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1. Background and Terminology

Recent measurements of traffic both on local and wide area communications
networks have shown some extraordinary behaviour which proves critical for un-
derstanding the performance of broad-band networks: the data collected (e.g.
packets on Ethernet networks) at Bellcore [32], frames from Variable-Bit-Rate
(VBR) video service [7,18], FTP data connections, NNTP, and WWW arrivals
in wide area traffic show enormous variability of arrival rates indicating that a
homogeneous Poisson process may be an insufficient model for packet traffic, see
Paxson and Floyd [40].

Other measurements have indicated that CPU times and data file sizes (see
[17,38,39]) follow heavy-tailed distributions.

Moreover, the time series of teletraffic data show a long-range dependence
effect, meaning that the current state of the time series has a strong dependency
on the remote past. Definitions vary from author to author, but a commonly
accepted definition in a covariance stationary time series is that a process (X))
has long-range dependence, if the correlation coefficients corr(Xy, X,,) decrease to
0 at a rate slower than exponential. Admittedly, many authors even require that
the autocorrelation coefficients are not absolutely summable, but we want some
more flexibility in modelling. The exponential as a reference rate is motivated
by the fact that for linear models as for instance causal and invertible ARMA
(autoregressive-moving average) processes the correlation coefficients decrease to
0 exponentially fast, hence long-range dependence in the above sense cannot be
modelled in this traditional way.

Various models have been suggested to capture these effects. They range
from traditional queueing models to sophisticated on/off models [23,22,24],
Markov modulated queues [25,26], shot noise models [31] and fractional Brownian

motion [32,49,50].
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The aim of this article is

- to clarify the various notions of heavy-tailed distributions as used in the
queueing and network area,

- to describe the consequences of subexponential input distributions to the
distributional behaviour of the output processes,

- to discuss possible models where heavy-tailed or dependent input may
explain the observed long-range dependence in teletraffic data.

Our paper is organised as follows. In Section 2 we summarise various notions
and properties of heavy-tailed distributions, the outer frame being built by the
class of subexponential distributions.

In Section 3 we indicate what disasters heavy-tailed input can result in classi-
cal queueing models. Such models have been taken as basis for more sophisticated
models in teletraffic data transmission. For instance, buffer sizes correspond to
workload processes. We want to gain some qualitative insight into the effect
of heavy tails on performance measures like waiting time distribution, workload
process, and queue length.

In Section 4 we discuss various models within the queueing context which
have been suggested for teletraffic data. We derive certain performance measures
for such models. Section 5 concludes the paper with an explorative data analysis
of Munich Universities’ intranet data, measured at a network access point of the

Germany wide broadband research network (B-WiN).

2. Subexponential distributions

Intuitively, we consider heavy-tailed distributions as models for possibly
very large values in a sample. There is a common agreement that the tail of a
heavy-tailed distribution function (df) decreases to zero more slowly than any

exponential tail, i.e. for a heavy-tailed random variable (rv) X

P(X > z)e* - 00, x— 00,
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for all positive . This class includes Pareto, lognormal and heavy-tailed Weibull
distributions. In certain applications, in particular in queueing theory, more
structure for the distribution tail is needed, which leads to the definition of subex-
ponential distributions.

In this section we summarise definitions and properties of subexponential
dfs concentrating on those properties which we shall need later on. A more
complete account on subexponential dfs can be found in Embrechts, Kliippelberg
and Mikosch [13] or in the review article by Goldie and Kliuppelberg [20], from
which results are quoted freely. If possible, we refer to Karl Sigman’s “A primer
on heavy-tailed distributions” [46] in this issue.

We give two equivalent definitions of subexponential dfs. The first, analytic
one is motivated by the Pollaczek—Khinchin formula (3.2) below, while the second,

probabilistic one provides a more intuitive interpretation.

Definition 2.1. (Subezponential distribution function)
Let (X;)ien be iid positive rvs with common df F such that F(z) < 1 for all
xz > 0. Denote by

the tail of F' and
Fri(z) =1—F"(z)=P(X1+-+ X, >12), >0,

the tail of the n—fold convolution of F. F is a subezponential df (F € S) if one
of the following equivalent conditions holds:
Fnx
oy (=)
T—00 F(:E)
- PXi+--+X,>x)
z—oo P(max(X1y,...,X,) > z)

(a)

= n for some (all) n > 2,

(b)

= 1 for some (equivalently all) n > 2. 0

Remark 2.2. (i) Definition (b) provides a physical interpretation of subexponen-

tiality: the sum of n iid subexponential rvs is likely to be large if and only if their
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maximum is. This accounts for large values in a subexponential sample.

(ii) An important (though much smaller) subclass of S is the class of dfs with
regularly varying tail. We write F' € R(—a) if

in F(tx)
T—00 F($)

=t7%, t>0.

Since F' is non-increasing, the index o € [0,00). F € R(—«) is equivalent to
F(z) = z7“L(z) for some slowly varying function L (L € R(0)). Examples
for L are constants, functions converging to a constant, logarithms, or iterated
logarithms. If F € R(—a) for a < 1, then F has infinite mean; if a < 2,
then F' has infinite variance. The class of regularly varying functions allows
one to apply Abel-Tauber theorems, quite a common tool in applied probability
(see e.g. Bingham, Goldie and Teugels [8] or Feller [16]). Unfortunately, there
is no characterisation of a subexponential distribution in terms of its Laplace

transforms.

(iii) Further examples of subexponential distributions include the lognormal and
the heavy-tailed Weibull distributions () ~ exp(—=2?) for 8 € (0, 1). O

All subexponential dfs also belong to the following class; see [46], Remark 2.3.

Definition 2.3. The df F of a positive rv X such that F(z) < 1 for all z > 0
belongs to the class L if
F(z +vy)

IILIgOP(X—$>y|X>$):IIL%1OW:1 VyeR. (2.1)
The convergence is then locally uniformly in y. O

For positive y, P(X —z < y|X > z) is the df of the overshoot over a threshold
z. For the class L, this overshoot degenerates as £ — 00, i.e. it becomes infinite.
Define for a positive rv X with df F' having finite mean pu its equilibrium

distribution (or integrated tail distribution) by

Fite) =+ [Py, a>0. (2.2)
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3. Classical queueing models and subexponentials

The first papers to recognise the importance of subexponential dfs for queue-
ing theory were Cohen [12], Pakes [37], and Smith [47]. Further (early) references
on subexponential dfs in the context of insurance risk can be found in [13].

We consider an M/G/1 queue with arrival rate A > 0, service time df F
having finite mean g and equilibrium df Fr(z). We assume that the queue is
stable, i.e. its traffic intensity p = Au < 1.

Denote by W, the waiting time of the nth customer. Then the sequence

(W,,) satisfies Lindley’s equation which is given by the following recursion
Wo=0, Wyi=W,+X,-U,", neN, (3.1)

where X, is the service time of the nth customer and U, = T,4+1 — T}, is the
interarrival time between nth and (n + 1)st customer. It can be shown (see e.g.

Feller [16] or Resnick [41]) that

k
d
W, < féﬁ?é‘n;m —U;)), neN,

and
EX;-U)=p—-X'=Xx10u—-1 <0, ieN.

Then W, is distributed as the maximum of a random walk with negative drift.
Hence W,, —» W4 a.s., where W, is a finite rv with df «(¢), ¢ > 0. For (U,) iid
exponential the stationary waiting time distribution 7 (¢), ¢ > 0, is given by the

Pollaczek-Khinchin formula:
o0
n(t) = (1—p) Y 0" FJ*(1), >0, (3.2)
n=0

where F* = | [0,00) 18 the df of Dirac (unit) measure at 0. In this representation
pFr is the ladder height df of the embedded random walk. The infinite series
on the rhs of (3.2) defines a defective renewal measure (pFr(z) — p < 1 as

x — 00), and the corresponding renewal process is transient: the sequence of
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renewals (ladder heights) eventually stops, and at each ladder height 1 — p is the
probability of termination then and there. This is a consequence of the negative
drift of the embedded random walk, which is ensured by p < 1. For details see
Feller [16], Section VI.9.

We rewrite formula (3.2) in terms of the tails,
T(t) = (1—p) D p"FF*(t), t>0.
n=1

Dividing both sides by Fy(t), we see that Definition 2.1(a) yields an asymptotic
estimate for 7(¢) for large ¢, provided that one can safely interchange the limit
and the infinite sum. This is ensured by Lemma 2.10 of [46] and Lebesgue’s
dominated convergence theorem.

It turns out that the asymptotic equivalence of 7(t) and F(t) is not just
a consequence but a characterisation of subexponentiality, as follows from the

following theorem (see Embrechts and Veraverbeke [14]).

Theorem 3.1. (Stationary waiting time in the M/G/1 queue)

(t
WES<:>F[€S<:>lim_7T():—'O . O
tﬂOOF](t) 1—0p

This theorem can partly be generalised to a GI/G/1 queue, where the arrival

process is an arbitrary renewal process.

Theorem 3.2. (Stationary waiting time in the GI/G/1 queue)

(t
WES<:>F[€S:>1im_7T():—'O . O
t%OOF](t) ].—,0

The next question is how and when high workloads (i.e. large buffer contents
or buffer overflows) happen in a classical queueing system such as M/G/1 or
GI/G/1.

Recall that the sequence of waiting times (W,) given by (3.1) defines a

regenerative process with respect to the renewal process formed by the visits of
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0. Wlog we assume that a regeneration cycle begins at Wy > 0 (with W, = 0)

and ends at
T=inf{n>0: W, =0} =inf{n >0:5, <0},

where S, = > i (X; — U;) is the random walk starting in Sy = 0 with generic
increment Y = X — U. If we assume that the df F' of X belongs to the class L,
then Y has distribution tail

G(z):P(Y>x):/OOOP(X>33+y)dP(U§y)~P(X>x)zf(g:), T — 0.
(3.3)

This implies also that the stationary distribution 7 is tail equivalent to the inte-

grated tail distribution of F', more precisely, with v = E(X —U),
_ 1 e h—
7(x) ~ —/ F(y)dy = ;F[(x), T — 00. (3.4)
vViJz

A refined probabilistic description of the maximum of a regenerative cycle is given

in Asmussen [2], Section 2.1, providing some further intuition. Denote by

the cycle maximum and by
7(x) =inf{n >0: S, > z}

the first hitting time of the boundary z by the random walk (S,,) and note that
P(M; > z) = P(r(x) < 7). Now we investigate how a large maximum of a cycle
“happens”. To this end define for 0 < x¢p < £ < oo the quantities
N(z,xzp)=card{n:0<n<T7,S, <zo and Sp41 > z},
p1(z, o) = P(Spy1 > x for some 0 < n < 7 with S, < xg),

p2(z,20) = P(1(7) <7 and 29 < S;(;)—1 < 7).

Theorem 3.3. With m = E7 and the notation introduced above we have,

(i) pi(z,x0) < P(M; > z) < pi(x,x0) + p2(z,20), x> 0,
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(ii) EN(x,10) ~ p1(z,z0) ~ m7(z0)F(x), 0 >0,z — 00,

(iii) If 7 has a density 7’ such that n'(z) ~ F(z)/v as z — oo (i.e. (3.4) holds
=0

for the densities), then lim lim supw

o= oo F(l‘) ’

(iv) P(M; > z) ~mF(z), z— 0.

Proof (i) is obvious by inclusion of the events.

(ii) We first summarise some results from renewal theory and regenerative process
theory (see e.g. [1]). Denote by R the renewal measure of the random walk, i.e.
for any Borel set A C R the quantity R(A) = > ;2. P(S, € A) denotes the
expected number of points of (Sy)n>0 in A. Then there exist a,b € R such that
R([z,z+vy)) < a+ by holds for all z,y € R. Furthermore, with I(-) denoting the

indicator function,

O(A) = Ef 1(S, € A) = mn(A).

n=0

Now let (Y;)ien be iid rv with common df G, then

T—1 zo
EN(z,20) =E 3" I(Sy < 20, S + Yna1 > 7) :/0 Gl — y)dC/(y)
n=0
i
= wm[ Ga-yir)  ~ma(e)F), w o,
0

where we used (3.3) and the fact that G € L (since F € L) and local uniform

convergence in (2.1). For py(z,z¢) we use the crude approximation for k > 1,

P(N(x,xg) >k+ 1|N($,$0) > k) < ZP(Sn < $0,Sn+1 > l‘)

n=0
- Z P(S, <zo, S+ Ypp1 >12) = Z /OIO G(x —y)dP(S, <)
n=0 n=0
< G(z — 20)R([0,20)) <G(z —z0)(a+bxy) = alz,zg)-

Since P(N(z,x0) > 1) = p1(z, o) this implies that

k
P(N(z,z) >k + 1) =P(N(z,20) > 1) H P(N(z,z9) > j + 1|N(z,10) > j)

J=1
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k
<pi(@, zo)a(w, z0)" .

Hence

B(N(z,50)[(N(z,20) > 2)) = Y32, P(N(w, 1) > k + 1)

a(z, zo)

< pi(z,m0) Ry @, wo)* =P 20) T 0 )

This yields

a(z, zo)

pi(z,x0) < EN(z,70) < p1(z,z0) + p1(®, 20) ——F—— -
1 — a(z,z))

Now note that lim,_, a(x,z9) = 0, since G has finite mean.

(iii) Consider only the downcrossings of = within the regenerative cycle. Define
by

7—1
D:(z) =EY _ I(Sy > z,S11 < x)

n=0
the expected number of downcrossings of a threshold z within a cycle. By the

assumtion on the density 7’ we obtain by regenerative process theory,

D, (fE)

ll)m PWy >z, Wy <z)= hm/ P(Y <z —2)dP(W, < z)

—/ G(x — z)dn(2) —/ G(z — 2)7 (2)dz

=w(a) [ 8D gy T

where v_ = f_ooo G(y)dy = E(X —U)_. Now split the regenerative cycle up

according to the jumps from below zy over z and denote by

01=inf{n >0:5, < :E(),Sn_H > :E},
oy =inf{n >0y : S, <o, Spt1>x},...,
ok—1=sup{n <7:8, <x9,Sp1 >z}

OK=T.



Greiner et al. / Telecommunication traffic and subezponential distributions 11

Now write

K o0j
D:(z)=E> > I(Sy>,841 <1).

j=1n=0

Notice that po(z,z0) < Y0l o I(S, > ®,Spt1 < x). Moreover, the overshoot
over z after an upcrossing from a level < zy converges in distribution to oo
(as a consequence of G € L) and hence the expected subsequent number of
downcrossings of level  before the process falls below z is approximately v_ /v.

Hence, asymptotically for z — oo we get

v_

Dr(2) 2 pa(, 20)+EN (2, 20)—(1+0(1)) ~ pg(x,x0)+mn(x0)F(x)”7—(1+o(1)) .

This implies that

lim supw < m7(zo)v_/v.
(iv) is a consequence of (i)-(iii). O

Conclusion. The process evolves in a typical way, with negative drift, un-
til a very large service time causes an upcrossing over high threshold. After the
overshoot the drift takes over again, but there may be some additional upcross-
ings on the way down which can be considered as aftershocks caused essentially

by the preceding large service time. O

A continuous time version of (W,,),>¢ is the workload process (V;);>o which
denotes the sum of service times (whole or remaining) in the system at time ¢.

Important information about a queueing system with heavy-tailed service
time can be gained by considering high excursions of the workload process (V;);>0
just after a buffer overflow happened (see Figure 1). This would be the traffic
being lost or to be stored elsewhere. For mathematical details and proofs we refer

to Asmussen and Kliippelberg [4].
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Vi

T e Vot

Figure 1. Sample path of the workload process (V;) showing three high—level excursions.

Assume a GI/G/1 queue with service time X, which has df ' € S§* with

finite mean p, i.e.

¢ F(r —t)—
I /_7Ftdt:2 . 3.5
A (t) 7 (3.5)
For more details on the class S* see Kliippelberg [27]. F' € S* implies in particular
that FF € £ and F; € S.

The stationary distribution of (V});>¢ is the stationary waiting time distri-
bution 7, which is linked by subexponentiality to the integrated service time df
by Theorems 3.1 and 3.2. Let P(®) denote the distribution of a doubly infinite
version {V;}_oco<i<oo Of the workload process for which a stationary excursion
above level z starts at time 0; i.e. for any event A,

_ P(A Vo <2,V > )
B P(VO— Sxa‘/o >.’L‘)

_ P(AV, <z,Vy>z)  PAV, <x,Vi>n)
S PVom =6, Vo > x)dr(t) [y P(X >z — t)dn(t)

P(x)(A): P(A|V07SZE,V0>ZE)

The point 0 is of no importance, we simply describe a stationary excursion as a

typical excursion in a stationary system, which starts with a jump from a pre-
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level 0 < z = Vj_ < z, distributed as 7 conditioned to [0,z), to a level Vy > =z,

such that for 0 < z < z,

POVo>az+y|Voo=2)=PVo>z+y| Vo =2V, > x)

PVo>s+yVy =2) Faty-2 _ G0

PWVy >z, Vo =2) F(z —2z)

where the limit 1 is a consequence of F' € L.
Denote the measure v(*)(4, B) = P®)(V,_ € A,Vy — z € B) describing the
joint distribution of the pre-level V;_ of the excursion and its initial overshoot

Vo — z of level z. From (3.6) we get for 0 < z < z, y > 0 the formula

v(@)([0, 2), (y,00)) = P@ (Vo >z +y, Vo < 2)

_Ji PG > 2+ v Vo_ = tydn
[y F(z — t)dm(t)
_ JoF(z 4y —t)dn(t)
[y F(z — t)dm(t)

By the Markov property, the question of existence of a limit law for the excursion
is equivalent to the convergence to a proper limit of V) — z in P@)_distribution.
One might intuitively expect that the limit, if it exists, would either be proper

or 0, but in fact it is a defective df:

Theorem 3.4. For all y > 0,

lim PO (Vy —z>y) = lim v(7((0,00), (y,00)) = pFr(y), y>0.

T—00 r—00

To formulate this more precisely, decompose v(®) ag
v®(A,B) = (A, B)+ U (z — A, B),
where

W (A, B) = PO(Vy_ € A, Vo_ < 2/2,Vy —z € B),
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UNA,B) = PO (z—Vy_ € A,z/2< Vo <z,Vo—z € B).

Thus we distinguish excursions which start below z/2 and between z/2 and z.

Properties of the subexponential distributions lead to the following result.

Theorem 3.5. For any a,y > 0 the following holds.

(i) limg—0 17 ((a, 00), (3, 00)) =limy_yo0 P@)(a < Voo < 2/2,Vp > 7 + )

= (1—p)7(a);
(i) limg 00 A7 ((a, 00), (1, 00)) = limg_s00 P@ (/2 < Vo_ < 7 —a, Vo > 7 + )
=pFi1(a+y). O

Conclusion. Thus, asymptotically, the first type of excursion, given by V{I),

has pre-level Vy_ distributed according to m, and the excess is co. The second
type, given by Véx), has pre-level such that x — V;_ is distributed according to
F7, and the conditional distribution of the excess given Vy_ = x — z is just the
overshoot distribution F)(y) =1 - P(X >y +2z | X > z), y > 0.

(1) With probability 1 — p the excursion starts from Vy_ = O(1) and the
excess is huge. There is one indicated in Figure 1, the first one.

(2) With probability p the excursion starts from pre-level z — Vy_ = O(1)

and the excess Vy — x has df F;. There are two indicated in Figure 1. O

Another quantity of interest is the queue length in system (stationary number
of customers in system), we denote it by L. In an M/G/1 queue under FIFO
(first in first out) and when the nth customer’s sojourn time D, in the system
(total time spent in the system from arrival to departure) is independent of future

interarrival times, then Little’s law holds in distribution, meaning that
d
L=Np, (3.7)

where (INV;) denotes a stationary version of the renewal counting process (with

first arrival time distributed according to the equilibrium distribution) and D
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denotes the stationary sojourn time. Notice that D = W + X (independent sum)
is the sum of the stationary waiting time and the service time. If the service
time X is subexponential, then by Lemma 3.1 of [46] F(z) = o(F(z)), hence W
dominates X in the sum (Proposition 2.7 of [46]) and

P(D>z)~P(W>2x), z—0.

For heavy-tailed service times, the following result has been proved in Asmussen,

Kliippelberg and Sigman [5].

Theorem 3.6. Consider an M/G/1 queue with arrival rate A > 0 and traffic
intensity p < 1. Denote the service time df by F' and assume that the equilibrium

df F7 € §. Let W4, denote the stationary waiting time. Assume that

FxeV/ V=
lim b =1, locally uniformly in y € R. (3.8)
T—00 F(x)

Then the stationary queue length L satisfies

P(L > k) ~ POA\Wx > k) ~ ﬁﬁl(k/x), k= o0, (3.9)

The extra condition (3.8) is a tail condition guaranteeing that the tail decreases
to zero more slowly than the Weibull tail exp(—y/z), hence the result holds for
any F € R(—a) for @ > 1, lognormal df and Weibull distributions with tail
F(z) ~ exp(—z®) for B < 0.5. In these cases the queue length becomes large
only by a large service time. The Poisson arrivals do not contribute substantially
to the queue length (only via the arrival rate in p).

When the service time is lighter than the tail of a Weibull distribution with
parameter § = 0.5, the number of arriving customers comes into the picture
as well. Then the combination of the number of customers and the likely large

service time makes the queue-length large.
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Example 3.7. (i) Let F(r) ~ exp(—/T), then

P(L > k) ~ exp(1/(8N) exp(—/z/A), & — oc.

(ii) Let F(x) ~ exp(—z?) for g € (1/2,2/3), then
Ié; o 2 26—1
P(L>k)~exp<—<§> -l—%(;) ), k—oo.

(iii) For B8 > 2/3 terms of higher order enter. O

4. Long-range dependence and heavy tails in teletraffic data

In recent years the question has been raised whether classical queueing and
network models may not be too simplistic for modelling teletraffic networks. The
heavy tails and dependence structure exhibited in explorative data analyses of
teletraffic data cannot always be explained in the frame of such classical mod-
els, where heavy-tailed output is only possible by heavy-tailed input as we have
seen in the preceding section. However, quite a variety of models has a regener-
ation structure leading to Lindley’s equation (3.1) and hence, as in Section 3, to
asymptotic results.

As an example consider the Asynchronous Transfer Mode (ATM) based
broadband networks with statistical multiplexing (SMUX). Most of the multi-
plexed entities are calls originating from various sources. In order to operate
properly, each of these calls has to satisfy some quality of service requirements
(QoS). QoS requirements are usually bounds on performance measures character-
ising the dynamic behaviour of the multiplexed traffic. The most basic model of a
SMUX is an infinite buffer single server queue with a work conserving scheduler.
The fundamental performance measure is the tail of the stationary waiting time
distribution P(W > x).

Numerous investigations have shown that the arrival processes that arise in
ATM networks (like voice and video) have a very complex statistical structure; an

especially troublesome characteristic is the strong dependency. The modelling of
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this phenomenon usually leads to analytically very complex statistical character-
istics, typically making the associated evaluation of the queue length distribution
intractable. However, because of the stringent QoS requirements in ATM, the
tail of the stationary waiting time distribution is needed in the domain of very

small probabilities.

4.1. A simple on/off-model

A simple physical model is based on a sequence of points (T},)pen which
constitute a stationary renewal process, i.e. P(Ty > t) = Fy(t), t > 0, is the
equilibrium df of F', where F' is the df of all interarrival times after the first
one. Assume further that the interarrival times are heavy-tailed in the sense that
F € L, which implies that F(z) = o(F(z)) (see Lemma 3.1 of [46]).

Suppose that each of the interarrivals is either an on-period, where traffic
is transmitted, or an off-period, where no traffic is transmitted. Assume further-
more that each interarrival is randomly chosen as on- or off-period by a Markov
mechanism. Define the continuous-time fluid process (A;);>0 as being 1 during
an on-period, and 0 during an off-period. The process (A;) is sometimes called
a “Markov chain embedded in a stationary renewal” process. This process gives
rise to long-range dependence, as is seen from the following argument. Long-
range dependence is defined by the property that corr(Ag, A;) decreases to 0

more slowly than exponentially.

Theorem 4.1. Let (T,),cn be a stationary renewal point process whose inter-
arrival times have df F' € £ and F; € §. Furthermore, let (A;);>0 be the em-
bedded Markov chain with state space E = {0, 1}, transition probabilities p;; for
1,7 = 0,1, and stationary distribution m; for ¢ = 0, 1. We consider the stationary

version for (A;)¢>o. Then

cov(Ag, A) ~var(Ag)Fr(t), t— oo, (4.1)
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where F7 is the equilibrium df of F'.

Proof

cov(Ag, Ar) = E(AgAy) — (EA)?
= E[E(AoAi|Ag)) — w3
=mP(A; =14y =1) — n?

= (P(At —1,T1 > t|Ag = 1) + S p\VP(Ty <t < Topr) — m)

n=1

—m (P(T1 > 1) (1 —m) + ﬁ(pg? — ) P(T, <t < Tnﬂ)) (4.2)

n=1

N7T1(1 — 71'1)?](25) = Va.I‘(Ao)F[(t) , t—o00.

For the estimation of the infinite sum in (4.2) we need several ingredients:

(i) Under very general conditions, there exist some a > 0 and some p € (0,1)
such that for convergence of the nfold transition probabilities to the stationary
distribution 7 the rate of convergence |p£§”) —m;| <ap”, i,j € E, n €N, holds
(see e.g. Lindvall [33]).

(ii) P(T, > t) =1 — Fy « FU*(t) ~ F[(t), t = 00, n € N, by Lemma, 3.1 and
Propositions 2.7 and 2.8 of [46] . This implies that P(T}, <t < Tp11) = o(F(t))-
(iii) Furthermore, for all ¢ > 0 and all n € N there exists some positive constant
K(g) (independent of n) such that 1 — Fy « F("=D*(¢) < K(e)(1 + ¢)"F(t) for
all £ > 0 (cf. Remark 2.2(ii)).

(iv) Finally we use Lebesgue’s dominated convergence theorem. O

This proof is a special case of the argument given in Jelenkovi¢ and Lazar [26].

Remark 4.2. Observe that for large values of ¢, corr(Ap, A;) is roughly propor-
tional to the probability that the on-period that covers 0 is still active at ¢. The
resulting distribution of the residual activity period has df Fy, i.e. has a heavier
tail than the usual interarrival times. Consequently the autocorrelation function

decreases like F7, implying long-range dependence. O
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If F has a regularly varying tail, then we can apply Karamata’s theorem

and obtain the following.

Corollary 4.3. Let F(z) =z “L(z), > 0, for a > 1 and L € R(0). Then
1
(a0 —1)p

For a € (1,2) the autocorrelation function is not integrable. O

cov(Ag, Ay) ~ var(Ag) =@ DLW, t— oo.

This model is a simple idealisation. It assumes that the tails for both, the on- and
off-periods, have the same relative heaviness. As Willinger et al. [50] point out,
this may not be consistent with telecommunication data. However, the example

illustrates in a simple way how heavy tails can induce long-range dependence.

4.2. On/off models with different on-time and off-time distributions

In this section we present a generalisation of the above model with alter-
nating on- and off-periods. We follow the presentation in Heath, Resnick and
Samorodnitsky [23]. The non-negative iid rvs (&on,&n)nen represent the on-
periods, and the non-negative iid rvs (7o, 7n)nen the off-periods. On- and off-
periods are assumed to be independent, the on-periods have common df Fy,, the
off-periods have common df Fyg, both have finite mean po, and pog and we set
= fhon + Moff-

There exists a stationary renewal process with interarrival times distributed
as &on + Mof- This means that each renewal point is the starting point of an
on-period, and each interarrival time consists of exactly one on- and one off-
period. In a stationary version of the process we see in 0 either an on-period
or an off-period. If we see an on-period, then an off-period follows before the
renewal point T7. If we see an off-period, then the renewal point 77 follows
immediately after this off-period. To capture the time interval [0,7}) we define

independent rvs &7, 7, and B independent of (7o, &n, N )nen, where &7 has df
Fon,](x) = (1/M0n) fdr Fon(y)dya nr has df Foﬂ,l(x) = (1/,“03) fox Foﬁ“(y)dy and B
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is a Bernoulli rv with success probability P(B = 1) = pion/p. Then the stationary

situation is modelled by

T = B(£I +noﬂ) + (1 _B)nf'

The corresponding on/off process (A;);>0 which is equal to 1 if ¢ falls in an on-
period and 0 if ¢ falls in an off-period can be defined in terms of (T),)nen as

follows:

o0

Ay =By + > Imymosen)(t), >0,

n=1

Thus, if t > T,

{1 i T, <t < T+ by s
A=

0Ty +&np1 <t <Thit,

while for ¢ € [0,T7) we have

lifB=1land 0<t<¢r,
0 otherwise .

With this construction, (A;) is strictly stationary ((A¢) inherits the stationarity
from the stationary renewal sequence (7},)). Moreover, P(A; = 1) = pon/p. To
see this, write
00
P(A;=1)=EA =PB=1)PE >t)+ > P(T, <t<T,+&+1). (4.3)
n=1
Recall that the renewal function of the stationary sequence (7},) is equal to

= t
U(t):ZP(Tngt):;, t>0.
n=1

Now we can evaluate the infinite sum in (4.3) as

00 t P
TLZI/O Fon(t —u)dP(T;, < u) :/0 Fon(t — w)dU (u)

1t [ton
= — | Fon(t —u)du=—"Fyn1(t),t>0.
©Jo 12
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Hence,

BA = E2(P(e > 1)+ P(e < 1)) = B
[ @

The main theorem in [23] describes the autocovariance function of the pro-

cess (A¢)i>o.

Theorem 4.4. Assume that F,,(t) = t “L(t), t > 0, where L € R(0) and
€ (1,2). Assume also that Fog(t) = o(F,n(t)) as t — 0o and that &on + nofr is

non-degenerate. Then

Hag

cov (Ao, At) ~ (a— 1)@

=@V, t—> . O

The proof in [23] is based on the following representation of the autocovariance

function:

cov(Ag, A;) = ¢(lim 2z« U(z) — z « U(t)),

Ty 00
where ¢ > 0 is a constant, U = Y% ((F,, * Fog )™ is the renewal function to the
df Fon * Fop and 2(t) = JSFon(t — u) Fop (t)du.

The essential argument of the rather technical proof relies on the rate of
convergence in Smith’s key renewal theorem (see [16] or [41]) for heavy-tailed
interarrival times.

Define by
t
A;;:/Audu, £>0),
0

the cumulative input to the system up to time ¢. Since EA; = pion/p, we have by
the SLLN A} /t — pon/p a.s. ast — oco. Assume the system has a constant release
rate r > 0 if the buffer is not empty. For stability we require pon/p < r < 1
(recall that 1 is the input rate of traffic into the system). If the buffer is empty,
we set 7 = 0. The release rate of the system when the buffer content has level z

is then r(z) = r or 0 according as = > 0 or z = 0.
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Define the buffer contents process (V;);>o (which corresponds to the workload

process) by the stochastic differential equation
dV, = dA} — r(V;)dt, (4.4)

for given initial rv Vj. During an on-period traffic enters at net rate 1 —r and
during an off-period the buffer content is released at rate r. The (T},) are regener-
ation times of the contents process (V;);>0 which is stationary ergodic. Consider

the change in the buffer between T, and T;,11. We see that

VTn+1 = (VTn + (1 - T)fn—i—l - 7’7]n+1)+ , neN, (4.5)

where the increments have mean

E((l —7r)nt1 — T??n+1) = (1 = 7)pton — Thoft = fton — T < 0.

Hence V7, satisfies Lindley’s equation (3.1) and the limit variable is determined

by
d n
Vr, = Vi, = I}g{(Z((l —7)&nt1 — Tnt1) - (4.6)
S|

In a subexponential regime the tail behaviour of the stationary waiting time
distribution is given by Theorem 3.2. The rvs (1 —r)&, correspond to the service
times in this theorem. The constant p is given by

p = rate of the arrival process / rate of the service process = (1 — r)uon/ (7 tioft) -
Now we can reformulate Theorem 3.2 in our context and obtain the following

result.

Proposition 4.5. Let 7 denote the df of Vi and set p = (1 — r)uon/ (T phoft)-
Then

7r€8<=>FOH,IGS:ﬁ(x)N%EnJQfT), T — 00. O

If F,n has regularly varying tail, then we can apply Karamata’s theorem and

obtain the following.
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Corollary 4.6. Let Fo,(z) =2 *L(z), > 0, for « > 1 and L € R(0). Then

()~ P (1—r)!

~ “OD1(z) = bz~ @V - O
T T) =:0bx ), =« 00 .
1 —p pion(a — 1) @) @)

The buffer content process has its cycle maxima not at the points (77,), but at
the points (T}, + &), hence the following result is not surprising. It shows that

the distributional limit of V; has even a heavier tail than that of V.

Proposition 4.7. Let Fo,(r) = 27 %L(z), * > 0, for « > 1 and L € R(0).
Define b as in Corollary 4.6. Then V; LY Vso and

_ L\a—1
PV >1x) ~ (b-l— &> =@ VL), 7 . 0

Remark 4.8. The buffer contents process as above has already been considered
in Boxma [10], also in the context of telecommunication traffic. He requires (as
Heath et al. [23] do) regularly varying tails for F,,. Boxma’s model is more
general in the sense that he allows for several (N € N) sources transmitting data
to one buffer. But as he states, the analytical treatment becomes then rather
complicated. Apart from the case of one source, he treats some examples for
N > 1. The mean time to buffer overflow (as the buffer size tends to infinity) in

a multisource model is given in [44]. O

4.8. Dependent traffic transmission

The connections between heavy tails and long-range dependence may fur-
thermore arise from a more complicated mechanism than in the above simple
models. Various suggestions have been made, and we try to explain some of

them within the queueing context.
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Markov modulated queues

For modelling subexponential correlated arrivals, Jelenkovié¢ and Lazar [25,
26] introduce the class of general “Markov chain embedded in a stationary re-
newal” processes. Consider the arrival sequence (7}, ),en with iid subexponential
interarrival times with df F'. We take a stationary version by choosing the equi-
librium df F7 for the first interarrival time T7. Let J, be an irreducible aperiodic
Markov chain with finite state space F, transition matrix P and stationary dis-

tribution 7. Now we construct the process
Ay=Jn, T, <t<Thi1.

The process (A;) describes not only on- and off-periods, but allows for instance for
different traffic transmission rates to and release rates from the buffer in different
intervals [T),,T,,+1). The environment J; = i for i € E corresponds to a certain
df of the buffer input process Fy, ; and the buffer output process Fi ;. Moreover,
buffer input and buffer output in [T},,T),+1) are conditionally independent, given
Jn_1 and J,.

In general, it would be rather difficult to construct a stationary version
of the process (A¢)i>0 as done for the simple case above, where £ = {0,1}.
Stationarity of (J,)nen, however, guarantees stationarity of (A;);>o provided an
overall stability condition holds. For ¢ € E let F;, ; have finite mean p; and Fog ;
finite mean 1/);. Denote by m = (7;);er the stationary distribution of (J;);cp.
For stability we require that p = Y, p miAip; < 1.

A first result states that, due to the heavy-tailed interarrival times, the

process (A;)i>0 approaches its stationary distribution 7 only at a very slow rate.

Proposition 4.9. Let (T},)n,en be a stationary renewal point process whose in-
terarrival times have df F' € £ and Fy € S. Define (A;)¢>0 as above and denote
Pi(-) = P(-|Ap = 7). Then

Pi(At:j)—TfjN((Si]‘—ﬂ'j)ﬁj(t), t— 00.
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Proof Denote d;; = 1 for i = j and 0 otherwise. Then
Pi(Ay = j) — mj =P(Ay = j|Aog = i) — m;
= (P(At =3,T > t|A0 = 'L) — 7TjP(T1 > t))
+(P(Ar =5, Ty <t|Ag =1i) —mP(Ty <))
o0
= P(Ty > )(6;j — mj) + . (0} — 7)) P(T <t < Tyy)

n=1
~(6Z~j—7rj)71(t), t— 0.

The last line follows exactly as (4.2). O

Another characteristic of these processes is that their autocovariance function
cov(Ay, Ap) is asymptotically proportional to the tail of the equilibrium df of the

interarrival times.

Proposition 4.10. If F' € £ and F; € S, then
cov(Ag, Ay) ~ var(Ag)Fr(t), t— oo.

Proof We use Proposition 4.9 and obtain

COV(AO, At) = E(AOAt) - (EA0)2
= E[E(AoAi|Ao)] — (EA)°

= Y aia;(mPi(A = aj) — mimy)

1,j€E
~ Y aga;mi(0y — ) F(t)
1,j€EE
= Zﬂ'ia?— Z T Q3G F[(t)
ieE 1,j€EE

=var(Ag)Fr(t), t— oo.
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In this situation, with initial rv Wy, Lindley’s equation holds, i.e.
Wn+1:(Wn+§n—T]n)+, 7120

Here (&,,m,) denotes the pair of buffer input and buffer output during the time
interval [T},, Ty, +1). Recall that (§,) and (7,,) are conditionally independent, given
Jn—1 and J,, but their dfs change with the environment.

As is immediate from Lindley’s equation, 7, can be interpreted as the in-
terarrival time between customer n and n + 1, and &, can be considered as the
nth customer’s service requirement in a Markov modulated queue.

As proved in Asmussen, Flge Henriksen and Kliippelberg [3], if at least for
one ¢ € F the df F, ; is subexponential, then Theorem 3.2 extends to the Markov
modulated model in the sense that the subexponential environment determines

the asymptotic behaviour of the stationary waiting time.

Theorem 4.11. Assume that for all 7 € E,

I Fon,i(fﬂ) o
im ———— =g¢;
T—500 H(:E)

for some df H € L, H; € S and constants ¢; € [0,00). Assume furthermore that
c= ZWiAiCi > 0.
i€l
Then, for i € E,

o R—
R'(I/Voo>t)~1L H(u)du, t—o0. O
The independence of the proportionality constant of the initial state ¢ € E has

been shown by Jelenkovié and Lazar [26]. The result generalises to semi-Markov

models as is shown in Asmussen, Schmidli and Schmidt [6].

Ezponential mizture model
Can light-tailed input also cause heavy-tailed output? We answer this ques-

tion by the following example taken from Greiner, Jobmann and Lipsky [21].
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Let X, be an exponential rv with mean 4" for some v > 1. Let furthermore

N be a geometric rv with parameter 8 > 0. Then for z > 0

P(Xy>z)=(1-0) i 0" 'P(X, > )
n=1

=(1-6)> g lemo/".

n=1

Notice first that for £ € N

EX -0 [ — r~y " k: 71/7 dr
N— 9 0 Y
n=1
/ i n_nk k: T ]
_1_ " nk
- Z Y Mk,
n=1

where py is the kth moment of a standard exponential rv. Notice that the infinite
series on the rhs is finite if and only if §v* < 1 or, equivalently, if

k<—M = .
In~y

Take (X)) as an iid sequence of service times in a GI/G/1 model and X, 4
Xn. If we choose k > —1Inf/In-~, then the moment of order k is infinite, hence
we are in a heavy-tailed regime. However, if we truncate the geometric rv N, say

at v € N, and denote by Xy,) the corresponding rv, then

1_ 14
4 > 0"'P(Xp >x), x>0.

n=1

P(XN(V) > 17) = 1 —ov

This rv has finite exponential moments, and we are in a light-tailed regime, so that
the tail of the stationary waiting time distribution decreases to zero exponentially
fast. Notice that Xy, 2% Xy as v — oo and hence a result of Borovkov [9],
p.118, applies for @ > 1; see also Feldmann and Whitt [15]. The queueing
models GI/G, /1 (with service times distributed as Xp(,)) converge weakly to
the original model GI/G/1. Then the stationary waiting time distribution for

the truncated model converges to the stationary waiting time distribution of the
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original model. This means that, by truncation, we approximate a heavy-tailed
regime by a light-tailed one.

In Greiner et al. [21] such an approximation has been applied, not to the
service times, but to the interarrival times. They show for small traffic intensity
p that the mean of the queue length may become arbitrarily large for « close to
1 where truncation points are as low as v = 10. For more details see [21].

Furthermore, by the use of these truncated rvs Xy, instead of Xy analytic
evaluation techniques based on matrix algebraic approaches (see e.g. Lipsky [34]
or Neuts [36]) can be applied to those queueing models for large degrees of trun-

cations (close to the heavy-tailed regime in the above sense).

Remark 4.12. In a similar spirit, though much more sophisticated, Resnick and
Samorodnitsky [43] suggest a stationary sequence of light-tailed interarrivals,
which are not independent, quite contrary, their sequence has a long-range de-
pendence pattern. The structure is determined by a sequence (&) of interarrival
times which is a moving average process built from the increments of the gamma

process Y:

oo

&n=) (Y(j—n+a)-Y(j—n), neN,
=0

where (a;) is a sequence of non-negative numbers such that 372 ;a; = 1. It can

be shown that
k n—1

gkgzzr(laj)a k‘ZO,...,’n,—]_,

i=0 j=k
where T'(7, 7) are independent Gamma rvs, all with scale parameter 1 and shape

parameter given in terms of (a;). Then it can be shown that

o
cov (&my Eman) = Z aj, né€N.
i=n+1

Furthermore, if a,, decreases to 0 slowly enough, the process (¢,) has long-range

dependence. O
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Remark 4.13. A more realistic model assumes that the buffer receives input from
several access lines and is emptied by a single high-speed backbone communica-
tion link. There are various approaches to describe this model and give mean-
ingful performance measures. In [22] the total input rate at time ¢ is given by
the sum of the input rates of the different sources, each described as an on/off
process as in Section 4.2. As a performance measure the mean time to buffer
overflow is determined.

Choudhury and Whitt [11] follow a different approach. They base a fluid
model on a environment process (A;) with finitely many states, as for the Markov
modulated model of Section 4.3. When A; = i, there is a constant net fluid flow
into the buffer at rate r;. Then bounds can be found e.g. for the distribution tail

of the stationary buffer content. O

4.4. Selfsimilarity

Another important feature of network traffic has been observed from the
data, which we cannot present in detail in this paper. Since it is an important
observation we want at least to mention it and give further references on the
topic. Network traffic looks roughly the same when measured over a large range
of time scales ranging from milliseconds to minutes to hours to days etc. (see
especially [50]). Data traffic of this type is said to be selfsimilar.

One of the models in teletraffic for capturing the observed selfsimilarity is
fractional Brownian motion, the only selfsimilar Gaussian process with stationary
increments (see e.g. Samorodnitsky and Taqqu [45]). This process may appear as
the weak limit process of the aggregated workload of a sequence of on/off models,
i.e. during on-periods a source is active, traffic is transmitted, during off-periods
no transmission happens. First letting the number of sources tend to co and
then time, the limit process is fractional Brownian motion (see Taqqu, Willinger
and Sherman [48], Taqqu and Levy [49]). This is an extension of a model first
introduced by Mandelbrot [35].
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Another class of models, also with a selfsimilar limit process, has been con-
sidered by Kurtz [31] as an alternative to the classical workload process, where
each arrival brings at the instant of its arrival a required random service time
into the system (see Section 3). Assume that the input of work into the system
comes from a large number of sources. Each source turns on at a random time
and inputs work into the system for some period of time. We assume that the
time-points, where on-times start, constitute a Poisson process (INV¢);>o. While a
source is active it feeds work into the system, and we model the workprocess of the

ith activation by a stochastic process (Xt(i))tzo with cadlag and non-decreasing

sample paths. We furthermore assume that the stochastic processes (Xt(l)) are
iid and independent of (Ny).
Then the total work input into the system up to time ¢ is given by the shot

noise process

Ny
=Y x"., t>o0, (4.7)
i=1
where T7,T5, ... denote the points of the process IV, i.e. the points when a source

becomes active. When the ith source becomes inactive, the process Xt(i) remains
constant from this time on, hence does not increase the workload in the system
any more.

Such models have also been considered in Kliippelberg and Mikosch [28,29]
and in Kliippelberg and Schérf [30] within the framework of insurance mathe-

matics. These models give rise to selfsimilar limits, under appropriate moment

conditions to selfsimilar Gaussian processes ([28,29]) or to selfsimilar stable limits
([300)-
5. An explorative data analysis

The appropriateness of on/off models is shown by an application to telecom-

munication traffic observed at a network access point (Customer Service Switch)
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of the Munich Universities’ intranet to the Germany wide broadband research
network (B-WiN) at the Leibniz Research and Supercomputing Center of the
Bavarian Academy of Sciences. For more details on how the data were collected
see Gogl [19].

The outgoing pure IP (Internet Protocol) data traffic is presented in Fig-
ure 2. From the frequency and size of the peaks the data seem to be heavy-tailed.

This opens the way to fit models as presented in this paper.

0] 50000 100000 150000 200000

Figure 2. Length of on-periods in us; i.e. lengths of cell bursts, extracted from a total of 1 690 730
ATM cells. This comprises 247 995 IP packets which were captured within approximately two

minutes in the afternoon of December 23, 1997.

Various graphical tools are presented in the literature to investigate the tail
behaviour of a distribution. For details we refer to Section 6.2 of [13]. For such

methods applied to telecommunication data see Resnick [42].
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An excellent explorative method to discriminate distribution tails is the

mean excess function. For a non-negative rv X it is defined as
e(u) =E(X —u|X >u), u>0.

This function is constant for exponential X, it tends to 0 for light-tailed dfs and
to oo for heavy-tailed dfs. The Pareto distribution is characterised by a linearly
increasing mean excess function.

Figure 3 shows the empirical mean excess function of the on- and off-periods
of the above traffic. A Pareto tail (or regularly varying tail) seems to fit extremely
well to the on-periods, whereas the off-periods have apparently a lighter tail than

the on-periods.
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Figure 3. Mean excess function of the on-periods (lhs) and off-periods (rhs).

This indicates that an on/off model as presented in Section 4 may be ap-
propriate for our data. Notice that for the moment we ignore the clusters around
the peaks and assume that the lenghts of on-periods can be modelled by iid rvs.

We investigate the corresponding fluid process (A¢)¢>o, which is defined as 1 dur-



0.03

0.02

0.01

00

Greiner et al. / Telecommunication traffic and subezponential distributions 33

ing an on-period and 0 during an off-period. We estimate the autocorrelation
function of this process for our data. The result is shown in Figure 4, where we
plot the estimated autocorrelation function from lag 5 to lag 7000. We only start
from lag 5 to make the function visible at larger lags (of course the estimated
autocorrelation at lag 0 is equal to 1). Comparing the estimated autocorrelation

function to the 95% confidence bounds, we see a long-range dependence effect.

o 2000 4000 6000
Figure 4. The empirical autocorrelation function of (A¢)¢>o from lag 5 up to lag 7000.

We plot the estimated autocorrelation function on log-scale, i.e. we use
logarithmic axes (to the basis 10). Now we estimate the slope of the curve by
linear regression for the lags in the interval (20,7000). The slope is estimated by

—0.82, hence we estimate

corr(Ag, A;) = c¢t7082
for some positive constant c. Notice that for this model we have estimated an
autocorrelation function, which is heavy-tailed and not integrable over ¢.
We should like to say that this first very crude model fitting is by no means

the end of the story. On the contrary, we only consider it as a promising start.
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T T T T T
a1 10 100 1000 10000

Figure 5. The log-log plot of the empirical autocovariance function of (A;). Both axes have

been log-transformed to the basis 10.

The data exhibit many structural features which have to be explored in much
greater detail. We only mention here the clusters around the peaks in Figure 2.
The data will be analysed and modelled much more carefully and the results will

be presented in future work.
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