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1 IntroductionWe consider the classical Cram�er-Lundberg model as follows:(i) The claim sizes (Xk)k2IN are positive iid rv's having common distribution function F and�nite mean � = EX1 <1.(ii) The claims happen at random time points 0 < T1 < T2 < : : :. The claim arrival process(N(t))t�0 de�ned by N(t) = 8><>: card fk � 1 : Tk � tg t > 0 ;0 t = 0 ;is a homogeneous Poisson process with intensity � > 0.(iii) Finally, (N(t))t�0 and (Xk)k2IN are assumed to be independent processes.The classical risk process (U(t))t�0 is de�ned asU(t) = u+ ct � S(t) ; t � 0 ;with large initial capital u, total claim amount S(t) =PN(t)n=1 Xn and premium rate c > 0. HenceU(t) describes the risk reserve at time t � 0.In addition to the linear premium income the company also receives interest on its reservesand we assume a constant force of interest � > 0. (Notice that � > 0 can also model the di�erenceof the force of interest and the force of in
ation.) The risk reserve is thenU�(t) = ue�t + c Z t0 e�vdv � Z t0 e�(t�v)dS(v) ; t � 0 :The ruin probability in in�nite time is de�ned as �(u) = P � inf0�t<1U�(t) < 0 j U�(0) = u� ; u � 0 : (1.1)Our main result in this context is Corollary 2.4 where we prove for claimsize distribution functionswith regularly varying tail that for � > 0 �(u) � �� (1� F (u)) ; u!1 ;for some explicit positive constant ��. (� means that the quotient of lefthand side and righthandside tends to 1 as u!1.) 2



This paper can be considered as a heavy-tailed counterpart of a recent paper by Sundt andTeugels (1995).They study the behaviour of  �(u) under a Cram�er condition. They derive boundsfor  �(u) in the case of exponentially fast decreasing tails of the claim size distribution functionF . Thus their work follows the tradition of Gerber (1971), Delbaen and Haezendonck (1987),Boogaert and Crijns (1987), Boogaert and Haezendonck (1987), Embrechts and Dassios (1989),Embrechts and Schmidli (1994) and Willmot (1989).The proofs in Sundt and Teugels (1995) are based on the integral equation (1.2) which hasbeen derived by martingale methods by Delbaen and Haezendonck (1987). This equation alsoserves as the starting point of our investigation. Furthermore, we write  (u) =  0(u) for the ruinprobability in the classical case.The survival probability is then �(u) = 1�  �(u) ; u � 0 :Similarly we write F (u) = 1� F (u) ; F I(u) = 1� Z 1u F (v) dv ; u � 0 ;for the tail of the claim size distribution and of the integrated tail distribution function of Frespectively. The basic integral equation is given as (see Sundt and Teugels) �(u) = cc+ �u �(0)+ 1c+ �u Z u0  �(u� y)(� + �F (y))dy ; u � 0 : (1.2)De�ning G�(u) =  �(u)�  �(0)1�  �(0) ; u � 0 ; (1.3)we �nd that G�(u) is a distribution function with tail1�G�(u) =  �(u)= �(0) ; u � 0 ;hence it is up to a constant the ruin probability. The above equation (1.2) transforms intocG�(u) + � Z u0 v dG�(v) = K�FI(u) + �G� � FI ; (1.4)where K� = � �(0)= �(0), or  �(0) = �K� + � (1.5)3



and � = ��.The natural class of heavy{tailed claim size distribution functions in risk theory is the classof subexponential distributions. We recall that H with H(0) = 0 is a subexponential distributionfunction if limx!1 Hn�(x)H(x) = nholds for all n 2 IN where Hn� denotes the n-fold convolution of H . For an overview of theirproperties and their importance in risk theory see Embrechts, Kl�uppelberg and Mikosch (1996).In the classical case with zero interest, c > � and subexponential FI the following asymptoticrelation has been derived by Embrechts and Veraverbeke (1982) (u) � �� Z 1u F (v)dv = �F I(u) ; u!1 ; (1.6)where � = �=(c � �).The main purpose of this paper is to develop a similar result for the case with interestrates. Unfortunately, our methods, which are based on Abel-Tauber-theorems are restricted tothe subclass of df's with regularly varying tails and are not extendable to the whole class ofsubexponential claim size distributions.We prove that for � > 0 (1.6) is no longer valid. Instead we obtain for � > 0 �(u) � ��F (u) ; u!1 ; (1.7)where �� is some positive constant. The result, although unexpected, becomes clear from equation(2.11): for � = 0 the second term on the lhs vanishes, leaving an equation which relates theasymptotics of the tails of G� (hence of  �) and FI . For � > 0, however, the second termon the lefthand side gives the leading term of the asymptotic result, yielding (1.7). By quitedi�erent methods, Asmussen (1996) obtained recently analogous results for the whole class ofsubexponential claimsize distributions.2 Ruin estimates in the case of heavy{tails and interest ratesThe key to the approximation (1.6) is the Pollacek{Khinchine formula (u) = �1� �c� 1Xn=0��c�n Fn�I (u) ; (2.8)where � = ��. Taking tails on both sides and dividing by F I(u) yields for c > � (u)F I(u) = �1� �c� 1Xn=0��c�n F n�I (u)F I(u) :4



Then the de�nition of subexponential df's and an application of Lebesgue's dominated conver-gence theorem imply convergence of the quotient to � = �=(c � �) giving the result (1.6).In the presence of interest rates an explicit Pollacek{Khinchine formula as (2.8) can not beobtained. But on the level of Laplace transforms a similar representation is possible.Unfortunately, there exists no representation of subexponential distributions in terms ofLaplace transforms. But for the subclass of df's with regularly varying tails, Abel and Tauberiantheorems can be applied and yield approximations for  �(u) as u!1.De�nition 2.1 A measurable function f : IR+ ! IR+ is called regularly varying with index a iflimx!1 f(xt)f(x) = ta ; for all t > 0 ;holds for some a 2 IR. We then write f 2 RV (a). If a = 0 ; we say that f is slowly varying.Obviously we have for f 2 RV (a) thatf(x) = xa `(x) with some slowly varying function ` :For further properties of regularly varying functions we refer to the monograph by Bingham,Goldie and Teugels (1987). For the claim size distribution F we shall require the representationF (x) = x��`(x) ; x > 0 ; (2.9)with some slowly varying function ` and some � > 1. The condition � > 1 ensures a �nite mean�. Then we get for the integrated tail distribution1� FI(x) � x�(��1)`(x)=(�(�� 1)) :In our approach we use the following integral transforms.De�nition 2.2 For any df H such that H(0) = 0 and for any p � 0 we de�ne the Lp-transformLpH(s) = Z 10 e�st(st)pdH(t) : (2.10)Remarks(i) L0H is the usual Laplace transform of H .(ii) Lp is an integral transform with kernel K(t) = e�ttp.5



For any df H such that H(0) = 0 we de�ne for x � 0Hp(x) = Z x0 tp dH(t) ;then Hp is a measure de�ning function on (0;1) with Hp(1) � 1. If H(x) = x��`(x) wherep > � and ` is slowly varying, then Hp(1) =1.Taking Lp-transforms in equation (1.4) we obtaincLpG�(s) + � Z 10 e�sx(sx)pxdG�(x) = K�LpFI(s) + �Lp(G� � FI)(s) :Equivalently, cLpG�(s) + �sLp+1G�(s) = K�LpFI(s) + �Lp(G� � FI)(s) : (2.11)We shall use equation (2.11) in order to prove our main result. In the case without interest,i.e. � = 0 the second term on the lefthand side vanishes and the analysis changes.Theorem 2.3 Assume that the claim size distribution function F is regularly varying with rep-resentation F (x) � x��`(x) ; x!1 ;for � > 1 and some slowly varying function `(x). ThenG�(x) � K� + ���� x��`(x) ; x!1 :The following Corollary is an immediate consequence of (1.3) and (1.5).Corollary 2.4 Assume the conditions of Theorem 2.3 hold. Then �(u) � ����u��`(u) = �� �F (u) ; u!1 ;where u is the initial risk reserve, � the force of interest and � = ��.This result is di�erent from (1.6), the interest earned by the insurance company reduces the orderof the tail by one power of u :Notice that the result of Corollary 2.4 is independent of the �nite mean �. Actually, the resultholds true for all claim size distributions with regularly varying tail F (u) = u��`(u) for � > 0.Observe that E(ln+X) < 1 is a necessary and su�cient condition for ruin not to occur almostsurely (see e.g. Asmussen (1987), Chapter 13). From an insurance applications point of view theresult for in�nite mean is of minor interest. So, we only prove Corollary 2.4, i.e. the case � > 16



in detail below. However, a minor change in this proof enables us to deal with the cases � < 1(here the mean � =1) and � = 1 (� can be �nite or in�nite) as well. We will now indicate whathas to be changed: whereas in the case � <1 the tail of R1u F (y)dy determines the asymptoticbehaviour of  � in equation (1.2), for � = 1 the function eF (u) = R u0 F (y)dy is overtaking thisrole. Nevertheless, the arguments go through similarly for � < 1, when we replace F I by eF . Acareful study of the arguments for � = 1, and � either �nite or in�nite, shows that the resultremains true also in this case. For the sake of completeness we formulate the general result.Proposition 2.5 Assume that F is a df concentrated on [0;1) with representationF (u) = u��`(u) ;for � > 0 and some slowly varying function `. Let  � be de�ned by (1.1). Then �(u) � ���u��`(u) = �� �F (u) ; u!1 :3 Proof of Theorem 2.3The following is a version of Karamata's theorem in terms of Stieltjes integrals formulated e.g.in Bingham, Goldie and Teugels (1987), Prop. 1.6.4.Lemma 3.1 Let F be a df such that F (x) = x��`(x) for � > 0 and p > �. De�ne Fp byFp(x) = R x0 tp dF (t). Then Fp(x) � �p� �xp��`(x) ; x!1 :Conversely this asymptotic equality implies that F (x) � x��`(x) :Proposition 3.2 (a) Let F be a distribution function and p > � > 0. Then the following twoassertions are equivalent(i) F (x) � x��`(x) ; x!1 :(ii) LpF (s) � ��(p� �)s�`(1=s) ; s! 0 + :In particular, LpF (1=x) � ��(p� �)F (x) ; x!1 :(b) If p < � and F 2 RV (��) then LpF (s) � sp R10 tp dF (t) ; s! 0 + :7



Proof (a) Obviously we have by the de�nition of Fp thatLpF (s) = spL0Fp(s) :Hence LpF is the Laplace transform of the measure generating function Fp. We apply Karamata'sAbel-Tauber-theorem (Feller (1971), Theorem 1, Section XIII.5) givingFp(x) � �p� �xp��`(x) ;if and only if L0Fp(s) � ��(p� �)s�(p��)`(1=s) ; s! 0 + :In particular, L0Fp(1=x)Fp(x) ! �(p� �+ 1) ; x!1 :This together with Lemma 3.1 implies the result. It is simply a reformulation of this in terms ofF and LpF . (b) is obvious. 2Lemma 3.3 Let H be a df such that with some p > 0 we obtain R10 xpdH(t) =1. Then we havelims!0+ sLpH(s)Lp+1H(s) = 0 :Proof For large M > 0 and any � > 0 we obtain for s su�ciently smallLp+1H(s)s = sp Z 10 e�sxxp+1dH(x)� sp Z 1M e�sxxp+1dH(x)� M Z 1M e�sx(sx)pdH(x)= M  LpH(s)� Z M0 e�sx(sx)pdH(x)!� M  LpH(s)� � Z M0 xpdH(x)! :Hence we obtain for 0 < s � s(M)Lp+1H(s)sLpH(s) �M  1� � RM0 xpdH(x)LpH(s) ! � M2 ;which yields the desired result. 2Lemma 3.4 Let H and K be distribution functions on (0;1) and p 2 IN . Then(i)Lp(H �K)(s) = pX�=0 p�!L�H(s)Lp��K(s) for p 2 IN :(ii)Lp(H �K)(s) � 2p�1(LpH(s)L0K(s) + L0H(s)LpK(s)) :8



Proof Lp(H �K)(s) = Z 10 e�sx(sx)p d(H �K)(x)= s Z 10 Z x0 e�sx((sx)p� p(sx)p�1)H(x� u) dK(u) dx= s Z 10 Z 1u e�s(x�u)e�su((sx)p� p(sx)p�1)H(x� u) dxdK(u)= s Z 10 Z 10 e�sve�su((s(v+ u))p � p(s(v+ u))p�1)H(v) dv dK(u)= Z 10 Z 10 e�sve�su((s(v+ u))p) dH(v) dK(u)� 2p�1(LpH(s)L0K(s) + L0H(s)LpK(s)) :For the last inequality we used that for u; v � 0 we have (u+ v)p � 2p�1(up + vp). Obiously theequality in our statement (i) follows from the calculation above as well. 2Lemma 3.5 Assume that H and K are distribution functions on (0;1) such that H(x) =x��`(x) as x!1, where � > 0 and ` a slowly varying function and let p 2 IN and p > � :(i) If lims!0LpK(s)=LpH(s) = 0 ; thenLp(H �K)(s) � LpH(s) � ��(p� �)s�`(1=s) :(ii) If limx!1K(x)=H(x) = 0 ; thenLp(H �K)(s) � LpH(s) � ��(p� �)s�`(1=s) ; s! 0 + :(iii) If K(x) = x��`1(x) with some slowly varying function `1(x) ; thenLp(H �K)(s) � LpH(s) + LpK(s) � ��(p� �)s�(`(1=s) + `1(1=s)) ; s! 0 + :Proof (i) Observe thatLp��K(s) � sp�� Z 10 tp�� dK(t) + sp�� Z 11 tp e�st dK(t)� sp�� + s��LpK(s) = s�� o (LpH(s)) :Therefore and from Proposition 3.2(b) above, we obtain for 0 � � < �Lp��K(s)L�H(s) = O(s�) s�� o(LpH(s)) = o(LpH(s)) ; s! 0 + :For p� 1 � � > � we �nd as s! 0+Lp��K(s)L�H(s) = O(s� `(1=s)) o(1) = o(LpH(s)) ;9



since L�K(s) = o(1) as s! 0+ for all � � 1 : Using Lemma 3.4 the proof is complete if � 62 IN :Since Lp(H �K)(s)=(s� `(1=s)) is equicontinuous in � 2 (�0� "; �0] for �0 2 (0; p)\ IN for larges, the result holds for all � 2 (0; p) :(ii) The condition implies the assumption of part (i).(iii) This part follows from the Proposition in section VIII. 8 in Feller's book and our Proposition3.2. (See also Lemma 2 in Embrechts and Goldie (1980) for a more general case of convolutiontails.) 2Proposition 3.6 Assume that FI and G� satisfy equation (2.11). Then we havelims!0+ LpG�(s)LpFI(s) = 0 :Proof Assume there exists a sequence sn ! 0+ such that LpG�(sn)LpFI (sn) � "0 > 0 : Then (2.11), Lemma3.3 and Lemma 3.4 imply for large ns�1n Lp+1G�(sn)(1 + o(1)) = (K�=�)LpFI(sn) + (�=�)Lp(G� � FI)(sn)� (K�=�)LpFI(sn) + (�=�)2p�1(LpG�(sn)L0FI(sn) + L0G�(sn)LpFI(sn))� (K�=("0�))LpG�(sn) + (�=�)2p(1 + 1"0 )LpG�(sn)� (K�=("0�) + 2p+1�=(� "0))LpG�(sn) :This implies that the quotient Lp+1G�(sn)snLpG�(sn) 6! 0 ;which contradicts Lemma 3.3. 2We can now prove our main result.Proof of Theorem 2.3 We derive the asymptotics from equation 2.11. Choose an integerp > �. By Lemma 3.3 we have�sLp+1G�(s) � cLpG�(s) + �sLp+1G�(s) = K�LpFI(s) + �Lp(G� � FI)(s) :Then by Proposition 3.6, Lemma 3.5 and the equation 1 � FI(x) � x�(��1)`(x)=(�(�� 1)) weobtain Lp+1G�(s) � K� + �� sLpFI(s) � K� + �� (�� 1)�(p+ 1� �)�(�� 1) s� `(1=s) :Finally we conclude from Proposition 3.2 thatG�(x) � 1�K� + ��� x��`(x) : 210
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