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Abstract

We study the infinite time ruin probability for the classical Cramér-Lundberg model,
where the company also receives interest on its reserve. We consider the large claims case,
where the claim size distribution F' has a regularly varying tail. Hence our results apply for
instance to Pareto, loggamma, certain Benktander and stable claim size distributions. We
prove that for a positive force of interest ¢ the ruin probability s(u) ~ ks(1 — F(u)) as

the initial risk reserve u — co. This 1s quantitatively different from the non-interest model,

where ¢(u) ~ & fuoo(l — F(y))dy.
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1 Introduction

We consider the classical Cramér-Lundberg model as follows:

(i) The claim sizes (Xj), . are positive iid rv’s having common distribution function F* and

finite mean p = FX; < co.

(ii) The claims happen at random time points 0 < 7} < T3 < .... The claim arrival process
(N(t))e>o defined by
card{k >1:T, <t} t>0,

N(t) =
0 t=0,

is a homogeneous Poisson process with intensity A > 0.

(i) Finally, (N(t)),s,

and (Xj ), are assumed to be independent processes.
The classical risk process (U(t))»o is defined as
Ut)y=u+ct—-S({t), t>0,

with large initial capital u, total claim amount S(¢) = ZHN:(? X, and premium rate ¢ > 0. Hence
U(t) describes the risk reserve at time ¢ > 0.

In addition to the linear premium income the company also receives interest on its reserves
and we assume a constant force of interest 6 > 0. (Notice that 6 > 0 can also model the difference

of the force of interest and the force of inflation.) The risk reserve is then
t t
Us(t) = ue + c/ e dv — / e=dS(v), t>0.
0 0
The ruin probability in infinite time is defined as
zb(;(u):P(Og&f Ué(t)<0|U5(0):u)7 w0 (1.1)

Our main result in this context is Corollary 2.4 where we prove for claimsize distribution functions

with regularly varying tail that for § > 0
Ys(u) ~ ks (1 — F(u)), u— o0,

for some explicit positive constant x5. (~ means that the quotient of lefthand side and righthand

side tends to 1 as u — c0.)



This paper can be considered as a heavy-tailed counterpart of a recent paper by Sundt and
Teugels (1995). They study the behaviour of 95 (u) under a Cramér condition. They derive bounds
for 1ps(u) in the case of exponentially fast decreasing tails of the claim size distribution function
F. Thus their work follows the tradition of Gerber (1971), Delbaen and Haezendonck (1987),
Boogaert and Crijns (1987), Boogaert and Haezendonck (1987), Embrechts and Dassios (1989),
Embrechts and Schmidli (1994) and Willmot (1989).

The proofs in Sundt and Teugels (1995) are based on the integral equation (1.2) which has
been derived by martingale methods by Delbaen and Haezendonck (1987). This equation also
serves as the starting point of our investigation. Furthermore, we write ¢(u) = o (u) for the ruin
probability in the classical case.

The survival probability is then

Similarly we write

for the tail of the claim size distribution and of the integrated tail distribution function of F

respectively. The basic integral equation is given as (see Sundt and Teugels)

_ c — 1

Ps(u) = c—|—5u¢5(0)+ ot ou

/Ou%(u—y)(ﬂﬁ(y))dy, w0, (1.2)

Defining

. E&(u) - Eé(o)
TR

we find that Gs(u) is a distribution function with tail

(1.3)

L= Gis(u) = s (u)/5(0), w >0,
hence it is up to a constant the ruin probability. The above equation (1.2) transforms into
oG5 (u) + 5/ v dGy(v) = K3 Fr(u) + pGl % Fr (1.4)
0

where Ks5 = pi5(0)/15(0), or

__F
Ks+p

¥5(0)



and p = Apu.

The natural class of heavy—tailed claim size distribution functions in risk theory is the class
of subexponential distributions. We recall that H with H(0) = 0 is a subexponential distribution
Sfunction if .

Jim, HH(S) -

holds for all n € IN where H"* denotes the n-fold convolution of H. For an overview of their

properties and their importance in risk theory see Embrechts, Kliippelberg and Mikosch (1996).
In the classical case with zero interest, ¢ > p and subexponential F; the following asymptotic

relation has been derived by Embrechts and Veraverbeke (1982)

() ~ g/uoof(v)dvzﬁ,(u), W= oo, (1.6)

where k = p/(c — p).

The main purpose of this paper is to develop a similar result for the case with interest
rates. Unfortunately, our methods, which are based on Abel-Tauber-theorems are restricted to
the subclass of df’s with regularly varying tails and are not extendable to the whole class of
subexponential claim size distributions.

We prove that for § > 0 (1.6) is no longer valid. Instead we obtain for 6 > 0
Vs (u) ~ Héf(u) y U 00, (17)

where 14 is some positive constant. The result, although unexpected, becomes clear from equation
(2.11): for § = 0 the second term on the lhs vanishes, leaving an equation which relates the
asymptotics of the tails of G5 (hence of ¢5) and F;. For 6 > 0, however, the second term
on the lefthand side gives the leading term of the asymptotic result, yielding (1.7). By quite
different methods, Asmussen (1996) obtained recently analogous results for the whole class of

subexponential claimsize distributions.

2 Ruin estimates in the case of heavy—tails and interest rates

The key to the approximation (1.6) is the Pollacek—Khinchine formula

v =(1-2) i () . (2.5)

C C

where p = Ap. Taking tails on both sides and dividing by F;(u) yields for ¢ > p

g,((uu)) - (1 N g) é (g) FF?,*((UU)) ‘




Then the definition of subexponential df’s and an application of Lebesgue’s dominated conver-
gence theorem imply convergence of the quotient to k = p/(c — p) giving the result (1.6).
In the presence of interest rates an explicit Pollacek—Khinchine formula as (2.8) can not be
obtained. But on the level of Laplace transforms a similar representation is possible.
Unfortunately, there exists no representation of subexponential distributions in terms of
Laplace transforms. But for the subclass of df’s with regularly varying tails, Abel and Tauberian

theorems can be applied and yield approximations for 15 (u) as u — oo.

Definition 2.1 A measurable function f : IR — IRT is called regularly varying with index a if

lim I(zt)
zoo f(z)

holds for some a € IR. We then write f € RV (a). If a =0, we say that f is slowly varying.

=t*, forallt>0,

Obviously we have for f € RV (a) that
f(z) =2%l(z) with some slowly varying function .

For further properties of regularly varying functions we refer to the monograph by Bingham,

Goldie and Teugels (1987). For the claim size distribution F we shall require the representation
F(z)=2"%(z), x>0, (2.9)

with some slowly varying function £ and some « > 1. The condition & > 1 ensures a finite mean

t. Then we get for the integrated tail distribution
1= Fi(e) ~ o=@ Ve(a) /(u(a - 1)).
In our approach we use the following integral transforms.
Definition 2.2 For any df H such that H(0) = 0 and for any p > 0 we define the L,-transform
L H(s) = /0 et (st dH (). (2.10)
Remarks
(i) LoH is the usual Laplace transform of H.

(i) L, is an integral transform with kernel K (t) = e~‘t*.



For any df H such that H(0) = 0 we define for 2 > 0

Hy(a) = [ e an),

then H, is a measure defining function on (0,00) with H,(cc) < co. If H(z) = 2~*{(z) where
p > a and ( is slowly varying, then H,(oco0) = oc.

Taking L,-transforms in equation (1.4) we obtain
eL,Gs(s) + 6 / = (52 adGy(x) = Ks Ly Fy(s) + pLy(Gs % F7)(s).
0
Equivalently,
s .
cL,Gs(s) + ELP_HG(;(S) = KsL,Fr(s) 4+ pL,(Gs = Fr)(s). (2.11)

We shall use equation (2.11) in order to prove our main result. In the case without interest,

i.e. 6 = 0 the second term on the lefthand side vanishes and the analysis changes.

Theorem 2.3 Assume that the claim size distribution function F is regqularly varying with rep-
resentation

F(z)~ a2~ %(z), x— o0,

for a > 1 and some slowly varying function {(x). Then

Ks+p _
~—u

@5 ($) 5,ua

“U(z), =z — o0.
The following Corollary is an immediate consequence of (1.3) and (1.5).

Corollary 2.4 Assume the conditions of Theorem 2.3 hold. Then
o) ~ Loty = 2T ), s
s (U a,ucsu u) = —F(u), u— oo,

where u is the initial risk reserve, & the force of interest and p = Ap.

This result is different from (1.6), the interest earned by the insurance company reduces the order
of the tail by one power of .

Notice that the result of Corollary 2.4 is independent of the finite mean p. Actually, the result
holds true for all claim size distributions with regularly varying tail F(u) = u=*{(u) for a > 0.
Observe that I(Iny X)) < oo is a necessary and sufficient condition for ruin not to occur almost
surely (see e.g. Asmussen (1987), Chapter 13). From an insurance applications point of view the

result for infinite mean is of minor interest. So, we only prove Corollary 2.4, i.e. the case o > 1



in detail below. However, a minor change in this proof enables us to deal with the cases a < 1
(here the mean 1 = 00) and @ = 1 (p can be finite or infinite) as well. We will now indicate what
has to be changed: whereas in the case yu < oo the tail of [~ F(y)dy determines the asymptotic
behaviour of ; in equation (1.2), for g = oo the function F(u) = [;' F(y)dy is overtaking this
role. Nevertheless, the arguments go through similarly for a < 1, when we replace F; by F. A
careful study of the arguments for @« = 1, and p either finite or infinite, shows that the result

remains true also in this case. For the sake of completeness we formulate the general result.

Proposition 2.5 Assume that F' is a df concentrated on [0,00) with representation
F(u) = u“(u),
for a > 0 and some slowly varying function (. Let 15 be defined by (1.1). Then
A —

A
Ps(u) ~ mu‘“ﬁ(u) = RF(U), U — 00.

3 Proof of Theorem 2.3

The following is a version of Karamata’s theorem in terms of Stieltjes integrals formulated e.g.

in Bingham, Goldie and Teugels (1987), Prop. 1.6.4.

Lemma 3.1 Let F be a df such that F(z) = a=%l(z) for @ > 0 and p > a. Define F, by
F,(z) = [ t*dF(t). Then

F,

p(@) ~

P~ (x), x— o0.
p—a

Conversely this asymptotic equality implies that F(z) ~ 2=*((x).

Proposition 3.2 (a) Let F' be a distribution function and p > o > 0. Then the following two

assertions are equivalent
(i) F(z) ~a=%(z), x—o00.
(i) L,F(s)~al'(p—a)s*(1/s), s—0+.

In particular,

L,F(1/z) ~al'(p—a)F(z), x— cc.

(b) If p< a and F € RV (—a) then L,F(s) ~ s? [[FtPdF(t), s—0+ .



Proof (a) Obviously we have by the definition of F}, that
L,F(s)=s"LoF,(s).

Hence L, F is the Laplace transform of the measure generating function F},. We apply Karamata’s

Abel-Tauber-theorem (Feller (1971), Theorem 1, Section XIIL.5) giving

F,

p(@) ~

2P~ (x),

p—a
if and only if
LoF,(s) ~al'(p —a)s~®=(1/s), s— 0+ .

In particular,

LoF,(1/)
—————=l(p—a+1), z—oc0.
Fy(x)
This together with Lemma 3.1 implies the result. It is simply a reformulation of this in terms of
F and L,F. (b) is obvious. ]

Lemma 3.3 Let H be a df such that with some p > 0 we obtain [;° x?dH (t) = co. Then we have
lim sL,H(s) _
=0+ Ly H(s)
Proof For large M > 0 and any € > 0 we obtain for s sufficiently small
Lyy1H(s)

s

= sp/ e " dH ()
0

v

s / e " dH ()
M

v

M/MOO e~ (sz)PdH (x)
= M (LPH(S) — /OM e‘”(sw)de(ac))

M
> M (LPH(S) —6/ xde(w)) .
0
Hence we obtain for 0 < s < s(M)
Ly H(s) Sml1—e foM aPdH () > %
sL,H(s) ~ L,H(s) - 27
which yields the desired result. a

Lemma 3.4 Let H and K be distribution functions on (0,00) and p € IN. Then

P

()L, (H * K)(s) = Z(i)LVH(s)Lp_VK(s) forpe IN.

(i) Ly (H « K)(s) < 2N (L H(s)LoK(s) + LoH(s) LK (s)) .



Proof

L(H < K)(s) = /0 e (2 ) d(H + K) ()

oQ

e 5 (( —p(sz)P"YH(z — u) dK (u) dx

= S

Il
VA

S >

oo p,O0Q

e e ((s(v+u))? — p(s(v4 )P~ H(v) dvdK (u)

Il
VA

e
/ —+r=u) o= ((52)? — p(sa)P =V H (2 — u) da dK (u)
[

3 o

= [ [ e o wyy i ) di(w)
2p‘1(LpH(s)L0K(s) + LoH(5)L,K(s)) .

IA

For the last inequality we used that for u,v > 0 we have (u + v)? < 2°~!(uf 4 vF). Obiously the

equality in our statement (i) follows from the calculation above as well. O

Lemma 3.5 Assume that H and K are distribution functions on (0,00) such that H(x) =

x=%(z) as v — oo, where o > 0 and { a slowly varying function and let p € IN and p > o.

(i) If lim,_,q L,K(s)/L,H(s) =0, then

L,(H*K)(s)~L,H(s) ~al'(p—a)s*l(1/s).
(ii) If lim, ., K(x)/H(z) =0, then
L,(H*K)(s)~L,H(s) ~al'(p—a)s®(1l/s), s—0+.
(iii) If K(z) = 2=%(,(x) with some slowly varying function {,(x), then
L,(Hx*K)(s)~L,H(s)+ L,K(s) ~al'(p—a)s*({(1/s)+ {(1)s)), s—0+.

Proof (i) Observe that

L, K (s)

IA

1 0

v / Y K (1) + 5" / B et K (1)
0 1

< STV sTVLK(s) =50 (L,H(s)).

Therefore and from Proposition 3.2(b) above, we obtain for 0 < v < «
L, ,K(s)L,H(s)=0(s")s""o(L,H(s)) =o(L,H(s)), s—0+.
Forp—12>v > a wefind as s — 0+

Ly-v K(s) L H(s) = O(s" £(1/s)) o(1) = o(L, H(s)) ,



since L, K(s) =o(1) as s — 0+ for all 4 > 1. Using Lemma 3.4 the proof is complete if o & IV .
Since L,(H « K)(s)/(s*{(1/s)) is equicontinuous in & € (g — &, o] for ag € (0,p) N IN for large
s, the result holds for all o € (0,p).

(i) The condition implies the assumption of part (i).

(iii) This part follows from the Proposition in section VIII. 8 in Feller’s book and our Proposition
3.2. (See also Lemma 2 in Embrechts and Goldie (1980) for a more general case of convolution

tails.) ]

Proposition 3.6 Assume that F; and G satisfy equation (2.11). Then we have
LyGs(s)

lim —— =

s—0+ LpFI(S)

Proof Assume there exists a sequence s, — 04 such that i”?f((j")) > e9 > 0. Then (2.11), Lemma

3.3 and Lemma 3.4 imply for large n

T Ly Golsn) (1 o)) = (Ks/S)LyFils,) + (p/D)L,y (G = Fi)(s)
< (Ks/0)LyFr(sn) + (p/0)2" ™ H(LyGis (sn) Lo (s0) + LoGa(50) Ly Fr(s0))
< Ko/ (ad)) LyGisls) + (/81214 2L, Gi(s,)
< (Ks/(208) + 20 p/(820)) LG (sn) -

This implies that the quotient

Ly 1Gs (sn)
_ 0
5, LG5 (s,) 70,

which contradicts Lemma 3.3. a
We can now prove our main result.
Proof of Theorem 2.3 We derive the asymptotics from equation 2.11. Choose an integer

p > a. By Lemma 3.3 we have

) o .
ELP_HG(;(S) ~ cL,Gs(s) + ELP_HG(;(S) = KsL,Fr(s) 4+ pL,(Gs = Fr)(s).

Then by Proposition 3.6, Lemma 3.5 and the equation 1 — Fy(z) ~ z=(¢=Vl(z)/(pu(a — 1)) we

obtain
Ks+p Ki+pla-Dl(p+1-0a)
L, 1Gs(s) ~ sL,Fr(s) ~ 3 (o= 1) s*L(1/s).
Finally we conclude from Proposition 3.2 that
— 1 Ks+p
G ~ = A
(o)~ o L)
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