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Summary 

 Industrial processes and agricultural practices can result in the release of potential 

toxic chemicals and trace elements into the environment, and consequently impact 

microbial communities responsible for important soil functions such as nutrient turnover. 

Whereas most studies focused on bulk soil so far, we studied the impact of contaminants, 

the antibiotic sulfadiazine (SDZ) and heavy metals (HMs), on the rhizosphere microbial 

communities, as they differ in term of activity and diversity from those in bulk soil, and play 

a major role in plant growth, mainly through nutrients mobilization. Particularly nitrogen is of 

key importance for plant health and yield. 

 SDZ can reach the soil ecosystem by application of manure, which is commonly 

used as organic fertilizer in agriculture, from antibiotic-treated animals. We surveyed the 

potential impact of this broad spectrum antibiotic on the nitrogen-transforming microbial 

communities in the root-rhizosphere complexes (RRCs) of agricultural plants (i) in a 

greenhouse experiment and (ii) under field conditions. In the greenhouse experiment, we 

measured in the RRCs of Maize (Zea Mays) and clover (Trifolium alexandrinum) the 

abundance of functional genes and transcripts involved in nitrogen fixation, ammonia 

oxidation and denitrification using nifH, amoA (in both ammonia-oxidizing bacteria and 

archaea), nirK, nirS, and nosZ, respectively, as molecular markers, after a single application 

of SDZ-contaminated pig manure. Sampling was performed 10, 20, and 30 days after the 

application. SDZ affected the abundance pattern of all investigated genes in the RRCs of 

both plant species (with stronger effects in the RRC of clover) 20 and 30 days after the 

addition. However, effects on the transcript level were less pronounced, which might 

indicate that parts of the investigated functional groups were tolerant or resistant against 

SDZ or, as in the case of nifH and clover, have been protected by the nodules. In the field 

experiment, we investigated the impact of repeated applications of SDZ-contaminated pig 

manure on functional microbial communities involved in ammonia and nitrite oxidation in the 

RRCs of diverse plants composing a pasture. We assessed the abundance of ammonia-
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oxidizing archaea (AOA) and bacteria (AOB) as well as Nitrobacter- and Nitrospira-like 

nitrite-oxidizing bacteria (NOB) and the diversity of amoA AOA and Nitrobacter-like nxrA 

partial sequences. Whereas the first SDZ-contaminated manure application caused only 

slight effects on the investigated microbial communities and did not change diversity and 

abundance pattern significantly, the second application of SDZ-contaminated manure 

induced pronounced effects compared to the control treatment where non-contaminated 

manure was applied, and resulted in an up to 15 fold increased ratio of AOA:AOB and a 

reduction of nrxA genes. Diversity of amoA AOA increased after the second application of 

SDZ-contaminated manure compared to the control treatment whereas a clear reduction of 

nrxA OTUs was visible in the same samples. 

 HM contamination, such as by abandoned mine wastes, can result in severe 

pollution in the local environment and negatively impact important ecosystem services. 

Whereas HM-contaminated soils are unsuitable for food production, energy crops can allow 

the commercial exploitation of these soils by establishing biofuel feedstock production 

systems. In addition, the cultivation of these plants offers opportunities for site stabilization 

and phytoremediation of contaminated soils. In a pot experiment, we investigated the 

response of ammonia-oxidizing microbes in the RRC of Miscanthus x giganteus, a perennial 

grass with large annual biomass production potential, grown in soils with different levels of 

long-term arsenic (As) and lead (Pb) contamination. We measured the abundance of AOB 

and AOA at two different points of plant growth. Furthermore, bulk soil samples before 

planting were analyzed. In addition terminal restriction fragment length polymorphism (T-

RFLP) analysis was used to investigate the diversity of archaeal amoA amplicons. Whereas 

high concentrations of As and Pb in soil (83 g/kg respectively 15 g/kg) resulted independent 

from the plant growth in a clear reduction of AOA and AOB compared to the control soils 

with lower HM contents, in soils with contamination levels of 10 g/kg As and 0.2 g/kg Pb, 

only AOB were negatively affected in bulk soil samples. Diversity analysis of archaeal amoA 

genes revealed clear differences in T-RFLP patterns, in response to the degree of HM 
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contamination. Therefore our results could clearly prove different response patterns of AOA 

and AOB in HM contaminated soils and the development of archaeal amoA phylotypes 

which are more tolerant towards HMs in soil samples originating from the areas the most 

impacted by the mining waste, which could contribute to functional redundancy of 

ammonia-oxidizing microbes in soils and stability of nitrification pattern. 

 

 

Zusammenfassung  

 Industrielle Prozesse und landwirtschaftliche Praktiken können bei der Eintragung 

von potenziell toxischen Chemikalien sowie Spurenelementen in die Umwelt beitragen. Sie 

nehmen damit Einfluss auf mikrobielle Gemeinschaften, welche für essenzielle 

Bodenfunktionen, wie etwa den Stoffkreisläufen, verantwortlich sind. Während die meisten 

Studien bisher Fokus auf die Bodenmasse legten, untersuchten wir die Auswirkungen von 

Kontaminationen mit dem Antibiotikum Sulfadiazin (SDZ) sowie mit Schwermetallen (HMs) 

auf die mikrobiellen Gemeinschaften der Rhizosphäre. Sie unterscheiden sich sowohl in 

Aktivität wie Diversität von den mikrobiellen Gemeinschaften im Bodenkörper und tragen 

wesentlich zum Pflanzenwachstum, hauptsächlich durch die Mobilisierung von Nährstoffen, 

bei.  

 Sulfadiazin kann über die Ausbringung von Gülle antibiotikabehandelter Tiere, 

welche in der Landwirtschaft für gewöhnlich als organischer Dünger Verwendung findet, in 

den Boden eingetragen werden. Wir untersuchten die möglichen Auswirkungen dieses 

Breitbandantibiotikums auf die mikrobiellen Gemeinschaften des Stickstoffkreislaufs im 

Bereich des Wurzel-Rhizosphären-Komplexes (RRC) von Nutzpflanzen (i) im 

Gewächshausexperiment und (ii) im freien Feld. Im Gewächshausexperiment haben wir für 

Mais (Zea Mays) und Klee (Trifolium alexandrinum) im Bereich des Wurzel-Rhizosphären-

Komplexes die Abundanz funktioneller Gene sowie Transkripte gemessen, welche bei der 

Stickstofffixierung, Ammonifikation und Denitrifikation eine Rolle spielen. Nach einmaligem 
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Auftragen SDZ-kontaminierter Schweinegülle wurden die Gene nifH, amoA (sowohl in 

Ammonia-oxidierenden Bakterien als auch Archaeen vorkommend), nirK, nirS und nosZ als 

molekulare Marker herangezogen. Die Probennahme erfolgte jeweils 10, 20 sowie 30 Tage 

nach der Auftragung. SDZ beeinflusst die Abundanzmuster aller untersuchten Gene im RRC 

beider Pflanzenarten (mit stärkerem Effekt auf den RRC von Klee) 20 und 30 Tage nach dem 

Einsatz. Allerdings waren die Auswirkungen des Antibiotikums auf Transkriptebene weniger 

stark ausgeprägt, was darauf hindeutet, dass ein Teil der funktionellen Gruppen tolerant 

bzw. resistent gegen Sulfadiazin war. Oder sie wurden, wie im Fall von nifH und Klee, durch 

Knöllchen geschützt. Im Freifeldexperiment untersuchten wir den Einfluss von mehrfach 

aufgetragener, SDZ-haltiger Schweinegülle auf funktionelle mikrobielle Gemeinschaften der 

Ammonia- und Nitritoxidation im RRC diverser Weidepflanzen. Wir maßen die Abundanz 

Ammonia-oxidierender Archaeen  (AOA) und Bakterien (AOB) sowie die der Nitrobacter- und 

Nitrospira-ähnlichen Nitrit-oxidierenden Bakterien (NOB). Des Weiteren untersuchten wir die 

Diversität von amoA AOA sowie die der Teilsequenzen Nitrobacter-ähnlicher nxrA Gene. 

Während die erste Ausbringung SDZ-kontaminierter Gülle nur geringe Auswirkungen auf die 

untersuchten mikrobiellen Gemeinschaften hatte und weder die Diversitäts- noch 

Abundanzmuster signifikant veränderte, führte die zweite Gülleausbringung zu deutlichen 

Effekten. Ein Vergleich mit Werten aus Proben eines Kontrollbodens, welcher mit nicht-

kontaminierter Gülle behandelt wurde, zeigte ein bis zu 15-fach höheres Verhältnis von 

AOA:AOB sowie eine Abnahme der nrxA Gene. Die Diversität von amoA AOA war nach der 

zweiten Ausbringung der SDZ-haltigen Gülle höher als beim Kontrollboden, wohingegen 

eine deutliche Abnahme der nrxA OTUs zu verzeichnen war.   

 Schwermetall-Kontaminationen, wie sie beispielsweise aus Abfällen stillgelegter 

Minen hervorgehen, können zur erheblichen Belastung der Umgebung führen und sich 

negativ auf wesentliche Ökosystemdienstleistungen auswirken. Während HM-kontaminierte 

Böden für die Lebensmittelerzeugung ungeeignet sind, können Energiepflanzen die 

kommerzielle Nutzung dieser Böden durch die Etablierung von Biokraftstoff erzeugenden 
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Produktionsverfahren ermöglichen. Zusätzlich wirkt sich der Anbau solcher Pflanzen positiv 

auf Bodenstabilität und Schadstoffabbau (mittels Phytoremediation) aus.  In einem 

Gefäßexperiment untersuchten wir die Reaktion von Ammonia-oxidierenden 

Mikroorganismen im RRC von Miscanthus x giganteus, einem mehrjährigen Grases mit 

jährlich hohem Biomasseproduktionspotenzial. Dieses wuchs auf Böden mit langfristiger 

Arsen (As)- und Blei (Pb)-Behandlung unterschiedlicher Konzentration. Wir führten eine 

Abundanzmessung von AOB und AOA zu zwei verschiedenen Stadien des 

Pflanzenwachstums durch. Darüber hinaus wurden vor der Bepflanzung Bodenproben 

entnommen und analysiert. Des Weiteren wurde mittels terminaler Restriktionsfragment-

Längen-Polymorphismus (T-RFLP)-Analyse die Diversität archaealer amoA Amplikons 

untersucht. Während unabhängig vom Pflanzenwachstum hohe Konzentrationen von As und 

Pb im Boden (83 g/kg bzw. 15 g/kg) zu einer deutlichen Reduktion von AOA und AOB 

führten (im Vergleich zu Kontrollböden mit einer niedrigeren Schwermetallbelastung), wurde 

in Proben aus Böden mit einem Kontaminationsgrad von 10 g/kg As und 0,2 g/kg Pb nur 

AOB negativ beeinflusst. Diversitätsanalysen archaealer amoA Gene zeigten zudem klare 

Unterschiede in ihren T-RFLP-Mustern bezüglich des HM-Kontaminationsgrades. Demnach 

können unsere Ergebnisse als Beweis für die Ausbildung unterschiedlicher Abundanzmuster 

von AOA und AOB als Reaktion auf die Schwermetallbelastung dienen. Zudem belegen sie 

die Entstehung archaealer amoA Phylotypen, welche in Bodenproben aus Regionen, die am 

stärksten durch Tagebauabfälle belastet sind, eine höhere Toleranz gegenüber 

Schwermetallen zeigen und zur funktionellen Redundanz Ammonia-oxidierender 

Bodenmikroorganismen sowie zur Stabilisierung von Nitrifikationsprozessen beitragen 

können.   
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Introduction 

 

1. Nitrogen transformations in soil 

1. 1. Nitrogen management in agricultural ecosystems and the environment 

 Nitrogen (N) is essential for the synthesis of nucleic acids and proteins, the two most 

important polymers of life, and the biogeochemistry of its inorganic forms relies almost 

entirely upon reduction-oxidation reactions primarily mediated by microorganisms (Canfield 

et al., 2010). N can be divided into two classes: unreactive and reactive N (Nr). Triple-

bonded N2 makes up 78% of Earth's atmosphere and constitutes the largest N reservoir on 

earth; N in this form is virtually inert. Nr comprises every other form of the element. Thus, Nr 

includes inorganic forms of N (e.g., ammonia [NH3] and ammonium [NH4
+], nitrogen oxides 

[NOx], nitrous oxide [N2O], and nitrate [NO3
-]), and organic compounds (e.g., urea, amines, 

proteins, and nucleic acids). The size of N reservoirs on earth is highly variable, and besides 

the mains reservoirs (i.e. the atmosphere, the terrestrial mantle and crust) which are 

evaluated to contain 5.6 x 1020 moles N, about 8 x 1015 moles N are stored in the biosphere 

(Canfield et al., 2010). 

 N is of key importance for plant growth and crop yield. In almost all ecosystems, 

plants take up mainly NH4
+ and NO3

-, rather than amino acids or monomers, which 

apparently only play a role in extremely N-poor and cold ecosystems where N mineralization 

from soil organic matter is limited (Jackson et al., 2008). However, a few studies have 

shown that temperate trees have the ability to use amino acid N (Bennett and Prescott, 

2004;Hofmockel et al., 2007;Warren and Adams, 2007;Scott and Rothstein, 2011). 

Supplying agricultural ecosystems with Nr is therefore essential for crop production. Until 

the end of the nineteenth century, the main agricultural source of N was fixation of N2 by 

symbiotic bacteria in legumes, combined with the amount of N contained in animal and 

green manure; in this respect, N mineralization, the process by which microbes decompose 

organic N to ammonium, is of major importance (Schimel and Bennett, 2004). By 1900, 
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industrial processes, e.g., the Haber-Bosch process, were developed to reduce N2 to NH3, 

implementing agricultural practices and boosting crop yields. Thus in the past 4 decades, 

world food production doubled thanks to an almost 7-fold increase of N fertilization (Tilman, 

1999;Tilman et al., 2001). During 2008 alone, the Haber-Bosch process supplied 9.5 x 1012 

mol N whereas agriculture alone contributes about 2.4 x 1012 mol because of cultivation 

induced N fixation, essentially from fodder legumes (Canfield et al., 2010).  

 Parallel to the increasing of food production and consequent beneficial effects on 

human health, N inputs through anthropogenic activities contribute to a host of 

environmental problems (Galloway et al., 2008). Nitrifying microorganisms can convert 

ammonia (corresponding to nearly 90% of N fertilizer applied worldwide) to highly mobile 

NO3
-, which can leach into rivers, lakes, and aquifers and possibly leads to eutrophication of 

coastal waters (Diaz and Rosenberg, 2008). Microbial denitrification together with 

nitrification can form N2O which is lost to the atmosphere and in absorbing terrestrial 

thermal radiation, contributes to greenhouse effect; N2O has 300 time, on a per molecule 

basis, the warming potential of CO2 (Schlesinger, 2009). Besides its contribution to climate 

change, N2O destroys ozone in the stratosphere (Ravishankara et al., 2009). Agricultural 

ecosystems account for about one quarter of global N2O emissions (Mosier et al., 1998). In 

addition, excessive N fertilizer use results in biodiversity loss and soil acidification (Vitousek 

et al., 1997). It was recently calculated that excess N in the environment costs the European 

Union between €70 billion and €320 billion per year, so more than twice the value that N 

fertilizers are estimated to add to European farm income (Sutton et al., 2011). 

 Therefore investigations on the microbial scale are necessary to gain better insight 

into the mechanisms behind the N cycle to (i) develop better N management strategies in 

agricultural cropping systems and (ii) monitor ecological changes and reduce the negative 

impact of agriculture on the environment. The following section describes the different 

processes of the microbial N cycle and involved key functional groups. Special focus has 
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been laid on the inorganic N cycle, in particular N fixation, nitrification and denitrification, as 

those processes make the major contribution to N turnover in agricultural soils. 

 

1. 2. Microbial nitrogen cycling in terrestrial ecosystems 

 The biological N cycle in terrestrial ecosystems consists of two cycles interlinked by 

NH4
+: the organic and the inorganic N cycle (Fig. 1). Considering the inorganic part, 

particularly three processes of key importance in agricultural ecosystems, mainly driven by 

prokaryotes, will be focused in this thesis: (i) N fixation, (ii) nitrification and, (iii) denitrification. 

The physiology of these processes and their significance in soil ecology will be addressed in 

the next chapter. 

 

Figure 1. The major biological nitrogen transformation pathways linked to their associated 

enzymes (adapted from Canfield et al., 2010). Abbreviation: DRNA, dissimilatory nitrate 

reduction to ammonium. 



11 
 

1. 2. 1. Nitrogen fixation 

 Biological N fixation is a process where prokaryotes in the bacterial and archaeal 

domains, collectively called diazotrophs, reduce atmospheric N2 to NH4
+ (Fig. 1). Most 

microorganisms that perform biological N fixation catalyze this reaction with the nitrogenase 

protein complex, which has been highly conserved through evolution (Howard and Rees, 

1996). The heterodimeric enzyme complex nitrogenase is composed of two multisubunit 

metallo-proteins: (i) the dinitrogenase α2β2 heterotetramer also called MoFe-protein (where α 

= NifD and β = NifK proteins; component I) and (ii) the dinitrogenase reductase γ2 

homodimer also called Fe-protein (NifH protein; component II). Component I contains the 

active site for N2 reduction, typically a MoFe7S9 metal cluster (termed FeMo-cofactor), 

whereas component II couples ATP hydrolysis to interprotein electron transfer. Alternative 

nitrogenases wherein Mo is replaced by either Fe or V (in which case the nomenclature Anf 

or Vnf, respectively, is used instead of Nif) can be found in a limited subset of diazotrophs. 

They are closely related to the conventional Mo-based nitrogenase and are present, in all 

cases studied so far, secondarily to it (Newton, 2007). These enzymes have to some extent 

different kinetics and specificities; the FeMo nitrogenase has been found to be more 

specific and more efficient in binding N2 and reducing it to ammonia than either of the 

alternative nitrogenases (Burgess and Lowe, 1996;Eady, 1996). The activation energy 

required to break the N≡N bond is tremendous (16 ATP and 8 electrons per molecule of N2 

fixed), and the enzyme in vitro is sensitive to inactivation by oxygen (Newton, 2007). 

Moreover, a fourth type of nitrogenase, structurally dissimilar from the others and that is 

linked to CO reductase activity has been described in Streptomyces thermautotrophicus 

(Ribbe et al., 1997). nifH, one of the nitrogenase structural genes, is commonly used as a 

marker for the detection and identification of potential N fixing microbes in the environment 

(e.g., Zehr et al., 1998;Hamelin et al., 2002;Rösch et al., 2002;Fong et al., 2008). 

 Diazotrophs demonstrate diverse lifestyles and N fixation occurs in varied metabolic 

contexts under both aerobic and anaerobic conditions. Rhizobia in symbiosis with legumes 
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and the actinomycete Frankia in symbiosis with a number of plants (e.g., Alnus, Myrica, 

Rosaceae) assume agricultural importance in performing most of biological N fixation in 

terrestrial ecosystems (Peoples et al., 1995). However under specific conditions, free-living 

bacteria (e.g., cyanobacteria, Pseudomonas, Azospirillum, and Azotobacter) may fix 

significant amounts of nitrogen in soil (Kahindi et al., 1997;Burgmann et al., 2004). 

 

1. 2. 2. Nitrification 

 Nitrification is a two-step process consisting of: (i) the oxidation of NH4
+ to NO2

- by 

ammonia-oxidizing archaea (AOA) and ammonia-oxidizing  bacteria (AOB)  (Kowalchuk and 

Stephen, 2001;Leininger et al., 2006) and (ii) the oxidation of NO2
- to NO3

- by nitrite-oxidizing 

bacteria (NOB) (Prosser, 1989) (Fig. 1). The nitrification pathway plays a central role in the 

terrestrial nitrogen cycle. In agricultural ecosystems, this process is responsible for 

significant losses of N through leaching of nitrate. Moreover, nitrifiers have a further 

substantial environmental impact as contributors to greenhouse gas emissions; N2O is a by-

product of the nitrification process (Wrage et al., 2001).  

 NH3 oxidation was long attributed to aerobic autotrophic chemolithotrophic 

ammonia-oxidizing bacteria. However, novel microbial players and new metabolisms have 

been discovered, such as planctomycetes catalyzing anaerobic ammonia oxidation 

(ANAMMOX) (Strous et al., 2006), and archaea of the phylum Thaumarchaeota (Brochier-

Armanet et al., 2008;Spang et al., 2010), ubiquitous in marine and fresh waters, soils and 

sediments, capable of oxidizing ammonia to nitrite (Könneke et al., 2005;Treusch et al., 

2005;Tourna et al., 2011). In the bacterial domain, the oxidation of NH3 to NO2
- via 

hydroxylamine (NH2OH) is performed by certain organisms belonging to two specific groups 

of β- and γ-proteobacteria (Bock and Wagner, 2001). To date, most cultured strains belong 

to the β-subgroup (Kowalchuk and Stephen, 2001). The oxidation of NH3 to NH2OH, which 

constitutes the rate-limiting step of the nitrification pathway (Bock and Wagner, 2001), is 

catalyzed by the ammonia monooxygenase (AMO). AMO is a membrane-bound protein 
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consisting of three subunits (α-, β-, γ-AMO) encoded by amoA, amoB, and amoC, 

respectively, and is evolutionarily and functionally related to particulate methane 

monooxygenase (pMMO) enzymes of methane-oxidizing bacteria (Holmes et al., 1995). The 

subsequent dehydrogenation of NH2OH to NO2
- is catalyzed by the hydroxylamine 

oxidoreductase (HAO). HAO is located in the periplasm and is a homotrimer with each 

subunit containing eight c-type hemes, encoded by the hao gene (Arp et al., 2002). The 

discovery of genes encoding proteins with homology to AMO in genome fragments of 

archaea from soil (Treusch et al., 2005) and in shot-gun sequences of marine environments 

(Venter et al., 2004), as well as the cultivation or enrichment of archaea from marine waters 

(Könneke et al., 2005;de la Torre et al., 2008;Hatzenpichler et al., 2008) and soil (Tourna et 

al., 2011) indicates that AOA are an abundant and predominant group of microorganism 

(Leininger et al., 2006;Wuchter et al., 2006) and play a key role in global nitrification. 

Particularly, soil archaea that convert ammonia aerobically to nitrite were recently isolated 

(Jung et al., 2011;Tourna et al., 2011;Kim et al., 2012), thus confirming that AOA from soil 

have the capacity of ammonia oxidation. However, the ecological role and metabolism of 

soil AOA remains mysterious (Schleper, 2010); contrasting results have been thus reported 

when nitrification rates in soils were directly analyzed in the context of both AOB and AOA 

populations (Tourna et al., 2008;Di et al., 2009;Jia and Conrad, 2009;Offre et al., 

2009;Schauss et al., 2009b). Moreover, It remains to be determined how significant 

heterotrophy and/or mixotrophy is to AOA in natural environments (Zhang et al., 2010;Jung 

et al., 2011;Pratscher et al., 2011;Tourna et al., 2011;Kim et al., 2012). 

 The gene amoA is commonly used as functional marker for studying aerobic 

ammonia oxidation (Rotthauwe et al., 1997). Phylogenetic analysis of both bacterial and 

archaeal amoA shows that archaeal genes are comparatively distant to their bacterial 

homologues (Nicol and Schleper, 2006). No homology is apparent at the DNA level between 

AOA and AOB amo-like sequences. However ~ 25% sequence identity and 40% sequence 

similarity can be found at the protein level between archaeal and bacterial variants with 
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conserved amino acid residues that coordinate potential metal centers. This indicated that 

these enzymes belong to the same protein family (Nicol and Schleper, 2006). Therefore 

bacterial and archaeal amoA genes can be easily differentiated. 

 The second step of nitrification is carried out by NOB, which are phylogenetically 

heterogeneous, and occur in a wide range of aquatic and terrestrial ecosystems. NOB are 

widely distributed, among α, β, γ and δ classes of proteobacteria and the bacterial phylum 

Nitrospirae, for Nitrobacter, Nitrotoga, Nitrococcus, Nitrospina and Nitrospira respectively 

(Orso et al., 1994;Teske et al., 1994;Ehrich et al., 1995;Koops and Pommerening-Röser, 

2001;Alawi et al., 2007). However, Nitrobacter and Nitrospira are the major NOB genera 

encountered in soil. According to studies performed on wastewater (Schramm et al., 

1999;Daims et al., 2001;Wagner et al., 2002;Blackburne et al., 2007) and soil environments 

(Attard et al., 2010), Nitrobacter bacteria are commonly characterized as r-strategists, with 

higher growth rate/specific activity and lower N substrate affinity as compared with 

Nitrospira bacteria, defined as K-strategist. Whereas most study on the physiology of NOB 

used pure cultures of Nitrobacter, the knowledge about Nitrospira is relatively scarce; only 

recently, the complete genome of a Nitrospira strain, tentatively named “Candidatus 

Nitrospira defluvii” was reconstructed from a metagenomic librairy of an activated sludge 

enrichment culture (Lucker et al., 2010). The key enzyme for NO2
- oxidation by NOB is nitrite 

oxidoreductase (NXR). In Nitrobacter, NXR is an iron-sulfur molybdoprotein (Meincke et al., 

1992) located at the inner cell membrane and at the intracytoplasmic membranes. NXR was 

found to consist of either two (Meincke et al., 1992) or three subunits with a supposed 

α2β2γ1 stoichiometry (Sundermeyer-Klinger et al., 1984), depending on the purification 

method applied. The α-subunit  (NxrA) is thought to contain the substrate binding site with 

the molybdopterin cofactor (Sundermeyer-Klinger et al., 1984;Meincke et al., 1992), whereas 

the β-subunit (NxrB) with [Fe-S] clusters probably channels electrons from the α- to the γ-

subunit or directly to the membrane-integral electron transport chain (Kirstein and Bock, 

1993). However, Nitrospira has been shown to differ distinctly from Nitrobacter in the 
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enzyme NXR, being membrane-bound and located in the periplasm (Spieck et al., 

1998;Lucker et al., 2010). Therefore, so far nxrA has been only used as a molecular marker 

to investigate Nitrobacter-like NOB communities (Poly et al., 2008;Wertz et al., 2008), 

whereas the 16S rRNA gene is preferred to survey Nitrospira-like NOB communities (Attard 

et al., 2010;Wertz et al., 2012). 

 

1. 2. 3. Denitrification 

 Denitrification is a heterotrophic microbial process which consists of four reaction 

steps by which NO3
- is reduced to N2 by the metalloenzymes NO3

- reductase, NO2
- 

reductase, NO reductase, and N2O reductase, under anaerobic conditions (Fig. 1), by which 

N oxides serve as terminal electron acceptors for respiratory electron transport. In addition 

to considerable loss of N, this process contributes to the greenhouse effect through N2O 

emission (Schlesinger, 2009) and destruction of the ozone layer (Ravishankara et al., 2009). 

Denitrifiers include representatives of more than 60 genera of Bacteria and Archaea, as well 

as some Eukaryotes (Philippot et al., 2007), and can represent up to 5% of the total soil 

community (Henry et al., 2006). Some microorganisms produce only N2 as end 

denitrification product, while others give a mixture of N2O and N2, and some only N2O 

(Philippot et al., 2007). Also, the dissimilatory NO3
- reduction to NH4

+ (DNRA; Fig. 1) should 

be distinguished from denitrification. Thus, different criteria have been proposed to identify 

“true” denitrifiers (Mahne and Tiedje, 1995): (i) N2O and/or N2 must be the major end product 

of NO3
- or NO2

- reduction, and (ii) this reduction must be coupled to an increased in growth 

yield that is greater than when NO3
- or NO2

- served as an electron sink. Using these criteria, 

it is possible to distinguish bacteria possessing only the NO reductase as a protection 

against nitrosative stress (Philippot, 2005). 

 Two types of molybdoenzymes catalyzing the first step of the pathway, the reduction 

of NO3
- to NO2

- have been described: a membrane-bound (Nar) and a periplasmic (Nap) 

NO3
- reductases. Both types of enzymes can be present in the same strain (Carter et al., 
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1995;Roussel-Delif et al., 2005). The membrane-bound nitrate reductase is composed of 

three subunits: (i) a catalytic α subunit encoded by narG, containing a molybdopterin 

cofactor, (ii) a soluble β subunit, encoded by narH, containing four [4Fe-4S] clusters, and (iii) 

the γ subunit, encoded by narI, containing two b-types hemes. NarGHI is arranged in two 

domains with the α and β subunits constituting the cytoplasmic domain and the γ subunit 

constituting the membrane domain required for the attachment of the α and β subunits to 

the cytoplasmic side of the inner membrane (Philippot, 2002). The periplasmic nitrate 

reductase is a heterodimer encoded by the napA and napB genes. NapA is the large subunit 

containing a molybdopterin cofactor catalytic subunit and a [4Fe-4S] cluster. NapB is a c 

cytochrome (Philippot, 2002). 

 The reduction of soluble NO2
- into gaseous nitric oxide (NO), the key step in the 

denitrification process, can be catalyzed by evolutionary unrelated enzymes that are 

different in terms of structure and of prosthetic metal: a copper- (NirK) and a cytochrome 

cd1- (NirS) NO2
- reductase (Zumft, 1997). In contrast to the NO3

- reductases, bacteria carry 

either the copper or the cd1 NO2
- reductase but the two enzymes are functionally equivalent 

(Glockner et al., 1993). The nirK gene and the nirS gene encode the copper- and cd1-NO2
- 

reductase, respectively. The ecology of nirS- and nirK-harboring microbes is still poorly 

understood. However, it has been shown in several studies that microbes harboring the nirK 

gene form the major part of the NO2
- reducers in different rhizospheres (Avrahami et al., 

2002;Huić Babić et al., 2008;Hai et al., 2009) and show increased activity compared to 

microbes harboring the nirS gene (Sharma et al., 2005), while nirS genes may be more 

abundant in bulk soil (Kandeler et al., 2006;Melero et al., 2011) indicating a niche 

differentiation between the denitrifying populations in soil (Enwall et al., 2010). 

 Three types of metalloenzymes are involved in the reduction of NO to N2O: (i) cNOR, 

a cytochrome c NO reductase which consists in a complex of two subunits encoded by the 

norC and norB genes (Zumft et al., 1994;Arai et al., 1995), (ii) qNOR, a quinol NO reductase 

encoded by norZ (Cramm et al., 1997), and (iii) qCuANOR, a menaquinol:NO oxidoreductase 
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which in contrast to the other NO reductases, contains copper in form of copper A (Suharti 

et al., 2001). The genes encoding qCuANOR are still unknown. 

 The last step of the denitrification cascade, the reduction of N2O into N2, is 

performed by the multicopper enzyme N2O reductase (NOS), which is composed of two 

identical subunits and contains eight copper ions and is located in the periplasm. The 

catalytic subunit is encoded by the nosZ gene (Philippot, 2002).  

 

1. 2. 4. Nitrogen transformations in the rhizosphere 

 The rhizosphere, first defined by Hiltner in 1904 as the volume of soil influenced by 

plant roots, represents a unique microenvironment in terrestrial ecosystems, where the 

growth and activity of the root system induce significant modifications in the 

physicochemical and biological properties (e.g., microbial activity, abundance, as well as 

structural and functional diversity) of the soil surrounding the roots (Brimecomb et al., 

2001;Berg and Smalla, 2009). The so-called “rhizosphere effect” describes the phenomenon 

that, in comparison with bulk soil, the biomass and activity of microorganisms is enhanced. 

Roots exert, amongst others, strong effects on the major factors regulating the complex set 

of N transformations in soil (Fig. 2) (Jackson et al., 2008). Organic compounds are released 

by plant roots in the surrounding soil through rhizodeposition. They consist in refractory 

organic matter (e.g., root debris and mucilage), on the one hand, and readily available 

molecules including sugars, amino acids, organic acids, on the other hand (Brimecomb et 

al., 2001). Subsequently, depolymerization of refractory organic matter to labile compounds 

can be performed by extracellular enzymes produced by C-limited fungi and bacteria. 

Through mineralization, heterotrophic microbes break down organic monomers and release 

NH3, which can be used as an energy source by ammonia oxidizers. However, several 

studies have reported nitrification to be negatively affected in the rhizosphere (e.g., Norton 

and Firestone, 1996;Priha et al., 1999). It has been explained by (i) the competition between 
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Figure 2. The N cycle in the rhizosphere of maize (Zea mays). 

 

plants and soil microbes for NH4
+; the lower activity of nitrifiers in the rhizosphere can 

therefore be explained by a decrease in NH4
+ concentration due to the plant uptake (in 

cropping systems, plants take up mainly NH4
+ and NO3) (ii) the competition between 

heterotrophic microbes and autotrophic nitrifiers, the firsts being more competitive in this 

carbon rich environment (Philippot et al., 2009), and (iii) the presence of nitrification 

inhibitors in root exudates (Subbarao et al., 2007). The release of organic compounds 

through root exudation can also positively affect denitrification rates: (i) directly by providing 

an additional source of electron donor, since most denitrifiers are chemoheterotrophs, and 

(ii) indirectly by increasing overall microbial activity, which lowers the oxygen concentration. 
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However, factors regulating denitrification in the rhizosphere are strongly interlinked and the 

stimulating effect of root exudates is only observed under nonlimiting concentrations of NO3
- 

and oxygen. It is therefore not possible to state that plant roots always stimulate 

denitrification (Philippot et al., 2007). Indeed, plant and denitrifiers compete for NO3
-, and 

consumption of water by plant roots increases soil gas exchange and oxygen 

concentration. Finally, leguminous plants are known to exude phenolic compounds of the 

flavonoid class, which are key signals in initiation of nodule formation in the N fixing 

symbiosis with compatible rhizobia, under conditions of N limitation (Broughton et al., 2000). 

 

 

2. The antibiotic sulfadiazine in soil 

2. 1. Mode of action of sulfadiazine 

 The target of the antibiotics forming the class of the sulfonamides, which includes 

sulfadiazine (SDZ), is the enzyme dihydropteroate synthase (DHPS) catalyzing the 

condensation of p-aminobenzoic acid (PABA) and 1,8-dihydro-6-hydroxymethylpterin-

pyrophosphate (DHPPP) to form dihydropteroic acid, which is the penultimate step in the 

formation of dihydrofolic acid (Fig. 3). Dihydrofolic acid is subsequently reduced to 

tetrahydrofolic acid (THFA), an essential cofactor for the synthesis of purines, certain amino 

acids, and thymidine. Sulfonamides competitively inhibit DHPS by their structural analogy to 

the PABA substrate (Brown, 1962). Sulfonamides can also function as alternative substrates 

for DHPS forming pterin adducts that cannot participates in folate synthesis and 

presumably diffuse from the cell (Roland et al., 1979). Higher eukaryotes, like Mammalian, 

are not dependent on endogenous synthesis of folic acid, and generally lack DHPS; they 

can use dietary folates by uptake through a transport system, which most prokaryotes and 

some lower eukaryotes lack. Thus, the latter have to synthesize folates de novo, making the 

basis for the  selective  effect of sulfonamides  on bacteria and  for their broad  spectrum of  
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Figure 3. The folate biosynthetic pathway (adapted from Xiao et al., 1999). Abbreviations: 

HPPK, 6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase; DHPS, dihydropteroate 

synthase; DHFS, dihydrofolate synthase; and DHFR, dihydrofolate reductase, PABA, p-

aminobenzoic acid. 

 

antibacterial activity (Skold, 2000). Numerous studies have shown that sulfonamides act 

bacteriostatic on sensitive microorganisms (e.g., Garrett and Wright, 1967;Seydel et al., 

1972). Many of investigated sensitive microorganisms are pathogens and belong to the 

domains of bacteria (e.g., Mycobacterium spp. (Nopponpunth et al., 1999), Staphylococcus 

spp. (Hampele et al., 1997), Streptococcus spp. (Haasum et al., 2001), but also to the 

domain of eukaryotes in fungi (Achari et al., 1997) and protozoa (Triglia et al., 1997). 
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However, effects of sulfonamides on archaea, a fortiori AOA (as the first cultures of soil 

AOA, which may form the basis for such studies, have been isolated only recently; Jung et 

al., 2011;Tourna et al., 2011;Kim et al., 2012), remain widely unknown. 

 In bacteria, resistance to sulfonamides is mediated mainly by the genes sul1 and 

sul2, coding for dihydropteroate synthases which are insensitive to sulfonamides (Skold, 

2000). The genes occur in a wide range of species, because they are often located on 

transposable elements of self-transferable or mobilizable broad-host-range plasmids 

(Schluter et al., 2003;Heuer et al., 2004;Byrne-Bailey et al., 2009). 

 

2. 2. Occurrence and fate of sulfadiazine in soil 

 In Europe, antibiotics are nowadays used in animal husbandry to treat infectious 

diseases; their use as food additives and growth promoters is forbidden since 2006. 

Sulfonamides constitute one of the major groups of veterinary drugs and are mainly used in 

pigs (Thiele-Bruhn and Aust, 2004). SDZ is poorly adsorbed in the animal gastro-intestinal 

tract; manure from SDZ-treated pigs can thus contain considerably high amounts of the 

parent compound, and, to a lower extent, of the two main metabolites N4-acetyl-sulfadiazine 

(Ac-SDZ) and 4-hydroxy-sulfadiazine (OH-SDZ; Fig. 4) (Lamshöft et al., 2007). 

Concentrations of the SDZ and its metabolites have been shown to be stable during manure  

 

 

Figure 4. Chemical structure of (a) sulfadiazine and its two main metabolites (b) N4-acetyl-

sulfadiazine (Ac-SDZ) and (c) 4-hydroxy-sulfadiazine (OH-SDZ) (from Zarfl et al., 2009). 
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storage and the SDZ concentrations even increased over time due to the deacetylation of 

the Ac-SDZ (Heuer et al., 2008). Thus, the antibiotic and its potentially bioactive metabolites 

reach the soil ecosystem through the use of manure as fertilizer.   

 SDZ is known to persist in soil (Burkhardt and Stamm, 2007;Forster et al., 

2009;Rosendahl et al., 2011) and its long-term fate is governed by its sequestration into 

hardly extractable and non-extractable forms (Kreuzig and Höltge, 2005;Forster et al., 2009) 

– the term sequestration corresponding to the mechanisms decreasing the extractability and 

thus the bio-availability of the compound in soil (Lueking et al., 2000). Three fractions of 

SDZ in soil have been described (Zarfl et al., 2009): (i) the CaCl2- and MeOH-extractable 

fraction corresponding to the bioavailable fraction, (ii) the subsequent microwave-

extractable fraction (Forster et al., 2008) identified as the residual fraction, and (iii) the non-

extractable fraction consisting of bound residues. Whereas rapid decreased in SDZ 

extractability with the sequential CaCl2 and MeOH extraction procedure has been described 

(Kotzerke et al., 2008;Forster et al., 2009), kinetic modelling suggests that the underlying 

sequestration mechanisms are at least partly reversible and SDZ can be released back into 

available forms (Zarfl et al., 2009). Moreover, Rosendahl and colleagues (2011) showed that 

dissipation from both easily extractable and residual SDZ fractions was largely temperature-

dependent and soil moisture controlled sequestration, being accelerated in dry soil. 

 

2. 3. Effects of sulfadiazine in soil 

 SDZ has been reported to affect general and potential microbial activities and the 

bacteria community structure (Zielezny et al., 2006). However, effects of SDZ have been 

shown to depend on the addition of an energy source, i.e. to the addition of a substrate to 

promote microbial growth. This is mainly relevant for manure as the main carrier of 

antibiotics to soil. Thus, Hammesfarh and colleagues (2008) showed that amending soil with 

manure that had been spiked with SDZ lowered microbial biomass and altered bacterial 
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community structure. Soil respiration provides information about the broad status of 

microbial activity in soil. Kotzerke and co-workers (2008) observed reduced CO2 production 

in response to manure contaminated with SDZ. Overall the antibiotic effect of SDZ depends 

on time, dose and soil (Schauss et al., 2009a). Particularly, effects on N turnover and 

functional microbial communities have been investigated. Potential nitrification activity 

remained unchanged under low SDZ concentration conditions in bulk soil when applied in 

combination with manure (Kotzerke et al., 2008). This might have been due to a substitution 

of the highly affected AOB by their archaeal counterparts (Schauss et al., 2009b). Moreover, 

potential denitrification rates decreased in treatments where sulfadiazine was applied 

(Kotzerke et al., 2008). However, it remains unclear if the observed alterations in potential 

denitrification rates are caused by a general reduced abundance of denitrifiers, a loss of 

specific phylotypes, or changes in expression levels of the corresponding genes (Kleineidam 

et al., 2010). 

 

 

3. Heavy metals in soil 

3. 1. Occurrence and fate of heavy metals in soil 

 The accumulation of heavy metals (HMs) in topsoil can result from (i) industrial 

deposition e.g., from mining activities (ii) livestock manure and other organic wastes e.g., 

sewage sludge and waste waters used as fertilizer, and (iii) pesticides. Besides, HMs can 

also occur naturally, but rarely at toxic levels (Alloway, 1990). Whereas Zinc (Zn), copper 

(Cu), nickel (Ni) arsenic (As), chromium (Cr), and cadmium (Cd) can be essential trace 

elements for living organisms (although they can be toxic if present at excessive levels), , 

lead (Pb), and mercury (Hg) have no biological function and can be harmful if they enter the 

environment. Industrial activities can be responsible for atmospheric fallout of HMs; the 

most important sources include energy production, mining, metal smelting and refining, 

manufacturing processes, transport and waste incineration (Nriagu, 1990;Martley et al., 
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2004;Rodríguez Martín et al., 2007). HM deposited on the soil surface will gradually become 

incorporated into the soil and will contribute to overall soil concentrations. Atmospheric 

deposition is ubiquitous, although deposition rates vary depending on proximity to point 

sources of pollution such as industrial sites or major roads (Nicholson et al., 2003). In some 

cases, areas far from the source region may be considerably affected (Steinnes et al., 

1989;Steinnes et al., 1997;Fitzgerald et al., 1998;Douay et al., 2008). Particularly, the mining 

industry represents a major source of contamination. Indeed, abandoned mine wastes, e.g., 

tips and tailings, can result in severe HM pollution in the local environment owing to dust 

blow, and from the leaching of mineral weathering products. Agricultural practices are also 

considered as sources of HM contamination, although to a more limited land area. Thus, 

sewage sludge and livestock manures have been identified as significant sources of HMs 

(Nicholson et al., 2003). Indeed, HMs are present in sewage sludge as a result of domestic, 

road run-off and industrial inputs to the urban wastewater collection system. Moreover, 

HMs, e.g., Cu or Zn are present in livestock diets at background concentrations and may be 

added to certain feeds as supplementary trace elements for health reasons or as growth 

promoters. Most of the HMs consumed in feed is excreted in the faeces and urine, and will 

thus be present in manure (Nicholson et al., 2003). Finally, HMs can be present in 

agrochemicals. The use of inorganic fungicides with a high Cu content (e.g., Bordeaux 

Mixture) are regularly applied to vineyards and have been identified as significant source of 

contamination (Komárek et al., 2010). 

 The retention of HMs in soil systems depend to a large extent on their chemical 

speciation and soil characteristics, and is mainly linked to pH and redox potential (Chuan et 

al., 1996;de Matos et al., 2001;Cappuyns and Swennen, 2008;Wilson et al., 2010). For 

example, As occurs in the environment mainly as arsenate [As(V)] and arsenite [As(III)] 

anions, the first dominating in oxidizing environmental conditions and the second being 

more stable in reduced environments. Moreover, organic As species are known to exist; the 

methylated As species are the most widespread organic As species know in soil although 
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more complex forms such as arsenosugars, arsenobetain, arsenocholine and arsenolipids 

have also been identified (Wilson et al., 2010). As speciation, solubility and bioavailability 

depends on pH, CEC, texture (clay mineralogy), amorphous Fe-Al oxides, organic matter, 

sulfur content, phosphorus concentration, and soil redox conditions (Voigt et al., 1996;Fitz 

and Wenzel, 2002;Moreno-Jimenez et al., 2010;Wilson et al., 2010). 

 

3. 2. Effects of heavy metals in soil 

 HM pollution has been reported to alter the microbial community structure and 

decreased diversity (Kandeler et al., 2000;Muller et al., 2001;Li et al., 2006;Macdonald et al., 

2007) as well as microbial activities (Frostegard et al., 1993;Kuperman and Carreiro, 

1997;Konopka et al., 1999;Dai et al., 2004). However the results obtained depend on the 

experimental system, e.g., short-term versus long-term incubation, various dosing of a 

single HM or a combination of HMs, the presence of organic matter. Thus, short-term 

responses of microbial processes to HMs spiked in soils are, in general, not predictive of 

long-term effects due to microbial adaptations reactions (Giller et al., 1998). Community 

adaptation may be explained by selective growth of tolerant populations and selective 

decay of sensitive groups (Diaz-Ravina and Baath, 1996;Diaz-Ravina et al., 2007;Fernandez-

Calvino et al., 2011). The mechanisms of metal resistance of microbes consist in (i) intra- 

and extracellular metal resistance mechanisms, (ii) metal excretion via efflux transport 

systems, (iii) sequestering compounds of the cytosol binding and detoxifying metals inside 

the cell, (iv) the release of chelators into the extracellular milieu, and (v) binding of metal on 

the cell envelope by sorption thus preventing influx (Haferburg and Kothe, 2007; Fig. 5). 

Thus, Park and Ely (2008) determined 27 genes that were up-regulated by Zn in the 

ammonia-oxidizing bacteria Nitrosomonas europaea. These included for example mercury 

resistance genes and inorganic ion transport genes. Furthermore, microbial communities 

tolerant to a certain HM have been shown to better cope with stress caused by another HM 

due to, e.g., similar physiological mechanisms (Bruins et al., 2000;Tobor-Kaplon et al., 
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2006). For example, Ruyters and colleagues (2012) reported co-tolerance to Zn and Cu of 

the soil nitrifying community. 

 Several studies have shown that N fixation, mineralization, nitrification and 

denitrification are affected to HMs (e.g., Bardgett et al., 1994;McGrath et al., 1995;Giller et 

al., 1998;Holtan-Hartwig et al., 2002). Especially the nitrification process is altered by HM 

contamination, making this process one of the most sensitive microbial assays to indicate 

HM toxicity (Broos et al., 2005). Thus, nitrification is for example highly sensitive to elevated 

Zn (Smolders et al., 2004). However, recovery of nitrification after Zn exposure occurs 

gradually and has been attributed to the development of Zn-tolerant AOB communities, 

AOA being more sensitive (Mertens et al., 2006;Mertens et al., 2009;Ruyters et al., 2010). 

The adaptation to the contamination is accelerated by the stimulation of the activity of the 

nitrifying community (Ruyters et al., 2010). Nevertheless, Xia and colleagues (2007) 

suggested that AOA may play an important role in long-term fertilized soils contaminated 

with Zn; moreover, Li and colleagues (2009) shown that AOA were more tolerant than AOB 

to Cu contamination. 

 

 

Figure 5. Overview of microbial resistance mechanisms (adapted from Haferburg and 

Kothe, 2007). X, cell constituents interacting with metal cations; M, metal cation. 
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4. Molecular tools to study soil microbial communities 

 The characterization of soil microbial community diversity and function has been 

long based on cultivation-dependent methods. While leading to remarkable discoveries in 

the field of microbial physiology and genetics, culturing provides only poor access to many 

organisms; it is estimated that microorganisms refractory to cultivation represent the vast 

majority (>85 to 99.999%) of organisms in most environments (Amann et al., 1995). Thus, 

the application of polymerase chain reaction (PCR) technology since the early 1990’s (e.g., 

Giovannoni et al., 1990;Schmidt et al., 1991;Barns et al., 1994) together with the 

development of nucleic acids extraction methods from environmental samples (Tsai and 

Olson, 1991;Zhou et al., 1996;Miller et al., 1999) has been a major breakthrough in microbial 

ecology. Indeed, the combination of PCR amplification of a target gene and/or its 

transcripts — the 16S rRNA gene being the predominant target for studying the microbial 

diversity (Hugenholtz et al., 1998) whereas functional genes are the basis to assess 

subpopulations with particular physiological capabilities, as these can be widely distributed 

among different genera or even domains (see chapter 1.2.) – with fingerprinting- (e.g., 

terminal restriction fragment length polymorphisms [T-RFLP]) or sequencing-based analyses 

allows the description of the diversity and ecology of the uncultivated majority (Head et al., 

1998;Hugenholtz et al., 1998). By targeting a gene, these approaches provide information 

about the genetic potential of a given environment whereas RNA-based methods give an 

indication on microbial activity status. 

 

4. 1. Microbial nucleic acids extraction from soil 

 Two main approaches to microbial nucleic acids extraction from soil are currently 

available: (i) direct extraction, which relies on direct cell lysis inside the soil matrix – 

following the lysis, the nucleic acids are extracted and purified – and (ii) indirect extraction, 

in which microbial cells are first isolated from the soil matrix, and then lysed for subsequent 

nucleic acids extraction and purification. Although direct extraction is widely in use now, 
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both methods present contrasting advantages and drawbacks in term of nucleic acids 

quantity and quality (Lombard et al., 2011). Thus, direct DNA extraction method is often 

yielding 10—100-fold more DNA whereas the indirect extraction method further releases 

high-quality DNA in terms of large fragments and a higher DNA purity (Gabor et al., 2003). 

Therefore, differences in community structures between different extraction methods have 

been described (Thakuria et al., 2008;Inceoglu et al., 2010). 

 

4. 2. Quantitative PCR 

 Quantitative PCR (qPCR) allows the estimation of the abundance of a targeted gene 

and/or transcript in environmental samples. This technique is based on the detection of 

fluorescence signals corresponding to the synthesis of PCR amplicons (Heid et al., 1996). 

Quantification of gene and/or transcript numbers is determined during the exponential 

phase of the PCR amplification when the numbers of amplicons detected are directly 

proportional to the initial number of target sequences present in the environment. The data 

utilized for the analysis of samples is acquired at the cycle at which the fluorescence signal 

is higher than the background, known as threshold cycle (Wittwer et al., 1997). The copy 

number of the target DNA or cDNA can be accordingly determined using a standard curve 

generated with target of a known concentration (Smith and Osborn, 2009). 

 In this thesis, SYBR® green was used as double-stranded DNA (dsDNA) binding dye 

to monitor amplicons synthesis. It was preferred to labeled-probes for cost considerations 

as it can be used for any reaction without sequence information. However, SYBR® green 

assays don’t allow the discrimination between amplicons sequences and false-positives 

may occur. Therefore, a post dissociation curve analysis should be carried out to confirm 

that the fluorescence signal is generated only from target templates and not from the 

formation of non-specific PCR products or primer-dimers (Smith and Osborn, 2009). 
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4. 3. Microbial community profiling  

4. 3. 1. Cloning/sequencing approach 

 Sequencing is the method offering the highest phylogenetic resolution, allowing 

either species identification or determination of similarity to already known species through 

the use of extensive and rapidly growing sequence data-bases (Nocker et al., 2007). 

However, the number of clones required to adequately catalog the majority of taxa in a 

sample is unwieldy and cultivation, construction and screening of clone libraries are 

laborious and time consuming. It has been suggested that environmental samples may 

require >104 sequencing reactions to document half of the microbial richness (Dunbar et al., 

2002). Nevertheless, it is possible to predict richness within microbial communities by using 

rarefaction and statistical estimators (Schloss and Handelsman, 2005;Schloss et al., 2009). 

In the last decade, the development of next generation sequencing technologies, e.g., 

pyrosequencing (Margulies et al., 2005), has revolutionized the field of microbial ecology in 

permitting a much deeper sampling of microbial communities by providing magnitude more 

sequence information than Sanger sequencing of PCR clone libraries (Roesch et al., 2007). 

However, more detailed phylogenetic information can be obtained by the latter, as this very 

high throughput is achieved with substantial sacrifices in length of the individual reads when 

compared to Sanger sequencing (Hutchison, 2007). 

 

4. 3. 2. Terminal restriction fragment length polymorphism analysis 

 Terminal restriction fragment length polymorphism (T-RFLP) analysis is a high-

throughput fingerprinting technique allowing the detection of differences in the composition 

and structure of microbial communities by targeting small-subunit (SSU) rRNA and also 

functional marker genes (Bruce, 1997;Liu et al., 1997). Thus, fingerprinting of functional 

communities involved in N cycling in soil, e.g., N fixers (Yeager et al., 2005), archaeal and 

bacterial ammonia oxidizers (Boyle-Yarwood et al., 2008) nitrite reducers (Wolsing and 

Prieme, 2004) and nitrous oxide reducers (Stres et al., 2008),  have been performed. T-RFLP 
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analysis consists of the PCR amplification of a target gene using a fluorescently labeled 

forward primer and subsequent digestion of the amplicons with one or several restriction 

enzymes typically containing a four base-pair recognition site. In silico digestion to evaluate 

the ability of restriction enzymes to discriminate between sequences can be done, e.g., with 

Restriction Endonuclease Picker (REPK) (Collins and Rocap, 2007). Finally, only the 

fluorescently labeled terminal restriction fragments (T-RFs) are visualized by electrophoresis 

on an automated sequencer, and the differences in the length and abundance of the T-RFs 

are determined by comparison to an internal standard (Schutte et al., 2008). Thus, each T-

RF is assumed to represent a single operational taxonomic unit (OTU) or ribotype. However, 

an individual T-RF may correspond to several OTU leading to the underestimation of the 

community diversity (Kent et al., 2003). 

 PCR based methods for microbial community profiling, include limitations because 

of the inherent biases of the end-point PCR methodology (Osborn et al., 2000;Lueders and 

Friedrich, 2003), e.g., difference in gene copy number and preferential amplification of 

certain templates (von Wintzingerode et al., 1997;Polz and Cavanaugh, 1998;Crosby and 

Criddle, 2003;Huber et al., 2009). Therefore, they are considered to allow semiquantitative 

assessment of community population, as the profiles generated are a quantitative reflection 

of the PCR product pool and not a quantitative reflection of the original community (Nocker 

et al., 2007). 

 

 

5. Aims and hypotheses 

 Rhizosphere microbial communities involved in nutrient turnover are of central 

importance for plant nutrition, health and quality; this especially in a context of crop 

production, either in food/feed or biofuel feedstock production systems. However, the 

soil/plant interface can be exposed to various contaminants through human activities – 

intentionally or not, when using HM polluted soils for the cultivation of energy crops (Hartley 
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et al., 2009) or when manure contaminated by antibiotics is used as fertilizer (Halling-

Sørensen et al., 1998), respectively – impacting these functional communities, and can 

affect eventually the plant biomass production.  

 Contrary to pesticides, which in most cases when applied at the recommended field 

rate concentration don’t have a significant impact on the structure and function of the soil 

microbial communities (Review of the effects of xenobiotics on N transforming communities 

in Publication IV), antibiotics, such as sulfonamides, are explicitly designed to affect 

microorganisms. Although changes in turnover rates have been reported for some microbial 

processes (e.g., Kotzerke et al., 2008), a number of studies in the last decade have shown 

that the influence of sulfonamides on microbes and their metabolic performance in bulk soil 

is relatively low (reviewed in Schauss et al., 2009a). These findings have been explained by 

(i) the large microbial diversity in bulk soil systems and by possible mechanisms of 

functional redundancy (Nannipieri et al., 2003), (ii) the relatively low activity of microbes in 

bulk soil that are nearing the dormancy state (Roszak and Colwell, 1987) in which microbes 

are not affected by sulfonamides, and (iii) the development of resistant populations by 

horizontal gene transfer (Heuer and Smalla, 2007). Moreover, no results on effects of 

sulfonamides on functional or structural diversity are available under field conditions. 

 Most studies published so far concerning the impact of HM contamination on 

ammonia oxidizers focused on AOB communities (e.g., Mertens et al., 2006) and therefore 

little is known about the response AOA. Besides, the effects of HMs on soil NOB remains 

largely unexplored so far. However, heavy metal resistance genes were found in Nitrobacter 

hamburgensis (Starkenburg et al., 2008) and “Candidatus Nitrospira defluvii” (Lucker et al., 

2010). Although AOA are thought to be more tolerant to chronic stress conditions than 

bacteria (Schleper et al., 2005;Valentine, 2007), the influence of HM on AOA is discussed 

controversially in literature (Xia et al., 2007;Mertens et al., 2009;Ruyters et al., 2010). 

Furthermore the few studies assessing the response of both AOA and AOB to HM 

contaminations were mostly performed using soils spiked with contaminant, without 
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including plant effects (e.g., Gremion et al., 2004;Frey et al., 2008;Mertens et al., 2010) and 

short-term responses of microbial processes to HMs spiked in soils are in general not 

predictive of long-term effects due to microbial adaptations (Diaz-Ravina and Baath, 

1996;Giller et al., 1998). 

 Thus, the aim of this thesis was to assess the effects of the antibiotic SDZ or HMs on 

the rhizosphere functional microbial communities involved in the inorganic N cycle; 

specifically in NH3 oxidation (Publication I, II, and III), NO2
- oxidation (Publication II), NO2

- 

reduction, N2O reduction, and N fixation (Publication I), using genes encoding subunits of 

the bacterial and archaeal ammonia monooxygenase (amoA), the Nitrobacter-like nitrite 

oxidoreductase (nxrA), the nitrite reductase (nirK and nirS), the nitrous oxide reductase 

(nosZ), and the nitrogenase (nifH) as molecular markers, respectively. Moreover, since no 

primers targeting Nitrospira-like nxrA were available (Attard et al., 2010), the abundance of 

Nitrospira-like NOB was quantified targeting the 16S rRNA Nitrospira gene. 

 The abundance of the functional populations of interest was measured by qPCR 

(Publication I, II, and III) and their community structure was assessed by 

cloning/sequencing (Publication III) or T-RFLP analysis (Publication II). Moreover, changes 

were surveyed at the gene level (representing the genetic potential for the corresponding 

pathways; Publication I, II, and III) as well as the transcript level (representing the 

expression level of the enzymes under study; Publication I), in a greenhouse experiment 

(Publication I and II) or under field conditions (Publication III). 

 The main hypotheses of this thesis were:  

 

(I) Processes in the rhizosphere are more affected by the application of SDZ compared 

to bulk soil, as highly active organisms will react more intense to the antibiotics compared 

to inactive or dormant microbes in the bulk soil. Additionally, due to reduced diversity in the 

rhizosphere compared to bulk soil, functional redundancy is lower in this soil compartment 

resulting in lower resilience of turnover rates. 
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(II) SDZ affects the ratios between archaeal and bacterial ammonia oxidizers as these 

phylogenetically diverse groups presumably exhibit different life strategies and different 

susceptibility to the antibiotic. Similarly, AOA and AOB are affected by HM contamination to 

different extent. Nitrospira- and Nitrobacter-like nitrite oxidizers are both inhibited by the 

application of the SDZ-contaminated manure, considering the broad spectrum nature of the 

antibiotic. 

 

(III) Plant growth will be affected by the contaminants; especially in the case of the 

legume where the symbiosis between plant and microbes is a major determinant of plant 

health. 
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Discussion 

 

 The present study was part of the German Research Foundation (DFG) research 

group 566 (FOR 566) “Veterinary medicines in soils: basic research for risk analysis” which 

aim to determine the fate and effects of veterinary antibiotics in soils. Such antibiotics can 

reach the soil environment by the application of manure from antibiotic-treated animals to 

arable fields and pasture, manure being commonly used as organic fertilizer in agriculture. 

The major focus of this PhD thesis was to assess the effects of the antibiotic SDZ on 

microbial communities involved in N cycling in the rhizosphere of plants of agricultural 

importance, as N is of key importance for plant growth and yield. To this end, functional 

communities involved in N fixation, nitrification and denitrification were investigated. 

Besides the contamination by xenobiotics due to agricultural practices, industrial activities 

can lead to the pollution of the soil ecosystem, notably by HMs, making impossible 

food/feed crop production. However HM-contaminated soils can be employed to establish 

biofuel feedstock production systems. In addition to biomass production, the cultivation of 

bioenergy crops offers opportunities for site stabilization and phytoremediation of 

contaminated soils. Therefore, the effect of long-term HM contamination on ammonia-

oxidizing microbes in the rhizosphere of the bioenergy crop Miscanthus x giganteus was 

investigated. 

 

 

1. Nitrogen fixation 

 In Publication I, the phenol-chloroform co-extraction of DNA and RNA from soil 

followed by a column-based separation (Griffiths et al., 2000;Towe et al., 2011) allowed the 

comparison on the effect level. Whereas the presence of a functional gene (e.g., nifH) is not 

necessarily evidence of the associated ecosystem function but rather provides information 
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on potential activity, the transcription level of a gene allows a better estimation of the actual 

activity. Legume roots exude various flavonoid and isoflavonoid molecules that are known 

to induce development of symbiotic interactions between the plant and N-fixing α-proteo- 

bacteria within root nodules (Squartini, 2003). This is consistent with our results showing 

explicitly higher nifH gene expression and, to a lower extent, higher nifH gene abundance in 

the clover RRC, which includes nodules, compared to the maize RRC (Publication I). We 

postulated that legume growth would be more affected by SDZ (Hypothesis III), as legumes 

need a symbiotic partner for an optimal supply of N. Despite a considerable decrease in 

nifH gene abundance in the clover RRC 20 days after application of the SDZ-contaminated 

manure, the abundance of transcripts was not significantly affected by the antibiotic, which 

might be the reason for similar plant quality and yield in both treatments. It is possible that 

the active N-fixing bacteria within the root nodules are protected from the antibiotic and 

therefore are not affected. However, it must be noted that external N was introduced to the 

soil during manure application; thus, N provided by diazotrophs was not needed to maintain 

a high plant yield. 

 

2. Nitrification 

2.1. Ammonia oxidation 

 The antibiotic tended to abolish the increase of the AOB population in response to 

the manure application in the RRCs of the different crops investigated (Publication I and 

III). Similar results were shown in bulk soil (Schauss et al., 2009b). These results 

demonstrate that SDZ clearly inhibited the growth of AOB. Moreover, in Publication I, lower 

ammonium values were measured in the SDZ-contaminated manure treatment at the 10-

day time point that might be related to an overall inhibition of N mineralization by the 

antibiotic. This relative ammonia depletion clearly induced lower bacterial amoA transcripts 

in comparison to the control treatment. Therefore, in addition to direct effects on AOB, SDZ 
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may influence these communities indirectly in impacting processes of the organic N cycle, 

such as the N mineralization.  

 Archaea are characterized by their broad-spectrum resistance to antimicrobial 

agents (Khelaifia and Drancourt, 2012). In particular, their cell wall lacks peptidoglycan 

(Koga and Morii, 2007) making archaea resistant to the antimicrobials agents interfering with 

peptidoglycan biosynthesis (e.g., ampicillin and vancomycin; Dridi et al., 2011). However, 

effects of sulfonamides on archaea remain widely unknown, since mechanistic information 

about the folic acid requirements of AOA is missing. Still, SDZ inhibition constants of 30 

mg/kg have been estimated for AOA in the soil used in our study, in comparison with 0.01 

mg/kg soil for AOB, indicating a lower susceptibility to the antibiotic in AOA compared to its 

bacterial counterpart (Schauss et al., 2009b). Consistently, in Publication I, although AOA 

were significantly influenced by SDZ, they were affected to a lower extent than AOB. 

Moreover, in Publication III, AOA abundance significantly increased in response of the 

application of SDZ-contaminated manure. Possibly, the reduced susceptibility of AOA to 

SDZ-contaminated manure can be explained by a shift in the AOA diversity towards more 

SDZ resistant phylotypes over time, as amoA diversity has been shown to well reflect 

phylogeny of AOA (Nicol et al., 2008; Publication III). 

 Yet the major environmental drivers determining AOB and AOA population dynamics 

are little understood, despite both groups having a wide environmental distribution. 

However, parameters e.g., pH (Nicol et al., 2008;Yao et al., 2011;Zhang et al., 2012) or 

salinity (Moin et al., 2009;Li et al., 2011) have been demonstrated to influence AOA:AOB 

ratios in soils and sediments. Thus, the relative importance of these two groups in soil 

nitrification is still debated (Schleper, 2010). Whereas AOB were recently reported to be key 

players in nitrification in agricultural soils exhibiting relatively high ammonia concentrations 

(Di et al., 2009;Jia and Conrad, 2009;Di et al., 2010), it was also observed that AOA were 

actively involved in nitrification (Offre et al., 2009;Zhang et al., 2010) and responded to 

ammonia as well as organic fertilizer amendments (Schauss et al., 2009b;Verhamme et al., 
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2011). Interestingly, the occurrence of functional redundancy under antibiotic stress 

between the two communities in bulk soil has been shown by Schauss and colleagues 

(2009b). Inasmuch (i) one copy of an amoA AOA gene represents one AOA cell and 2.5 

copies of amoA AOB, one AOB cell (Leininger et al., 2006), and (ii) effective AOB maximum 

oxidation rate constants are mostly below 32 fmol NO2
- cell-1 h-1 (Prosser, 1989;Jiang and 

Bakken, 1999;Okano et al., 2004) – although the maximum value has been reported to be 

83.3 fmol NO2
- cell-1 h-1 for Nitrosocystis oceanus (Ward, 1987) – and maximum oxidation 

rates for AOA range between 0.3 (Nitrosopumilus maritimus, Könneke et al., 2005) and 1.4 

fmol NO2
- cell-1 h-1 (Nitrosocaldus yellowstonii, de la Torre et al., 2008), they could 

demonstrate by model calculations, that AOA can perform a substantial proportion of 

ammonia oxidation. AOA appears thus to hold a “back-up function” (McCann, 2000) and 

might serve as insurance for the soil ecosystem to maintain the ammonia oxidation under 

more unfavorable environmental conditions (Valentine, 2007). According to our results, such 

a functional redundancy could also be relevant in the rhizosphere under SDZ stress 

(Publication I and III).  

 In Publication II, AOA were found to be less sensitive towards Pb and As than AOB. 

Similarly, a higher tolerance of AOA than AOB in soils contaminated by Zn (Xia et al., 2007) 

and Cu (Li et al., 2009) has been suggested. However, other studies showed contrasting 

results and ascribed tolerance development in ammonia-oxidizing communities to AOB 

rather than AOA populations (Mertens et al., 2009;Ruyters et al., 2010). Nevertheless, as 

most of these results are based on soils spiked with HMs, a direct comparison to the data 

presented in our study was not possible, as bioavailability of HMs is different in soils with 

artificially added HMs, and the time of adaptation of microbes in response to the stressor is 

missing (Diaz-Ravina and Baath, 1996). The latter argument has been proven to be of high 

importance in our study, as different AOA phylotypes showing differences in HM tolerance 

were observed. However, detailed data on the resistance development towards HMs of 

AOA are still missing, due to the extremely limited and recent availability of cultivated 
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representative of AOA from terrestrial environments (Jung et al., 2011;Tourna et al., 

2011;Kim et al., 2012).  

 

2.2. Nitrite oxidation 

 As ammonia oxidation is considered to be the rate-limiting step of nitrification, and 

despite their role in soil functioning, only few studies addressed the physiology and ecology 

of NOB and their response to disturbance such as those generated by agricultural practice 

are scarcely known (Attard et al., 2010;Xia et al., 2011;Wertz et al., 2012). However various 

stress conditions, e.g., steam disinfestation of soil (Roux-Michollet et al., 2008) or drought 

(Gelfand and Yakir, 2008), inducing a higher nitrite oxidation compared to ammonia 

oxidation have been reported. In Publication III, we hypothesized that Nitrospira- and 

Nitrobacter-like nitrite oxidizers are both inhibited by the application of the SDZ-

contaminated manure, considering the broad spectrum nature of the antibiotic (Hypothesis 

II). However, parallel to the inhibitory effects affecting directly the functional communities 

investigated (e.g., related to their respective activity status and related susceptibility; Lewis, 

2007), dissimilar ecological strategies for survival and proliferation among these populations 

may influence their response to the antibiotic stress. While niche differentiation and 

competition is known to influence the composition of functional microbial communities, the 

components of the nitrite oxidizing communities investigated respectively in this study 

possess different substrate affinities and therefore are adapted to distinct N availabilities. It 

has been suggested that Nitrobacter-like NOB bacteria are r-strategists with higher growth 

rate/specific activity and lower affinity for nitrite and oxygen, whereas Nitrospira-like NOB 

are K-strategists with a higher substrate affinity (Schramm et al., 1999;Attard et al., 2010). 

However, Maixner and colleagues (2006) shown that nitrite concentration influences the 

structure of Nitrospira-like bacterial communities, and assumed that sublineages may 

occupy different positions on an scale reaching from K- to r-strategists within the genus 

Nitrospira. Thus, the reduction of AOB abundance and activity may have resulted in lower 
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nitrite availability and consequently favorable conditions for Nitrospira-like NOB compared 

to Nitrobacter-like NOB, explaining the reduction of Nitrobacter-like nxrA abundance (P = 

0.030) and the increase of Nitrospira 16S rRNA gene abundance (P = 0.036) at day 49 with 

PMSDZ treatment. However the release of organic substrates from the dead microbial 

biomass under the antibiotic treatment could have also influenced indirectly the abundance 

of different Nitrospira sublineages as some Nitrospira-like bacteria are mixotrophic (Daims et 

al., 2001). 

 To bring further clarification on putative community structure shift towards SDZ-

resistant populations, effects of SDZ contamination on diversity was investigated using a 

cloning/sequencing approach in Publication III, focusing on Nitrobacter-like NOB 

communities. Indeed, antibiotic resistance genes have been found in the genomes of 

Nitrobacter hamburgensis (Starkenburg et al., 2008) and Nitrobacter Winogradskyi 

(Starkenburg et al., 2006). Thus, shifts towards putative SDZ resistant phylotypes were 

observed, accompanied by a decrease of diversity where SDZ-contaminated manure was 

applied. 

 

 

3. Denitrification 

 As indicated by decreased copy numbers of all three genes involved in 

denitrification, SDZ had a long-lasting negative effect on the denitrification potential in the 

RRC (Publication I). This is in contrast to results obtained in bulk soil where denitrifiers 

were only slightly affected by SDZ (Kleineidam et al., 2010) and underlines the assumption 

of more pronounced antibiotic effects on highly active microbial communities living in hot 

spots like the RRC (Hypothesis I). We observed that nirK-harboring microbes were more 

affected by SDZ than nirS-denitrifying bacteria. This can be explained by different abilities 

exhibited by the microbes to regulate their internal pH, affecting the accumulation and 

speciation of the SDZ in the cells (Tappe et al., 2008;Zarfl et al., 2008), and therefore its 
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antimicrobial effects; in addition to resistance mechanisms mediated by the genes sul1 and 

sul2 (cf. Introduction, chapter 2). Furthermore, the quantification of both genes and 

transcripts revealed significant impacts on the gene level but to a lower extent on the 

transcript level, this in contrast to what could be assumed taking into consideration the 

bacteriostatic mode of action of SDZ. Presumably, microbial subpopulations intrinsically 

able to cope with the antibiotic stressor could have taken advantage of the altered 

competitive environment and maintained denitrification, the wide phylogenetic diversity of 

denitrifying bacteria allowing the maintenance of the process (Wallenstein et al., 2006). 

However, an indirect antibiotic effect could have contributed to the reduced abundances of 

nirK (and nosZ) transcripts via impaired microbial respiration activity in the RRC, hence 

higher oxygen levels and consequently inhibited gene expression in the PMSDZ treatment. 

 

 

4. Plant/microbes interactions 

 In Publication I, the differences in gene abundance patterns between the two 

treatments were more pronounced and long-lasting in the RRC of clover than in the RRC of 

maize. Presumably, differences in quality and quantity of root exudates and in root 

morphology known to shape microbial communities and to form the basis for microbial 

activity in the rhizosphere might have contributed to the different effects observed 

(Marschner et al., 2001). Whereas maize may have provided primarily recalcitrant organic 

carbon from decaying root material to the microflora of its RRC (Semenov et al., 1999), 

clover roots might have excreted more readily available organic compounds (Haichar et al., 

2008), resulting in an increase in microbial biomass and activity in this RRC. In contrast, 

AOA, which might exhibit a rather oligotrophic lifestyle (Jung et al., 2011;Kim et al., 2012), 

could have been outcompeted by the faster-growing microorganisms in the clover RRC, as 

indicated by the reduced numbers of AOA amoA gene copies found in the clover RRC 

compared to the maize RRC. As dormancy or reduced activity results in reduced 
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susceptibility to SDZ, the bacteriostatic antibiotic might have found fewer targets (Balaban 

et al., 2004;Lewis, 2007), thus explaining the differences observed in the effect of SDZ when 

both plant species were compared. 

 In Publication III, the extent of the impact of the antibiotic contamination on the 

rhizosphere ammonia oxidizing populations was greater after the second manure 

application compared to those observed after the first application. This could be explained 

by a shift in the community structure of the plants composing the grassland during the 

experimental period, influencing the response to the antibiotic stress of the rhizosphere 

microbial communities. Indeed, plant diversity and species composition are known to 

influence the magnitude and the stability of ecosystem processes over time, as well as the 

size and composition of associated microbial communities (Hooper and Vitousek, 

1997;Kowalchuk et al., 2002;Steenwerth et al., 2002;Johnson et al., 2003;Balvanera et al., 

2006;Millard and Singh, 2010). However, interactive effects between contaminants and plant 

diversity received little attention so far (Eisenhauer et al., 2009). Moreover, the mechanisms 

through which changes in plant diversity affect soil microbial communities remain unclear, 

Whereas Zack et al., (2003) observed changes in microbial abundance and composition 

across a plant diversity gradient in a long term experimental grassland system and 

concluded that these changes were more related to differences in plant productivity 

associated with diversity rather than plant diversity per se. In contrast, Einsenhauer et al., 

(2010) suggested that the quality of rhizodeposits rather than plant productivity affects soil 

microbial community. 

 Although not investigated in this thesis, N mineralization is of critical importance in 

crop production systems in supplying available N for crop uptake.  In Publication I, for both 

plant species, the yield of the green biomass was not influenced by the presence of SDZ in 

the manure applied, and the extent of manure N mineralization might have played a key role 

in maintaining plant health and growth. In addition, the action of the antibiotic on the 

microbial biomass could have (i) induced the release of organic matter from dead cells into 
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the soil N pool and (ii) alter the competitiveness of the microbial communities for nutrients, 

with possible positive effects in plant nutrient acquisition and growth (Jackson et al., 2008). 

However, such effect would have negative implications for ecosystem nutrient storage, as 

immobilization of N by microbes has been shown (i) to act as a short-term sink for N in 

several terrestrial ecosystems (Zogg et al., 2000;Bardgett et al., 2003), thus potentially 

limiting the export of N to e.g., groundwater and (ii) to be important for longer-term 

ecosystem N retention, via the transfer of the nutrient form to more stable organic matter 

pools after cell death (van der Heijden et al., 2008). In Publication II, no influence of the 

degree of HM contamination on plant growth was observed. Possibly, the amount of N 

contained in the rhizome was sufficient to maintain plant health and growth during the 

experimental period (Wiesler et al., 1997) as the soils used were not fertilized. 
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Conclusions 

 

 Using molecular techniques, it was possible to apprehend changes in the 

abundance, activity, and diversity of functional communities involved in N cycling (i) in 

response to the application of SDZ-contaminated pig manure or (ii) in long-term HM-

contaminated soils. 

 Our data revealed that the application of manure contaminated with SDZ has a 

lasting impact on the functional microbial biomass involved in N cycling in the RRCs of 

different plants of agricultural importance under greenhouse (Publication I) and field 

(Publication III) conditions. In Publication I, effects on the transcript level were less 

pronounced, which might indicate that parts of the investigated functional groups were 

tolerant or resistant against SDZ. Moreover, NOB community shifts towards potential 

resistant phylotypes were observed (Publication III). In addition, the antibiotic does not 

impact AOA and AOB to a similar extent, which could allow functional redundancy between 

these two groups of ammonia-oxidizing microbes and contribute to the stability of N 

turnover. The effects of SDZ on the microbial communities involved in the major processes 

of the inorganic N cycle, i.e. N fixation, ammonia oxidation, nitrite oxidation, nitrite reduction 

and nitrous oxide reduction, are sum up in Fig. 6. In addition, these effects have been 

shown to be influenced by plant factors such as rhizosphere effect and the development of 

root nodules (Publication I), and potentially the plant community structure of a pasture 

(Publication III). However, the effect of plant diversity on the microbial response to 

antibiotic stress needs to be further investigated in future studies. 

 Based on our data (Publication II), it can be postulated that selected phylotypes of 

AOA tolerate higher concentrations of Pb and As in soil and RRC compared to AOB. 

However, abundance of a functional group cannot be directly linked to the activity of these 

microbes. Therefore, it remains unclear if, mainly in soil M, AOA can substitute AOB and if  
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Figure 6. Effects of the antibiotic sulfadiazine on the microbial communities involved in N 

cycling. Asterisks indicate plant factors influencing the effects of sulfadiazine. Abbreviations: 

AOA, ammonia-oxidizing archaea; AOB, ammonia-oxidizing bacteria; NOB, nitrite-oxidizing 

bacteria. 

 

functional redundancy between both groups of ammonia-oxidizing microbes exists under 

the given conditions. To address these points in detail, further studies are needed, including 

(i) analysis of mRNA, and (ii) using 15N-labeled ammonium. Moreover, further studies should 

include the assessment of the impact of HMs on NOB communities and on nitrite oxidation 

rates to determine whether ammonia oxidation remains the rate-limiting step in the 

nitrification process in HM-contaminated soils, as an accumulation of nitrite in soils could 

have further implications on microbial N immobilization due to nitrite toxicity.  
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amoA   gene encoding the α-subunit of the ammonia monooxygenase 

AOA   ammonia-oxidizing archaea  

AOB   ammonia-oxidizing bacteria  

As   arsenic 
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CaCl2   calcium chloride 

CEC   cation-exchange capacity 

Cu  cupper 

DHPPP 1,8-dihydro-6-hydroxymethylpterin-pyrophosphate 

DHPS  dihydropteroate synthase 
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e.g.   exempli gratia 

et al.   et alii 

h   hour 

HM   heavy metal  

i.e.   id est 
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mRNA  messanger RNA 

N   nitrogen  

N2   dinitrogen  

N2O  nitrous oxide 

NH2OH hydroxylamine  

NH3   ammonia  

NH4
+   ammonium  
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T-RF   terminal restriction fragment 
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