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Abstract—We consider the downlink of a cellular network
with cooperating multiple antenna base stations. On the one
hand, each base stations tries to serve its associated mobile
devices optimally, on the other hand, they try to minimize the
interference they cause. Both goals could be achieved, if the
interference channels would be zero. An adaptive beamform-
ing based interference mitigation can only be performed for
measured interference channels. To find an unachievable, but
relatively tight upper bound we set the measured interference
channels to zero. For such a limited cooperation, we show that
the rates can be improved by predicting the interference over
the unknown channels.

I. INTRODUCTION

Intercell interference (ICI) is the strongest effect limiting the

performance of today’s cellular networks. It can be overcome

by letting base stations (BSs) cooperate, but it is not proved

so far that cooperation will be beneficial, if all necessary

operations are taken into account. In this contribution, we

restrict cooperation to interference coordination, where each

mobile device (MD) is only served by one BS. This stands

in contrast to network MIMO, which allows each MD to

be served by all BSs jointly and where the network can be

regarded as one huge broadcast channel [1].

In a network with interference coordination, the BSs face

the conflicting goals of serving their associated MDs optimally

and minimizing the interference they cause. We distinguish

between ICI over known and unknown interference channels.

As an adaptive, beamforming based interference mitigation can

only be performed for known interference channels, the ICI

over unknown channels has to be regarded as noise. In [2], we

formulated an upper bound to interference coordination, where

we set the known interference channels to zero. Therefore, the

network decomposes into independent broadcast channels and

traditional techniques can be used to optimize the precoding.

The BSs can meet both of their goals, because they do not

produce any ICI over known interference channels and still

have all their degrees of freedom to serve the associated MDs.

The upper bound is not achievable, because the cost of nulling

the known interference channels is neglected. But we could

show that even this loose upper bound strongly limits the

possible gain of cooperation.

We do not make any assumptions on how the interference

coordination is realized. It is possible, but not necessary that

there are high speed links between the BSs. The BSs can

employ any known technique, which is covered by interference

coordination, like interference alignment [3]–[5] or interfer-

ence temperature methods [6], [7]. The methods are applicable

for systems with macro, micro, pico and femto cells. A crucial

point of the upper bound is the acquisition and outdating of

channel state information (CSI) [2], [8]. Resources have to be

spent to measure the channels and the measurements might

be perturbed by pilot contamination [9]–[11]. We could show

that the possible rates deteriorate if the number of measured

channels grows beyond a limit. The overhead and the available

knowledge at the different participants of the communication

need to be determined to assess the gain of cooperation. The

system model, signaling, overhead and the details of the upper

bound are specified in Section II.

For such a limited cooperation, we describe the problem of

the instationarity of the ICI over unknown channels and the

benefit of interference awareness in Section III. If the BSs

optimize their beamforming decentralized and in parallel, the

ICI over the unknown channels changes randomly the moment

the beamforming is applied. The achievable rates cannot be

optimized directly, merely the expectations of these rates,

respectively. The supported rates are unknown and can only

be made available with an additional second piloting phase,

in which the updated ICI is measured [6]. But, the resources

spent for the second pilot reduce the efficiency. We use a large

system layout and calculate all channels between all BSs and

MDs for our simulations. The ICI over the virtually unknown

channels is described as a random process, where the channels

are technically fixed, but the precoders at the interfering BSs

need to be regarded as random. Therefore, we do not base

our results on recent interference modeling, e.g. [12]–[14], but

investigate the statistics of the precoders and their effects on

the ICI.

In Section IV, we describe different methods how the prob-

lem of the ICI instationarity can be handled by improving the

rates and approaching interference awareness simultaneously

without the usage of a second pilot. An existing strategy coun-

teracts the ICI blindness and the resulting uncertainty about

the supported rates by transmitting the data at reduced rates to

control the risk of assuming a rate, which is not supported and

would lead to complete outage. A common backoff factor is

used for the rates of all MDs after the precoders are choosen

[15]. In this contribution, we propose to use either a common

or individual scaling factors for the assumed interference in the

process of the precoder optimization. By including the risks
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of a changing ICI in the precoder selection, the BSs allocate

more resources to MDs which are critical for the utility and the

expected rates are improved. Simulation results are discussed

in Section V.

II. SYSTEM MODEL

We consider a cellular network with 19 three faced sites and,

therefore, 57 BSs. Each BS serves the MDs of the hexagonal

shaped cell it covers. A MD in the set K of all MDs is specified

by the tuple (b, k) ∈ K, where b ∈ B identifies the BS in the

set B of all BSs and k ∈ Kb the MD in the set Kb of all MDs

in the cell of BS b. The wrap-around method is used to treat

all cells equally and the channels are found with the 3GPP

MIMO urban macro cell model [16].

In this paper, each BS has N antennas and serves K = |Kb|
single antenna MDs, respectively. The vectors h

b̂,b,k
∈ CN

contain the channel coefficients between the antennas of BS b̂
and MD (b, k). With (•)T and (•)H we denote the transposi-

tion and the complex conjugate transposition, respectively. The

achievable, normalized rate of MD (b, k) can be expressed as

rb,k = ξ log2

(

1 +
|hT

b,b,kpb,k|
2

σ2
b,k +

∑

k̂<k
|hT

b,b,kpb,k̂
|2 + θb,k

)

, (1)

θb,k =
∑

b̂∈B\b

hH
b̂,b,k

Q
b̂
h
b̂,b,k

, (2)

where pb,k ∈ CN is the beamforming vector for MD (b, k)
and Qb ∈ CN×N =

∑

k pb,kp
H
b,k is the sum transmit

covariance matrix of BS b.
∑

k̂<k
|hT

b,b,kpb,k̂
|2 is the variance

of the intracell interference with dirty paper coding, θb,k
is the variance of the received intercell interference, and

σ2
b,k = σ2

η + σ2
od,b,k + θbg is the sum of the variance of

the thermal noise σ2
η , the channel state information (CSI)

outdating, and the background interference. The outdating

σ2
od,b,k is approximated with a Gaussian noise over the serving

channel and the measured interference channels, which are

scaled down with the measurement error

σ2
od,b,k = σ̄2

e

P

N
hH
b,b,khb,b,k + σ̄2

e

P

N

∑

b̂∈Cb,k\b

hH
b̂,b,k

h
b̂,b,k

. (3)

The measurement error σ̄2
e is derived according to correlations

between channels at different times and frequencies and grows

with the blocklength [2], [17]. The Gaussian background

interference θbg models the BSs further away than the closest

57 BSs for a given signal variance per transmit antenna. All

BSs have to satisfy the transmit power constraint tr(Qb) ≤ P ,

∀b. The signaling overhead reduces the rates through the

efficiency ξ, which is described in the next Section.

A. Channel Measurements and Signaling Overhead

We employ a time division duplex system, where the reci-

procity of the propagation channels is exploited. The channels

are measured in the uplink and the gained information is then

utilized in the downlink. The number of channels a BS can

measure is equivalent to the length of the pilot sequences

Tpilots = K + L. Each BS can measure the channels to

its own K MDs and L interference channels, additionally.

With the block length Tblock and neglecting other overhead

contributions, we find the efficiency of the signaling as ξ =
Tblock−(K+L)

Tblock
.

B. Upper Bound to Interference Coordination

With L measured interference channels per BS, an upper

bound to interference coordination can be given, as described

in [2]. The intercell interference (2) can be split into

θb,k =
∑

b̂∈Cb,k\b

hH
b̂,b,k
︸ ︷︷ ︸

known

Q
b̂
h
b̂,b,k

+
∑

b̂∈B\Cb,k

hH
b̂,b,k
︸ ︷︷ ︸

unknown

Q
b̂
h
b̂,b,k

.

(4)

The set Cb,k contains all BSs, which know the channel to the

MD (b, k). Therefore,
∑

b̂∈Cb,k\b
hH
b̂,b,k

Q
b̂
h
b̂,b,k

is the sum of

the ICI over the measured channels, which is set to zero. A

residual part due to outdating is taken into account with the

afore described σ2
od,b,k. θ̂b,k =

∑

b̂∈B\Cb,k
hH
b̂,b,k

Q
b̂
h
b̂,b,k

is the

sum ICI over the unknown channels. First, we assume to know

the variance θ̂b,k, but we cannot optimize over the precoding

vectors transmitting over these unknown interference channels.

With the monotonic utility function U(rb,k), the result of a

joint optimization of all beamforming vectors Rcoop with (1)

is always smaller than the result of the upper bound Rupper,

where all measured interference channels are set to zero:

Rcoop ≤ Rupper = max
{pb,k|∀(b,k)∈K}

∑

(b,k)∈K

U (r̂b,k) ,

s.t. tr(Qb) ≤ P ∀b, (5)

r̂b,k = rb,k|h
b̂,b,k

=0 ∀b̂∈Cb,k\b
(6)

= log2

(

1 +
|hT

b,b,kpb,k|
2

σ2
b,k +

∑

k̂<k
|hT

b,b,kpb,k̂
|2 + θ̂b,k

)

.

Problem (5) is convex and can be solved distributed at

all BSs independently. The upper bound is not achievable,

because the cost of nulling the L interference channels per

BS is neglected, but it strongly limits the possible gain of

cooperation.

III. INTERFERENCE AWARENESS

Interference mitigation can only be performed for known

interference channels. The interference over the unknown

channels changes the moment the BSs employ their locally

computed beamforming vectors. Therefore, the interference

during the transmission θ̂b,k and the supported rate r̂b,k of

each MD cannot be known in advance. Assumed ICI variances

θ̃b,k have to be utilized for the optimization of the precoders,

which results in assumed rates r̃b,k. The BSs are blind to the

ICI change and stand the risk, that the ICI increases and the

MD cannot decode the transmitted symbols or that the ICI

decreases and valuable resources are wasted

r̃b,k =

{

rb,k|θb,k=θ̃b,k
, for θ̃b,k ≥ θ̂b,k

0, for θ̃b,k < θ̂b,k.
(7)
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A. ICI Statistics

Although the BSs do not know the unmeasured channels, we

calculate these channels for the simulations. The ICI variance

change depends only on the change of the transmit covari-

ances of the interfering BSs. These covariances are optimized

without taking the interference they produce over the unknown

channels into account. Therefore, we can find the statistics of

the ICI variance by looking at many independent realizations

of these covariances, while the channels are constant. If a

transmit covariance follows a Wishart distribution

Q
b̂
∼ WN

(
P

N2
IN , N

)

(8)

with N degrees of freedom and scale matrix P
N2 IN , the ICI

from this base station will follow a Gamma distribution

Θ
b̂,b,k

= hH
b̂,b,k

Q
b̂
h
b̂,b,k

∼ Γ

(

N,
P

N2
hH
b̂,b,k

h
b̂,b,k

)

(9)

with scale parameter P
N2h

H
b̂,b,k

h
b̂,b,k

and a shape parameter

N . The correct calculation of the distribution of the ICI is a

difficult task, on the one hand the BSs will always transmit

with the full transmit power and, therefore, the covariances

cannot follow a Wishart distribution. On the other hand

the sum of many Gamma distributed random variables with

different scale parameters is an impasse.

Although the transmit covariances Q
b̂

are taken from the

optimizations and we build the sum over all the ICI over the

unknown channels, we can show with simulations, that the ICI

variance Θ̂b,k =
∑

b̂∈B\Cb,k
Θ

b̂,b,k
follows almost a Gamma

distribution,

Θ̂b,k ∼ Γ






(

E
[

Θ̂b,k

])2

Var
[

Θ̂b,k

] ,
Var

[

Θ̂b,k

]

E
[

Θ̂b,k

]




 , (10)

where the scale and the shape parameter can be derived from

the mean E
[

Θ̂b,k

]

and the variance Var
[

Θ̂b,k

]

of the ICI

variance.

We assume that the mean and the variance of the ICI

variances are known through a combination of longterm and

instantaneous measurements at the MDs, respectively. Figure

1 shows the cumulative distribution function of the ICI with

1000 realizations of the covariance matrices and the approxi-

mation with a Gamma distribution, which takes the mean and

variance from the samples.

B. Handling Unknown Interference

We consider three methods handling this risk of a changing

ICI in (7). First, we can accept that risk and try to adapt with

a gambling algorithm as described in [15]. With this method

the BSs serve the MDs with modest rates to reduce the risk

of a failed transmission.

r
gambling

b,k =

{

r̄b,k = (1 − β) rb,k|θb,k=θ̄b,k
, for r̄b,k ≤ r̂b,k

0, for r̄b,k > r̂b,k.

(11)
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Figure 1. Cumulative distribution function of the ICI

The precoders are optimized based on the mean of the ICI

variance θ̄b,k = E
[

Θ̂b,k

]

and the common backoff β is applied

after the precoders are selected. The optimal backoff is found

with a line search over many realizations and MDs.

Second, we can measure θ̂b,k with a second pilot as shown

in Figure 2 and described in [2]. After the transmit covariances

are optimized based on the measured channels, the BSs trans-

mit a second pilot sequence with the calculated beamforming

vectors and the MDs can measure and feedback the ICI

powers. Now, the MDs can be served with the supported

rates, but the increased overhead decreases the efficiency

of the signaling. In the piloting phase, the MDs need to

distinguish between the different precoding vectors of the BSs.

An orthogonalization of all the pilot sequences for all the

precoding vectors requires a very long piloting phase and if

the pilot sequences are reused, pilot contamination will reduce

the quality of the ICI measurements. In this contribution, we

do not try to find the exact costs of the second pilot and leave

this interesting task for further investigations.

DL

UL pilots

TUL pilots

2nd pilot

T2nd

SINR fb

Tsinr fb

data

TTDD data

Tblock

Figure 2. TDD Signaling with second pilot

Third, we can try to predict the ICI variance over the

unknown channels as described in Section IV. For all methods

we neglect interference, noise, quantization, and feedback

errors during the pilot phase and assume all channel and ICI

measurements to be perfect.
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IV. PREDICTION OF THE UNKNOWN INTERFERENCE

The distributed optimizations of the beamforming vectors

in (5) are based on assumed ICI variances over the unknown

channels. These variances will change the moment the beam-

forming is applied and cannot be known in advance. Therefore,

we can only optimize the expectations of the rates, with respect

to the random ICI variance Θ̂b,k,

max
{pb,k,θ̃b,k|∀k∈Kb}

∑

k∈Kb

E
Θ̂b,k

[U (r̃b,k)] , (12)

s.t. tr(Qb) ≤ P.

A. Common Interference Scaling

To solve problem (12) with known methods, we shift the

expectation into the utility and the rate expression. We try

to compensate the resulting error by scaling the mean ICI

variance θ̄b,k with a common factor α

max
{α,pb,k|∀k∈Kb}

∑

k∈Kb

U
(

rb,k|θb,k=αθ̄b,k

)

, s.t. tr(Qb) ≤ P.

(13)

The optimal α has to be determined with a line search in a

measurement campaign. This interference scaling factor could

always be transformed into a utility or rate scaling factor

as well. During the optimization, the ICI variance has no

influence on the direction of the beamforming vectors, only on

the power distribution between different vectors at the same

BS. For systems with only one MD per BS, this method is

equivalent to the gambling algorithm, where the risk of an

outage is reduced.

B. Individual Interference Scaling

The MDs are situated in very different interference situa-

tions [6]. Some MDs are very close to the BS, experience

a strong serving channel and suffer from strong interference

from the few collocated BSs at the same site. Other MDs sit

in the center of the cell and see an interference floor with

many comparably weak interferers. The MDs at the cell edge

have the weakest channels and are disturbed by multiple strong

interferers, some of those may even be as strong as the serving

channel.

To account for the different interference situations, we

propose to use an individual scaling factor for each MD,

respectively. The expectation in (12) can be formulated as

E
Θ̂b,k

[U (r̃b,k)] = U (r̃b,k)

∫ θ̃b,k

0

f
Θ̂b,k

(θ) dθ +

+ U (0)

∫ ∞

θ̃b,k

f
Θ̂b,k

(θ) dθ,

= U (r̃b,k)FΘ̂b,k

(

θ̃b,k

)

+

+ U (0)
(

1− F
Θ̂b,k

(

θ̃b,k

))

(14)

where f
Θ̂b,k

(θ) is the probability density function of Θ̂b,k and

F
Θ̂b,k

(θ) the cumulative distribution function. Note, that the

utility depends on the assumed ICI θ̃b,k and not on the actual

ICI realization. This leads to the optimization

max
{pb,k,θ̃b,k|∀k∈Kb}

∑

k∈Kb

(U (r̃b,k)− U(0))F
Θ̂b,k

(

θ̃b,k

)

, (15)

s.t. tr(Qb) ≤ P.

The optimal assumed ICI variances θ̌b,k have to fulfill the

equation

∂U (r̃b,k)

∂θ̃b,k

∣
∣
∣
∣
∣
θ̌b,k

F
Θ̂b,k

(
θ̌b,k
)
+

+
(

U (r̃b,k)|θ̌b,k − U(0)
)

f
Θ̂b,k

(
θ̌b,k
)
= 0. (16)

For given precoding vectors, (U (r̃b,k)− U(0))F
Θ̂b,k

(

θ̃b,k

)

will have exactly one maximum, if U (r̃b,k) and F
Θ̂b,k

(

θ̃b,k

)

are log-convex functions. In this case, the solution can

be found numerically with a bisection or Newton–Raphson

method.

In the case of one MD per BS |Kb| = 1, the optimal

precoders are independent of the distribution of the ICI and

have to optimize the utility alone. If there are multiple MDs

associated to each BS |Kb| > 1, the power distribution among

the different beams depends on the assumed interference. A

joint optimization of the precoders and the assumed inter-

ference is intractable. Therefore, we propose an alternating

optimization, which optimizes the precoders and assumed

interference in turns. In every step, (12) will increase and as

it is bounded, it will converge to a locally optimal point.

By optimizing the expected rates, the gap between the

assumed and the supported rates shrinks. The 2nd pilot,

which requires air time, can be avoided by increasing the

computational complexity at the BSs.

V. SIMULATIONS

Our simulations are set in a slow fading environment with

a MD speed of 3 km/h and a delay spread of 0.5µs. We

discuss the scenarios with no cooperation L = 0 and a small,

but realistic cooperation with L = 5. The computed bounds

are still not achievable, since we have only N = 4 antennas at

the BSs. The actual improvement achieved by measuring some

interference channels (e.g. L = 5) compared to not measure

such channels to users in other cells at all (L = 0) will be

even smaller if the mobility is increased to let say 30 km/h.

For the following plots, we used a blocklength of Tblock = 250
symbols.

Only high SINR MDs are important for sum rate optimiza-

tions. For these MDs, the approximation with the expectation

is already very good and there is almost no improvement with

the interference prediction algorithms. In Figure 3 and 4 the

influence of the common scaling factor α on the average cell

sum rate is plotted for a sum rate maximization as the utility

for L = 0 and L = 5. The plots show the supported rate, if the

true ICI variance would be known after the optimization, and

the rate with the common interference scaling algorithm with
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Figure 3. Influence of α, sum rate, K = 4, L = 0, N = 4
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Figure 4. Influence of α, sum rate, K = 4, L = 5, N = 4

and without an additional backoff factor β. The backoff factor

is optimized for each value of α individually and it can be

seen, that this subsequent adaption is inevitable. The optimal

α is very close to 1.

With the interference prediction algorithms, the BSs allocate

more power to the MDs, which are critical for the utility

to cope with the risk of a failed link. A large common

scaling factor penalizes the MDs which have a strong ICI

compared to the serving channel additionally. The BSs shift

even more power to the MDs with a high mean SINR and,

therefore, reduce the risk of a sudden drop in the sum rate, if a

strong interference at an MD with a high mean SINR occurs.

In contrast, a small common scaling factor is beneficial for

fairness optimizations, as the MDs with a low mean SINR

profit. The influence of the common scaling factor α on the

log fairness optimization

max
{α,pb,k|∀k∈Kb}

∑

k∈Kb

log
(

0.01 +
(

rb,k|θb,k=αθ̄b,k

))

,

0 0.5 1 1.5 2
−5
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−1

0
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+
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Figure 5. Influence of α, log fairness, K = 4, L = 0, N = 4
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Figure 6. Influence of α, log fairness, K = 4, L = 5, N = 4

s.t. tr(Qb) ≤ P, (17)

can be seen in Figure 5 and 6 for L = 0 and L = 5, re-

spectively. Compared to the results with the mean interference

(α = 1), the utility can be improved by approximately 5% with

an optimized α, which is 0.35 for L = 0 and 0.2 for L = 5.

Figure 7 and Figure 8 show the sum rate over the block-

length for L = 0 and L = 5, respectively. As discussed before,

rates with a common scaling are not improved compared

to the rates with the mean interference. The rates with the

individual scaling factors introduce a slight improvement of

ca. 2% for L = 5. The interference prediction with individual

scalings has better results for the scenario with cooperation,

because the strongest interferers are canceled and more MDs

in unprivileged situations are served. These MDs have a wider

range of channel qualities and ICI variances and an individual

interference prediction has a stronger influence.

More interestingly are the results for the log fairness op-

timization, where the utility can be improved considerably
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Figure 7. Sum rate, K = 4, L = 0, N = 4
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Figure 8. Sum rate, K = 4, L = 5, N = 4

with the individual scaling factors (See Figures 9 and 10).

We also included the curves, where the mean ICI is assumed

for the optimization, i.e. α = 1. In Figure 11 and 12 the

complementary cumulative distribution function of the user

rates are plotted. The simulations visualize, that we can

guaranty the MDs a minimal rate with an increased probability

with the interference prediction algorithms and especially with

the individual scaling.

VI. CONCLUSION

In a cellular network with interference coordination, the

ICI has to be divided into the interference over known and

unknown channels. With an upper bound to the interference

over the known channels, we investigated two methods for

handling the interference over the unknown channels. We

either optimize the expected rates with a common or individual

factors for scaling the ICI to adapt to the instationarity of the

ICI. We could show, that a proper prediciton of this inter-

ference has a strong influence on systems with proportional
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Figure 9. Log fairness, K = 4, L = 0, N = 4

0 200 400 600 800
−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

 

 

supported rates

mean ICI

common scaling

individual scaling

∑

k
lo
g
(γ

+
r b

,k
)

Tblock

Figure 10. Log fairness, K = 4, L = 5, N = 4
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Figure 11. User rate ccdf, K = 4, L = 0, N = 4
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Figure 12. User rate ccdf, K = 4, L = 5, N = 4

fairness and can reduce the outage probability considerably.

In a future work, the performance of systems with a second

pilot to measure the ICI after the precoders are selected will

be compared to systems without interference awareness, while

the additionally required overhead for the second pilot will be

taken into account.
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