
A Swarm Intelligence Inspired Algorithm for
Contour Detection in Images

Ulrich Kirchmaier, Simon Hawe, Klaus Diepold
Lehrstuhl für Datenverarbeitung
Technische Universität München

Arcisstr. 21, 80290 Munich, Germany

Swarm Intelligence uses a set of agents which are able to move and gather local information in
a search space and utilize communication, limited memory, and intelligence for problem solving. In
this work, we present an agent-based algorithm which is specifically tailored to detect contours in
images. Following a novel movement and communication scheme, the agents are able to position
themselves distributed over the entire image to cover all important image positions. To generate
global contours, the agents examine the local windowed image information, and based on a set
of fitness functions and via communicating with each other, they establish connections. Instead
of a centralized paradigm, the global solution is discovered by some principal rules each agent is
following. The algorithm is independent of object models or training steps. In our evaluation we
focus on boundary detection as a major step towards image segmentation. We therefore evaluate
our algorithm using the Berkeley Segmentation Dataset (BSDS) and compare its performance to
existing methods via the BSDS benchmark and Pratt’s Figure of Merit.

1 Introduction

Boundary Detection is commonly regarded as a major step towards Image Segmentation, which is a central
problem in computer vision that has been studied for years. Image Segmentation again constitutes an important
initial step for high-level tasks in computer vision, like object recognition, image analysis, and scene understand-
ing. It pursues the goal of dividing an image into parts, regions, or objects, which are preferably self-consistent
and of meaningful content. Application examples include separating objects considered as foreground from the
background, or separating multiple objects from each other.

One of the main difficulties in the field of boundary detection and image segmentation arises from the fact, that
not even human beings are able to uniquely and unambiguously decide and agree over a correct segmentation
[1]. Different persons are likely to have different opinions on the correct solution to the segmentation problem
of any image, especially involving natural images. This lack of an unique ground-truth complicates the compar-
ison of results descending form different segmentation methods. Nevertheless, efforts were taken to establish
a framework for objective evaluation of segmentation algorithms. A prominent example is the Berkeley Seg-
mentation Dataset (BSDS) [1], which provides a huge collection of natural images along with human-marked
proposals of ground-truth, as well as a precision-recall based measurement for comparison [2]. Figure 1 shows
three example images along with three different human ground-truth suggestions.

The plenty of solutions to the segmentation problem proposed in the literature descend from versatile fields,
such as clustering [4], graph theory [5, 6], region growing [7], optimization of an evaluation function like energy
minimization [8], as well as image feature-based methods [9, 10]. The majority of approaches found in the

1



Figure 1: Three sample images from the Berkeley Image Segmentation Dataset (BSDS 500) [3], each along with three
different human-marked ground-truth images.

literature can be categorized into one or a subset of these fields, with each adding improved mechanisms to
solve specific tasks.

Boundary or contour detection is often performed as an initial step for image segmentation, as boundaries
naturally correspond to borders between objects. It describes the process of identifying and locating sharp
discontinuities in image regions, which closely relates it to the task of edge detection. Mere edge detection,
however, registers on the one hand any type of abrupt changes in image brightness, and misses smooth
or subtle transitions of image brightness on the other hand. Regarding the goal of detecting boundaries, this
causes false positives like textured regions, or single highlighted spots and true negatives like region boundaries
of low contrast.

One recipe to overcome these drawbacks is to combine edge detection techniques with diverse soft com-
puting approaches like Genetic Algorithms, or Fuzzy Logic, etc. [11, 12]. Other methods combine oriented
local image cues, like brightness, color, and texture descriptors with edge detection to get a global estimation.
Such combination methods include multiscale cue combination [3], energy and probability weighting [13], or
likelihood-methods [14].

In this paper, we propose an algorithm that uses the concept of Swarm Intelligence to detect contours in
images. We believe that the idea of interacting distributed agents to migrate from local information to global
boundary estimates is a promising alternative to existing methods.

While a variety of Swarm Intelligence inspired algorithms already exists (refer to Section 2), their swarms
often seek to find one global optimal solution in a search space, as these algorithms descend from the field of
optimization.

However, it is our goal to detect a non-predefined number of boundaries with arbitrary positions, sizes, and
shapes in an image, which all have to be considered as equal or even independent solutions. Therefor, we
established a novel algorithm based on distributed agents being explicitly tailored to the demands of contour
detection. The main contribution of this paper are the development of (1) a novel movement and positioning rule,
along with (2) local information gathering mechanisms, and (3) a set of fitness functions and communication
schemes.

This paper is organized as follows: Section 2 gives an overview on approaches in the fields of image segmen-

2



tation and contour detection, which utilize Swarm Intelligence. Section 3 investigates the principles of Swarm
Intelligence and Section 4 provides details on our algorithm. Section 5 shows results of our algorithm tested on
the task of boundary detection in natural images.

2 Related Work

In recent years, algorithms descending from the field of Evolutionary Computing, Genetic Algorithms, and also
Swarm Intelligence are increasingly applied to the image segmentation problem. These optimization tools have
mostly been used to improve the performance of important steps of segmentation algorithms. In [15, 16],
evolutionary and genetic algorithms were used to enhance the clustering process in segmentation. In [17], the
authors combined high-level features generated with a visual attention model with low-level features to guide
region growing algorithm, where the optimal thresholds of the region growing process were detected using the
Particle Swarm Optimization (PSO) algorithm.

In [18], the PSO was applied to find the optimal fuzzy entropy thresholds to segment images into foreground
and background. A related approach was introduced in [19], where PSO was used to tune thresholds in 2D-
histograms, maximizing the entropy to segment infrared images.

SI was also utilized to improve Segmentation based on clustering approaches, which can get stuck in local
optima, depending on their initialization. In [20], the authors developed a hybrid combination of the Ant Colony
Optimization algorithm (ACO) and PSO to make K-Means clustering and Single Competitive Learning more
independent from their initial cluster centers, and learning rate, respectively.

Besides deploying SI techniques to optimize specific steps in existing segmentation approaches, SI algo-
rithms were also applied to the tasks of edge detection and contour detection, akin to our proposed algorithm.

The authors of [21] proposed ant-based correlation for edge detection. Their method is capable of performing
feature extraction for edge detection and segmentation, generating less distortion in the presence of noise, as
compared to classical edge detectors, like Sobel, Prewitt, and Canny.

In [22], a variant of the PSO algorithm is utilized for finding a proper edge detection filter size in noisy images.
While combining edge filters of different sizes can improve the edge detection in noisy images, it is generally
computationally expensive when applied to the entire image. Thus, the heuristic capabilities of PSO were used
to adaptively decide, where on the image to use filters of various sizes. The evaluation of edge intensity and the
proposed movement principle in this approach has analogies to our algorithm, as they divide the edge regions
into sets and use averaged intensities. However, the major difference is the usage of discrete PSO instead of
our communication scheme where the agents share their local information.

3 Principles of Swarm Intelligence

Swarm intelligence constitutes a fast-growing field with researchers from various disciplines from social and
natural sciences to computational engineering engaged. In nature, phenomena of SI can be found in multiple
examples, including fish schooling, ant colonies, bird flocking, animal herding, and bacterial growth, as well as
human crowd behavior.

SI is based on self-organized individuals, generally called agents, whose actions and interaction add up to
intelligent global behavior. This occurrence is commonly referred to as emergence. Thereby, a key point of SI
is the absence of a centralized control instance. Instead, each agent acts according to some basic principles,
which are

• autonomy, i.e. no centralized control,
• local view, i.e. incomplete knowledge of the environment and also no or little concern about the global

behavior of the system,
• movement, i.e. an agent’s possibility to discover its environment,
• communication, i.e. interaction between agents,
• memory, i.e. knowledge of prior conditions,
• fitness function, i.e. a measure to evaluate an agents current position or solution.

3



Since the first appearance of SI in a technical context [23], researchers utilized its principles on various appli-
cations, for optimization, and data analysis problems [24]. In recent years, SI-based methods proofed to be
capable of managing complex systems and tasks, from route-planning and control of unmanned vehicles to
mobile telecommunication networks.

While SI-based algorithms mostly descend from the field of optimization, they were also successfully ap-
plied to computer vision and image processing tasks, ranging from edge detection [25], over feature extraction
and object recognition [26, 27], to three-dimensional tracking in stereo-video [28]. All these algorithms offer
robustness alongside low computational costs.

Two prominent and widely-used examples for realizations of the SI-principles are the Particle Swarm Op-
timization (PSO) [29], and the Ant Colony Optimization ACO [30]. These two instances show the manifold
possibilities of interpretation of the SI-concept. While they follow the same principles, their realizations illustrate
significant differences. To give an example, the communication of the ACO algorithm is indirect and location-
based, i.e. the ants leave a pheromone-trail at each location, which describes the position with respect to the
task. On the opposite, the particles of PSO use a one-to-all broadcast-communication, which causes the other
particles of the swarm to move closer to the currently best solution.

Algorithms of the SI-field have been already applied to image segmentation in various ways, e.g. for finding
adaptive thresholds of regions using PSO [31], or on color segmentation via an ACO-based algorithm using a
specialized swarm of scouts and workers [32]. In [33], an agent-based diffusion-breeding concept was intro-
duced to image segmentation, in which the agents move over an image and connect homogeneous regions via
an interplay of creating offspring and deactivating agents.

In this work, we present a novel algorithm based on the principles of Swarm Intelligence, that is particularly
tailored to the task of contour or boundary detection in images. Boundaries in images can be arbitrarily dis-
tributed over the entire image, hence an algorithm should be able to detect and localize them independent of
their position, size, shape, orientation, and appearance. The distributed nature of the swarms established in
this algorithm suits to this circumstance. The details of our algorithm are explained in the following Section.

4 SI Contour Detection Algorithm

Following the principles of Swarm Intelligence mentioned in the last Section, we utilize a set of N distributed
autonomous agents. Instead of being user-defined, the number of agents N is determined by the image size
and its content. The goal is to ensure, that the entire image is covered with agents, so that all information
anywhere on the image is considered. As each agent locks a patch of size 5 × 5 around its final position (see
Subsection 4.1), N ranges between H×W

5 ≤ N ≤ H×W
3 , with H and W being the image height and width.

The algorithm begins with the movement phase, in which the agents iteratively re-position themselves until
they have found the locally most meaningful position (see 4.2). Once an agent has reached its final position, it
analyzes the surrounding pixels to gather local information (see 4.1.1). In the end of the movement phase, the
final value of N is obtained. In the next phase, the agents acquire information of their neighbored agents and
build an initial estimation of the position and orientation of a contour within their local neighborhood (see 4.3).
In the last phase, the agents interact to iteratively adjust their model to their neighbors’ and thus grow from local
models towards global contour estimates (see 4.4). Figure 2 shows an overview of the procedural flow of the
algorithm.

For communication purposes, each agent is assigned a unique ID, from 1 ... N.

4.1 Local View

For information acquisition, positioning, and contour estimation, each agent features three different windows,
an analyzing window WA of size 3 × 3, a positioning window WP of size 5 × 5, and a communication window
WC of size 11 × 11, each centered around the agent’s position. Figure 3 illustrates the extent of each of the
three windows, centered around an agent. The choice of the window sizes allows a special interplay between
the agents, which will be explained in detail in the following Subsections.

4



ag nbx

3 pixels

a

5 i l

4 pixels

ag nbx

aga

b

Phase 2 ‐ Acquisition

Phase 1 ‐Movement

Analyse position
(Section 4.1.1)

Find position
(Section 4.2)

ag nbx

5 pixels

ag nbx

6 pixels

nby

c

d
Phase 3 ‐ Negotiation

Negotiate on Negotiate on 

Build Dissimilarity
(Section 4.3.1)

Build contour models
(Sections 4.3.2 & 

4.3.3)

g
contour position
(Section 4.4.3)

g
contour models
(Section 4.4.2)

Phase 1 ‐Movement
Find position

(4.2)
Analyse position

(4.1.1)

Phase 2 ‐ Acquisition

Build Dissimilarity
(4.3.1)

Build boundary
models

(4.3.2 & 4.3.3)

Phase 3 ‐ Negotiation

Acknowledge
Connections

(4.5)

Negotiate
(4.4.1 & 4.4.2)

Figure 2: Overview of the three phases of the agents. The single steps are explained in the corresponding Subsections.

ag nbx

3 pixels

a

x

4 pixels

ag nbx

aga

b

ag

nb3

nb4

nb5

nb1

nb2

xag nbx

5 pixels

6 pixels

c

nb6

nb7

x

x

ag nbxnbyd

Possible pixel distances of neighbors in x direction, minimum 3 and maximum 5.
The black, red and green solid lines refer to Wa,Wp and Wc of the agent.
The black and red dashed lines show the Wa and Wp of a neighbor x.

ag nbx

ag nb

Figure 3: Local view of an agent ag with its three windows, the analyzing window WA (black), the positioning window WP

(red), and the communication window WC (green). Within WC the agent can interact with its neighbors nb1 to nb7. Agents
outside WC are displayed with an x and cannot be contacted by ag.

4.1.1 Analyzing Window

Every agent ag can directly access image data inside its analyzing window WA, which is centered at position
(xcag , ycag). The size of WA is considerably small to allow accurate localization and discovery of arbitrary and
capillary contour shapes.

The information each agents is gathering is firstly the arithmetic mean Mch
WA

of the nine pixels inside WA via

Mch
WA

(ag) =
1
9

1∑
i=−1

1∑
j=−1

Ich(xcag + i , ycag + j), (1)

for each color channel ch, with Ich(x , y ) being the image values of channel ch at the pixel position x , y . Secondly,
each agent calculates the mean edge strength EWA using

EWA (ag) =
1
9

1∑
i=−1

1∑
j=−1

G(xcag + i , ycag + j), (2)

with G(x , y ) being the magnitude of the image gradient at the pixel position x , y , computed by

G(x , y ) =
√

Ix (x , y )2 + Iy (x , y )2. (3)

5



The values of Ix and Iy are the discretized partial derivative images in x and y direction, which are computed
on the grayscale image via some standard approach like Sobel, or Prewitt.

4.1.2 Positioning Window

The positioning window WP describes the agents’ movement capability, which will be explained in Subsection
4.2. Once an agent has discovered its final position, it blocks its area in the size of WP , prohibiting any neigh-
bored agent to move closer than 3 pixels towards the agent. The neighbored agent therefore is forced to search
its final position outside the blocked area. Thus the size of WP ensures non-overlapping WA windows. Figure
4 shows the possible distances between an agent ag and its neighbor nbx in x-direction. It is plain to see that,
if neighbor nbx settles on a position with a distance between 3 and 5 pixels, it will stay a direct neighbor of ag
(examples a to c in Figure 4). A distance ≥ 6 pixels in one direction will cause another neighbor nby to move
in the gap between the positioning windows of ag and nbx (example d). This positioning schema forces agents
to settle along the contours everywhere in the image, thus making contours describable by the agents.

4.1.3 Communication Window

Gathering image information within small windows like WA is generally prone to the typical errors in contour
or boundary detection described in Section 1. We tackle this shortcoming via the communication window, that
enables the agents to interpret the small local information in a broader context to eventually robustify the agents’
collective decision. Furthermore, the communication principle allows to establish global contour estimations
from the local information. The size of WC descends from the size of WP , as its size ensures that there is at
least one neighbor, i.e. a communication partner in each main direction surrounding an agent. As shown in
Subsection 4.1.2 and Figure 4, the distance between an agent and a neighbor in any direction is 5 pixels at
most, which coevally marks the needed extent of WC in one direction.

The communication window WC limits the area, in which an agent can find and contact neighbored agents.
Each agent can communicate with all agents inside its communication window to access their model informa-
tion. Any agent also collects the neighbored agents’ IDs and their positions to relate them geometrically to its
own position. The geometric information is utilized when the contour models are built. The access of neigh-
bored agents constitutes a communication that resembles a spatially limited blackboard communication. To
affirm their final connections, the agents furthermore use a direct communication, checking if their connection
requests, i.e. their contour estimates, are acknowledged by the desired neighbor. Only connections that are
confirmed by all connected agents are taken into account in the final contour image.

ag nbx

3 pixels

a Phase 1 Movement

5 i l

4 pixels

ag nbx

aga

b

Phase 2 ‐ Acquisition

Phase 1 ‐Movement
Find position

(4.2)
Analyse position

(4.1.1)

ag nbx

5 pixels

ag nbx

6 pixels

nby

c

d Phase 3 ‐ Negotiation

Phase 2  Acquisition

Build Dissimilarity
(4.3.1)

Build boundary
models

(4.3.2 & 4.3.3)

Acknowledge
Connections

(4.5)

Negotiate
(4.4.1 & 4.4.2)

Figure 4: Possible pixel distances of neighbors in x direction, minimum 3 and maximum 5. The black, red, and green solid
lines refer to WA,WP , and WC of the agent. The black and red dashed lines show the WA and WP of a neighbor nbx .

6



4.2 Movement

Initially the agents are distributed equally spaced over the entire image. The movement follows the goal of po-
sitioning the agents on image locations, which are possibly meaningful for contour detection. As a hint towards
the final contours, the mean edge strength information EWA of Equation (2) is utilized. Every agent moves over
the image iteratively checking the EWA values inside its WA, centered at each pixel position (xcag , ycag) within
its WP . Subsequently each agent moves to the maximum inside WP and re-centers the WP , until it discovers a
local maximum edge strength. Let t denote the current iteration, the movement rule can be expressed by

(xcag , ycag)(t) =(xcag + i∗, ycag + j∗)(t−1), (4)

with i∗, j∗ computed by

(i∗, j∗) = arg max
i ,j∈Z[−2,2]

EWA (xcag + i , ycag + j). (5)

A local maximum is detected, if the position does not change, i.e.

(xcag , ycag)(t) = (xcag , ycag)(t−1) (6)

is fulfilled. When an agent reaches the final position, it locks the area of the size of WP around its position, so
any other agent cannot get closer towards the locked position.

When the entire image is covered by agents, each holding a local maximum position regarding the edge
strength, the movement phase stops.

4.3 Initial Contour Model

Each finally positioned agent tries to build an initial contour model. It therefore estimates the course and the
position of a possible contour or boundary within its communication window. Furthermore, it evaluates the
strength or probability of the existence of the assessed contour. For this purpose, the agent calculates three
major fitness values, i.e. the agent dissimilarity value D, contour model fitness MF , and the contour position
fitness PF.

4.3.1 Agent Dissimilarity Value

Each agent calculates the agent dissimilarity value Dag(nbi ) to each neighbored agent nbi , i = 1, ... , n, with
n being the number of neighbored agents within WC . This measure describes the agent’s dissimilarity to the
neighbor utilizing the information gathered in each agent’s WA. A high Dag(nbi ) value means a high dissimilarity.

The agent dissimilarity value is calculated via

Dag(nbi ) = α · 1
CH
·

CH∑
ch

(Mch
WA

(nbi )−Mch
WA

(ag))2

Mch
WA

(nbi ) + Mch
WA

(ag)

+ β · (EWA (nbi )− EWA (ag))2

EWA (nbi )− EWA (ag)
, (7)

with MWA (j) and EWA (j) being the mean image value and the mean edge strength value of the WA of agent j ,
as defined in Subsection 4.1.1, ch being the the current color channel, running from 1 ... CH, and CH being the
number of image channels. In RGB color images CH = 3 and in grayscale images CH = 1. The factors α and
β allow weighting of color and edge information.

The dissimilarity values Dag(nbi ) enable the agent to compare its image information to that of each neighbor.
In Equation (7) we adapt a formula, which is widely used as a dissimilarity measure for histograms (see e.g.
[34]). This method emphasizes small image discontinuities in smooth regions, while it attenuates dissimilarities
in textured regions.

7



4.3.2 Contour Model Fitness

Using its neighbored agents, each agent establishes several contour models, which describe an estimation of
a contour’s possible orientation or course. This is exemplarily shown in Figure 5. To build a contour model m,
the agent first connects itself to two neighbored agents. The connected agents, marked as Cm

ag , are supposed
to have a considerably small agent dissimilarity value. Such a connection splits the agent’s communication
window into two regions Am

ag and Bm
ag , with an arbitrary number of neighbored agents positioned inside each of

them. The agent allocates each neighbor to a region using the relative position and geometry information. In a
second step, the Dag values of the neighbors in Am

ag and Bm
ag are used to determine the region most separated to

the agent and its two connected neighbors. Hence, high dissimilarity values in a region advert to a separation.

Boundary model
voll

ag

nb3

nb1

nb2

x

x

A

ag

nb3

nb4

nb1

nb2

x

x

C
nb4

nb5

nb6

x

x

B

nb5

nb6

nb7

x

xC
nb7

2

Figure 5: A contour model m of agent ag, with all neighbors nb1 ... nb7 marked either as connected Cm
ag , or as belonging to

region Am
ag , or respectively region Bm

ag .

Consequentially, a contour model fitness MF is calculated by

MF m
ag = max (MDBm

ag
, MDAm

ag
)−MDCm

ag
, (8)

with m being current model running from m = 1, ... , M. MDBm
ag

, MDAm
ag

, MDCm
ag

are the mean of the Dag values
of the neighbors, positioned either in Am

ag , Bm
ag or marked as connection Cm

ag . The maximum number of possible
models M for each agent is a user-defined number that can be used to limit the computational amount. Only the
most promising models, estimated via the Dag value of the connected neighbors are taken into account. From
the set of M models, all agents pick the model with the maximum MF as a starting point.

Eventually, each model m is described with

• the set Cm
ag , which consists of the IDs of the two connected neighbors,

• the sets Am
ag and Bm

ag , holding the agents’ IDs that lie in the two regions separated by Cm
ag ,

• the information, which region is the most separated one, and
• the fitness MF m

ag evaluating the quality of each model.

Finally, we want to mention that Cm
ag , Am

ag and Bm
ag are non-intersecting sets, i.e.

Cm
ag ∩ Am

ag = Cm
ag ∩ Bm

ag = Am
ag ∩ Bm

ag = ∅ (9)

4.3.3 Contour Position Fitness

As stated above, the contour model predominantly describes how a contour or boundary is orientated within
an agent’s neighborhood, and which region is separated from the agent. However, each agent additionally
has to estimate the contour’s exact location within the neighborhood, i.e. whether the assessed contour goes
through the agent and its two connections, or possibly parallel through the neighbored agents in the separated
region. As the dissimilarity values Dag and the mean edge strength EWA are highest in each direction right upon

8



a contour, each agent calculates a contour position fitness PF, simply by

PFag =
1
n
·

n∑
i=1

Dag(nbi ) + EWA (ag), (10)

with Dag(nbi ) being the agent dissimilarity values of each neighbor nbi , i = 1, ... , n, and n being the number of
neighbored agents.

4.4 From Local Models to Global Contours

The use of the neighbored agents’ information natively causes a dependance between the initial contour models
of each agent. However, in certain situations the initial model picked by an agent can be erroneous due to
misleading local image information. Experiments showed that in those cases the models picked by the agents
only have slightly higher MF values than the models that are globally desired, or respectively regarded as
correct. Furthermore, there is a subset of surrounding agents, which initially prefer the correct course of the
contour. Thus, in a further step, the agents align and adjust their individual models to those of their neighbors.
This exhibits the second aspect of communication besides each agent’s access to its neighbors.

To accomplish the alignment of the contour estimations, the agents use communication, i.e. they share and
compare their estimates with each other and negotiate about which model to follow. Thus, the final aligned
models are the best compromise within the neighborhood.

When aligned, the contour model yields agents located on contours to connect with neighbors along this
contour. Additionally, it forces agents near this contour to construct models with connections parallel to that
contour. Therefore, a contour is estimated not only by the agents placed on it, but also by the agents placed
parallel to it in its surrounding. This is a key point of this algorithm, increasing robustness in ambiguous image
regions.

4.4.1 Conflicts between Contour Models

While the agents’ contour models are unaligned, two main conflicts arise between the agents, which are illus-
trated in Figure 6.

Boundary model
voll

ag

nb3

nb4

nb1

nb2

x

x

RA C

ag

nb3

nb4

nb1

nb2

x

x

nb5

nb6

nb7

x

x

RB

C

nb5

nb6

nb7

x

x

2

Figure 6: Example of the possible conflicts of the agents’ models. The arrows mark the connection requests of the agents.
Multiple connection requests between ag, nb4, and nb3, and crossing contours between the connections ag ↔ nb7 and
nb1 ↔ nb6.

The first conflict is referred to as multiple connection requests. It originates, when two or more agents want to
connect to the same neighbor, which is shown in Figure 6. Here, both ag and nb3 request nb4 for a connection,
but nb4 initially connects to nb3. This can be stated as

nbi ∈ Cmk
ag ∧ ag /∈ Cml

nbi , (11)

9



with C being the connection sets described in Subsection 4.3.2, and k and l being the currently chosen models
of ag and nbi , respectively. In this example nbi is nb4.

The second conflict which appears is called crossing contours, and describes the situation, where two con-
nections, and thus two contour estimates cross each other. As both connection estimations also imply that
there are two regions which are not connected to each other, crossing connections must display a conflict. This
is illustrated in Figure 6 with the connection of ag and nb7 crossing the connection of nb1 and nb6. For a
neighbor nbi this can be stated as

nbi ∈ qmk
ag ∧ Cml

nbi ∈ rmk
ag , (12)

with q, r ∈ [A, B], q 6= r , and k and l being the currently chosen models of ag and nbi , respectively. In this
example nbi is nb6 and nb1.

4.4.2 Negotiation on Contour Models

In order to solve the conflicts described in Subsection 4.4.1, each agent involved searches in its set of possible
models m = 1, ... , M for the best model that is not conflicting. Thus, in case of a multiple connection request
between ag and its neighbor nbi , the agent ag takes the model m∗o , which holds

m∗o = arg max
mo| nbi /∈C

mo
ag

(MF mo
ag ). (13)

Analogously, nbi chooses the model m∗p , which holds

m∗p = arg max
mp| ag∈C

mp
nbi

(MF
mp

nbi ). (14)

In Figure 6, nbi is nb4. The crossing contours conflict follows the same mechanism, which means e.g. for ag
and nb6 in Figure 6 that both search for the best model m∗o and m∗p , which do not meet the condition stated in
Equation (12).

The agents corporately decide, which agent has to change its model, by comparing the model fitness of the
old models mk and ml to those of the new models m∗o and m∗p . Therefore, each involved agent calculates the

model fitness difference δag = MF mk
ag − MF m∗

o
ag and δnbi = MF ml

nbi − MF
m∗

p

nbi . The agent with the smaller difference
has to change from the old to the new model, so if δnbi < δag , then ml → m∗p , and mk → m∗o otherwise.

This procedure ensures that the overall fitness within the neighborhood is maximized. If an agent cannot

find a model to solve the conflict, the value MF m∗
o

ag , or respectively MF
m∗

p

nbi is set to zero, causing the maximum
possible difference. In this way, agents change their models until no conflicts occur any more. Agents with no
acknowledged connections, or no possible model left to choose will be regarded as deactivated and no longer
be considered for contour detection in the subsequent stage. This desired effect takes place within regions
where agents either cannot agree to a final contour model, as there is none, or their final contour strength is
negligibly small compared to the correct contours or boundaries. Hence, the algorithm is self-regulating to a
certain degree.

4.4.3 Negotiation on Contour Position

When all conflicts are solved, the agents will either have established aligned contour models, which run parallel
along region borders, or be deactivated. In order to decide for the exact position, the remaining active agents
sum the PF values of themselves and their connections and compare it to the parallel model that lies in the
direction of their most separated region. Each agent adds its final MF m

ag to the agent with the maximum PF,
which can also be the agent itself, and its two connections. Thus, parallel models support each other and
strengthen the final position.

The final contour image corresponds to the summed position fitness of each agent and its connected neigh-
bors. As stated above, only agents with connections that are without conflict and acknowledged by the respec-
tive connection partners are taken into account.

10



5 Experiments and Results

In this Section we show some results of our algorithm achieved in task of boundary detection. We will first
comment on evaluation metrics and state our decision on the metrics that we applied. Then we will investigate
and discuss the results of our algorithm in detail utilizing example images. Furthermore, we will deliver a
comparison to methods from the literature which used the same evaluation metrics, and in the end, we will
discuss the computational efficiency of our method.

5.1 Evaluation Dataset and Metrics

As described in the introduction, a major problem when it comes to evaluate boundary detection or image
segmentation algorithms, is the need of a ground truth, and coevally the lack of uniqueness of such. One of
the most extensive and widely used image collections for this purpose is the Berkeley Segmentation Dataset
(BSDS) [1], which provides a set of 500 natural images of size 481 × 321, each along with 5-10 human-
generated segmentations, which serve as ground-truth.

General evaluation metrics for image segmentation are for example the Probabilistic Rand Index [35], the
Jaccard index, or the Object-level Consistency Error OCE [36]. Such metrics are usually based on the amount
of overlap between ground-truth segments and segments detected by the algorithm. They differ for example in
the used distance measures, the punishment for under- or oversegmentation, or the way the overlap is weighted
with regard to the segment sizes. However, the metrics mentioned above demand image regions with closed
boundaries that are fully segmented from each other, so any pixel in the image can be assigned to one segment
exclusively. Therefore, those metrics cannot be applied to the topic of boundary detection, as such algorithms
produce potentially non-closed contour estimates rather than segmented regions. Nevertheless, boundary
based evaluation metrics exist, like Pratt’s Figure of Merit (FoM) [37], Precision-Recall Curves (PRC) [1], and
Receiver-Operator-Characteristics (ROC) [38], whereas the PRC-based benchmark system in [1] allows for
comparison of region-based segmentation and contour detection methods in the same framework. Those
methods usually measure the coincidence and the accuracy of boundary or edge pixels compared to ground-
truth boundaries.

Pratt’s Figure of Merit is a distance transform between the ground-truth and the evaluated boundary map
binarized at varying thresholds. It measures the detection, localization, and spurious response, which means
that the score is influenced by all edges being found, all edges being placed in the correct location, and false
alarms. The FoM is computed by

FoM =
1

max(NGT , Nres)

Nres∑
k=1

1
1 + ad(k )2 ,

where NGT is the number of ground-truth edge pixels, Nres is the number of edges pixels detected by the
algorithm, d(k ) denotes the distance from the k th detected edge pixel to the nearest ground-truth edge pixel,
and a is a scaling constant, set to 1/9 as in Pratt’s work. The metric ranges from 0 to 1, with 1 being the best
obtainable result, which means that the ground-truth and the detected result are identical. As the threshold is
varied, the best result obtained is used for evaluation [37].

Along with the BSDS image database, [1] delivers a benchmark, in which the ground-truth data is compared
to machine generated output using Precision-Recall Curves. Precision measures the probability that a machine-
generated boundary pixel is a true boundary pixel, while Recall gauges the probability that a true boundary pixel
is detected, i.e. the amount of ground-truth captured by an algorithm. Again, in order to obtain binarized edge
maps from the algorithm’s edge fitness output, Precision and Recall are calculated for a set of varied thresholds,
which captures the trade-off between the accuracy and noise, i.e. the false-positives and the true-negatives.

To approximate the Precision-Recall Curves’ optimal trade-off, the F-Measure is calculated for each thresh-
old. The F-measure is the harmonic mean of Precision and Recall, calculated by

F =
2 · Precision · Recall
Precision + Recall

.

Another well-known metric in image evaluation is the Receiver-Operator-Characteristic, or ROC-Curves,
whose axes are called Fallout and Recall. These metrics are comparable to the Precision-Recall metric. The

11



Recall is defined identically in both metrics. Fallout measures the probability that a true negative was labeled
a false positive. Just as the PR-Curve, the ROC-Curve is a graphical plot that displays the performance of
a binary classifier system with a varied binarization threshold. However, the definition of the Fallout makes
the ROC-Curves dependent on the image resolution, while the Precision-Recall Curves have the advantage of
being scale-invariant [39] and are therefore preferred.

The BSDS benchmark delivers three major quantities: first the Optimal Dataset Scale (ODS), which is best
F-measure on the dataset for a fixed scale or threshold, second the Optimal Image Scale (OIS), which is the
aggregate F-measure on the dataset for the best scale in each image, and third the Average Precision (AP) on
the full Recall range, which is equivalently the area under the Precision-Recall Curve.

5.2 Examples and Discussion

The BSDS image dataset is partitioned in images for training, testing, and validation. For the evaluation, we
ran the algorithm on the test- and validation-set of 300 images overall. We used the training set to empirically
find the optimal parameters for the weighting factors α and β of the agent dissimilarity values, which were set
to α = 0.35 and β = 0.65.

Initial experiments revealed that the negotiation mechanism delivers an overall improvement of 0.01 for the
ODS and OIS values compared to the initial connection estimates. This indicates that the initial Boundary
Model estimates, relying on the Dissimilarity Value (see Subsection 4.3.1) and on the rule that only connections
acknowledged by the neighbors are used, are generally sound. While the negotiation does not significantly
improve the overall result in the complete dataset, we could observe slight improvements in ambiguous image
areas, where the initial estimates of the agents were misleaded by e.g. textures.

Figures 7 to 10 present example images categorized into four different categories, each along with the
ground-truth, our resulting boundary images, and the corresponding Precision-Recall Curves with the optimal
F-measure. Figure 7 shows example images, where the algorithm performs well, as the picture content is quite
distinguishable and consists of salient regions. The performance on the images displayed in the introduction
(see Figure 8) is similar to the average performance over the entire image set. The image content includes a
balanced mixture of strong edges, salient regions, and also cluttered or textured regions.

The three example images of Figure 9 contain a considerable amount of textured regions, which leads to a
significant performance loss of our algorithm. This is due to the fact, that textures are not explicitly considered
when calculating the boundary estimates. An improvement is to expect, when the agents are extended to
incorporate texture cues like Textons, or Local Binary Patterns into the Dissimilarity Value formula. Furthermore,
examining the image information inside an agent’s neighborhood for repeating patterns texture-like structures
seems promising. We will investigate both approaches in future work.

In [39] the authors argue that contour detection, while being closely related, is not perfectly the same as
boundary detection. They state that contours, which might be important in terms of the image content do
not necessarily have to be region boundaries, and might thus be excluded in boundary detection. The three
example images in Figure 10 illustrate the difference between boundaries and contours. It is obvious that our
algorithm detects contours rather than boundaries, e.g. the single windows in the left picture, or the black and
white stripes of the zebras. While extracting these salient contours might be desirable in some applications, it
significantly degrades the performance of our algorithm with regard to boundary detection, as can be seen in
the PR-Curves. To a certain extent, these misleading detections might supposedly be alleviated by considering
textures, as stated above. For further elimination, additional information, e.g. in form of object or appearance
models, knowledge, or training might become necessary.

5.3 Comparison

Table 1 shows the results for the FoM metric of our boundary detector, in comparison with the method from
[3], and the Canny Detector. It displays the mean FoM and standard deviation, calculated over the BSDS test
dataset. The method from [3] expectably performs best in terms of the FoM measure, our algorithm operates
slightly better than the Canny edge detector.

The lower part of Table 2 confirms the trend of the FoM measure, with the method of [3] performing best,
followed by our algorithm, which works better than the Canny method. Table 2 additionally shows a comparison

12



Method mean FoM Std.Dev
gPb-owt-ucm [3] 0.6815 ± 0.11422

our algorithm 0.50242 ± 0.11611
Canny 0.49208 ± 0.13758

Table 1: Results of Pratt’s Figure of Merit (FoM) measure for the gPb-owt-ucm method described in [3], our algorithm and
the Canny detector, mean and standard deviation calculated over the BSDS 500 test dataset.

of other segmentation methods, provided by [3]. The compared methods besides gPb are originally described
in [40], [5], [6], and [9].

BSDS300 BSDS500
ODS OIS AP ODS OIS AP

Human 0.79 0.79 − 0.80 0.80 −
[3] gPb-owt-ucm 0.71 0.74 0.73 0.73 0.76 0.73
[9] Mean Shift 0.63 0.66 0.54 0.64 0.68 0.56

[6] NCuts 0.62 0.66 0.43 0.64 0.68 0.45
[3] Canny-owt-ucm 0.58 0.63 0.58 0.60 0.64 0.58

[5] Felz-Hutt 0.58 0.62 0.53 0.61 0.64 0.56
[40] SWA 0.56 0.59 0.54 − − −

gPb 0.70 0.72 0.66 0.71 0.74 0.65
our algorithm 0.60 0.63 0.52 0.63 0.65 0.57

Canny 0.58 0.62 0.58 0.60 0.63 0.58

Table 2: Boundary benchmark results on the BSDS300 and BSDS500, for seven different segmentation methods in the
upper Table and two contour detectors plus our algorithm in the lower Table, taken from [3]. As our method is a boundary
detector, we added its results in the lower Table. The values represent the F-measures using an optimal scale for the entire
dataset (ODS) or per image (OIS). The area-precision is expressed in (AP).

Our tests reveal results that are quite promising, keeping in mind, that e.g. the gPb method of [3] is a highly
advanced and sophisticated concept, developed and refined over several years, which explicitly considers e.g.
texture information and also benefits from training phases.

Similarly, most of the methods compared in Table 2 utilize further image cues. As stated in Section 5.2, our
method does not yet explicitly apply texture information but we are confident, that we could further improve our
results by integrating more image information.

5.4 Computation time

Two parameters have principal influence on the computation time of our algorithm. The first is the number
of agents N, which in turn depends on the image size, resulting in 1

3 × H × W as worst case. The second
influence is the number of negotiations, where in a worst case scenario negotiations would run until any agent
has checked all its possible models. The number of negotiations directly depends on the maximum number of
possible models M. Thus, the runtime of the algorithm is linearly dependent as O(N ·M).

We ran our algorithm on an Intel Core 2 Quad CPU Q6600, 2.39 Ghz and 3 GB of RAM, implemented in
MATLAB. We used a mex-File to implement the negotiation part in C, besides that no further code optimization
was utilized. Our algorithm ran with 5.74 seconds on average per 481 × 321-image. For comparison, the

13



gPb-method from [3] demands around four minutes of of computation time for one image of the dataset using a
regular C implementation. As stated in [41], the computation time of the gPb-method was reduced to 1.8 sec-
onds utilizing parallelized GPU implementation. Thus, we believe that the computational speed of our method
is advantageous when it comes to time-dependant applications.

6 Conclusion

In this work, we present a novel algorithm that uses a set of distributed agents and the principles of Swarm
Intelligence to detect contours in images. Instead of optimizing a single existing task, our method seeks to
analyze image content from scratch.

In a nutshell, the main contribution of our approach include (1) a moving rule, which by distributing the
agents on the entire image in locally potentially meaningful positions creates a dynamic mesh; (2) a set of local
analyze- and communication-tools that help agents to cooperatively decide on image contours based on their
local environment; (3) a set of novel fitness functions, and an interactive negotiation rule leading to an overall
best decision between the agents.

Contrary to recent methods, the algorithm does neither need any explicit object models nor training phases,
or user-defined prior knowledge. The promising results of our experiments in the field of boundary detection
indicate that the interaction of agents can lead from local segments to robust globally valid contours.

Further effort has to be spent on the agents’ capability to deal with ambiguous regions, like texture and
smooth transitions of regions. We will seek for methods to push the algorithm from contour to towards boundary
detection. In order to step from boundary detection to image segmentation, we want to establish a version of
the algorithm, in which agents can explicitly deal with contour junctions and also seek to close contours.

References

[1] D. Martin, C. Fowlkes, D. Tal, J. Malik, A database of human segmented natural images and its application
to evaluating segmentation algorithms and measuring ecological statistics, in: International Conference on
Computer Vision, 2001, pp. 416–423.

[2] D. Martin, C. Fowlkes, J. Malik, Learning to detect natural image boundaries using local brightness, color,
and texture cues, IEEE Transactions on Pattern Analysis and Machine Intelligence 26 (5) (2004) 530 –549.

[3] P. Arbelaez, M. Maire, C. Fowlkes, J. Malik, Contour detection and hierarchical image segmentation, IEEE
Transactions on Pattern Analysis and Machine Intelligence 33 (5) (2011) 898–916.

[4] S. Thilagamani, N. Shanthi, A survey on image segmentation through clustering, International Journal of
Research and Reviews in Information Sciences 1 (1) (2011) 16–19.

[5] P. F. Felzenszwalb, D. P. Huttenlocher, Efficient graph-based image segmentation, International Journal of
Computer Vision 59 (2) (2004) 167–181.

[6] T. Cour, F. Benezit, J. Shi, Spectral segmentation with multiscale graph decomposition, in: IEEE Confer-
ence on Computer Vision and Pattern Recognition, 2005, pp. 1124 – 1131.

[7] W. Cui, Z. Guan, Z. Zhang, An improved region growing algorithm for image segmentation, in: International
Conference on Computer Science and Software Engineering, 2008, pp. 93 – 96.

[8] J. Chang, J. Fisher, Efficient mcmc sampling with implicit shape representations, in: IEEE Conference on
Computer Vision and Pattern Recognition, 2011, pp. 2081 –2088.

[9] D. Comaniciu, P. Meer, Mean shift: a robust approach toward feature space analysis, IEEE Transactions
on Pattern Analysis and Machine Intelligence 24 (5) (2002) 603 –619.

[10] J. Chen, T. Pappas, A. Mojsilovic, B. Rogowitz, Adaptive perceptual color-texture image segmentation,
IEEE Transactions on Image Processing 14 (10) (2005) 1524 – 1536.

14



[11] N. Senthilkumaran, R. Rajesh, Edge detection techniques for image segmentation – a survey of soft com-
puting approaches, International Journal of Recent Trends in Engineering 1 (2) (2009) 250–254.

[12] Y. Ramadevi, T. Sridevi, B. Poornima, B. Kalyani, Segmentation and object recognition using edge detec-
tion techniques, International Journal of Computer Science & Information Technology 2 (6) (2010) 153–
161.

[13] W. Ma, B. S. Manjunath, Edgeflow: a technique for boundary detection and image segmentation, IEEE
Transactions on Image Processing 9 (8) (2000) 1375–1388.

[14] H. Wang, J. Oliensis, Generalizing edge detection to contour detection for image segmentation, Computer
Vision and Image Understanding 114 (7) (2010) 731 – 744.

[15] K. Hammouche, M. Diaf, P. Siarry, A multilevel automatic thresholding method based on a genetic algorithm
for a fast image segmentation, Comput. Vis. Image Underst. 109 (2) (2008) 163–175.

[16] S. Das, S. Sil, Kernel-induced fuzzy clustering of image pixels with an improved differential evolution
algorithm, Inf. Sci. 180 (8) (2010) 1237–1256.

[17] C.-Y. Lee, J.-J. Leou, H.-H. Hsiao, Saliency-directed color image segmentation using modified particle
swarm optimization, Signal Processing 92 (1) (2012) 1 – 18.

[18] L. Li, D. Li, Fuzzy entropy image segmentation based on particle swarm optimization, Progress in Natural
Science 18 (9) (2008) 1167 – 1171.

[19] D. Feng, S. Wenkang, C. Liangzhou, D. Yong, Z. Zhenfu, Infrared image segmentation with 2-d maximum
entropy method based on particle swarm optimization (pso), Pattern Recognition Letters 26 (5) (2005)
597–603.

[20] S. Saatchi, C.-c. Hung, Swarm Intelligence: Focus on Ant and Particle Swarm Optimization, Itech Educa-
tion and Publishing, Vienna, Austria, 2007, Ch. Swarm intelligence-based image segmentation, pp. 163 –
178.

[21] S. A. Etemad, T. White, An ant-inspired algorithm for detection of image edge features, Applied Soft Com-
puting 11 (8) (2011) 4883 – 4893.

[22] M. Setayesh, M. Zhang, M. Johnston, Edge detection using constrained discrete particle swarm optimisa-
tion in noisy images, in: Evolutionary Computation (CEC), 2011 IEEE Congress on, 2011, pp. 246 –253.

[23] G. Beni, J. Wang, Swarm intelligence in cellular robotic systems, in: NATO Advanced Workshop on Robots
and Biological Systems, 1989, pp. 26–30.

[24] W. Yong, C. Jun, Using ant swarm intelligence for data clustering analysis, in: 2nd IEEE International
Conference on Computer Science and Information Technology, 2009, pp. 429 –432.

[25] A. V. Baterina, C. Oppus, Image edge detection using ant colony optimization, WSEAS Transactions on
Signal Processing 6 (2) (2010) 58–67.

[26] A. Amali Asha, S. Victor, A. Lourdusamy, Feature extraction in medical image using ant colony optimization
: A study, International Journal on Computer Science and Engineering 3 (2) (2011) 714–721.

[27] E. Lakehal, A swarm intelligence based approach for image feature extraction, in: International Conference
on Multimedia Computing and Systems, 2009, pp. 31 –35.

[28] U. Kirchmaier, S. Hawe, K. Diepold, Dynamical information fusion of heterogeneous sensors for 3d tracking
using particle swarm optimization, Information Fusion 12 (4) (2011) 275 – 283.

[29] J. Kennedy, R. Eberhart, Particle swarm optimization, in: IEEE International Conference on Neural Net-
works, 1995, pp. 1942–1948.

15



[30] A. Colorni, M. Dorigo, V. Maniezzo, Distributed optimization by ant colonies, in: Proceedings of the First
European Conference on Artificial Life, 1992, pp. 123–142.

[31] F. M. A. Mohsen, A new optimization-based image segmentation method by particle swarm optimization,
International Journal of Advanced Computer Science and Applications Special Isssue (Image Processing
and Analysis) (2011) 10–18.

[32] C. White, G. Tagliarini, S. Narayan, An algorithm for swarm-based color image segmentation, in: IEEE
SoutheastCon, 2004, pp. 84 – 89.

[33] J. Liu, Y. Y. Tang, Adaptive image segmentation with distributed behavior-based agents, IEEE Transactions
on Pattern Analysis and Machine Intelligence 21 (6) (1999) 544–551.

[34] X. Liu, D. Wang, A spectral histogram model for textons and texture discrimination, in: International Joint
Conference on Neural Networks, Vol. 2, 2001, pp. 1083 –1088 vol.2.

[35] R. Unnikrishnan, C. Pantofaru, M. Hebert, Toward objective evaluation of image segmentation algorithms,
IEEE Transactions on Pattern Analysis and Machine Intelligence 29 (6) (2007) 929–944.

[36] M. Polak, H. Zhang, M. Pi, An evaluation metric for image segmentation of multiple objects, Image and
Vision Computing 27 (8) (2009) 1223–1227.

[37] W. K. Pratt, Digital Image Processing, 3rd Edition, John Wiley & Sons Interscience, New York, 2001.

[38] K. Bowyer, C. Kranenburg, S. Dougherty, Edge detector evaluation using empirical roc curves, Computer
Vision and Image Understanding 84 (1) (2001) 77 – 103.

[39] G. Papari, N. Petkov, Edge and line oriented contour detection: State of the art, Image and Vision Com-
puting 29 (2-3) (2011) 79–103.

[40] E. Sharon, M. Galun, D. Sharon, R. Basri, A. Brandt, Hierarchy and adaptivity in segmenting visual scenes,
Nature 42 (7104) (2006) 810–813.

[41] B. Catanzaro, B.-Y. Su, N. Sundaram, Y. Lee, M. Murphy, K. Keutzer, Efficient, high-quality image contour
detection, in: Computer Vision, 2009 IEEE 12th International Conference on, 2009, pp. 2381 –2388.

16



0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

F(0.74,0.74)= 0.74

0.4 0.5 0.6 0.7 0.8 0.9 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

F(0.74,0.76)= 0.75

0 0.2 0.4 0.6 0.8 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

F(0.87,0.74)= 0.8

Figure 7: Three sample images with distinctive content from the Berkeley Image Segmentation Dataset (BSDS 500) [3].
From top to bottom: the original images, the summed ground-truth images, the result images and the precision-recall curves
of our algorithm.

17



0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

F(0.74,0.7)= 0.72

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

F(0.76,0.59)= 0.67

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

F(0.76,0.63)= 0.69

Figure 8: Three sample images from the introduction Section, which yield to average performance with regard to the overall
results. Taken from the Berkeley Image Segmentation Dataset (BSDS 500) [3]. From top to bottom: the original images, the
summed ground-truth images, the result images and the precision-recall curves of our algorithm.

18



0 0.2 0.4 0.6 0.8 1

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Recall

P
re

ci
si

on

F(0.82,0.3)= 0.43

0 0.2 0.4 0.6 0.8 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

F(0.59,0.5)= 0.54

0 0.2 0.4 0.6 0.8 1

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

F(0.72,0.46)= 0.56

Figure 9: Three sample images containing strong texture. Taken from the Berkeley Image Segmentation Dataset (BSDS
500) [3]. From top to bottom: the original images, the summed ground-truth images, the result images and the precision-
recall curves of our algorithm.

19



0 0.2 0.4 0.6 0.8 1
0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

Recall

P
re

ci
si

on

F(0.71,0.21)= 0.33

0 0.2 0.4 0.6 0.8 1
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Recall

P
re

ci
si

on

F(0.67,0.3)= 0.41

0.4 0.5 0.6 0.7 0.8 0.9 1
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Recall

P
re

ci
si

on

F(0.49,0.67)= 0.57

Figure 10: Three sample images containing strong contours that are not boundaries. Taken from the Berkeley Image
Segmentation Dataset (BSDS 500) [3]. From top to bottom: the original images, the summed ground-truth images, the
result images and the precision-recall curves of our algorithm.

20


	Introduction
	Related Work
	Principles of Swarm Intelligence
	SI Contour Detection Algorithm
	Local View
	Analyzing Window
	Positioning Window
	Communication Window

	Movement
	Initial Contour Model
	Agent Dissimilarity Value
	Contour Model Fitness
	Contour Position Fitness

	From Local Models to Global Contours
	Conflicts between Contour Models
	Negotiation on Contour Models
	Negotiation on Contour Position


	Experiments and Results
	Evaluation Dataset and Metrics
	Examples and Discussion
	Comparison
	Computation time

	Conclusion

