=1H
(n)). Similarly we canintroduce �ber operators

Hx(ξ) = H(ξ) ⊕
( ∞⊕

n=1

H(n)(ξ)
)as an operator on Fx. From this construction we can directly identify Hx(ξ) as the �ber operatorsof Hx and we have the �bration

Hx = Ix∗

LLP

(∫ ⊕

Rν

Hx(ξ) dξ
)
Ix
LLP,where Ix

LLP = (F ⊗ 1Fx)Γx(eik·y) = ILLP ⊕ (⊕∞
n=1I

(n)
LLP).



1.3 The Results 9Note that these constructions tie in well with the notion of thresholds for supporting stateswith free bosons, i.e. the functions Σ(n)
0 (ξ; k) and Σ(n)

0 (ξ) introduced in (1.17) and (1.18). Moreprecisely we have
inf σ

(
H(n)(ξ; k)

)
= Σ(n)

0 (ξ; k) and inf σ
(
H(n)(ξ)

)
= Σ(n)

0 (ξ). (1.24)1.3 The ResultsTo formulate our main results on the structure of the energy-momentum spectrum below thetwo-boson threshold we need an extra set of assumptions. The condition below depends on anatural number n0 encoding the amount of control required. The condition will be used with
n0 = 0 for our result on the structure of the threshold set, with n0 = 1 for our result on thestructure of embedded point spectrum, and with n0 = 2 for our result on absence of singularcontinuous spectrum.Condition 1.4 (Spectral Theory). Let n0 ∈ N. We impose(ST1) ω and Ω are real analytic functions.(ST2) g admits n0 distributional derivatives with ∂αk g ∈ L2

loc(R
ν\{0}), for all 1 ≤ |α| ≤ n0.(ST3) For all orthogonal matrices O ∈ O(ν) and all k ∈ R

ν we have ω(Ok) = ω(k), Ω(Ok) =
Ω(k) and g(Ok) = g(k) almost everywhere.(ST4) supk∈Rν |∂αω(k)| <∞ for |α| ≥ 1 and supη∈Rν |∂βΩ(η)| <∞ for |β| ≥ 2.Remark 1.5. The assumptions of real analyticity (ST1) and rotation invariance (ST3) serve acombined purpose. The rotation invariance ensures that the energy-momentum spectrum Σ (andall its components, i.e. pure point, absolutely and singular continuous spectrum), are rotationinvariant, i.e. (ξ, E) ∈ Σ and O ∈ O(ν) implies (Oξ,E) ∈ Σ. In particular, the n-boson thresholds

Σ(n)
0 are rotation invariant, cf. (1.18). The functions Σ(n)

0 (ξ; k), cf. (1.17), however, only retaininvariance under simultaneous rotation of all kj 's around the ξ axis.From the point of view of the models discussed so far, these are reasonable assumptions.However, one should keep in mind that dispersion relations in solid state physics are material de-pendent functions and more realistic ones are not likely to carry any more symmetry than discretesymmetries of an underlying lattice. We do not consider (ST3) to be an essential assumption, cf.the discussion in Subsection 1.4. �The above remark, together with Kato's analytic perturbation theory [34], enables a precisedescription of the isolated part of the energy momentum spectrum
Σiso =

{
(ξ, E) ∈ Σ

∣∣E < Σess(ξ)
}
, (1.25)as a collection of real analytic mass shells and level crossings. The set Σiso forms a subset of thefull pure-point energy-momentum spectrum

Σpp =
{
(ξ, E) ∈ Σ

∣∣E ∈ σpp(H(ξ))
}
. (1.26)While the general analytic structure of Σiso is understood, the only thing we can a priori sayabout Σpp is that it is a Borel subset of Rν+1, cf. Appendix A.We introduce the set of level crossings for isolated mass shells:

X :=
{
(ξ, E) ∈ Σiso

∣∣∀n ∈ N : Σiso ∩B((ξ, E); 1/n) is not a graph}, (1.27)



10 1 INTRODUCTION AND RESULTSwhere B(a, r) denotes the open ball of radius r, centered at a. The connected components of X are
Sν−1-spheres of the form ∂B(0;R)×{E}, or as a possibly degenerate case, of the form {0}×{E}.The spheres forming the connected components of X will also be called level crossings. They areisolated Sν−1-spheres, possibly accumulating either at in�nity or at the bottom of the essentialenergy-momentum spectrum Σess. In particular, elements (ξ, E) ∈ X represent eigenvalues E of
H(ξ) with a given �nite multiplicity. The connected components of X are connected in Σiso byreal analytic manifolds, each carrying a �nite multiplicity, in such a way that the sum of themultiplicities of shells emanating from the same crossing, should equal the multiplicity of thecrossing. We denote the collection of such real analytic manifolds by S. To be more precise, by ashell we understand a pair (A, S) ∈ S, where A is an open annulus {ξ ∈ Rν | r < |ξ| < R}, with
0 ≤ r < R, or an open ball centered at 0. The function S : A → R is real analytic and rotationinvariant, with Σ0(ξ) ≤ S(ξ) < Σess(ξ) and such that the graphs of the shells together with thelevel crossings cover the entire isolated spectrum in energy-momentum space. For (A, S) ∈ S,denote by

GS =
{
(ξ, S(ξ))

∣∣ ξ ∈ A
} (1.28)its graph in energy-momentum space. We have GS∩GS′ = ∅, for all distinct shells (A, S) 6= (A′, S′),and GS ∩ X = ∅ for all (A, S) ∈ S. In addition, to ensure we have all shells covered, we demandthat

Σiso = X ∪
( ⋃

(A,S)∈S

GS

)
.We remark that due to rotation invariance, the mass shells continue analytically through levelcrossings. The reader can consult [34] for the analytic structure of isolated eigenvalues of holo-morphic families of self-adjoint operators. We remark that for a �xed unit vector u ∈ Rν , themap κ→ H(κu) de�nes a `Type A' family of operators. See [15].For a given element (A, S) ∈ S, the graph GS may have 0, 1 or 2 �nite boundaries that are

Sν−1-spheres (perhaps of radius 0). The case of no boundary, indicates a mass shell that withoutcrossings extends to in�nity in total momentum. An example of such a shell would be the groundstate mass shell in dimensions one and two, cf. [38, 40, 49]. A boundary Sν−1-sphere can be oneof two things. Either it is a connected component of X , i.e. a level crossing, or it is a subset of
Σess = Σ(1)

0 , the boundary of the continuous energy-momentum spectrum.Unless a mass shell (A, S) is constant, its gradient ∇S can at most vanish on isolated Sν−1-spheres that can only accumulate at in�nity. We remark that we do not know the manner in whichmass shells, ground state or excited, dip into the continuous spectrum. One could speculate that itdoes so at worst as a branch of a Puiseaux series, something which may have useful consequences.See [39].Having discussed the structure of the isolated spectrum, we now turn to the subset of thecontinuous energy-momentum spectrum below the two-boson threshold
E(1) =

{
(ξ, λ) ∈ R

ν × R
∣∣Σ(1)

0 (ξ) ≤ λ < Σ(2)
0 (ξ)

}
. (1.29)Write E(1)(ξ) = [Σ(1)

0 (ξ),Σ(2)
0 (ξ)) such that E(1) = {(ξ, λ) ∈ Rν × R |λ ∈ E(1)(ξ)}.Our �rst result is concerned with the structure of possibly embedded point spectrum inside

E(1). To formulate the theorem, we need to carefully formalize the notion of thresholds. We shouldidentify energy-momenta inside E(1) where emitted bosons fail to break free from the remaininginteracting system with a non-zero relative velocity, thus preventing them from becoming asymp-totically free �eld particles. The threshold set pertaining to one-boson emission processes T (1)has three components which we now discuss.The �rst, and perhaps most obvious, is the set of one-boson thresholds where the remaininginteracting system after boson emission ends up inside an isolated mass shell (A, S) ∈ S. We



1.3 The Results 11de�ne S(1)(ξ; ·) : A+ ξ → R by
S(1)(ξ; k) = S(ξ − k) + ω(k). (1.30)This extends the construction (1.17) to (possibly existing) excited mass shells, and is the post-emission e�ective dispersion relation governing the composite interacting system plus emittedboson. The mass shell contribution to one-boson thresholds is

T
(1)
S

=
{
(ξ, E) ∈ R

ν+1
∣∣E ∈ T (1)

S
(ξ)
}
, (1.31)

T
(1)
S (ξ) =

{
E ∈ R

∣∣∃(A, S) ∈ S, k ∈ A+ ξ : E = S(1)(ξ; k),∇kS
(1)(ξ; k) = 0

}
.We emphasize that ∇kS

(1)(ξ; k) = 0 is the same as ∇S(ξ−k) = ∇ω(k), i.e. the asymptotic bosonand the remaining interacting system have identical velocities. This de�nes one contribution tothe one-boson threshold set. One can similarly de�ne n-body thresholds, which however will sitabove the (lowest) two-boson threshold Σ(2)
0 and therefore we disregard them here, cf. (1.20).To understand the next two contributions to the threshold set we need to explain the dynamicsat level crossings. Suppose we are at an energy E and total momentum ξ, with one free bosonat momentum k such that (ξ − k,E − ω(k)) ∈ χ. The only direction in momentum space we cancontrol is where (ξ−k,E−ω(k)) moves inside level crossings, which form Sν−1-spheres. Inside suchspheres the energy of the bound system stays constant, due to being constrained to a crossing,so the e�ective dispersion only varies through the contribution from k → ω(k). The e�ectivedispersion therefore has critical momenta where the tangential derivative of ω, with respect tothe Sν−1-sphere, vanishes. Since ω is rotation invariant this can happen in two ways. Either k isparallel to ξ in which case ∇ω(k) is normal to the sphere, or it can happen if ∇ω(k) = 0.The next contribution comes from the need to avoid landing on a level crossing with k parallelto ξ after emission of one boson with momentum k. Given ξ ∈ Rν , let u ∈ Rν be a unit vectorsuch that ξ = su for some s ∈ R. We introduce the set

T
(1)
‖ (ξ) :=

{
E ∈ R

∣∣∃r ∈ R :
(
ξ − ru,E − ω(ru)

)
∈ X

}
. (1.32)If ξ = 0, the unit vector u can be chosen arbitrarily and we observe, since ω and the set X arerotation invariant, that

T
(1)
‖ (0) =

{
E ∈ R

∣∣∃k ∈ R
ν :

(
k,E − ω(k)

)
∈ X

}
. (1.33)The �nal contribution to the threshold set consists of energies at which it is possible to emit aboson of momentum k with ∇ω(k) = 0 and the remaining interacting system at a level crossing.

T
(1)

∦ (ξ) :=
{
E ∈ R

∣∣∃k ∈ R
ν :

(
ξ − k,E − ω(k)

)
∈ X and ∇ω(k) = 0

}
. (1.34)The reader can safely on a �rst reading disregard this contribution since in typical models T (1)

∦ (ξ)will be a subset of T (1)
‖ (ξ). This happens of course in dimension 1, if ∇ω(k) 6= 0 for k 6= 0, and�nally in the case of the polaron model. Note that we always have T (1)

∦ (0) ⊂ T (1)
‖ (0), cf. (1.33).The total threshold set at total momentum ξ can now be de�ned to be

T (1)(ξ) = T (1)
S (ξ) ∪ T (1)

‖ (ξ) ∪ T (1)
∦ (ξ).Finally, we introduce the following notation for threshold sets as subsets of energy-momentumspace: T (1) = {(ξ, E) |E ∈ T (1)(ξ)}, T (1)

‖ = {(ξ, E) |E ∈ T (1)
‖ (ξ)} and T (1)

∦ = {(ξ, E) |E ∈
T

(1)
∦ (ξ)}.The �rst theorem we present establishes the structure of the threshold set below the two-bosonthreshold.



12 1 INTRODUCTION AND RESULTSTheorem 1.6. Assume Conditions 1.2 and 1.4, with n0 = 0. Let ξ ∈ Rν . The following holds(i) T (1) ∩ E(1) is a relatively closed subset of E(1).(ii) The set T (1)(ξ) ∩ E(1)(ξ) is a discrete subset of E(1)(ξ), i.e. it is at most countable and canaccumulate only at Σ(2)
0 (ξ).In fact Theorem 1.6 holds for each of the three types of thresholds sets individually. This isobvious for (ii), and follows for (i) from its proof.The �nal energy-momenta we need to avoid come from our desire to handle the infraredsingular interaction in the polaron model. It consists simply of the set (0, ω(0)) + Σiso. Whenlocalizing away from (0, ω(0))+Σiso, we cannot emit a boson with zero momentum, hence we willnever meet the infrared singularity. This contribution can be omitted if the coupling function gbehaves no worse than |k|β at zero, with β > 2 − ν/2. In order not to introduce a super�uousexceptional set we de�ne

Exc =

{
(0, ω(0)) + Σiso, ∂kj

g 6∈ L2
loc(R

ν), for some j ∈ {1, . . . , ν}
∅, ∂kj

g ∈ L2
loc(R

ν), for all j ∈ {1, . . . , ν}
. (1.35)We write Exc(ξ) as usual for the �xed total momentum �bers of the set Exc. Observe that Exc(ξ),

ξ ∈ Rν , are discrete sets and that Exc ∩ E(1) is a relatively closed subset of E(1). The latter is aconsequence of the HVZ theorem.Our second theorem is concerned with the structure of the embedded pure point spectrumbelow the two-boson threshold. That is, the set Σpp ∩ E(1), cf. (1.26) and (1.29).Theorem 1.7. Assume Conditions 1.2 and 1.4, with n0 = 1. Let ξ ∈ Rν . The following holds(i) All eigenvalues in σpp(H(ξ)) ∩ E(1)(ξ)\(T (1)(ξ) ∪ Exc(ξ)) have �nite multiplicity.(ii) The set σpp(H(ξ)) ∩ E(1)(ξ) is at most countable, with accumulation points at most in
T (1)(ξ) ∪ Exc(ξ) ∪ {Σ(2)

0 (ξ)}.(iii) The set (Σpp ∪ T (1) ∪ Exc) ∩ E(1) is a relatively closed subset of E(1).The above theorem follows from standard arguments once we have established a so-calledMourre estimate, cf. Theorem 3.18, away from T (1) and Exc. An additional consequence of aMourre estimate is a limiting absorption principle and hence in particular:Theorem 1.8. Assume Conditions 1.2 and 1.4, with n0 = 2. Then the �ber Hamiltonians H(ξ)have no singular continuous spectrum below the two-boson threshold, i.e.
∀ξ ∈ R

ν : σsc

(
H(ξ)

)
∩
(
−∞,Σ(2)

0 (ξ)
)

= ∅.1.4 A Strati�cation Point of ViewThe paper is build around the construction of a vector �eld vξ ∈ C∞
0 (Rν), from which we constructa self-adjoint one-body operator aξ = i(vξ · ∇k + ∇k · vξ)/2 and a second quantized observable

Aξ = dΓ(aξ) on F . The physical interpretation of vξ is that of a relative velocity �eld, assigningto a momentum k the di�erence of the velocity of a bound state at total momentum ξ − k andthe velocity of an asymptotic boson at momentum k. In Section 2 we argue that under ourassumptions the �ber Hamiltonians H(ξ) are of class Ck(Aξ), for k = 1, 2, provided (ST2) holdswith n0 = k.In Section 3 we construct the vector �eld vξ locally in energy in E(1)(ξ) and away fromthresholds T (1)(ξ) and exceptional energies Exc(ξ), in such a way that we can deduce at the



1.4 A Strati�cation Point of View 13end of the chapter a Mourre estimate for the pair H(ξ) and Aξ. From our Mourre estimate,Theorems 1.7 and 1.8 will follow. Theorem 1.6 will be proved in Subsection 3.1, and ensures thatthe construction of vξ can be done in a su�ciently large energy region inside E(1)(ξ).The rest of this subsection is devoted to an explanation of the construction of the threshold setand the vector �eld vξ, from the point of view of strati�cations of proper maps. We will not makeany attempt to properly introduce the notions we refer to here, which are entirely standard. Forliterature on the subject we refer the reader to [30, Section 3] as well as [25, 29]. All strati�cationsdiscussed here will satisfy Whitney's regularity condition and the so-called frontier condition: Twostrata either have disjoint closures, or one is contained in the closure of the other.Consider a (real analytic) ambient space X ⊂ R2ν+1 given as the following open set
X =

{
(k, ξ, E) ∈ R

ν × R
ν × R

∣∣E < Σ(2)
0 (ξ)

}
.Along with this we consider �bered ambient spaces

Xξ =
{
(k,E) ∈ R

ν × R
∣∣ (k, ξ, E) ∈ X

}
.We de�ne (real analytic) projections Π: X → Rν+1 and Πξ : Xξ → R by

Π(k, ξ, E) = (ξ, E) and Πξ(k,E) = E.The projections in fact take values inside the (real analytic) target spaces Y = {(ξ, E) |E <

Σ(2)
0 (ξ)} and Yξ = (−∞,Σ(2)

0 (ξ)) respectively.We now introduce what turns out to be semi-analytic subsets of the ambient spaces justde�ned. Let
A =

{
(k, ξ, E) ∈ X

∣∣ (ξ − k,E − ω(k)) ∈ Σiso)
}and

Aξ =
{
(k,E) ∈ Xξ

∣∣ (k, ξ, E) ∈ A
}
.To see that these sets are semi-analytic we �rst remark that Σiso is semi-analytic as a subset ofthe ambient space {(ξ, E) |E < Σess(ξ)}. This follows from the analysis of Gérard and Nier [25].It now follows that A and Aξ are semi-analytic as subsets of X and Xξ respectively. Here onemakes use of E − ω(k) < Σess(ξ − k) provided (k, ξ, E) ∈ X .That the projections Π and Πξ, when restricted to A and Aξ respectively, are proper (preim-ages of compact sets are compact) is a consequence of [40, Theorem 2.4]. See also (3.1) below.The splitting of Σiso into graphs of mass shells GS and level crossings, as Sν−1-spheres, is astrati�cation of Σiso with strata being graphs of real analytic functions of total momentum. Thisinduces a strati�cation of X and Xξ into strata which are again graphs of real analytic functionsof (k, ξ) and k, respectively.The threshold sets T (1)(ξ) ∩ E(1)(ξ) and T (1) ∩ E(1) can be interpreted as coming from aHironaka-strati�cation of the maps Π|A and Πξ|Aξ

as follows. The threshold set T (1)(ξ)∩ E(1)(ξ)are zero-strata in a strati�cation of the target space Yξ, and T (1)∩E(1) is the union of zero-strataand those d-strata, with 1 ≤ d ≤ ν, transverse to each {ξ} × Yξ inside Y .The strata of the compatible strati�cation of A and Aξ will again be graphs of real analyticfunctions and the strata not projecting into the threshold sets are exactly those for which thefunction, e.g. S(1) from (1.30), de�ning the strata has nowhere vanishing gradient with respectto k.The vector �eld vξ, used at total momentum ξ, will be constructed by gluing together k-gradients of the functions generating non-threshold strata in Aξ, which plays the physical roleof a vector �eld of relative breakup velocity of a compound system consisting of an asymptoticboson at momentum k, and an interacting system at momentum ξ − k.



14 2 REGULARITY WITH RESPECT TO A CONJUGATE OPERATORIn fact we expect/conjecture that a Hironaka-strati�cation of the projections Π and Πξ canbe used also without the assumption (ST3) on rotation invariance to construct the threshold sets,and a subsequent analysis of the resulting Whitney strati�cation of A and Aξ should make itpossible, along the same lines as employed in Chapter 3 of this paper, to build a vector �eld vξ thatworks in a Mourre estimate. However, at this stage where there are still many questions remainingabout scattering theory as well as the structure of high energy sectors of the energy-momentumspectrum, we prefer the home-cooked and completely explicit strati�cation from Chapter 3, wherewe have full control over all the nuts and bolts. We remark that our insistence on constructing vξas a vector �eld necessitates some geometrical/technical considerations not met in [24] and [25],where vξ was allowed to be a more complicated object. Again, with a view towards the future,we prefer to keep vξ as concrete as possible.We remark that it is a consequence of the analysis in Subsection 3.1 that T (1) ∩E(1) is a semi-analytic subset of the ambient space E(1). However, we cannot conclude that Σiso ∪ (T (1) ∩ E(1))is a semi-analytic subset of the ambient space {(ξ, E) |E < Σ(2)
0 (ξ)}. The reason being that wehave no control over the manner in which isolated mass shells may hit the continuous energy-momentum spectrum. Such a statement together with control of possibly embedded non-thresholdmass shells, would be a natural input for investigating higher energy sectors.Another, perhaps more serious, obstacle to analyzing the spectrum above the two-bosonthreshold, is the possible existence of embedded mass shells. Embedded mass shells below thetwo-boson threshold would give rise to one-boson scattering states between the two- and three-boson thresholds. Controlling the induced thresholds, in a manner similar to what is done here,necessitates that embedded mass shells are real analytic. Proving this is well beyond currenttechnology [13, 31, 41]. One solution would be to pass to a weak coupling regime where the workof [4, 37] can be used to rule out embedded mass shells below the two-boson threshold altogether.2 Regularity with Respect to a Conjugate OperatorIn this section we recall the property of a Hamiltonian being of class Ck(A), with respect toa self-adjoint conjugate operator A. In addition, we verify that our �ber Hamiltonians are ofclass C2(A), for conjugate operators of the general form constructed here. We remark that theparticular model studied in this paper is in fact quite singular in terms of the Ck(A) classes, inthat the free operator H0(ξ) = dΓ(

√
k2 +m2) + (ξ − dΓ(k))2 is of class C2(A) but fails to be ofclass C3(A), if one chooses A to be e.g. a second quantized generator of dilation. While this doesnot become a serious issue in the present paper, it will be a more serious obstacle when possibleembedded mass shells are analyzed, since the most advanced results to date only hold under a

C2(A) assumption [13, 41]. There are in particular no results allowing one to follow degenerateembedded eigenvalues under perturbations without stronger regularity assumptions.Additionally, while H0(ξ) is of class C1(A), it does not satisfy a Mourre type regularitycondition on the �rst commutator, which manifests itself in the fact that the groupWt generatedby the generator of dilation does not preserve the domain of any positive power of H0(ξ).The class of conjugate operators we consider in this paper are build from one-body operatorsof the form
a =

1

2

{
v · i∇k + i∇k · v

}
, where v ∈ C∞

0 (Rν). (2.1)If the ∂kj
g's are not all square integrable near 0, we further require that 0 6∈ supp v. It is well-known that such a are essentially self-adjoint on C∞

0 (Rν). Furthermore, the second quantization
A = dΓ(a) (2.2)



2.1 The Ck(A) Classes of Operators 15is essentially self-adjoint on C, cf. (1.13). Being self-adjoint, the operator a generates a unitarygroup wt = eita which can be expressed in terms of the �ow ψt of the autonomous ODE ψ̇t = v(ψt),with ψ0(k) = k. We have the formula
(wtf)(k) =

√
Jt(k)f(ψt(k)), (2.3)where Jt is the determinant of the Jacobi matrix Dkψt. By Liouville's formula we have theequation

Jt(k) = e
∫

t

0
Tr[Dv(ψs(k))]ds, (2.4)which is uniformly bounded in k. By the functorial properties of second quantization we �nd thatthe group eitA generated by A is Γ(wt).Note that ψt(k) = k for k 6∈ supp(v) and by boundedness of v we have

sup
k∈Rν

‖ψt(k) − k‖ ≤ sup
k∈Rν

∫ t

0

‖v(ψs(k))‖ ds ≤ t‖v‖∞. (2.5)Unfortunately we use k here both as a momentum variable and as an integer power for theclass Ck(A). Both are standard notation that we prefer to adhere to and trust the reader todistinguish from the context when k denotes momentum and when it denotes an integer power.2.1 The Ck(A) Classes of OperatorsLet A be a self-adjoint operator on a complex Hilbert space H. We recall the notion of Ck(A),
k = 1, 2, . . . , regularity from [3].De�nition 2.1 (The Ck(A) class of operators). Let A be a self-adjoint operator onH, withdomain D(A).(i) Let B ∈ B(H) be a bounded operator and k ∈ N. We say that B ∈ Ck(A) if, for all φ ∈ H,the map R 3 s 7→ e−isABeisAφ ∈ H is k times continuously di�erentiable.(ii) Let H be a self-adjoint operator on H. We say that H is of class Ck(A) if there exists

z ∈ C\σ(H) such that (H − z)−1 ∈ Ck(A).Note that Ck(A) is a subalgebra of B(H), cf. [3, 21]. Lets make some remarks. The requirementthat A and H be self-adjoint can be relaxed considerably [21], something we will however notneed. The requirement in (ii) that (H − z)−1 ∈ Ck(A) for some z in the resolvent set of H , isequivalent to (H − z)−1 ∈ Ck(A) for all such z. Finally, we note that if the bounded operator Bis itself self-adjoint then B ∈ Ck(A) if and only if B is of class Ck(A).The results in this section are recalled from the literature without proofs, for which we referthe reader to [3, 18, 20, 21].We remind the reader that there are several equivalent formulations for a bounded operator
B to be of class C1(A). We collect some as a lemma.Lemma 2.2. Let B ∈ B(H). The following are equivalent.(i) B ∈ C1(A).(ii) It holds that lim inf

s→0+

1
s‖e−isABeisA −B‖ <∞.(iii) There is a constant C such that for all ψ, φ ∈ D(A),

|〈Aψ,Bφ〉 − 〈Bψ,Aφ〉| ≤ C‖φ‖‖ψ‖. (2.6)



16 2 REGULARITY WITH RESPECT TO A CONJUGATE OPERATOR(iv) B maps D(A) into itself and AB −BA : D(A) → H extends to a bounded operator on H.If B ∈ C1(A), the commutator [A,B], which is a priori only de�ned as a form on D(A), can byLemma 2.2 be extended to H. We write [A,B]◦ for the unique bounded operator on H extendingthe quadratic form [A,B].If B = (H−z)−1, with H being self-adjoint and of class C1(A), then we can compute the form
[B,A] on D(A) and �nd that [B,A] = −(H − z)−1[H,A](H − z)−1, which is meaningful due toLemma 2.2 (iv). Here [H,A] is read as a form on D(H)∩D(A). Since the left-hand side extends bycontinuity to the bounded operator [A,B]◦, we observe that [H,A] extends from D(A)∩D(H) toa bounded form on D(H), which we can and will identify with an operator [H,A]◦ ∈ B(H1;H−1).Here we used the standard scale of spaces associated with H . That isHs, |s| ≤ 1, is the completionof D(H) with respect to the norm ‖ψ‖s = ‖(|H |+ 1)sψ‖. We remark that if H is of class C1(A),then

D(H) ∩D(A) is dense in D(H) (2.7)and hence, the extension [H,A]◦ of the form [H,A] is unique.We will need the following well-known lemmaLemma 2.3. If H is a self-adjoint operator of class C1(A) and Wt = eitA is the unitary groupassociated to the self-adjoint operator A, then we have
∀ψ, φ ∈ D(H) : 〈ψ, i[H,A]◦φ〉 = lim

s→0

1

s

(
〈Hψ,Wsφ〉 − 〈ψ,WsHφ〉

)
.2.2 H(ξ) is of Class C2(A)In this subsection we state and prove a C2(A) regularity result for the �ber Hamiltonians withrespect to conjugate operators of the type (2.2). Since this is of independent interest, we formulateprecise conditions under which our results hold, conditions that are implied by a combination ofConditions 1.2 and 1.4.Condition 2.4. We say that (ω,Ω, g, v) satis�es a Ck-condition, k = 1, 2, if there exists sΩ ∈

[0, 2] such that(Ck1) ω,Ω ∈ Ck(Rν) and v ∈ C∞
0 (Rν).(Ck2) infη∈Rν ω(η) > 0.(Ck3) ∃C > 0 such that Ω(η) ≥ C−1〈η〉sΩ − C and |∂αΩ(η)| ≤ C〈η〉sΩ−|α|, |α| ≤ k.(Ck4) g ∈ L2(Rν) admits k distributional derivatives with ∂αg ∈ L2

loc(R
ν\{0}), |α| ≤ k.(Ck5) If ∂kj

g 6∈ L2
loc(R

ν), for some j ∈ {1, . . . , ν}, then supp v ⊂ R
ν\{0}.As for Condition 1.2, we can assume without loss of generality that Ω ≥ 0. Note that due tothe ξ- and g-independence of the domain of H(ξ), and the equivalence of the associated ‖ · ‖snorms, the scale of spaces Hs are ξ- and g-independent. To avoid ambiguity we use H0(0) tode�ne the s-norms.Proposition 2.5. Suppose (ω,Ω, g, v) satis�es a Ck-condition with

k = 1: Then for all ξ ∈ Rν the �ber Hamiltonian H(ξ) is of class C1(A) and we have the explicitform of the commutator
i[H(ξ), A]◦ = dΓ(v · ∇ω) − dΓ(v) · ∇Ω(ξ − dΓ(k)) − φ(iag).Furthermore

∀t ∈
[
0, 1

2

]
: [H(ξ), A]◦ ∈ B

(
H1−t,H− 1

2−t

)
. (2.8)
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k = 2: Then for all ξ ∈ H(ξ) the �ber Hamiltonian H(ξ) is of class C2(A).Proof. Fix a ξ ∈ Rν . For the purpose of this proof we abbreviate H0 = H0(ξ) and H = H(ξ).Recall the notation D (1.14) for the common domain of H0(ξ) and H(ξ), ξ ∈ Rν , and C (1.13)for the common core of H(ξ) and A. We introduce a slightly larger common core as the algebraicdirect sum

C̃ =

∞⊕

n=0

C∞
0,sym(Rnν), (2.9)where the subscript `sym' indicates that the functions are symmetric under permutations of the

n variables.We begin with the case `k = 1' and observe that
∀z ∈ C\σ(H0) : (H0 − z)−1C ⊂ C̃, (2.10)which ensures that the following computation, for ψ, ϕ ∈ C,

〈
ψ,
[
(H0 + 1)−1, A

]
ϕ
〉

= −
〈
(H0 + 1)−1ψ, [H0, A](H0 + 1)−1ϕ

〉is meaningful. As a form on C̃ one can easily compute that
F
C̃

:= i[H0, A]|C̃ = dΓ(v · ∇ω) − dΓ(v) · ∇Ω(ξ − dΓ(k)).Since v · ∇ω is uniformly bounded, cf. (Ck1), we can bound the �rst term by a number operator,and hence due to (Ck2) by H0. Likewise, we can bound dΓ(v) by H0, and the operator ∇Ω(ξ −
dΓ(k)) can due to (Ck3) be controlled by H1/2

0 . Recall that sΩ ≤ 2. This yields the followingbound for all ψ̃, ϕ̃ ∈ C̃
∣∣〈ψ̃, i[H0, A]ϕ̃

〉∣∣ ≤ C
(∥∥(H0 + 1)ψ̃

∥∥2
+
∥∥(H0 + 1)

1
2 ϕ̃
∥∥2
)
.Hence we �nd that

∀ψ, ϕ ∈ C :
∣∣〈ψ, i

[
(H0 + 1)−1, A

]
ϕ
〉∣∣ ≤ C

(∥∥ψ
∥∥2

+
∥∥(H0 + 1)−

1
2ϕ
∥∥2
)
.Since C is a core for A, this proves that H0 is of class C1(A) and hence i[H0, A] has a uniqueextension by continuity from D ∩ D(A) to a bounded form i[H0, A]◦ on D. We now observe,appealing to the bound, that the form F

C̃
extends continuously to a bounded form FD on D,de�ned by the same expression. Since FD and i[H0, A]◦ coincide on C̃, they must also be identicalas forms on D. Finally we observe by symmetry and interpolation that

∀t ∈
[
0, 1

2

]
: i[H0, A]◦ ∈ B

(
H1−t,H− 1

2−t

)
. (2.11)We now turn to the full �ber Hamiltonian H . Since φ(g) is H1/2

0 bounded, we can choose
λ > 0 large enough such that ‖φ(g)R0(λ)‖ < 1, where R0(λ) = (H0 + λ)−1. We can now write

R(λ) := (H + λ)−1 = R0(λ)(1+φ(g)R0(λ))
−1. (2.12)Recall that C1(A) is a subalgebra of B(H), and S ∈ C1(A) invertible implies S−1 ∈ C1(A) (see[21, Corollary 2.10]). Hence it su�ces to show that φ(g)R0(λ) ∈ C1(A) in order to prove that His of class C1(A).



18 2 REGULARITY WITH RESPECT TO A CONJUGATE OPERATORUsing Lemma 2.2 (iv) we conclude that for ϕ ∈ C ⊂ D(A) we have R0(λ)Aϕ = AR0(λ)ϕ −
[R0(λ), A]◦ϕ. Calculate for ψ, ϕ ∈ C

〈
φ(g)ψ,R0(λ)iAϕ〉 − 〈Aψ, iφ(g)R0(λ)ϕ

〉

=
〈
φ(g)ψ, iAR0(λ)ϕ〉 − 〈Aψ, iφ(g)R0(λ)ϕ

〉

−
〈
φ(g)ψ,R0(λ)i[H0, A]R0(λ)ϕ

〉

= −
〈
ψ, φ(iag)R0(λ)ϕ

〉
−
〈
ψ, φ(g)R0(λ)i[H0, A]◦R0(λ)ϕ

〉
.

(2.13)Note that ag ∈ L2(Rν) due to (Ck1), (Ck4) and (Ck5). By using (2.11) and H1/2
0 -boundednessof φ(g), it follows that for all ψ, ϕ ∈ C

∣∣〈ψ, φ(g)R0(λ)iAϕ
〉
−
〈
Aψ, iφ(g)R0(λ)ϕ

〉∣∣ ≤ C
(
‖ψ‖2 + ‖ϕ‖2

)
,for some C > 0. Since C is a core for A this bound extends to D(A) and hence by Lemma 2.2 weconclude that φ(g)R0(λ) ∈ C1(A). To verify the formula for i[H,A]◦ it now su�ces to verify theformula as a form on C as we did for [H0, A]◦. The perturbation contributes an H-bounded term,so it is (2.11) that is the most singular contribution and hence (2.8) holds true. This completesthe proof for the case `k = 1'.We turn to the case `k = 2'. Having established that R(λ) ∈ C1(A), one can repeat the argu-ment around (2.13) above to conclude that φ(g)R(λ) ∈ C1(A). Since (φ(g)R(λ))∗ = R(λ)φ(g),the closure of R(z)φ(g) de�ned a priori on D, we get

φ(g)R(λ) and R(λ)φ(g) are of class C1(A). (2.14)Compute as an identity between bounded operators
i[R(λ), A]◦ = −R(λ)

{
i[H0, A]◦ − φ(iag)

}
R(λ)

= −R(λ)(H0 + λ)R0(λ)i[H0, A]◦R(λ) +R(λ)φ(iag)R(λ)

= −R(λ)φ(g)i[R0(λ), A]◦(1+φ(g)R0(λ))
−1 +R(λ)φ(iag)R(λ)

+ i[R0(λ), A]◦(1+φ(g)R0(λ))
−1,where the last equality made use of (2.12). We conclude that to show that H is of class C2(A),it su�ces to show that [R0(λ), A]◦ and R(λ)φ(iag)R(λ) are both of class C1(A).We begin with [R0(λ), A]◦. Compute for ψ, ϕ ∈ C

〈
ψ, [R0(λ), A]◦Aϕ

〉
−
〈
Aψ, [R0(λ), A]◦ϕ

〉

= −
〈
ψ,R0(λ)[[H0, A]◦, A]R0(λ)ϕ

〉

+ 2
〈
ψ,R0(λ)[H0, A]◦R0(λ)[H0, A]◦R0(λ)ϕ

〉
,

(2.15)where we used again (2.10) and AC ⊂ C to perform the computations. The form [[H0, A]◦, A]should be understood as a form on C̃, cf. (2.9), where it can be computed to be
F ′
C̃

:= [[H0, A]◦, A]

= −dΓ(〈v, (∇2ω)v〉) − dΓ(〈(∇v)v,∇ω〉)
− 〈dΓ(v),∇2Ω(ξ − dΓ(k))dΓ(v)〉 + dΓ((∇v)v) · ∇Ω(ξ − dΓ(k)).The two �rst terms in F ′

C̃
are controlled by the number operator, cf. (Ck1), and hence by H0.The third term is the most singular and require a square of the number operator to bound, cf.



2.3 Extended Operators 19(Ck3), and hence is just bounded as a form on D. The fourth and �nal term can be controlled by
H

3/2
0 . In conclusion we �nd the existence of a C > 0 such that

∀ψ̃, ϕ̃ ∈ C̃ :
∣∣〈ψ̃, F ′

C̃
ϕ̃
〉∣∣ ≤ C

(∥∥(H0 + λ)ψ̃
∥∥2

+
∥∥(H0 + λ)ϕ̃

∥∥2
)We can now estimate the left-hand side in (2.15), cf. also (2.11), and �nd that

∀ψ, ϕ ∈ C :
∣∣〈ψ, [[R0, A]◦, A]ϕ

〉∣∣ ≤ C
(
‖ψ‖2 + ‖ϕ‖2

)
,for some C > 0. Since C is a core for A, we have thus established that [R0(λ), A]◦ ∈ C1(A).Note that to control the last term in (2.15) using (2.11), one has to make full use of all the freeresolvents.It remains to consider R(λ)φ(iag)R(λ). Writing

R(λ)φ(iag)R(λ) = R0(λ)φ(iag)R0(λ) + 2Re
{
R(λ)φ(g)R0(λ)φ(iag)R0(λ)}

+R(λ)φ(g)R0(λ)φ(iag)R0(λ)φ(g)R(λ),we appeal to (2.14) and conclude that it su�ces to show that R0(λ)φ(iag)R0(λ) is of class C1(A).Here we can compute as a form on C for one last time
[R0(λ)φ(iag)R0(λ), A] = −iR0(λ)φ(a2g)R0(λ)

+ [R0(λ), A]◦φ(iag)R0(λ) +R0(λ)φ(iag)[R0(λ), A]◦.By (Ck1), (Ck4) and (Ck5), ag, a2g ∈ L2(Rν) and the right-hand side clearly extends to a boundedoperator and we are done. �2.3 Extended OperatorsBelow we will make use of the following two simple observations, the proofs of which are left tothe reader.Lemma 2.6. Let H,A1, A2, A3 be self-adjoint operators such that H ∈ C1(Aj), j = 1, 2. Supposefurthermore that there exists a dense set D0, with the following properties:(i) D0 ⊂ D(Aj), j = 1, 2, 3.(ii) D0 is a core for A3.(iii) For all ψ ∈ D0 we have A3ψ = A1ψ +A2ψ.Then H is of class C1(A3) and [H,A3]
◦ = [H,A1]

◦ + [H,A2]
◦ as an identity between elements of

B(H1;H−1).Lemma 2.7. Let {Hn}n∈N be a family of Hilbert spaces, and suppose that for each n ∈ N we aregiven two self-adjoint operators Hn and An on Hn, with Hn of class C1(An). Then H = ⊕∞
n=1Hnis of class C1(A), with A = ⊕∞

n=1An, as self-adjoint operators on H = ⊕∞
n=1Hn. Furthermore

[H,A]◦ = ⊕∞
n=1[Hn, An]

0 under the identi�cation B(H1;H−1) = ⊕∞
n=1B(Hn;1;Hn;−1).In the proposition below ṽ ∈ C∞

0 (Rν\), ã = (ṽ·i∇k+i∇k·ṽ)/2 and Ã(`) = A⊗1F(`) +1F ⊗ dΓ(`)(ã).The tilde-free versions are as usual constructed using v. The extended operators being discussedin this subsection were introduced in Subsection 1.2.



20 2 REGULARITY WITH RESPECT TO A CONJUGATE OPERATORProposition 2.8. Suppose (ω,Ω, g, v) satis�es a C1-condition. Then for all ` ∈ N and ξ ∈ Rνthe following holds: H(`)(ξ) is of class C1(A⊗ 1F(`)), C1(1F ⊗ dΓ(`)(ã)) and C1(Ã(`)), with
i
[
H(`)(ξ), A ⊗ 1F(`)

]◦
=

∫ ⊕

R`ν

i
[
H(`)(ξ; k), A

]◦
dk,

i
[
H(`)(ξ),1F ⊗ dΓ(`)(ã)

]◦
=

∫ ⊕

R`ν

∑̀

j=1

ṽ(kj) ·
(
∇ω(kj) −∇Ω

(
ξ −∑`

j=1 kj − dΓ(k)
))

dk,

i
[
H(`)(ξ), Ã(`)

]◦
= i
[
H(`)(ξ), A⊗ 1F(`)

]◦
+ i
[
H(`)(ξ),1F ⊗ dΓ(`)(ã)

]◦
.Furthermore, Hx(ξ) is of class C1(Ax) and

i
[
Hx(ξ), Ax

]◦
= [H(ξ), A]◦ ⊕

{ ∞⊕

`=1

i
[
H(`)(ξ), A(`)

]◦}

= dΓx(v · ∇ω) − dΓx(v) · ∇Ω
(
ξ − dΓx(k)

)
− φ(iag) ⊗ 1F .Remark 2.9. For the purpose of the proof below we abbreviate k(`) = k1 + · · ·+ k`, for vectors

k = (k1, . . . , k`) ∈ R`ν . Note that [H(`)(ξ; k), A]◦ = [H(ξ − k(`)), A]◦ can be computed usingProposition 2.5 `k = 1'. �Proof. We only prove that H(`)(ξ) is of class C1(A ⊗ 1F(`)) and of class C1(1F ⊗ dΓ(`)(ã)).The C1(Ã(`)) property then follows from Lemma 2.6 and that Hx(ξ) is of class C1(Ax) followsfrom Lemma 2.7 after choosing ṽ = v. The expressions can subsequently be easily con�rmed bycomputations on a suitable core for H(`)(ξ).Let ` ∈ {1, 2, 3, . . .} and ξ ∈ Rν . We begin by showing that H(`)(ξ) is of class C1(A⊗ 1F(`)),where we identify F ⊗ F (`) with L2
sym(R`ν ;F).Let

C(`) =
{
f ∈ C0,sym(R`ν ;F)

∣∣ ∀k ∈ R
`ν : f(k) ∈ C

}
.Here C0,sym(R`ν ;F) denotes the continuous and compactly supported F-valued functions, sym-metric under permutation of the ` variables. Clearly C(`) is a core for A⊗ 1F(`) . Pick a λ < Σ0,cf. (1.16). Since

(H(`)(ξ) − λ)−1 =

∫ ⊕

R`ν

(H(`)(ξ; k) − λ)−1dk,we observe that for f ∈ C(`) we have
(
(H(`)(ξ) − λ)−1f

)
(k) =

(
H(ξ − k(`)) +

∑̀

j=1

ω(kj) − λ
)−1

f(k).Hence by Lemma 2.2 (iv) we conclude that
(H(`)(ξ) − λ)−1C(`) ⊂

{
f ∈ C0,sym(R`ν ;F)

∣∣ ∀k ∈ R
`ν : f(k) ∈ D(A) ∩D

}

=: C̃(`).
(2.16)For f, g ∈ C̃(`) we compute using Proposition 2.5 `k = 1'

〈
f,
[
H(`)(ξ), A⊗ 1F(`)

]
g
〉

=

∫

R`ν

〈
f(k),

[
H(ξ − k(`)) +

∑̀

j=1

ω(kj), A
]
g(k)

〉
dk

=

∫

R`ν

〈
f(k),

[
H(ξ − k(`)), A

]◦
g(k)

〉
dk.
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M1 := sup

η∈Rν

∥∥(H(η) − λ)−1[H(η), A]◦(H(η) − λ)−1
∥∥ <∞,

M2 := sup
ξ∈Rν ,k∈R`ν

∥∥(H(ξ − k(`)) − λ)(H(`)(ξ; k) − λ)−1
∥∥ <∞,

(2.17)we can �nally estimate for f, g ∈ C(`)
∣∣〈f,

[
(H(`)(ξ) − λ)−1, A⊗ 1F(`)

]
g
〉∣∣

≤
∫

R`ν

∣∣〈(H(`)(ξ; k) − λ)−1f(k), [H(ξ − k(`)), A]◦(H(`)(ξ; k) − λ)−1g(k)
〉∣∣dk

≤M1M
2
2 ‖f‖‖g‖.That C(`) is a core for A⊗ 1F(`) now implies that H(`)(ξ) is of class C1(A⊗ 1F(`)).By Lemmata 2.6 and 2.7 it now su�ces to show that H(`)(ξ) is of class C1(1F ⊗ dΓ(`)(ã)).Denote by w̃t the group eitã generated by ã. Then w̃(`)

t = 1F ⊗Γ(`)(w̃t) is the group generated by1F ⊗ dΓ(`)(ã). If we denote by ψ̃t the globally de�ned �ow generated by the ODE ψ̇t = ṽ(ψt) wecan write (w̃tf)(y) =

√
J̃tf(ψ̃t(y)), where J̃t is the Jacobi determinant. See (2.3) and (2.4).We introduce a bit of notation. Given k ∈ R`ν we write ψ̃(`)

t (k) = ψ̃t(k1) + · · · + ψ̃t(k`). Wecompute as a form on C̃(`), cf. (2.16),
w̃(`)

−t

[
H(`)(ξ), w̃(`)

t

]

= w̃(`)
−t

(
Ω
(
ξ − k(`) − dΓ(k)

)
+
∑̀

j=1

ω(kj)
)
w̃(`)
t − Ω

(
ξ − k(`) − dΓ(k)

)
−
∑̀

j=1

ω(kj)

= Ω
(
ξ − ψ̃(`)

t (k) − dΓ(k)
)
− Ω

(
ξ − k(`) − dΓ(k)

)
+
∑̀

j=1

(
ω
(
ψ̃t(kj)

)
− ω(kj)

)

= −
∫ t

0

∇Ω
(
ξ − ψ(`)

t (k) − dΓ(k)
)
·
∑̀

j=1

ṽ
(
ψ̃s(k)

)
ds

+
∑̀

j=1

∫ t

0

∇ω
(
ψ̃s(kj)

)
· ṽ
(
ψ̃s(kj)

)
ds. (2.18)Estimate, as a �ber operator pointwise in k,

∥∥∥∇Ω
(
ξ − ψ(`)

s (k) − dΓ(k)
)(

Ω
(
ξ − k(`) − dΓ(k)

)
+ 1
)− 1

2

∥∥∥

≤ C sup
η∈Rν

〈
ξ − ψ(`)

s (k) − η
〉sΩ−1

〈
ξ − k(`) − η

〉sΩ/2 ≤ (1 + |s|)C̃uniformly in s and k. Here we used (2.5) in the last step. Appealing to (2.5) again and the C1-condition, cf. Condition 2.4, we observe that the right-hand side of (2.18) is (H(ξ− k(`))−λ)1/2-bounded uniformly in k. From this observation it is now clear that as a form on C(`)
1

t

[
(H(`)(ξ) − λ)−1, w̃(`)

t

]
= −(H(`)(ξ) − λ)−1

{1

t

[
H(`)(ξ), w̃(`)

t

]
(H(`)(ξ) − λ)−1

}
,and the term in brackets extends to a bounded operator uniformly bounded in 0 < |t| ≤ 1. Cf.(2.17). It thus follows from Lemma 2.2 (ii) that H(`)(ξ) is of class C1(1F ⊗ dΓ(`)(ã)). �



22 2 REGULARITY WITH RESPECT TO A CONJUGATE OPERATORWe end this subsection by formulating and proving a virial theorem which will be used toextract the e�ective free dynamics induced by mass shells. Similar virial theorems were usedin [9, 25]. In the following U ⊂ R
m is open and H a complex separable Hilbert space, withdense subspace D0. Suppose {H(x)}x∈U is a family of N-measurable operators, essentially self-adjoint on D0, cf. Appendix A. Then H :=

∫ ⊕

U
H(x)dx, a priori de�ned on {f ∈ L2(U ;H) |x ∈

U : f(x) ∈ D0 a.e.}, is essentially self-adjoint. Let A be a self-adjoint operator on H, and
a = 1⊗ 1

2{v · i∇x+i∇x ·v}, with v ∈ C∞
0 (U ; Rm). Then A(1) = A⊗1L2(U) +1H⊗ a is self-adjointas an operator on H⊗ L2(U), which we identify as usual with L2(U ;H).Theorem 2.10. Let E ∈ C1(U), with E(x) ∈ σpp(H(x)) for all x ∈ U . Suppose H is of class

C1(A(1)) and that the commutator �bers, i.e. i[H,A(1)]◦ =
∫ ⊕

U
i[H,A(1)]◦(x)dx. Then for almostevery x ∈ U1{E(x)}(H(x))i

[
H,A(1)

]◦
(x)1{E(x)}(H(x)) = v(x) · ∇E(x)1{E(x)}(H(x)). (2.19)Remark 2.11. By the assumption i[H,A(1)]◦ being �bered is meant the existence of a family ofoperators x→ i[H,A(1)]◦(x) ∈ B(Hx,1;Hx,−1), with

U 3 x→ B(x) = (H(x) − i)−1i
[
H,A(1)

]◦
(x)(H(x) − i)−1weakly measurable, and (H − i)−1i[H,A(1)]◦(H − i)−1 =

∫ ⊕

U
B(x)dx. Note that it follows fromthe discussion in Appendix A that both sides of (2.19) are weakly measurable. �Proof. Let ψ, ψ̃ ∈ C∞

0 (U) with ψψ̃ = ψ and observe, cf. Lemma 2.3, that in the sense of formson D(H) we have
i
[
H,A(1)

]◦
= lim

t→0

1

t
[H,Wt],with Wt = eitA(1)

= eitA ⊗ eita. Abbreviate
Pψ :=

∫ ⊕

U

ψ(x)1{E(x)}(H(x)) dx.Note that x → 1{E(x)}(H(x)) is weakly measurable, and hence strongly measurable, cf. Ap-pendix A. Since Pψ preserves � in fact has range inside � D(H) we can compute as a form on
D(H)

Pψ [H,Wt]Pψ = Pψ[E,Wt]Pψ = Pψ[ψ̃E,Wt]Pψ ,where E and ψ̃E should be read as multiplication operators in the base space, or equivalentlyas 1H⊗E and 1H⊗ψ̃E. Since ψ̃E ∈ C1
0 (U) we clearly have ψ̃E ∈ C1(A(1)) with i[ψ̃E,A(1)]◦ =

i[ψ̃E, a]◦ = v · ∇(ψ̃E). Hence
Pψi
[
H,A(1)

]◦
Pψ = lim

t→0

1

t
Pψ[H,Wt]Pψ = lim

t→0

1

t
Pψ[ψ̃E,Wt]Pψ

= v · ∇(ψ̃E)P 2
ψ = v · ∇EP 2

ψ .We conclude the theorem since ψ was arbitrary and when �bered the above identity reads
∫ ⊕

U

ψ(x)2 1{E(x)}(H(x))i
[
H,A(1)

]◦
(x)1{E(x)}(H(x)) dx

=

∫ ⊕

U

ψ(x)2v(x) · ∇E(x)1{E(x)}(H(x)) dx.
�



233 The Commutator EstimateIn this section we analyze the geometry of the threshold set T (1), construct vector �elds v ∈
C∞

0 (Rν) going into the one-body conjugate operator a, cf. (2.1), and �nally prove a Mourreestimate for the �ber Hamiltonians below the two-boson threshold Σ(2)
0 and away from thresholdenergies (and the set Exc).We remark that in the literature, this type of analysis [2, 11, 12, 16, 38] has made essentialuse of the property ω(k) → ∞, |k| → ∞, something we do not want to assume here in view of thepolaron model. In [40] this assumption was avoided, by instead using that for bounded ω the gapbetween the ground state energy Σ0(ξ) and the bottom of the essential spectrum Σess(ξ) closesat large total momentum. More precisely, under Condition 1.2, and the additional assumption

supk∈Rν ω(k) <∞, the second case in (MC6), we have
lim

|ξ|→∞
Σess(ξ) − Σ0(ξ) = 0. (3.1)We refer the reader to [40] for a proof. This result is crucial for treating the polaron model, andits importance is encoded in Lemma 3.1 below.3.1 Structure of the Threshold SetRecall from (1.29) the notation E(1) for the energy-momentum region between the 1- and 2-bosonthresholds.Lemma 3.1. Assume Condition 1.2. Let C ⊂ E(1) be a compact set and K ⊂ Rν . The followingholds(i) KC := {k ∈ R

ν | ∃(p, e) ∈ Σiso, s.t. (p+ k, e+ ω(k)) ∈ C} is compact.(ii) If K ∩KC is closed, then the set ΣC(K) =
{
(p, e) ∈ Σiso

∣∣∃k ∈ K s.t. (p+ k, e+ω(k)) ∈ C
}is compact.Remark 3.2. Observe that ΣC(K) = ΣC(KC ∩K). In particular we abbreviate ΣC := ΣC(Rν) =

ΣC(KC).The set KC consists of asymptotic momenta available to states localized in C for one-bosonemission, due to energy and momentum conservation. The set ΣC (ΣC(K)) contains the interact-ing bound states reachable from states localized in C after emission of one boson (with asymptoticmomentum in K). �Proof. We divide the proof into three steps.Step I: Reducing the problem to compactness of a single set. Let X = Rν × Σiso. De�ne a map
Ψ: X → R

ν+1 by
Ψ(k, p, e) = (p+ k, e+ ω(k)).Denote byΠ1 : X → Rν the projection onto the k coordinate and by Π2 : X → Rν+1 the projectiononto the (p, e) coordinate. With this notation we can write KC = Π1(Ψ

−1(C)) and ΣC(K) =
Π2(Ψ

−1(C) ∩ (K × Rν+1)). Hence it su�ces to prove that C′ = Ψ−1(C) is a compact subset of
R2ν+1.Step II: There exists ε > 0 such that C′ ⊂ Rν × {(p, e) ∈ Σiso | e ≤ Σess(p) − ε}. Indeed, let
ε = d(C,Σ(2)

0 ) > 0, the distance from C to the two-boson threshold. Suppose (k, p, e) ∈ C′satis�es that e ∈ (Σess(p) − ε,Σess(p)). Then
e+ ω(k) > Σess(p) + ω(k) − ε = Σ(1)

0 ((p+ k) − k) + ω(k) − ε ≥ Σ(2)
0 (p+ k) − ε.



24 3 THE COMMUTATOR ESTIMATEThis contradicts the choice of ε, since (p+ k, e+ ω(k)) ∈ C.Step III: C′ is compact. Since Ψ is continuous, the preimage C′ is closed as a subset of X . ByStep II, it is in fact closed as a subset of R2ν+1 as well. It remains to argue that C′ is bounded.Assume C′ is unbounded. Then there must exist a sequence (kn, pn, en) ∈ C′ with |kn|+|pn| →
∞. Since (pn + kn, en + ω(kn)) is in the compact set C, pn + kn is a bounded sequence. Hence
|kn| and |pn| both diverge to ∞. Let ε = d(C,Σ(2)) as in Step II. By (3.1) there exists N suchthat for n ≥ N we have Σ0(pn) > Σ(1)

0 (pn) − ε. For n ≥ N we can now estimate
en + ω(kn) ≥ Σ0(pn) + ω(kn) > Σ(1)

0 (pn) + ω(kn) − ε

= Σ(1)
0 ((pn + kn) − kn) + ω(kn) − ε ≥ Σ(2)

0 (pn + kn) − ε.This contradicts the choice of ε and we are done. �The remainder of this section is devoted to the geometry of the threshold sets T (1)
S

, T (1)
‖ and

T
(1)

∦ , cf. (1.31), (1.32) and (1.34).Lemma 3.3. Assume Conditions 1.2 and 1.4, with n0 = 0. We have the following two properties(i) The sets T (1)
‖ (ξ)∩E(1)(ξ) and T (1)

∦ (ξ)∩E(1)(ξ) are locally �nite, with possible accumulationpoints only at the upper boundary Σ(2)
0 (ξ), the 2-boson threshold.(ii) The sets T (1)

‖ ∩ E(1) and T (1)
∦ ∩ E(1) are (relatively) closed subsets of E(1).Remark 3.4. The set T (1)

‖ is precisely the union of radial graphs of ω centered above eachcrossing point, i.e. union of the graphs {(p+ ru, e+ ω(p+ ru)) | r ∈ R} for each (p, e) ∈ X . Here
u is a unit vector collinear with p. �Proof. We begin with (i) and take �rst the set T (1)

‖ (ξ). Fix ξ ∈ Rν and a matching collinear unitvector u. Let r ∈ R be such that ξ = ru.Suppose {En} ⊂ T (1)
‖ (ξ), En < Σ(2)

0 (ξ), with En → E < Σ(2)
0 (ξ). We need to argue that thesequence {En} is eventually constant. Let E′ = (E + Σ(2)

0 (ξ))/2, such that
C = {ξ} ×

[
Σ(1)

0 (ξ), E′
] (3.2)is a compact subset of E(1). For n large enough we have (ξ, En) ∈ C.There exists rn ∈ R, for each n ∈ N, such that (ξ − rnu,En − ω(rnu)) ∈ X for all n. Observethat (ξ − rnu,En − ω(rnu)) ∈ X ∩ ΣC for large n. Since ΣC is compact, cf. Lemma 3.1, and theset X consists of isolated Sν−1-spheres centered at ξ = 0, we conclude that |ξ− rnu| = |r− rn||u|,and hence also rn, only take �nitely many values. But then En − ω(rnu) must also take only�nitely many values and hence En is eventually constantly equal to E.As for the set T (1)

6‖ (ξ) we assume again that {En} ⊂ T (1)
6‖ (ξ), En < Σ(2)

0 (ξ), and En → E <

Σ(2)
0 (ξ). There exists kn, for each n, such that (ξ − kn, En − ω(kn)) ∈ X and ∇ω(kn) = 0.Let ε > 0 and the compact subset C of E(1) be as before, cf. (3.2). The sequence {(ξ−kn, En−

ω(kn))}must, for n large, again run inside the compact set ΣC and thus since X consists of isolatedspheres, we must have a subsequence {knj
} such that |ξ − knj

| = Rc and Enj
− ω(knj

) = Ec areconstant, signifying that we are on the same level crossing ∂B(0;Rc) × {Ec} ⊂ X . If ξ = 0 or ωis constant, we are done since in either case ω(knj
) is a constant sequence, and hence Enj

= E.If we are in dimension ν = 1 we are also done, since this will force knj
to only attain the twovalues ξ +Rc and ξ −Rc. Hence Enj

= E, for j su�ciently large.



3.1 Structure of the Threshold Set 25We can thus assume that ν ≥ 2 and ω is not a constant function. Fix another unit vector v, with
v · u = 0. By symmetry in the hyperspace orthogonal to u, we can assume that knj

∈ span{u, v}.Using that |ξ − knj
| = Rc, we can write the momenta as

knj
= k(ϑj) = ξ −Rc

(
cos(ϑj)u+ sin(ϑj)v

)
,with ϑj ∈ R a bounded sequence. But since ϑ→ |∇ω(k(ϑ))|2 is a non-zero real analytic functionthe sequence ϑj can only attain �nitely many values. Again we conclude that Enj

can only attain�nitely many values, and hence must be constantly equal to E for j large.As for (ii), let {(ξn, En)}n∈N ⊂ T (1)
‖ ∩ E(1) be a convergent sequence with (ξn, En) → (ξ, E) ∈

E(1). Let 0 < R < d((ξ, E),Σ(2)
0 ), i.e. R is chosen smaller than the distance from (ξ, E) to theupper boundary of E(1). With this choice
C =

(
B(ξ;R) × [E −R,E +R]

)
∩ E(1) (3.3)is a compact subset of E(1). For n large enough we have (ξn, En) ∈ C. By rotational symmetrywe can assume that ξ and all the ξn's are collinear with a unit vector u. Write ξ = ru and

ξn = rnu. There exist a sequence of momenta snu, with snu ∈ KC for n large enough, such that
((rn − sn)u,En − ω(snu)) ∈ ΣC ∩ X , for n large enough. By compactness of KC we can extracta convergent subsequence snj

converging to s ∈ R. Then
(
ξ − su,E − ω(su)

)
= lim
j→∞

(
(rnj

− snj
)u,Enj

− ω(snj
u)
)
∈ ΣC ∩X ,since the set on the right-hand side is closed. Hence (ξ, E) ∈ T (1)

‖ , which implies that T (1)
‖ isclosed as a subset of E(1).We now turn to T (1)

6‖ . We again take a sequence {(ξn, En)}n∈N ⊂ T (1)
6‖ converging to (ξ, E) ∈

E(1). As above we can assume that there exists a unit vector u such that ξ = ru and ξn = rnu,with rn → r.Since (rnu,En) ∈ T (1)
6‖ there must exist kn ∈ R

ν such that (rnu − kn, En − ω(kn)) ∈ X and
∇ω(kn) = 0. By the, by now, standard argument, there exists a convergent subsequence {knj

}.Denote by k its limit.We can now argue as for T (1)
‖ that

(
ξ − k,E − ω(k)

)
= lim

j→∞

(
rnj

u− knj
, Enj

− ω(knj
)
)
∈ Xand ∇ω(k) = limj→∞ ∇ω(knj

) = 0. Hence (ξ, E) ∈ T (1)
6‖ , which establishes the remaining part of(ii). �Proof (Proof of Theorem 1.6). Abbreviate for the purpose of this proof

U =
{
(ξ, E) ∈ T (1)

S

∣∣ (ξ, E) 6∈ T (1)
‖ ∪ T (1)

∦

}

U(ξ) =
{
E ∈ R

∣∣ (ξ, E) ∈ U
}
.

(3.4)The sets U and U(ξ) are subsets of T (1)
S

and T (1)
S

(ξ) respectively.Given Lemma 3.3 it remains to prove the following two statements:
U ∩ E(1) ⊂ T (1) (3.5)
U(ξ) ∩ E(1)(ξ) is locally �nite. (3.6)



26 3 THE COMMUTATOR ESTIMATETo prove (3.5), let (ξn, En) ∈ U ∩ E(1) and assume (ξn, En) → (ξ, E) with E < Σ(2)
0 (ξ). Weneed to argue that (ξ, E) ∈ T (1).Construct a compact set C ⊂ E(1) containing (ξ, E) as in (3.3). For n large enough we have

(ξn, En) ∈ C. For each (large) n we can �nd a kn ∈ KC , a mass shell (An, Sn) ∈ S, such that
ξn − kn ∈ An, En = Sn(ξn − kn) + ω(kn) and ∇Sn(ξn − kn) = ∇ω(kn). Here we used that
(ξn, En) ∈ T (1)

S
.Since KC is compact we can pass to a convergent subsequence {kn`

} with k := lim`→∞ kn`
∈

KC . Abbreviate
p` :=

(
ξn`

− kn`
, En`

− ω(kn`
)
)
∈ ΣC . (3.7)Since ΣC is closed we have

lim
`→∞

p` = p :=
(
ξ − k,E − ω(k)

)
∈ ΣC ⊂ Σiso. (3.8)Recall that level crossings, as Sν−1-spheres inside X , are isolated and only �nitely many massshells emanate from each crossing. Hence we can assume that there exists a distinguished massshell (A, S) ∈ S such that p` ∈ GS , cf. (1.28), for all `. We can furthermore assume that we arein one of the two following casesCase A ∀` : ∇ω(kn`
) 6= 0Case B ∀` : ∇ω(kn`
) = 0.

(3.9)In Case A we must have for each ` an s` ∈ R such that kn`
= s`u and lim`→∞ s` exists. If

k → S(1)(ξ; k) = S(ξ − k) + ω(k) is not a constant function, the sequence s` must be eventuallyconstant and hence k ∈ A+ξ and p ∈ GS . Here we used that s→ S(1)(ξ; su) continues analyticallythrough level crossings. If on the other hand k → S(1)(ξ; k) is a constant function, we can replacethe kn`
's by a constant k ∈ A+ ξ. Hence the new limit will satisfy p ∈ GS .In Case B we have ∇S(ξn`

− kn`
) = 0, so we must have either S constant, or |ξn`

− kn`
|eventually constant and equal to |ξ− k|. In the latter case k ∈ A+ ξ and p ∈ GS . We now assumethat S is a constant function.If ω is also constant we can rede�ne the kn`

's as above and again arrive at p ∈ GS . If ω isnot a constant, |kn`
| is eventually constant and equal to r ≥ 0. First of all we observe that r isstrictly smaller than the outer radius of A. This is due to the choice of (ξn`

, En`
) away from T (1)

∦ ,cf. (1.34). We can thus replace the kn`
's with possibly di�erent kn`

's in rSν−1 such that the limit
k ∈ A+ ξ.Summing up, we have argued that either p ∈ GS , or we can make a di�erent choice of sequence
kn`

such that p ends up inside GS . Then, by continuity, we must have E = S(ξ − k) + ω(k) and
∇S(ξ − k) = ∇ω(k). Hence (ξ, E) ∈ T (1)

S
. This proves (3.5).To verify (3.6), let (ξ, En) ∈ U(ξ), with En < Σ(2)

0 (ξ), such that En → E ∈ U(ξ), with
E < Σ(2)

0 (ξ). We have to prove that the sequence En is eventually constant. Assume towardsa contradiction that it is not eventually constant. Hence we can assume, possibly passing to asubsequence, that it is strictly monotone.Let C ⊂ E(1) compact, be as in (3.2). For n su�ciently large we have (ξ, En) ∈ C. By thechoice of En we can to each n identify a kn ∈ KC and a mass shell (An, Sn) ∈ S such that
ξ − kn ∈ An, En = Sn(ξ − kn) + ω(kn) and ∇Sn(ξ − kn) = ∇ω(kn).As in the veri�cation of (3.5) we can extract a subsequence {En`

} together with a convergentsequence of momenta {kn`
}, and a distinguished mass shell (A, S) ∈ S such that ξ−k, ξ−kn`

∈ Aand p`, p ∈ GS , cf. (3.7) and (3.8). Here k = lim`→∞ kn`
. We can furthermore assume that weare in either Case A or Case B, cf. (3.9). Here we used that E ∈ U(ξ), cf. (3.4), to rule out thepossibility that p ∈ X .



3.2 Some Geometric Considerations 27In Case A we reach a contradiction with En`
being strictly monotone as follows. Write ξ = rufor some unit vector u and r ∈ R. If ξ 6= 0 the demand that ∇S(ξ−kn`

) = ∇ω(kn`
), together withrotation invariance, forces all the kn`

's to be collinear with u. If ξ = 0, we can again use rotationinvariance and simply replace all the kn`
's by |kn`

|u and thus arrive at the same situation. Hencethe map t → S(1)(ξ; tu) = S((r − t)u) + ω(tu) is analytic and vanishes along a sequence withaccumulation point inside its domain of analyticity. Hence it is constant, i.e. En`
= S(1)(ξ; kn`

)is constant.In Case B we reach a contradiction as follows. Since ∇ω(kn`
) = 0 = ∇S(ξ − kn`

) we canconclude that: Either ω is constant or |kn`
| is eventually constant. Furthermore, either S isconstant or |ξ − kn`

| is eventually constant. Regardless of which of the 4 possible combinationswe �nd ourselves in, we conclude again that En`
= S(ξ− kn`

) +ω(kn`
) is eventually constant. �3.2 Some Geometric ConsiderationsThe goal of this subsection and the next, is to analyze the set of momenta k available to bosonemission, which are not collinear with ξ, and for which the remaining interacting system ends upat or near a level crossing.In one dimension or at total momentum ξ = 0, we can avoid this situation completely bystaying away from the threshold set T (1). For this reason the reader should, for the purpose ofthis subsection and the next, think of ν ≥ 2 and ξ 6= 0. Finally, the reader trying to get a feel forthe basic ideas of the construction can safely skip these two subsections on a �rst reading. Weremark that for the polaron model as well, for the same reason, these considerations also do notplay a role.Given a point in energy-momentum space

(ξ, E) ∈ E(1)\
(
T (1) ∪ Exc

)
, (3.10)we wish to be able to choose a compact interval J = [E − δ, E + δ] with

(ξ, E) ∈ {ξ} × J ⊂ E(1)\
(
T (1) ∪ Exc

)
, (3.11)such that states localized in J (at sharp total momentum ξ) can only break up into channelswith non-zero breakup velocity. The exceptional set Exc was de�ned in (1.35).Given J ⊂ E(1)(ξ) and K ⊂ Rν , we associate the sets

KJ := K{ξ}×J , ΣJ := Σ{ξ}×J and ΣJ (K) := Σ{ξ}×J (K).Recall from Lemma 3.1 the notation for the sets KC and ΣC , for C ⊂ Rν+1. The set KJ containsthe momenta available for boson emission starting from a state localized with respect to energyin J , whereas ΣJ labels the available interacting bound states the system can relax to. Observethat if J ∩ (σpp(H(ξ)) + ω(0)) = ∅, then 0 6∈ K.With the choice (3.11) of J , some of the k's in KJ may correspond to elements (ξ−k,E−ω(k))on level crossings, but only if ξ is non-zero, and then k is linearly independent of ξ. Here E ∈ J .We introduce the notation
KXJ :=

{
k ∈ KJ

∣∣ ∃λ ∈ J :
(
ξ − k, λ− ω(k)

)
∈ X

} (3.12)for the subset of KJ corresponding to level crossings. In addition we write, for K ⊂ Rν ,
ΣXJ = ΣJ ∩X and ΣXJ (K) = ΣJ (K) ∩ Xfor the reachable interacting bound states at level crossings.



28 3 THE COMMUTATOR ESTIMATEFor ξ 6= 0, we use the notation Oν(ξ) for the subgroup of the orthogonal group consisting oforthogonal matrices O satisfying Oξ = ξ. It is convenient, given ξ 6= 0, to introduce a change ofcoordinates. Let
Πξ : R

ν−1 →
{
η ∈ R

ν
∣∣ ξ · η = 0

}be a (linear) isometric isomorphism of Rν−1 onto the orthogonal complement of ξ. We de�ne achange of coordinates k : (0,∞) × [0, π] × Sν−2 → Rν\{ξ} by
k(s, ϑ, w) := ξ − s cos(ϑ)

ξ

|ξ| + s sin(ϑ)Πξ(w), (3.13)with the standard convention that S0 = {−1,+1} ⊂ R. Observe that Πξ induces a group iso-morphism Oν−1 → Oν(ξ) by mapping O ∈ Oν−1 to Oξ ∈ Oν(ξ), determined by the two relations
Oξξ = ξ and OξΠξ = ΠξO. For O ∈ Oν−1 we have

Oξk(r, ϑ, w) = k(r, ϑ,Ow). (3.14)We will use the function k de�ning the change of coordinates also beyond angles con�ned to [0, π].Finally, note that
k(r, 2π − ϑ,w) = k(r, ϑ,−w) (3.15)and the points k(r, 0, w) and k(r, π, w), the poles of a sphere with Rξ as the axis of rotation, donot depend on w.Lemma 3.5. Assume Conditions 1.2 and 1.4, with n0 = 0. Suppose ν ≥ 2. Let (ξ, E) ∈

E(1)\T (1)
‖ . There exists a �nite number of radii {Ri}Mi=1, with Ri > 0, and for each i = 1, . . . ,M ,a �nite set of angles {ϑi,j}Mi

j=1, with ϑi,j ∈ (0, π), such that
KX{E} =

M⋃

i=1

Mi⋃

j=1

k(Ri, ϑi,j , S
ν−2).If ξ = 0 or ω is constant the set KX{E} is empty.Remark 3.6. 1) The set described above is a �nite union of non-empty Sν−2-spheres, all centeredalong a line through the origin in the direction of ξ. They sit inside Sν−1-spheres of crossingscentered at ξ with radius Ri.2) In dimension ν = 1 the set KX{E} is empty by the choice of (ξ, E). In dimension 2 the setconsists of �nitely many points placed symmetrically around the line through the origin and ξ,with no points on the line through 0 and ξ. �Proof. First we observe that if ξ = 0 we have KX{E} = ∅. This is due to the assumption that ω isrotation invariant. For a similar reason, the set is also empty if ω is a constant function regardlessof ξ. From now on we assume that ξ 6= 0 and that ω is not constant.From Lemma 3.1 we know a priori that the sets KX{E} and ΣX{E} are compact. In particular,there exist �nitely many radii R1, . . . , RM , and energies λ1, . . . , λM such that

ΣX{E} ⊂
M⋃

i=1

RiS
ν−1 × {λi} ⊂ X . (3.16)The choice of (ξ, E) ensures that Ri > 0 for all i = 1, . . . ,M .Clearly the set KX{E} is invariant under rotations from the group Oν(ξ). Fix a unit vector vorthogonal to ξ. Take for example v = Πξ(e1). Put u = ξ/|ξ|.



3.2 Some Geometric Considerations 29What we need to show is that K = KX{E} ∩ span{u, v} is a �nite set. The choice of (ξ, E)ensures that the intersection above does not contain any elements in Ru = Rξ. The orbit under
Oν(ξ) of k ∈ KX{E} ∩ span{u, v} are exactly the Sν−2-spheres in the lemma, cf. (3.14).Aiming for a contradiction we assume that there exists an in�nite sequence {kn}n∈N ⊂ Kconsisting of distinct momenta. Observe that (ξ − kn, E − ω(kn)) ∈ ΣX{E}, and hence by (3.16)there must exist 1 ≤ i ≤M and a subsequence {knj

}, with |ξ−knj
| = Ri > 0 and E−ω(knj

) = λifor all j. We can now write knj
= k(Ri, ϑj , e1), for a sequence of distinct angles ϑj ∈ [0, 2π).Observe that E − ω(knj

), and consequently ω(knj
), is a constant sequence. Since the map

R 3 ϑ → f(ϑ) = ω(k(Ri, ϑ, e1)) is a real analytic function, constant along a sequence ϑj thathas a cluster point, we conclude that f must be a constant function. Since ω is not a constantfunction, this can only happen if R 3 ϑ→ |k(Ri, ϑ, e1)| is constant. But this is impossible becausewe assumed that ξ 6= 0, cf. (3.13). Hence K does not contain a countable sequence of distinctmomenta and we conclude the lemma. Observe that (3.15) ensures that we can restrict the anglesto (0, π). �Let (ξ, E) be chosen as in (3.10). We construct torus neighborhoods Ti,j , in the (r, ϑ, w)coordinate system, around the �nitely many Sν−2-spheres in KX{E} identi�ed in Lemma 3.5. Wecan label these sets by radii and angles (Ri, ϑi,j), i = 1, . . . ,M and j = 1, . . . ,Mi, with Ri > 0and ϑi,j ∈ (0, π). We de�ne
Ti,j(εϑ, εr) :=

{
k(r, ϑ, w)

∣∣ |Ri − r| < εr, |ϑ− ϑi,j | < εϑ, w ∈ Sν−2
}
, (3.17)where εϑ measures the angular thickness of the torus, and εr the radial thickness.In order to pick an appropriate angular and radial thickness for the tori we proceed in stepsto ensure that a number of properties are satis�ed. We �rst pick 0 < ε

(4)
r , ε

(2)
ϑ ≤ 1 such that

ε(4)r < min
i=1,...,M

Ri

ε
(2)
ϑ <

1

2
min

1≤i≤M
min

1≤j≤Mi

{ϑi,j , π − ϑi,j}.
(3.18)With this choice we have ensured that the tori will have their holes, with a little angular roomto spare.By the choice E 6∈ T (1)

6‖ (ξ) we know that ∇ω(k(Ri, ϑi,j , w)) 6= 0, for every i = 1, . . . ,M ,
j = 1, . . . ,Mi, and w ∈ Sν−2. In addition, by rotation invariance of ω, for any i and j the norm
|∇ω(k(Ri, ϑi,j , w))| does not depend on w. By continuity of ∇ω, we can choose 0 < ε

(1)
ϑ ≤ ε

(2)
ϑand 0 < ε

(3)
r ≤ ε

(4)
r such that

∀i, j : inf
k∈Ti,j(ε

(1)
ϑ
,ε

(3)
r )

|∇ω(k)| > 0. (3.19)The choice of ε(1)ϑ and ε(3)r implies that Ti,j(ε
(1)
ϑ , ε

(3)
r ) are topological tori and they contain no k'sparallel with ξ, nor are there k's with ∇ω(k) = 0.Since ∇ω does not vanish on the tori Ti,j(ε

(1)
ϑ , ε

(3)
r ), and ω is rotation invariant, we �nd that

k · ∇ω(k) does not vanish on the tori either. Recall that k = 0, being `collinear' with ξ, is notin any of the tori. Hence k · ∇ω(k) has a sign, which we denote by σi,j ∈ {−1,+1}, for each
i = 1, . . . ,M and j = 1, . . . ,Mi. We note the identity

∀k ∈ Ti,j

(
ε
(1)
ϑ , ε(3)r

)
: |∇ω(k)| = σi,j

k

|k| · ∇ω(k). (3.20)



30 3 THE COMMUTATOR ESTIMATEUnfortunately the above choice of ε(1)ϑ and ε
(3)
r does not quite su�ce. At the center of thetorus, i.e. for k's in the set k(Ri, ϑi,j , S

ν−2), we know that (ξ− k,E−ω(k)) ∈ X . In fact for such
k we always end at the same level crossing

Xi,j :=
(
RiS

ν−1
)
×
{
E − ω(k(Ri, ϑi,j , e1))

}
,due to rotation invariance. (A j′ 6= j may a priori give rise to a di�erent crossing Xi,j′ 6= Xi,j ifthere at di�erent energies sit level crossings with the same radius Ri.) For other k's in the toruswe need to be sure that (ξ − k,E − ω(k)) does not land on a di�erent crossing. That is, we haveto identify εϑ ≤ ε

(1)
ϑ and ε(2)r ≤ ε

(3)
r such that
ΣX{E}

(
Ti,j

(
εϑ, ε

(2)
r

))
⊂ Xi,j , (3.21)where Ti,j denotes the closure of the torus. Here we can use that level crossings are isolated andthat we only consider �nitely many tori, to ensure that

d = d(ξ, E) := min
i,j

d(Xi,j ,X\Xi,j) > 0. (3.22)For k ∈ Ti,j(εϑ, ε
(2)
r ) we write �rst k = k(r, ϑ, w) with |r − Ri| ≤ ε

(2)
r , |ϑ − ϑi,j | ≤ εϑ and

w ∈ Sν−2. Then we compute
(

ξ − k
E − ω(k)

)
=

(
ξ − k(Ri, ϑi,j , w)

E − ω(k(Ri, ϑi,j , w))

)
+

(
k(Ri, ϑi,j , w) − k(r, ϑ, w)

ω(k(Ri, ϑi,j , w)) − ω(k(r, ϑ, w))

) (3.23)and estimate ∣∣∣∣
(

k(Ri, ϑi,j , w) − k(r, ϑ, w)
ω(k(Ri, ϑi,j , w)) − ω(k(r, ϑ, w))

)∣∣∣∣ ≤ Ci,j max
{
εϑ, ε

(2)
r

}
,using that ∇ω is bounded to argue for the existence of the constant Ci,j . Put C = maxi,j Ci,j .Since the �rst term on the right-hand side of (3.23) is an element of Xi,j we observe that if wechoose εϑ, ε(2)r ≤ d/(2C) we can conclude that

∀i, j and k ∈ Ti,j

(
εϑ, ε

(2)
r

)
: d((ξ − k,E − ω(k)),X\Xi,j) ≥

d

2
.The constant d was de�ned in (3.22). We now make the choice

εϑ = min
{
ε
(1)
ϑ , d/(2C)

}
, ε(2)r = min

{
ε(3)r , d/(2C)

}
,and emphasize that with this choice the desired inclusion (3.21) holds true.Our next task is to pick δ′ small enough such that KX[E−δ′,E+δ′], cf. (3.12), is contained insidethe union over i and j of the tori Ti,j(εϑ, ε

(2)
r ), and such that the inclusion (3.21) remains validwhen {E} is replaced by the interval [E − δ′, E + δ′].Lemma 3.7. Assume Conditions 1.2 and 1.4, with n0 = 0, and let (ξ, E) ∈ E(1)\

(
T (1) ∪ Exc

).There exists δ′ > 0 such that J ′ = [E − δ′, E + δ′] ⊂ E(1)(ξ)\
(
T (1)(ξ) ∪ Exc(ξ)

) and
KXJ ′ ⊂

M⋃

i=1

Mi⋃

j=1

Ti,j

(
εϑ, ε

(2)
r

) (3.24)
ΣXJ ′

(
Ti,j

(
εϑ, ε

(2)
r

))
⊂ Xi,j . (3.25)



3.2 Some Geometric Considerations 31Remark 3.8. Included in the conclusion of the lemma is that if KX{E} = ∅, then δ′ can be chosensuch that KXJ ′ = ∅. �Proof. That δ′ > 0 can be chosen such that J ′ ⊂ E(1)(ξ)\
(
T (1)(ξ) ∪ Exc(ξ)

) follows from The-orem 1.6, cf. also (1.35). Assume the inclusion (3.24) is false. Then there exists a sequence
λn ∈ [E − 1/n,E + 1/n] =: Jn and kn ∈ KXJn

with (ξ − kn, λn − ω(kn)) ∈ X and kn 6∈
∪Mi=1 ∪Mi

j=1 Ti,j(εϑ, ε
(2)
r ).By Lemma 3.1, we can extract a convergent subsequence {knj

} converging to a momentum
k. Since λnj

→ E we must have (ξ − k,E − ω(k)) ∈ X , and hence k ∈ KX{E}. Since the tori areopen we conclude furthermore that k 6∈ ∪Mi=1 ∪Mi

j=1 Ti,j(εϑ, ε
(2)
r ). But this contradicts Lemma 3.5and we have thus established (3.24).As for (3.25) we proceed in a similar fashion assuming that for any n there exists λn ∈

[E − 1/n,E + 1/n] and kn ∈ Ti,j(εϑ, ε
(2)
r ) such that (ξ − kn, λn − ω(kn)) ∈ X\Xi,j .Again, by Lemma 3.1, we must have a subsequence knj

converging to a momentum k ∈
Ti,j(εϑ, ε

(2)
r ). For this k we must have (ξ − k,E − ω(k)) ∈ X\Xi,j , and hence (ξ − k,E − ω(k)) ∈

ΣX{E}. But this contradicts (3.21). �We identify the mass shells available for scattering channels, starting at momentum ξ andenergy in J ′ to be
S
′ :=

{
(A, S) ∈ S

∣∣GS ∩ ΣJ ′ 6= ∅
}
. (3.26)Here GS denotes the graph of S, cf. (1.28). By compactness of ΣJ ′ this set is �nite. We list theradii of the spheres forming ∂A, where (A, S) ∈ S′, as R′

1, . . . , R
′
M ′ . We exclude from the list ofradii those already included in R1, R2, . . . , RM . With this choice we �nd that

∀1 ≤ ` ≤M ′ : r′` := d
(
KJ ′ , ∂B(ξ, R′

`)
)
> 0.The next thing we need to do is to ensure that the set KJ ′ approaches level crossings, or moreprecisely the spheres ∂B(ξ, Ri), through the radial face of the tori. De�ne for ε > 0 the compactset

K(ε) := KJ ′\
(⋃

i,j

Ti,j(εϑ, ε)
) (3.27)and for i = 1, . . . ,M subsets

Ki :=
{
k(r, ϑ, w) ∈ K(ε(2)r )

∣∣ |ϑ− ϑi,j | ≥ εϑ, j = 1, . . . ,Mi

}
,which again are compact sets. Let

ri := d
(
Ki, ∂B(ξ, Ri)

)
> 0,where strict positivity follows from (3.24). Finally, we de�ne rExc = +∞ if Exc = ∅, and rExc =

d(0,KJ′) > 0 if Exc 6= ∅. We now pick an upper bound for the radial thickness εr to be
ε(1)r := min

{
ε(2)r , min

1≤i≤M
ri, min

1≤`≤M ′
r′`, rExc

}
. (3.28)This choice ensures that for ε ≤ ε

(1)
r the set K(ε) approaches the spheres ∂B(ξ, Ri), i = 1, . . . ,M ,through the radial faces of the tori Ti,j(εϑ, ε), not through their angular faces. In addition, k's in

K(ε) stay at least a distance ε away from boundaries of annuli in which the relevant mass shellsin S′ are de�ned. To summarize: For all 0 < ε ≤ ε
(1)
r , i ∈ {1, . . . ,M} and ` ∈ {1, . . . ,M ′} we have

d
(
K(ε), ∂B(ξ, Ri)

)
≥ ε and d

(
K(ε), ∂B(ξ, R′

`)
)
≥ ε. (3.29)



32 3 THE COMMUTATOR ESTIMATE3.3 An Analytic ConsiderationThe next part of the construction is somewhat less obvious, in that it anticipates the proof ofthe Mourre estimate to follow. We need to construct a conjugate operator, i.e. a vector �eld, ina set like KJ ′ , but we proceed di�erently depending on whether we are inside or outside one ofthe tori introduced in the previous subsection, cf. (3.17). If we are inside a torus, which is thesituation we deal with in this subsection, we want the conjugate operator to be a ϑ-derivative.We now proceed to compute what turns out to be the relevant commutator inside a torus andget something positive on the crossing χi,j sitting at radius Ri. Then we pick εr ≤ ε
(1)
r smallenough for the expression to remain positive inside the torus. Note that this subsection, as withthe previous one, only comes into play when ν ≥ 2 and ξ 6= 0.We anticipate a conjugate operator of the form (2.2), cf. also (2.1). We require that the vector�eld v ∈ C∞

0 (Rν) entering into the construction of the one-body conjugate operator a, whichremains to constructed, satis�es
‖v‖∞ ≤ 2 + max

1≤i≤M
Ri. (3.30)Furthermore, if Exc 6= ∅ we demand that 0 6∈ supp v.We de�ne, for r > 0, auxiliary Hamiltonians Gξ(r) on the Hilbert space L2([0, π] × Sν−2;F)by the following direct integral construction

Gξ(r) =

∫ ⊕

S̃ν−1

Gξ(r, ϑ, w) dϑdw, (3.31)where we abbreviated S̃ν−1 := [0, π] × Sν−2 and
Gξ(r, ϑ, ω) = H(ξ − k(r, ϑ, w)) + ω(k(r, ϑ, w))1F . (3.32)For a ρi,j ∈ C∞

0 (Rϑ), we de�ne a self-adjoint cuto� angular derivative
ã = σi,j

i

2

{
∂ϑρi,j + ρi,j∂ϑ

}
.We �x our choice of ρi,j to be compactly supported in (ϑi,j − 2εϑ, ϑi,j + 2εϑ) ⊂ (0, π), equal to 1on

Θi,j := (ϑi,j − εϑ, ϑi,j + εϑ) (3.33)and satisfying that 0 ≤ ρi,j ≤ 1. Observe that ã only acts on the base space, not on the �ber F .We now stitch A and ã together to get a conjugate operator on F ⊗ L2(S̃ν−1)

Ã(1) = A⊗ 1L2(S̃ν−1) +1F ⊗ ã,where we appeal to the identi�cation F ⊗L2(S̃ν−1) ' L2(S̃ν−1;F). One can verify that Gξ(r) isof class C1(Ã(1)) and
i
[
Gξ(r), Ã

(1)
]◦

=

∫ ⊕

S̃ν−1

i
[
Gξ(r), Ã

(1)
]◦

(ϑ,w) dϑdw,where, as an identity on F ,
i
[
Gξ(r), Ã

(1)
]◦

(ϑ,w) = i
[
H(ξ − k(r, ϑ, w)), A

]◦

+ σi,jρi,j(ϑ)vξ(r, ϑ, w) ·
(
∇ω(k(r, ϑ, w))1F −∇Ω

(
ξ − k(r, ϑ, w) − dΓ(k)

))
,

(3.34)
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vξ(r, ϑ, w) :=

∂k

∂ϑ
(r, ϑ, w) = r

(
cos(ϑ)Πξ(w) + sin(ϑ)

ξ

|ξ|
)
. (3.35)See also Proposition 2.8, with ` = 1, for a similar commutator formula. Let k = k(r, ϑ, w) 6= 0.By rotation invariance of ∇ω we �nd that

vξ(r, ϑ, w) · ∇ω(k) = (vξ(r, ϑ, w) · k)(k · ∇ω(k))/|k|2,which taken together with (3.20) and (3.13) enables us to establish that:
∀k = k(r, ϑ, w) ∈ Ti,j

(
εϑ, ε

(1)
r

)
: σi,jvξ(r, ϑ, w) · ∇ω(k) = r sin(ϑ)|ξ| |∇ω(k)|

|k| .This identity in conjunction with (3.19) implies, for all i and j, the crucial property
ci,j := inf

ϑ∈Θi,j ,w∈Sν−2
σi,jvξ(Ri, ϑ, w) · ∇ω(k(Ri, ϑ, w)) > 0. (3.36)Note that sin(ϑ) > 0 for ϑ ∈ Θi,j . The set Θi,j was de�ned in (3.33).Now we pick and �x a χ′′ ∈ C∞

0 ((E − δ′, E + δ′)). We choose χ′′ such that χ′′ = 1 on
[E − 3δ′/4, E + 3δ′/4]. Introduce bounded operators

B′′(r) := χ′′(Gξ(r))i
[
Gξ(r), Ã

(1)
]◦
χ′′(Gξ(r)). (3.37)We haveLemma 3.9. Assume Conditions 1.2 and 1.4, with n0 = 1. The maps (0,∞) 3 r → χ′′(Gξ(r))and (0,∞) 3 r → B′′(r) are locally Lipschitz, and furthermore: For any 0 < r̄ < ∞ there exists

L > 0 such that the following holds
∀r, r′ ∈ (0, r̄] :

{
‖χ′′(Gξ(r)) − χ′′(Gξ(r

′))‖ ≤ L|r − r′|
‖B′′(r) −B′′(r′)‖ ≤ L|r − r′|where L does not depend on v's satisfying the constraint (3.30).Proof. For the purpose of this proof we abbreviate

k = k(r, ϑ, w) and k′ = k(r′, ϑ, w).We estimate �rst for r, r′ ≥ 0, using that for multi-indices α with 1 ≤ |α| ≤ 2, the functions
∂αω are bounded:

|ω(k) − ω(k′)| ≤ C1|k − k′| and |∇ω(k) −∇ω(k′)| ≤ C2|k− k′|. (3.38)Here C1, C2 > 0 are some constants independent of k,k′ ∈ Rν . But
|k − k′| = |r − r′|

∣∣cos(ϑ)
ξ

|ξ| + sin(ϑ)Πξ(w)
∣∣ ≤ 2|r − r′|, (3.39)so that when inserting into (3.38) we get, uniformly in ϑ and w,

|ω(k) − ω(k′)| ≤ 2C1|r − r′| and |∇ω(k) −∇ω(k′)| ≤ 2C2|r − r′|. (3.40)



34 3 THE COMMUTATOR ESTIMATENext we compute as an identity between operators on C
Ω
(
ξ − k − dΓ(k)

)
− Ω

(
ξ − k′ − dΓ(k)

)
=

∫ 1

0

∇Ω
(
ξ − sk− (1 − s)k′ − dΓ(k)

)
ds (k − k′).Appealing to (3.39), (MC3) and (MC4), we arrive at

∥∥(Ω(ξ − k − dΓ(k)) − Ω(ξ − k′ − dΓ(k))
)(

1 + Ω(ξ − dΓ(k))
)− 1

2
∥∥ ≤ C3|r − r′|, (3.41)which holds uniformly in 0 < r, r′ ≤ r̄, ϑ and w.Using (3.40) and (3.41), we estimate for z ∈ C with Im(z) 6= 0:

∥∥((Gξ(r) − z)−1 − (Gξ(r
′) − z)−1

)
ψ
∥∥ ≤ C|r − r′|〈z〉|Im(z)|−2

∥∥(H0(ξ) + 1)−
1
2ψ
∥∥,where C > 0 does not depend on 0 < r, r′ ≤ r̄, nor on z. Representing χ′′(Gξ(r)) using an almostanalytic extension of χ′′ now yields the estimate

∥∥(χ′′(Gξ(r)) − χ′′(Gξ(r
′))
)
ψ
∥∥ ≤ C|r − r′|

∥∥(H0(ξ) + 1)−
1
2ψ
∥∥. (3.42)Here one should read (H0(ξ) + 1)−

1
2 as a (ϑ,w)-independent operator acting on each �ber F bythe same operator. This in particular proves that the map r → χ′′(Gξ(r)) is locally Lipschitz andthat the claimed bound holds.We proceed to estimate the di�erence between the commutators, cf. (3.34),

i
[
Gξ(r), Ã

(1)
]◦−i

[
Gξ(r

′), Ã(1)
]◦

=

∫ ⊕

S̃ν−1

{
i[H(ξ − k), A]◦ − i[H(ξ − k′), A]◦

+ σi,jρi,j(ϑ)vξ(r, ϑ, w) ·
(
∇ω(k) −∇Ω(ξ − k − dΓ(k))

)

− σi,jρi,j(ϑ)vξ(r
′, ϑ, w) ·

(
∇ω(k′) −∇Ω(ξ − k′ − dΓ(k))

)}
dϑdw.

(3.43)The above equation should be read as an identity between forms on L2(S̃ν−1;D). Appealing to(3.35) and (3.38) we �nd that
∣∣ρi,j(ϑ)

(
vξ(r, ϑ, w) · ∇ω(k) − vξ(r

′, ϑ, ρ) · ∇ω(k′)
)∣∣ ≤ C|r − r′|, (3.44)for some C = C(r̄) > 0, uniformly in 0 < r, r′ ≤ r̄. Using an argument similar to the one thatgave (3.41) we conclude the bound

∥∥∇Ω(ξ − k − dΓ(k)) −∇Ω(ξ − k′ − dΓ(k))
∥∥ ≤ C4|r − r′|,for some C4 = C4(r̄) > 0 and uniformly in r, r′ ≥ 0. In conjunction with (3.35), (MC3) and (MC4),we arrive at the estimate

∥∥{vξ(r, ϑ, w) ·∇Ω(ξ−k−dΓ(k))−vξ (r
′, ϑ, w) ·∇Ω(ξ−k′−dΓ(k))

}
(Ω(ξ−dΓ(k))−

1
2

∥∥ ≤ C|r−r′|,(3.45)valid for some C = C(r̄) > 0, uniformly in r, r′ ∈ [0, r̄].It remains to deal with the �rst (ϑ,w)-independent term on the right-hand side of (3.43).Compute using Proposition 2.5 `k = 1' in the sense of forms on D
i[H(ξ − k), A]◦ − i[H(ξ − k′), A]◦ = dΓ(v) ·

{
∇Ω(ξ − k − dΓ(k)) −∇Ω(ξ − k′ − dΓ(k))

}
.Arguing as for (3.41) we get

∥∥(H0(ξ) + 1)−
1
2

(
i[H(ξ − k), A]◦ − i[H(ξ − k′), A]◦

)
(H0(ξ) + 1)−1

∥∥ ≤ C|r − r′|‖v‖∞, (3.46)



3.3 An Analytic Consideration 35where C > 0 does not depend on 0 < r, r′ ≤ r̄ or on v.Putting together (3.43), (3.44), (3.45) and (3.46) we arrive at
∥∥(H0(ξ) + 1)−

1
2

(
i
[
Gξ(r), Ã

(1)
]◦ − i

[
Gξ(r

′), Ã(1)
]◦)

(H0(ξ) + 1)−1
∥∥ ≤ C|r − r′|(1 + ‖v‖∞),The lemma now follows from the bound above together with (3.42). �Lemma 3.10. Assume Conditions 1.2 and 1.4, with n0 = 1. For any integers i ∈ {1, . . . ,M}and j ∈ {1, . . . ,Mi} we have1Θi,j

B′′(Ri) = 1Θi,j

(∫ ⊕

S̃ν−1

ρi,j(ϑ)vξ(Ri, ϑ, w) · ∇ω(k(Ri, ϑ, w)) dϑdw
)
χ′′(Gξ(Ri))

2.Furthermore, we have 1Θi,j
B′′(Ri) ≥ c′′ 1Θi,j

χ′′(Gξ(Ri))
2,for some c′′ > 0, which does not depend on v's satisfying the constraint (3.30).Remark 3.11. The operator 1Θi,j

should be read as the operator ∫ ⊕

S̃ν−1 1Θi,j
(ϑ)1F dϑdw. Asimilar notation is used for ρi,j in the proof below. �Proof. We begin by writing1Θi,j

χ′′(Gξ(Ri)) =

∫

S̃ν−1

1Θi,j
(ϑ)χ′′(Gξ(Ri, ϑ, w)) dϑdw.When ϑ is con�ned to the neighborhood Θi,j we have

χ′′
(
Gξ(Ri, ϑ, w)

)
= χ′′

(
H(ξ − k(Ri, ϑ, w)) + ω(k(Ri, ϑ, w))

)

= 1E−ω(k(Ri,ϑi,j ,e1))

(
H(ξ − k(Ri, ϑ, w)

)
.This is due to the choice of δ′, cf. (3.25), which ensures that we can at most land on one energylevel, namely on the crossing Xi,j sitting at height E in energy-momentum space. By the virialtheorem, cf. Theorem 2.10, this implies that

∫ ⊕

S̃ν−1

1Θi,j
(ϑ)χ′′

(
Gξ(Ri, ϑ, w)

)
i
[
Gξ(Ri), Ã

(1)
]◦

(ϑ,w)χ′′
(
Gξ(Ri, ϑ, w)

)
dϑdw

=

∫ ⊕

S̃ν−1

1Θi,j
(ϑ)χ′′

(
Gξ(Ri, ϑ, w)

)

× i
[(
E − ω(k(Ri, ϑi,j , e1)

)1F +ω(k(Ri, ϑ, w))1F , Ã(1)
]◦

(ϑ,w)

× χ′′
(
Gξ(Ri, ϑ, w)

)
dϑdw

=

∫ ⊕

S̃ν−1

1Θi,j
(ϑ)vξ(Ri, ϑ, w) · ∇ω(k(Ri, ϑ, w))χ′′

(
Gξ(Ri, ϑ, w)

)2
dϑdw.This proves the �rst part. The second statement clearly follows from the �rst together with (3.36).One can choose

c′′ := inf
|ϑi,j−ϑ|≤εϑ

σi,jvξ(Ri, ϑ, w) · ∇ω(k(Ri, ϑ, w)) > 0,which is independent of w. �We now �x χ′ ∈ C∞
0 ((E − 3δ′/4, E + 3δ′/4)), with χ′ = 1 on [E − δ′/2, E + δ′/2], and write

B′(r) = χ′(Gξ(r))i
[
Gξ(r), Ã

(1)
]◦
χ′(Gξ(r)) = χ′(Gξ(r))B

′′(r)χ′(Gξ(r)). (3.47)The operator B′′(r) was de�ned in (3.37).



36 3 THE COMMUTATOR ESTIMATEProposition 3.12. Assume Conditions 1.2 and 1.4, with n0 = 1. There exists c′ > 0 and
0 < εr ≤ ε

(1)
r , independent of v's satisfying (3.30), such that for all i ∈ {1, . . . ,M} and

j ∈ {1, . . . ,Mi}, we have
∀r ∈ [Ri − εr, Ri + εr] : 1Θi,j

B′(r) ≥ c′ 1Θi,j
χ′(Gξ(r))

2.Proof. Apply Lemmata 3.9 and 3.10. This yields the bounds1Θi,j
B′′(r) ≥ 1Θi,j

B′′(Ri) − L|Ri − r|
≥ c′′ 1Θi,j

χ′′(Gξ(Ri))
2 − L|Ri − r|

≥ c′′ 1Θi,j
χ′′(Gξ(r))

2 − L(1 + c′′)|Ri − r|.Here L is the Lipschitz constant coming from Lemma 3.9 applied with r̄ = max1≤i≤M Ri + ε
(1)
r .Choose εr = min{ε(1)r , c′′(2L(1+ c′′))−1)}. Multiplying both sides �rst by χ′(Gξ(r)) from the leftand the right, and subsequently by 1Θi,j

, yields the result with c′ = c′′/2. Recall that all theoperators are �bered, i.e. they are functions of ϑ and w. �3.4 The Conjugate OperatorThe task at hand in this subsection is the construction of the vector �eld vξ : Rν → Rν , used tode�ne the conjugate operators
aξ =

1

2

(
vξ · i∇k + i∇k · vξ

)
, and Aξ = dΓ(aξ). (3.48)These are operators of the form considered in Section 2, cf. (2.1) and (2.2). The vector �eld vξwill depend both on the total momentum ξ and on the energy localization we choose.Our �rst ingredient is a partition of unity in momentum space subordinate to an appropriatelychosen open covering of KJ ′ . The �rst sets in the covering were constructed in the previous section,namely the disjoint open tori Ti,j(εϑ, εr). If the dimension ν is 1, ξ = 0, or ω is constant (polaronmodel), there are no tori and the construction simpli�es. In particular, the considerations of theprevious two subsections are super�uous.De�ne a set of momenta

K := K(εr),which is a compact subset of Rν . Recall from (3.27) the de�nition of the set K(εr).If there are no tori, i.e. if KX{E} = ∅, then K = KJ ′ (and εr is not de�ned). Note that J ′ is stillgiven by Lemma 3.7. The key property of the set K(εr) is that it is separated from ∂B(ξ, Ri) and
∂B(ξ, R′

`) by a distance at least εr, cf. (3.29). To ensure this property also holds if there are notori, we de�ne in that case εr = min1≤`≤M ′ d(KJ ′ , ∂B(ξ, R′
`)) > 0, where positivity follows fromRemark 3.8. Here R′

` lists the inner and outer radii of A, for (A, S) ∈ S′, where S′ is the collectionof mass shells that a state localized in J ′ can relax to, cf. (3.26). If furthermore Exc 6= ∅, we pick
εr possibly smaller such that εr < d(0,KJ ′), which is possible since in this case 0 6∈ KJ ′ . See also(3.28).We proceed to pick a 0 < δ ≤ δ′ with the property that the choice J = [E − δ, E + δ] ensuresthat ΣJ (K) is a graph, i.e. the projection onto momentum space Rν is injective. To do this wede�ne the energy distance between mass shells (A, S) ∈ S′, away from εr/2 neighborhoods oftheir boundaries ∂A: By compactness of ΣJ ′ ⊂ Σiso, there exist P > 0 and σ > 0 such that

ΣJ ′(K) ⊂ ΣJ ′ ⊂
{
(p, λ)

∣∣ |p| ≤ P and λ ≤ Σess(p) − σ
}
.



3.4 The Conjugate Operator 37Hence we de�ne for (A, S) ∈ S′

δ(A,S) = inf
{
d(S(p), σpp(H(p))\{S(p)})

∣∣ p ∈ Aεr ,P , S(p) ≤ Σess(p) − σ
}
,where Aεr ,P :=

{
p ∈ A

∣∣ d(p, ∂A) ≥ εr/2
}
∩B(0, P ).Again, by compactness, δ = min(A,S)∈S′ δ(A,S) > 0. Recall that S′ denotes the �nite collection ofmass shells available for scattering, cf. (3.26).We split K into compact components pertaining to shells (A, S) ∈ S′

K(A,S) = K ∩ (A+ ξ) =
{
k ∈ K

∣∣ ξ − k ∈ A
}
.We pick open neighborhoods, using (3.29) to verify the inclusion,

V(A,S) =
{
k ∈ R

ν
∣∣ d(k,K(A,S)) < εr/2

}
⊂ A+ ξwhich inherit the property of K that the distance from S(ξ − k) to the nearest eigenvalue in

σpp(H(ξ − k))\{S(ξ − k)} is at least δ. In addition we remark that the sets V(A,S) are pairwisedisjoint but overlap with possibly existing tori Ti,j(εϑ, εr), provided ∂B(0, Ri) is a boundary of
A. If Exc 6= ∅, then 0 6∈ V(A,S) for any (A, S) ∈ S′.To make a partition of unity we choose �rst ϕi,j ∈ C∞

0 (Ti,j(2εϑ, 2εr)) such that ϕi,j = 1 on
Ti,j(εϑ, εr). It will be convenient to use a product construction such that

ϕi,j(k(r, ϑ, w)) = ρi,j(ϑ)ρ̃i(r),where ρi,j was introduced in the beginning of the previous subsection and ρ̃i ∈ C∞
0 ((−2εr, 2εr)),with ρ̃i = 1 on [Ri−εr, Ri+εr] and satisfying that 0 ≤ ρ̃i ≤ 1. Note that 0 6∈ suppϕi,j , cf. (3.18).Using the smooth Urysohn lemma on the pairs K(A,S) ⊂ V(A,S), with (A, S) ∈ S′, yieldssmooth functions ϕ̃(A,S) with compact support in V(A,S) and equal to 1 on K(A,S). By a stan-dard construction we can replace these by (possibly) smaller functions ϕ(A,S) with the same twoproperties and the additional property that

∀k ∈ KJ ′ :
∑

i,j

ϕi,j(k) +
∑

(A,S)∈S′

ϕ(A,S)(k) = 1. (3.49)If Exc 6= ∅, we observe that 0 6∈ suppϕ(A,S) as required in order to deal with what is in this casean infrared singular coupling.We can now construct our vector �eld
vξ =

∑

i,j

vξi,j +
∑

(A,S)∈S′

vξ(A,S), (3.50)where
vξi,j(k) = σi,jϕi,j(k)vξ(k) and vξ(A,S)(k) = ϕ(A,S)(k)

∇S(1)(ξ; k)

|∇S(1)(ξ; k)| . (3.51)Recall from (1.30) and (3.35) the construction of the dispersion relation S(1)(ξ; ·) and the vector�eld vξ. The terms vξi,j can only appear if ξ 6= 0 and ν ≥ 2, and one should then read vξ(k) =
vξ(r, ϑ, w), where k = k(r, ϑ, w).We have thus �nished the construction of the conjugate operator Aξ, cf. (3.48). We remarkthat the construction of vξ is consistent with the constraint (3.30), cf. (3.35). The signs σi,j andthe vector �eld vξ were introduced in (3.20) and (3.35) respectively.In the following we make use of the notation

Ax
ξ = dΓx(aξ) = Aξ ⊗ 1F +1F ⊗Aξ on Fx (3.52)



38 3 THE COMMUTATOR ESTIMATEand observe the direct sum decomposition
Ax
ξ = ⊕∞

`=0A
(`)
ξ , where A(`)

ξ = Aξ ⊗ 1F(`) +1F ⊗ dΓ(aξ)|F(`) on F ⊗ F (`). (3.53)In particular, A(0)
ξ = Aξ. See also Subsection 1.2 for notation and constructions pertaining toextended objects.The following proposition is a Mourre estimate for H(1)(ξ), with conjugate operator A(1)

ξ ,stating that a composite system consisting of a dressed matter particle and a free boson at totalmomentum ξ, localized in energy in the interval J , has non-zero breakup velocity. This is thesource of positivity in the Mourre estimate for H we prove in the following subsection.Proposition 3.13. Assume Conditions 1.2 and 1.4, with n0 = 1. Let χ ∈ C∞
0 (J ), with χ ≥ 0.Then there exists c > 0 such that

χ
(
H(1)(ξ)

)
i
[
H(1)(ξ), A(1)

ξ

]◦
χ
(
H(1)(ξ)

)
≥ cχ

(
H(1)(ξ)

)2
.Remark 3.14. It is in fact only the 1F ⊗ aξ part of A(1)

ξ which is important for positivity. Infact, the proposition remains true if A(1)
ξ is replaced by Ã ⊗ 1hbo

+1F ⊗ aξ, where Ã = dΓ(ã),with ã = i{ṽ · ∇k + ∇k · ṽ}/2 and ṽ ∈ C∞
0 (Rν) satisfying the constraint (3.30). In particular thechoice Ã = 0 works. �Proof. Let

B(k) = χ
(
H(1)(ξ; k)

)
i
[
H(1)(ξ), A(1)

ξ

]◦
(k)χ

(
H(1)(ξ; k)

)and write
B := χ

(
H(1)(ξ)

)
i
[
H(1)(ξ), A(1)

ξ

]◦
χ
(
H(1)(ξ)

)

=

∫ ⊕

Rν

B(k) dk

=
∑

i,j

∫ ⊕

Rν

1Ti,j(εϑ,εr)(k)B(k) dk +
∑

(A,S)∈S′

∫ ⊕

Rν

1K(A,S)
(k)B(k) dk,where the summation over i and j is understood to be over i = 1, . . . ,M and j = 1, . . . ,Mi.We split the operator A(1)

ξ into the sum
A(1)
ξ = Aξ ⊗ 1hbo

+
∑

i,j

1F ⊗ ai,j +
∑

(A,S)∈S′

1F ⊗ a(A,S),corresponding to the construction of vξ, cf. (3.50) and (3.53). This induces a decomposition of
B(k) using Lemma 2.6 and Proposition 2.8:

B(k) = B0(k) +
∑

i,j

Bi,j(k) +
∑

(A,S)∈S′

B(A,S)(k),where
B0(k) = χ

(
H(1)(ξ; k)

)
i
[
H(1)(ξ), Aξ ⊗ 1hbo

]◦
(k)χ

(
H(1)(ξ; k)

)
,

Bi,j(k) = χ
(
H(1)(ξ; k)

)
i
[
H(1)(ξ),1F ⊗ ai,j

]◦
(k)χ

(
H(1)(ξ; k)

)
,

B(A,S)(k) = χ
(
H(1)(ξ; k)

)
i
[
H(1)(ξ),1F ⊗ a(A,S)

]◦
(k)χ

(
H(1)(ξ; k)

)
.



3.4 The Conjugate Operator 39Observe that that k → Bi,j(k) has support in the torus Ti,j(2εϑ, 2εr) and k → B(A,S)(k) hassupport in V(A,S). Using these support properties we compute
∫ ⊕

Rν

1Ti,j(εϑ,εr)(k)B(k) dk =

∫ ⊕

Rν

1Ti,j(εϑ,εr)(k)
(
B0(k) +Bi,j(k)

)
dk.Write B̃i,j(k) = B0(k) +Bi,j(k) and recall the notation S̃ν−1 = [0, π] × Sν−2. Observe that

∫ ⊕

S̃ν−1

B̃i,j(k(r, ϑ, w))dϑdw = χ(Gξ(r))B
′(r)χ(Gξ(r)),where B′(r) was introduced in (3.47) and Gξ(r) in (3.31) and (3.32). Here we used that χχ′ = χ.Denote by U : L2(Rν ;F) → L2([0,∞) × S̃ν−1;F) the unitary operator de�ned by

(Uψ)(r, ϑ, w) = r
ν−1

2

√
sin(ϑ)ψ(k(r, ϑ, w)).We have obtained the identity

∫ ⊕

Rν

1Ti,j(εϑ,εr)(k)B(k) dk

= U∗

(∫ ⊕

[0,∞)

1(Ri−εr ,Ri+εr)(r)

{∫ ⊕

S̃ν−1

1Θi,j
(ϑ)B̃i,j(k(r, ϑ, w)) dϑdw

}
dr

)
U

= U∗

(∫ ⊕

[0,∞)

1(Ri−εr ,Ri+εr)(r)1Θi,j
χ(Gξ(r))B

′(r)χ(Gξ(r)) dr

)
U .From Proposition 3.12 we thus �nd a c′ > 0, independent of i and j, such that

∫ ⊕

Rν

1Ti,j(εϑ,εr)(k)B(k) dk ≥ c′
∫ ⊕

Rν

1Ti,j(εϑ,εr)(k)χ
(
H(1)(ξ; k)

)2
dk. (3.54)To deal with the remaining contributions we compute, using the support properties of B(A,S),1K(A,S)

(k)B(k) = 1K(A,S)
(k)
{
B0(k) +B(A,S)(k) +

∑

i,j

Bi,j(k)
}
.Since 1K(A,S)

(k)χ(H(1)(ξ; k)) = 1K(A,S)
(k)1{S(1)(ξ;k)}(H

(1)(ξ; k)) we can apply the virial theorem,cf. Theorem 2.10, to compute for a.e. k = k(r, ϑ, w) ∈ K(A,S)

B0(k) = 0,

B(A,S)(k) = ϕ(A,S)(k)|∇kS
(1)(ξ; k)| ≥ c′(A,S)ϕ(A,S)(k),

Bi,j(k) = σi,jϕi,j(k)vξ(r, ϑ, w) · ∇ω(k(r, ϑ, w)) ≥ ci,jϕi,j(k).Here the constants ci,j are de�ned in (3.36),
c′(A,S) := inf

k∈K(A,S)

|∇kS
(1)(ξ; k)| > 0and positivity follows from K(A,S) being compact and J being chosen to not contain thresholdenergies. Summing up, cf. (3.49) and recalling that for distinct shells 1K(A,S)

ϕ(A′,S′) = 0, we get
∫ ⊕

Rν

1K(A,S)
(k)B(k) dk ≥ c(A,S)

∫ ⊕

Rν

1K(A,S)
(k)χ

(
H(1)(ξ; k)

)2
dk, (3.55)



40 3 THE COMMUTATOR ESTIMATEwith c(A,S) = min{c′(A,S),mini,j ci,j}.Combining (3.54) and (3.55) we �nally get
B ≥ c

∫ ⊕

Rν

{∑

i,j

1Ti,j(εϑ,εr)(k) +
∑

(A,S)∈S′

1K(A,S)
(k)
}
χ
(
H(1)(ξ; k)

)2
dk

= cχ
(
H(1)(ξ)

)2
,with c = min{c′,min(A,S)∈S′ c(A,S)}. �3.5 The Mourre EstimateWe will make use of a geometric partition of unity, introduced in [11], and since used frequentlyto perform localization arguments in non-relativistic QFT [2, 12, 16, 22, 38].The input is a pair of smooth functions j0, j∞ : Rν → [0, 1], with the properties j20 + j2∞ = 1and j0 = 1 on {x ∈ Rν | |x| ≤ 1} and j∞ = 1 on {x ∈ Rν | |x| ≥ 2}. We scale these functionsand de�ne for R > 0 localizations jR#(x) = j#(x/R) inside and outside of balls with a radiusscaling like R. Reading now x = i∇k these operators become bounded self-adjoint operators on

hbo and we form the vector operator jR = (jR0 , j
R
∞) : hbo → hbo ⊕ hbo. It satis�es (jR)∗jR = 1hbo

.The operator Γ(jR) now maps F = Γ(hbo) → Γ(hbo ⊕ hbo), and composing with the canonicalidenti�cation operator U : Γ(hbo ⊕ hbo) → Γ(hbo) ⊗ Γ(hbo) = Fx we get
Γ̌(jR) := UΓ(jR) : F → Fx.The operator is a `partition of unity' in that it is an isometry, i.e. Γ̌(jR)∗Γ̌(jR) = 1F .Lemma 3.15. Assume Conditions 1.2 and 1.4, with n0 = 1. Let f ∈ C∞

0 (R). Then(i) Γ̌(jR)f(H(ξ)) = f(Hx(ξ))Γ̌(jR) + oR(1)(ii) Γ̌(jR)f(H(ξ))i[H(ξ), Aξ ]
◦f(H(ξ)) = f(Hx(ξ))i[Hx(ξ), Ax

ξ ]
◦f(Hx(ξ))Γ̌(jR) + oR(1)Remark 3.16. We note that (i) was already proved in [38] in the case sΩ ∈ {0, 1, 2}. As theassumption of sΩ being integer is only used in the proof of this result in [38], this new proof nowsecures the validity of the results in [38] for non-integer values of sΩ. �Proof. In the following we �x a λ < Σ0, cf. (1.16). We will start by proving the following state-ments: For p ∈ {1, . . . , ν} and w ∈ C∞

0 (Rν) we claim that(a) Γ̌(jR)f(H(ξ)) : F → Dx
1/2 and f(Hx(ξ))Γ̌(jR) : D1/2

∗ → Fx for any R > 1 and,
(Hx(ξ) − λ)−

1
2

(
Γ̌(jR)H(ξ) −Hx(ξ)Γ̌(jR)

)
f(H(ξ)) = oR(1),

f(Hx(ξ))
(
Γ̌(jR)H(ξ) −Hx(ξ)Γ̌(jR)

)
(H(ξ) − λ)−

1
2 = oR(1).(b) (Γ̌(jR)∂pΩ(ξ − dΓ(k)) − ∂pΩ(ξ − dΓx(k))Γ̌(jR)

)
f(H(ξ)) = oR(1).(c) f(Hx(ξ))

(
Γ̌(jR)dΓ(w) − dΓx(w)Γ̌(jR)

)
(H0(ξ) − λ)−

1
2 = oR(1).(d) f(Hx(ξ))

(
Γ̌(jR)φ(iaξg) − φ(iaξg) ⊗ 1F Γ̌(jR)

)
f(H(ξ)) = oR(1).In the rest of the proof we abbreviate H0 = H0(ξ), H = H(ξ), A = Aξ, Hx = Hx(ξ),

Ax = Ax
ξ , φx(w) = φ(w) ⊗ 1F , and Γ̌ = Γ̌(jR). For notational convenience, we write M o

= N if
M = N + oR(1).



3.5 The Mourre Estimate 41(a) We only prove half of the statement as the other half follows by a symmetric argument.Note that (Hx −λ)−1/2(Γ̌(H−Ω(ξ−dΓ(k))− (Hx−Ω(ξ−dΓx(k))Γ̌)f(H) = oR(1) by (the proofof) [38, Lemma 3.2]. Hence, to prove the statement, we need only show that
(Hx − λ)−

1
2

(
Γ̌Ω(ξ − dΓ(k)) − Ω(ξ − dΓx(k)

)
Γ̌)f(H) = oR(1). (3.56)Recall that this was in fact already established in [38] for the particular cases sΩ = 0, 1, 2. Hencewe can assume sΩ < 2.In order to use a commutator expansion formula, we �nd it useful to cast the statementdi�erently by extending Γ̌ and its adjoint to operators on Fx. Let, for the purpose of this proofonly, P : Fx → F be the projection

Fx = F ⊕
( ∞⊕

`=1

F ⊗ F (`)
)
3 (u, v) 7→ u ∈ Fand I = P ∗ : F → Fx the injection

F 3 u 7→ Iu = (u, 0) ∈ F ⊕
( ∞⊕

`=1

F ⊗ F (`)
)
.De�ne Γ̌x : Fx → Fx by Γ̌x = Γ̌P . Note that PI is the identity on F and that

Γ̌xI = Γ̌, HxI = IH, AxI = IA and φx(g)I = Iφ(g).We write, using [38, Lemma 3.6],
(Hx − λ)−

1
2

[
Γ̌x,Ω(ξ − dΓx(k))

]
f(Hx)

=
{
(Hx − λ)−

1
2

[
Γ̌x(Nx + 1)−2,Ω(ξ − dΓx(k))

]}
(Nx + 1)2f(Hx).

(3.57)The estimate (3.56) follows if the term in the brackets above is oR(1). The commutator [Γ̌x(Nx +
1)−2,Ω(ξ − dΓx(k))] satis�es the assumptions of [45, Theorem 3] (if sΩ < 2) with

B = Γ̌x(Nx + 1)−2, A = ξ − dΓx(k), fλ = Ω, s = sΩ, n0 = 2 and n = 1.Hence, by [45, Theorem 3] we obtain the commutator expansion
[
Γ̌x(Nx + 1)−2,Ω(ξ − dΓx(k))

]
=

ν∑

p=1

∂pΩ(ξ − dΓx(k)) adξp−dΓx(kp)

(
Γ̌x(Nx + 1)−2

)

+R1

(
ξ − dΓx(k), Γ̌x(Nx + 1)−2

)
. (3.58)The remainder R1(A,B) satis�es for some C > 0 the bound

‖R1(A,B)‖ ≤ C
∑

|α|=2

‖ adαA(B)‖. (3.59)Let ψ ∈ F (m) and ϕ ∈ F ⊗ F (`), with m ≥ 0 and ` ≥ 1. Note that P (ψ ⊗ |0〉, ϕ) = ψ. One canreadily verify that
adαdΓx(k)(Γ̌

x)

(
ψ ⊗ |0〉
ϕ

)
= U

∑
∑
α(`)=α

α!∏m
`=1 α

(`)!

m⊗

`=1

(
adα

(`)

k (jR0 )

adα
(`)

k (jR∞)

)
ψ, (3.60)
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adα

(`)

k

(
jR#
)

= i|α
(`)|R−|α(`)|

(
∂α

(`)

j#
)( x
R

)
= O

(
R−|α(`)|

)
,where the sums are over all ordered sets of multi-indices {α(`)}m`=1 such that∑m

`=1 α
(`) = α. Theidentity (3.60) extends by linearity to an identity between bounded operators from F (m) ⊗ F to1[Nx = m]Fx, where Nx = N ⊗ 1F +1F ⊗N is the extended number operator. Since

∑
∑
α(`)=α

α!∏
` α

(`)!
= m|α|,it follows that adαdΓx(k)(Γ̌

x)(Nx + 1)−|α| = O(R−|α|), with respect to the norm on B(Fx), andhence that
ν∑

p=1

∥∥adξp−dΓx(kp)

(
Γ̌x(Nx+1)−2

)∥∥+
∥∥R1

(
ξ − dΓx(k), Γ̌x(Nx+1)−2

)∥∥ = O(R−1).As sΩ ≤ 2, (H−λ)−1/2∂pΩ(ξ−dΓx(k)) is bounded. These two observations together with (3.57),(3.58) and (3.59) imply the claim (a). Note that one can include the case sΩ = 2 and make theargument self-contained by adding one extra factor of (N + 1)−1 and taking n0 = 3 and n = 2 inthe expansion formula from [45]. This would however require the (very reasonable) assumptionthat Condition 1.2 (MC4) holds for |α| ≤ 3.By an analogous argument we get (b). The proof of (c) and (d) can be found in the proof of[38, Lemma 3.2].We can now prove (i). Let χ ∈ C∞
0 (R) be such that f = fχ. We pull the energy localizationthrough Γ̌ in two steps, using both bounds in (a) along the way,

f(Hx)Γ̌ = f(Hx)χ(Hx)Γ̌

= f(Hx)Γ̌χ(H) +
1

π

∫

C

∂̄χ̃(z)(Hx − z)−1f(Hx)
(
Γ̌H −HxΓ̌

)
(H − z)−1dz

o
= f(Hx)Γ̌χ(H)

= Γ̌f(H) +
1

π

∫

C

∂̄f̃(z)(Hx − z)−1
(
Γ̌H −HxΓ̌

)
χ(H)(H − z)−1dz

o
= Γ̌f(H).This computation establishes (i).Finally we argue for the validity of (ii). Let χ ∈ C∞

0 (R) be as in the proof of (i). By (i) and(a) we see that
f(Hx)[Hx, Ax]◦f(Hx)Γ̌

= f(Hx)[Hx, Ax]◦f(Hx)Γ̌χ(H) + f(Hx)[Hx, Ax]◦f(Hx)oR(1)

o
= f(H)[H,A]◦Γ̌f(H) +

1

π

∫

C

∂̄f̃(z)f(H)[Hx, Ax]◦(Hx − z)−1
(
Γ̌H −HxΓx

)
χ(H)(H − z)−1dz

o
= f(Hx)[Hx, Ax]◦Γ̌f(H), (3.61)Here we used that f(Hx)[Hx, Ax]◦(Hx − λ)−1/2 is bounded. The right-hand side of (3.61) splitsinto three terms

f(Hx)[Hx, Ax]◦Γ̌f(H) = f(Hx)dΓx(vξ · ∇ω)Γ̌f(H) (3.62a)
− f(Hx)dΓx(vξ) · ∇Ω(ξ − dΓx(k))Γ̌f(H) (3.62b)
− f(Hx)φx(iaξg)Γ̌f(H). (3.62c)



3.5 The Mourre Estimate 43Now by (c) we �nd (3.62a) o
= f(Hx)Γ̌dΓ(vξ · ∇ω)f(H), by (b), (c) and (a)(3.62b) o

= −f(Hx)

ν∑

p=1

dΓx(vξ;p)Γ̌∂pΩ(ξ − dΓ(k))f(H)

= −f(Hx)Γ̌dΓ(vξ) · ∇Ω(ξ − dΓ(k))f(H)

− f(H)

ν∑

p=1

(
dΓx(vξ;p)Γ̌ − Γ̌dΓ(vξ;p)

)
(H0 − λ)−

1
2 ∂pΩ(ξ − dΓ(k))(H0 − λ)

1
2 f(H)

o
= −f(Hx)Γ̌dΓ(vξ) · ∇Ω(ξ − dΓ(k))f(H),and by (d) we conclude that (3.62c) o

= −f(Hx)Γ̌φ(iaξg)f(H). Putting this together � and againusing (a) and (i) � we see that(3.62) o
= f(Hx)Γ̌[H,A]

◦
f(H)

= χ(Hx)Γ̌f(H)[H,A]◦f(H)

+
1

π

∫

C

∂̄f̃(z)(Hx − z)−1χ(Hx)
(
Γ̌H −HxΓ̌

)
(H − z)−1[H,A]◦f(H)dz

o
= Γ̌f(H)[H,A]◦f(H) + oR(1)f(H)[H,A]◦f(H),as desired. �We will make use of another partition of unity, this time in momentum space. It has proveduseful for the type of models studied here [22, 40]. We take, for r > 0, sharp localizations 1r0and 1r∞ onto sets Λr = {k ∈ Rν | |k| ≤ r} and Λc

r respectively. As multiplication operators theyare projections and this allows us to view the vector operators 1r = (1r0,1r∞) as operators from
hbo to hr< ⊕ hr>, with hr< = L2(Λr) and hr> = L2(Λc

r). We can now lift this vector operator to aunitary operator
Γ̌(1r) = UΓ(1r) : F → Fr< ⊗ Fr>,where Fr< = Γ(hr<) and Fr> = Γ(hr>). Here U is again the canonical identi�cation operator and wehave abused notation by using the same notation Γ̌, although these operators map into a smallerspace than Fx and they are unitary, not merely isometric.Since the Hamiltonian does not involve k-derivatives, we will not pick up localization errors,when applying a partition of unity in momentum space. We introduce notation for the �berHamiltonians Hr(ξ) restricted to Fr<, the new `extended' Hamiltonian Hx

r (ξ) and its buildingblocks H(`)
r (ξ) and their �ber operators H(`)

r (ξ; k):
Hr(ξ) = dΓ

(
ω|hr

<

)
+ Ω

(
ξ − dΓ(k|hr

<
)
)

+ φ
(1r0 g)

H(`)
r (ξ; k) = H

(
ξ −∑`

j=1 kj
)

+
(∑`

j=1 ω(kj)
)1Fr

<

H(`)
r (ξ) =

∫ ⊕

(Λc
r)`

H(`)
r (ξ; k) dk

Hx
r (ξ) = Hr(ξ) ⊕

( ∞⊕

`=1

H(`)
r (ξ)

)
.

(3.63)
The direct sum above is with respect to the splitting

Fr< ⊗ Fr> = Fr< ⊕
( ∞⊕

`=1

Fr< ⊗ Γ(`)
(
hr>
))
, (3.64)where we identify Fr< ⊗ Γ(`)(hr>) with L2

sym((Λcr)
`;Fr<).



44 3 THE COMMUTATOR ESTIMATELemma 3.17. Assume Conditions 1.2 and 1.4, with n0 = 1. Then
Γ̌(1r)f(H(ξ)) = f(Hx

r (ξ))Γ̌(1r) + or(1).Proof. Note that H(ξ) = Γ̌(1r)∗Hx
r (ξ)Γ̌(1r) + φ(1r∞ g). Composing with the unitary operator

Γ̌(1r) from the left on both sides yields
Γ̌(1r)H(ξ) = Hx

r (ξ)Γ̌(1r) + Γ̌(1r)φ(1r∞ g).Subtracting zΓ̌(1r) on both sides and multiplying with (Hx
r (ξ)− z)−1 and (H(ξ)− z)−1 from theleft and the right respectively, we get

(Hx
r (ξ) − z)−1Γ̌(1r) = Γ̌(1r)(H(ξ) − z)−1 + (Hx

r (ξ) − z)−1Γ̌(1r)φ(1r∞ g)(H(ξ) − z)−1,where the term involving φ(1r∞ g) is of order 〈z〉1/2|Imz|−2or(1). The result is now obtained usingthe calculus of almost analytic extensions. �Let κ > 0 and λ ∈ R. Denote by E0,1 : R → R the indicator function for the set [−1, 1].Abbreviate Eλ,κ(t) = E0,1((t− λ)/κ), the indicator function for the set [λ− κ, λ+ κ].Theorem 3.18 (Mourre Estimate). Assume Conditions 1.2 and 1.4, with n0 = 1. Let (ξ, λ) ∈
E(1)\(T (1) ∪Exc). Then there exist κ > 0, c > 0 and a compact self-adjoint operator K such that

Eλ,κ(H(ξ))i[H(ξ), Aξ ]
◦Eλ,κ(H(ξ)) ≥ cEλ,κ(H(ξ)) +K. (3.65)Proof. For a pair (ξ, λ) ∈ E(1)\(T (1) ∪ Exc) we have in (3.50) constructed a vector �eld givingrise to a conjugate operator Aξ, cf. (2.2), and hence extended conjugate operators A(`)

ξ and Ax
ξ ,cf. Subsection 2.3. We recall from Propositions 2.5 and 2.8 that H(ξ) is of class C1(Aξ), H(`)(ξ)is of class C1(A(`)

ξ ), and Hx(ξ) is of class C1(Ax
ξ ).Let f ∈ C∞

0

((
Σ(1)

0 (ξ),Σ(2)
0 (ξ)

)). Calculate using Lemma 3.15
f(H(ξ)) i[H(ξ), Aξ ]

◦ f(H(ξ))

= Γ̌(jR)∗ Γ̌(jR) f(H(ξ)) i[H(ξ), Aξ ]
◦ f(H(ξ))

= Γ̌(jR)∗ f(Hx(ξ)) i[Hx(ξ), Ax
ξ ]

◦ f(Hx(ξ)) Γ̌(jR) + oR(1)

(3.66)From Proposition 2.8 we know that
f(Hx(ξ)) i[Hx(ξ), Ax

ξ ]
◦ f(Hx(ξ)) =

∞⊕

`=0

f
(
H(`)(ξ)

)
i
[
H(`)(ξ), A(`)

ξ

]◦
f
(
H(`)(ξ)

)
, (3.67)where H(0)(ξ) := H(ξ) and A(0)

ξ := Aξ. Recalling (1.18), (1.20) and (1.24) we �nd that for ` ≥ 2we have H(`)(ξ) ≥ Σ(`)
0 (ξ)1H(`) ≥ Σ(2)

0 (ξ)1H(`) . It follows that
∀` ≥ 2 : f

(
H(`)(ξ)

)
= 0. (3.68)This takes care of the contributions to (3.67) with ` ≥ 2, where we can simply write

f
(
H(`)(ξ)

)
i
[
H(`)(ξ), A(`)

ξ

]◦
f
(
H(`)(ξ)

)
= f

(
H(`)(ξ)

)2
,both sides being elaborate zeroes.



3.5 The Mourre Estimate 45If we insert (3.67) into (3.66) and look at the ` = 0 contribution, we get
Γ(jR0 )∗ f(H(ξ)) i[H(ξ), Aξ]

◦ f(H(ξ)) Γ(jR0 )

= Γ(jR0 )∗ f(H(ξ)) i[H(ξ), Aξ]
◦ h(H(ξ)) f(H(ξ)) Γ(jR0 ) = BK,

(3.69)where
B = Γ(jR0 )∗ f(H(ξ)) i[H(ξ), Aξ ]

◦ h(H(ξ)) and K = f(H(ξ)) Γ(jR0 ).Here h ∈ C∞
0 (R) equals 1 on the support of f . Note that B is bounded, so to see that BK iscompact, it is enough to prove that K is compact. Now by Lemma 3.17

K = Γ̌(1r)∗f(Hx
r (ξ))Γ̌(1r)Γ(jR0 ) + or(1). (3.70)Like before, we split with respect to the direct sum decomposition (3.64), cf. also (3.63), and �nd

Γ̌(1r)∗f(Hx
r (ξ))Γ̌(1r)Γ(jR0 ) = Γ̌(1r)∗{f(Hr(ξ)) ⊕

( ∞⊕

`=1

f
(
H(`)
r (ξ)

))}
Γ̌(1r)Γ(jR0 ). (3.71)Observe now that by a variational argument we have inf σ(Hr(ξ)) ≥ inf σ(H0(ξ) + φ(1r0 g)),and furthermore by monotonicity of Σ0(ξ) as a function of the coupling g, cf. [40, Corollary 2.5 (i)],we get inf σ(H0(ξ) + φ(1r0 g)) ≥ Σ0(ξ). Hence

H(`)
r (ξ; k) ≥ Σ(`)

0 (ξ; k)1Fr
<

and H(`)
r (ξ) ≥ Σ(`)

0 (ξ)1Fr
<
.This ensures that f(H(`)

r (ξ)) = 0 for ` ≥ 2.Choose and ε > 0 with ε < d(supp(f),Σ0(ξ)). As for the term with ` = 1 we get similarlythat H(1)
r (ξ; k) ≥ Σ(1)

0 (ξ; k)1Fr
<
and by (3.1) (if ω is bounded) r can thus be chosen so large that

Σ(1)
0 (ξ; k) = Σ0(ξ− k)+ω(k) ≥ Σ(2)

0 (ξ)− ε, for any |k| ≥ r. Hence, for r large enough and |k| ≥ rwe have f(H(1)
r (ξ; k)) = 0.The only non-zero contribution to (3.71) for large r is thus the remaining ` = 0 term

Γ(1r0)f(Hr(ξ))Γ(1r0)Γ(jR0 ), which clearly is compact. Hence we see by letting r → ∞ in (3.70)that K is compact.By (3.68) we only get one non-compact contribution when inserting (3.67) into (3.66), namelyone coming from the term ` = 1, which is
f
(
H(1)(ξ)

)
i
[
H(1)(ξ), A(1)

ξ

]◦
f
(
H(1)(ξ)

)
.We can now apply Proposition 3.13. Let J = (λ−δ, λ+δ) from Proposition 3.13, which we applywith an f chosen to be equal to one on [λ− δ/2, λ+ δ/2]. We thus get

f(H(ξ)) i[H(ξ), Aξ ]
◦ f(H(ξ)) ≥ cf(H(ξ))2 − cΓ(jR0 )f(H(ξ))2Γ(jR0 ) +BK,which implies the theorem, with κ = δ/2, since Γ(jR0 )f(H(ξ))2Γ(jR0 ) was demonstrated to becompact above. �Proof (Proof of Theorem 1.7). Items (i) and (ii) are standard consequences of H(ξ) being ofclass C1(A), cf. Proposition 2.5 `k = 1', the virial theorem [20], and the Mourre estimate The-orem 3.18. See e.g. [10, Chapter 4.3] and [31, Section VI]. The last statement (iii) follows fromTheorem 1.6 once we have observed that the Mourre estimate is continuous in ξ and E: Let

(ξ0, E0) ∈ E(1)\(Σpp ∪ T (1) ∪ Exc) be given. Then the Mourre estimate, cf. Theorem 3.18,
fE,κ(H(ξ))i[H(ξ), Aξ0 ]fE,κ(H(ξ)) ≥ cfE,κ(H(ξ))2



46 A FIBERED OPERATORSholds true at (ξ, E) = (ξ0, E0) for some κ, c > 0. Here f ∈ C∞
0 (R), with supp f ⊂ [−1, 1],

0 ≤ f ≤ 1 and f(t) = 1 for |t| < 1/2. Finally, fλ,κ(t) = f((t−λ)/κ). Recall that, being away fromthe point spectrum, one can squeeze away the compact error in the Mourre estimate, by passingto a smaller κ. We leave it to the reader to argue that both sides of the estimate above are jointlycontinuous in ξ and E, hence an estimate of the same form, possibly with a smaller κ, will holdin a small neighborhood of (ξ0, E0). Hence, by the standard virial theorem [20], there can be nopoint spectrum in a small neighborhood of (ξ0, E0). Taken together with relative closedness of
(T (1) ∪ Exc) ∩ E(1) in E(1) we are done. �Proof (Proof of Theorem 1.8). Under the assumptions of the theorem we have H(ξ) of class
C2(A), cf. Proposition 2.5 `k = 2'. Hence we can conclude from Theorem 3.18 the limiting ab-sorption principle

sup
z∈C, Imz 6=0

Rez∈J

∥∥〈A〉−s(H(ξ) − z)−1〈A〉−s
∥∥ <∞, (3.72)where s > 1/2 and J ⊂ E(1)(ξ)\(T (1)(ξ)∪Exc(ξ)∪σpp(H(ξ))) is a compact interval. For a proofof this estimate, we refer the reader to [3, 23]. It is a well-known consequence of (3.72), togetherwith Theorem 1.7, that the singular continuous part of σ(H(ξ)) ∩ E(1)(ξ) is empty. See e.g. [48,Theorem XIII.20]. �A Fibered OperatorsLet F be a separable Hilbert space and (X,S) a measurable space, i.e. S is a σ-algebra of subsetsof X .Let H(x), for x ∈ X , be a family of self-adjoint operators on F with domain D(x). Thefamily is said to be weakly resolvent measurable if the map x → (H(x) + i)−1 is weakly - hencestrongly - measurable. Henceforth we simply write measurable. This implies the same propertyfor x → (H(x) − z)−1 for any z ∈ C with Imz 6= 0. We remark that if X = R and S is theLebesgue measurable subsets of R, then being weakly resolvent measurable is equivalent to beingmeasurable in the sense introduced by Nussbaum in [43], a property called `N-measurable' in [28].For equivalence of weak resolvent measurability and N-measurability for self-adjoint families ofoperators see [28, Theorem 4.11].By Stone-Weierstrass we can conclude that for any f ∈ C0(R), the map x → f(H(x)) ismeasurable. Choosing a sequence fn ∈ C0(R) with fn(t) → 0 for t 6= λ and fn(λ) = 1 yieldsmeasurability of eigenprojections x → 1{λ}(H(x)). Stone's formula now gives measurability of

x → 1I(H(x)) for any interval I. Since the collection of Borel sets E for which x → 1E(H(x))is measurable form a σ-algebra, we can conclude that the property must hold true for all Borelsets.Equip the Cartesian product X × R with the product σ-algebra S × Borel(R). Let F ⊂ {ψ ∈
F | ‖ψ‖ = 1} be a countable dense subset of the unit ball. For ψ ∈ F put

fψ(x, λ) = ‖(H(x) − λ)(H(x) + i)−1ψ‖/‖(H(x) + i)−1ψ‖.Then (x, λ) → fψ(x, λ) is measurable. Put Σn = ∪ψ∈F f−1
ψ ((−∞, 1/n)). Since the joint spectrum

Σ = {(x, λ) |λ ∈ σ(H(x))} ⊂ X×R can be written as ∩∞
n=1Σn we conclude that Σ is measurable.Similarly, for ψ ∈ F and n ∈ N, we can de�ne S × Borel(R) measurable functions

f (n)
ψ (x, λ) = ‖(n(H(x) − λ) + i)−1ψ‖.By the spectral theorem together with Lebesgue's dominated convergence theorem, we �nd that

f (n)
ψ (x, λ) → ‖1{λ}(H(x))ψ‖, which is thus a measurable function of x and λ. Taking supremum



REFERENCES 47over ψ ∈ F , we conclude that (x, λ) → ‖1{λ}(H(x))‖ is measurable and hence the joint pointspectrum Σpp = {(x, λ) |λ ∈ σpp(H(x))} is an S × Borel(R) measurable set.Let now µ be a positive measure de�ned on the σ-algebra S. Denote by H the Hilbertspace L2(X ;F) ' F ⊗ L2(X), consisting of all measurable functions X 3 x → ψ(x) with∫
X ‖ψ(x)‖2

Fdµ(x) <∞. The construction
R(z) =

∫ ⊕

X

(H(x) − z)−1 dµ(x)yields a family of bounded operators on H satisfying the �rst resolvent formula. The operator
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D̃(H) =
{
ψ ∈ H

∣∣∣ψ(x) ∈ D(x) a.e. and ∫
X

‖H(x)ψ(x)‖2
F dµ(x) <∞

}
.We remark that for ψ ∈ H and Imz 6= 0 we have (R(z)ψ)(x) = (H(x) − z)−1ψ(x) a.e. and hence

D(H) ⊂ D̃(H). Furthermore we can on D̃(H) de�ne a symmetric operator H̃ by (H̃ψ)(x) =

H(x)ψ(x). It is easy to see that H ⊂ H̃ and since H was self-adjoint we must have H = H̃ and inparticular D(H) = D̃(H). We remark that even with only weak measurability of x → H(x) onecan always construct H̃ as a closed operator, but without assumptions beyond weak measurabilityone may not arrive at a densely de�ned operator, cf. [28, Remark 4.7].The spectral resolution 1E(H), with E ⊂ R Borel, can be explicitly computed to be1E(H) =

∫ ⊕

X
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