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Abstract

Experiments on the time-periodic uniform forcing of an oscillating quasi-1D medium
close to a nontrivial Hopf bifurcation were performed. The oscillatory system is the
oxidation of H2 on a Pt ring-electrode in the presence of poisons and negative global
coupling. The results were compared to simulations based on the forced complex
Ginzburg-Landau equation. Besides, stochastic oscillations occurring at different
conditions for the unforced system are reported and their stability range is studied.
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Chapter 1

Introduction

Synchronization phenomena are widely encountered in nature and various fields of
science. Examples of oscillators which adjust their frequency and phase as a response
of their interaction with other oscillators or an external periodic force range from a
simple system such as a driven damped pendulum to swarms of fireflies where groups
of flies light up in synchrony as a result of mutual interactions. In many cases, this
external influence appears in the form of a time-periodic external forcing. Circadian
rhythms in our body with frequencies close to 24 hours, which are entrained by the
24-h day-night periodicity provide well known examples of forced systems. Hence,
understanding the influence of extrinsic perturbation on autonomous oscillators is
of great theoretical and practical importance.

The history of studying synchronization dates back to the 17th century when Chris-
tiaan Huygens described a synchronization process of two pendulum clocks on the
wall [1]. Since then, the investigation of the interaction of two or more coupled
oscillators or the influence of an external perturbation on self-sustained oscillators
has been the focus of many experimental and theoretical works in various fields of
science [2–4]. An oscillating system subject to an external time-periodic forcing ex-
hibit predominantly two types of behavior. The driven dynamical system may be
entrained by the external forcing. In this case the ratio of the response frequency
to the driving frequency are (small) rational numbers. Or, the system may exhibit
a quasiperiodic or so-called unlocked behavior. The parameter regions of the en-
trained and unlocked responses depend sensitively on two parameters: on the ratio
of the natural frequency of the unperturbed oscillator and the forcing frequency and
the forcing strength. In the parameter plane spanned by the frequency ratio-forcing
strength, the entrained regions have a tongue-like form that starts with zero width
at all rational numbers

m

n
for zero forcing strength and opens up with increasing

strength. These regions are often referred to as Arnold tongues . Most of the inves-
tigations of forced oscillating systems have been focused on the response of single
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4 1. Introduction

oscillators, which are well understood [5–9]. However, in comparison, there has been
little analysis of synchronization phenomena in spatially extended oscillating media.
An spatially extended system can be thought of as being composed of several in-
dividually acting single oscillators, which exchange information among each other
via a coupling in space. Examples of investigations of frequency locking in spatially
distributed systems include cardiac activity [10], autocatalytic surface reaction [11],
liquid crystals [12] and chemical reactions [13].

As far as chemical oscillators are concerned, many studies in theory and experiment
have been focused on reaction-diffusion systems. About two decades ago Swinney
et al. published a report on spatiotemporal patterns that appear when subjecting
the quasi-two dimensional light-sensitive Belousov-Zhabotinsky (BZ) reaction, to
periodic optical forcing [13]. Their studies were motivated by a theoretical analysis
showing that an array of coupled nonlinear oscillators under external forcing can ex-
hibit spatial reorganization [14]. Later, Anna Lin et al. performed a detailed study
of various resonance regions such as 2:1, 3:1 and 4:1 entrainment bands, resulting
from the periodic forcing the of the light-sensitive BZ reaction [15–17]. Moreover, the
resonant responses around the 2:1, 3:1 and 4:1 forcing parameters were also theoret-
ically investigated [17–20]. The theoretical studies are based on the assumption that
the unforced dynamical system is close to the onset of oscillations more precisely
close to a Hopf bifurcation. In the vicinity of the Hopf bifurcation, the spatially
extended oscillating system is governed by a universal equation for the complex am-
plitude of the oscillations, called the complex Ginzburg-Landau equation (CGLE).
In this equation a diffusion term accounts for the diffusive spatial coupling among
the different locations, or oscillators of the spatially extended system. Furthermore,
for theoretical studies of frequency locking in spatially distributed systems, a term
that accounts for the externally applied forcing is added to the CGLE.

The unforced oscillations in the works mentioned above are caused by a ’trivial’ Hopf
bifurcation where a spatially uniform mode starts oscillating around an unstable sta-
tionary state. The resulting uniform oscillations can be either stable or unstable. In
the first case, the system is called ’Benjamin-Feir (BF)’ stable. In the second case, a
spatiotemporal incoherent BF-unstable state develops. When BF-stable systems are
subject to a time-periodic forcing the oscillations establish a defined phase relation
to the forcing signal and around the 1:1 resonance their response is similar to the
behavior of single oscillators subject to external forcing. In other resonance regions,
the entrained state might be patterned.

In the above mentioned examples the spatially extended system is coupled through
diffusion. The influence of the spatial coupling present in the system has been the



5

subject of extensive studies [21–24]. These studies of pattern formation phenomena
in spatially distributed systems have shown that dynamics of the system and thus,
the pattern formation phenomena are strongly influenced by the nature and strength
of the spatial coupling. In addition to the diffusion coupling, whose influence is local,
electrochemical systems can be coupled non-locally and globally. A spatial coupling
is termed local when a perturbation at a specific location on the electrode, is only
felt by the neighboring sites. The non-local coupling, on the other hand, acts in
such a way that also the locations further away from the perturbation are affected.
However, this influence decreases with the distance from the location of perturba-
tion. In other words, positions close to the perturbation are affected with a higher
strength than those further away. The dominant coupling in the electrochemical
systems is non-local. The non-local coupling is mediated by the electric potential
in the electrolyte and is termed as migration coupling. In contrast, in the presence
of a global coupling the perturbation affects all locations of the electrode equally,
independent of their relative position to the location of the perturbation. Global
coupling can be induced by the operation mode of an electrochemical measurement.
Performing measurements under galvanostatic control induces a synchronizing or
positive global coupling, whereas compensating part of the cell resistance during
measurements under potentiostatic control induces a negative or desynchronizing
global coupling to the system [25, 26]. A wide range of studies on electrochemi-
cal pattern formation in the presence of negative global coupling have shown that
it may lead to the appearance of a rich variety of patterns such as stationary do-
mains [26, 27], standing waves [28, 29] and pulses [28, 30, 31]. The negative global
coupling causes the occurrence of wave instabilities which break both the temporal
and spatial symmetry of the homogeneous state, in contrast to the (uniform) Hopf
bifurcation which only breaks the temporal symmetry of this state. Since a wave
instability is related to a pair of complex eigenvalues corresponding to eigenmodes,
it might be referred to as ’non-trivial’ Hopf bifurcation.

Depending on the reaction dynamics, a non-trivial Hopf bifurcation leads to stand-
ing or traveling wave solutions. When a traveling wave is subject to a spatially
uniform periodic forcing, it is easy to see that there are qualitative difference to
systems close to a trivial Hopf bifurcation. If the system is viewed as being com-
posed of infinitely many local oscillators, the phase of the oscillators of the base
state are 2π distributed. If one of these oscillators adjusts its phase such that the
phase difference to the forcing signal is the ’preferred one’, all the other locations has
to accommodate less favorable phase differences. When viewing the traveling wave
as being the result of the superposition of a spatial sine-mode and its 90 ◦ shifted
cosine-mode, the problem can be expressed in terms of phase relations between the
two time dependent coefficients of the modes and the forcing signal. Again, only
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one of the coefficients can adjust as expected for a driven oscillator while the other
one is forced to take on a less favorable phase difference. Thus, it is not obvious at
all how the traveling wave solution responds to a uniform external forcing. Experi-
ments such as those performed by forcing the traveling waves that appear in liquid
crystals [12] or the traveling waves produced by a long hot wire located underneath
and parallel to the free surface of a liquid [32], have addressed this problem. Theo-
retical studies have also followed these experiments [33]. Yet, we are far from deeper
understanding of forced traveling waves.

A major focus of this work is dedicated to the to investigation of the influence of
a time-periodic external signal on the traveling pulses that appear in an electro-
chemical oscillating system in the presence of a negative global coupling. During
the experiments of this work, we try to provide an answer to the question of how
the interplay between an externally applied forcing and a desynchronizing global
coupling can affect the existing patterns or result in the formation of new spa-
tiotemporal patterns. The unforced oscillating system of this work is a prototype
electrochemical oscillator in the presence of negative global coupling. The system is
the electrooxidation of H2 on a Pt ring-electrode in the presence of poisons, namely
Cu2+, as cation, and Cl− or Br− as anion. The potentiostatic current oscillations
in this system result from the competition of the cation and anion for free sites on
the Pt electrode, which is due to the overlap of their adsorption isotherms. This, in
turn, causes a decrease in the H2 oxidation on the electrode surface. In the absence
of negative global coupling the system is coupled by migration. The homogeneous
dynamics of this system in the presence of migration coupling has been studied in
detail before [34]. When compensating part of the cell resistance in the measure-
ments a negative global coupling is induced to the system. The reference state of the
system was adjusted where phase pulses prevail that travel around the ring-electrode
with a constant velocity. The phenomena of frequency locking in this system were
then investigated by adding a small sinusoidal variation to the applied voltage. The
responses of this oscillating system around the 1:1, 2:1 and 1:2 resonance regions
were measured experimentally. Specific features of each entrainment band and the
resonant patterns that appear were studied and characterized.

When replacing the Cl− anions by Br− anions, the dynamic behavior of the un-
forced system changed qualitatively. During the non-stationary measurements sev-
eral different types of oscillations occurred. Furthermore, stationary measurements
indicated that contrary to the oscillations observed in the presence of Cl−, these
oscillations possess no intrinsic frequency and are of a stochastic nature. These
stochastic oscillations provide a second interesting reference state for the study of
the response of the system to a global coupling as well as periodic forcing. Appealing
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questions are here whether the global coupling suppresses the localized oscillation
events and in which frequency range applying a periodic forcing results in a pe-
riodic response. Since this dynamic reference state has to my knowledge not been
reported in the literature, these problems present a completely open area of research.

The structure of the thesis is as follows. In chapter 2 the basic concepts neces-
sary for understanding the experimental results are presented. Chapter 3 gives a
description of the experimental setup and the parameters used for performing the
measurements. In chapter 4 the focus lies on the influence of external forcing on the
dynamics of hydrogen oxidation on a Pt ring-electrode in the presence of a negative
global coupling. In addition to depicting the experimentally measured 1:1, 2:1 and
1:2 entrainment bands and a detailed discussion of the resonance patterns in each
parameter regime, a theoretical model is presented which reproduced many features
of the experimental results. Chapter 5 describes the phenomena observed during the
oxidation of H2 on Pt ring-electrode in the presence of Cu2+ and Br−. A summary
of the main results is given in chapter 6.
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Chapter 2

Background

This chapter provides a brief introduction into the concepts required to understand
the experiments and results in the following chapters. The first section shortly
describes the properties of electrochemical cells and the metal/liquid interface. In
the second section some basic concepts of nonlinear phenomena in electrochemistry
such as the occurrence of bistability and oscillations are summarized. The third
section introduces the different mechanisms of spatial coupling in electrochemical
systems. In the fourth section the electrochemical system which has been studied
in this work is presented, and the last section gives a brief insight into the basic
concepts of external forcing.

2.1 Electrochemistry

2.1.1 The electrochemical setup

Figure 2.1(a) depicts a general setup of an electrochemical experiment with three
electrodes. The electrochemical reactions of interest occur at the surface of the
working electrode (WE), and the interface between the working electrode and the
electrolyte is the focus of our interest. In a three electrode cell arrangement the cur-
rent flows between the working and the counter electrode (CE). Faradaic reactions
at the WE and CE mediate a transition between an ionic current in the electrolyte
and an electronic current through the electrical circuit. The potential of the WE
is measured with respect to the reference electrode (RE) which provides a fixed
potential. The potential difference between the WE and the RE is controlled by a
potentiostat (which will be explained later) and is ideally not affected by the cur-
rent flowing between the working and the counter electrode. The set voltage, U, is
composed of the double layer potential, Φdl , and the ohmic drop in the electrolyte.
Figure 2.1(b) shows an equivalent circuit of an electrochemical cell. The potential
drop at the electrode/electrolyte interface is called the double layer potential or the

9



10 2. Background

Figure 2.1: (a) Schematic setup of a three electrode electrochemical cell. (b)
Equivalent circuit of the electrochemical cell, Φdl is the potential drop at the WE,
Cdl the double layer capacitance, Z a general faradaic impedance and R, the ohmic
resistance of the electrolyte between WE and RE.

interfacial potential. The double layer potential will be described in detail in the
next section. From figure 2.1(b) it is obvious that across the electrode/electrolyte
interface the current can take two pathways, a capacitive or a faradaic route. The
electrolyte behaves like an ohmic resistor. In many situations only the resistance
between the WE and the RE is important. This resistance is often called the un-
compensated cell resistance, Ru, while the entire cell resistance is called RΩ and
the difference between RΩ and Ru is the compensated resistance: Rc = RΩ - Ru.
Throughout this thesis, whenever distinguishing between Ru and RΩ is not essential
for the discussion, Ru is referred to as R.

2.1.2 The double layer potential

Different electronic properties of a metal and a liquid give rise to the redistribu-
tion of ions and charges at the interface between the metal and the electrolyte. At
the electrode side, the high conductivity of the metal prevents the formation of an
extended charge region and depending on excess or deficiency of electrons, a thin
charge layer of less than 0.1 Å forms. In the electrolyte, on the other hand, the
rearrangement of ions changes the electrostatic properties at the interface in such
a way that an excess of positive or negative ions accumulate close to the electrode
surface, compensating for the charge on the electrode.

Helmholz was the first who introduced a model of the double layer. In this model
Helmholtz assumes that the ions in the electrolyte can be considered as parallel
layers.

Figure 2.2 displays the electrode/electrolyte interface with the ionic layers on the
electrolyte side. The closest layer to the metal surface, called the inner Helmholtz
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Figure 2.2: Schematic picture of different layers at the metal/electrolyte interface.
The orange and blue circles indicate cations and anions respectively.

plane (IHP), is composed of solvent molecules and specifically adsorbed species.
The IHP is defined by an imaginary plane going through the center of charge of
the specifically adsorbed ions. The next nearest plane, the outer Helmholtz plane
(OHP), is defined by the center of the closest solvated ions. The region between
OHP and the bulk, where the electrolyte properties are still affected by the presence
of the metal electrode, is called the diffuse layer. The thickness of this third layer
depends on the charge carrier density, i.e., the concentration of the electrolyte. For
highly concentrated electrolytes the diffuse layer almost vanishes.

The charge redistribution causes a potential drop across the compact and diffuse
layers in the electrolyte which is called the double layer potential, Φdl. This vari-
able plays an important role in the study of most electrochemical systems far from
equilibrium [35–38]. Also in this work potential patterns at the electrode/electrolyte
interface and their time evolution are studied.

2.2 Homogeneous dynamics

When discussing nonlinear phenomena in electrochemical systems it is necessary to
include the interfacial electrode kinetics. The reason is that almost all pattern form-
ing electrochemical systems show a region of negative differential resistance (NDR)
in their current-voltage characteristic curve, and most instabilities encountered in
these systems are associated with the NDR. The most frequent type of NDR is the N-
NDR which possesses an the N-shaped NDR in its I/Φdl characteristics. Koper [38]
has shown that the NDR can have three origins:
1. dA/dΦdl < 0, A being the active electrode area. This could be due to potential-
dependent adsorption of a species that increases with increasing overpotential and
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blocks the surface and inhibits the reaction.
2. dk/dΦdl < 0, k being the rate constant. When adsorption of a certain species
that increases the activation energy is favored at higher overpotentials the electron
transfer rate decreases with increasing polarization.
3. dc/dΦdl < 0, c being the concentration of the active species. The depletion of the
electro-active species involves more complex models of the double layer potential,
as at first pointed out by Frumkin [39,40].

In the electrochemical system discussed here, different adsorbing species compete
and block the active surface area and give rise to the occurrence of an N-shaped
NDR in the I/Φdl curve.

Figure 2.3(a) displays schematically the I-Φdl characteristic of an N-NDR system.
In some electrochemical systems the NDR is only observed in a subsystem and the
negative differential resistance is partially or completely hidden by a second poten-
tial dependent process in the stationary polarization curve. These systems are called
HN-NDR (H for hidden) systems.

2.2.1 Bistability

The dynamic behavior of N-NDR systems that exhibit bistability can be deter-
mined by the time evolution of the double layer potential. In these systems the
NDR branch (or the middle branch) of the N-shaped I/Φdl polarization curve gives
rise to a self-enhancing process or a positive feedback loop, in which every change
in Φdl is enhanced. In N-NDR systems bistability is encountered both under gal-
vanostatic and potentiostatic control, provided R is larger than a critical value in
the potentiostatic case. Here, we consider the situation under potentiostatic control.
Considering the equivalent circuit in figure 2.1(b), the potential control keeps U i.e.,
the sum of Φdl and I*R constant. Eq. 2.1 shows the charge balance of this circuit
that is obtained by applying Kirchhoff’s law.

Cdl
dΦdl

dt
+ IF =

U − Φdl

R
(2.1)

Here Cdl is the capacitance of the double layer, Φdl the double layer potential, U
the externally applied voltage, R the sum of all external ohmic resistances and IF
the faradaic current. Any fluctuation of Φdl on the NDR branch to larger values
leads to a decrease of IF , on the one hand, and of I, the total current through the
electrolyte, on the other hand. If the decrease of the faradaic current exceeds the
positive capacitive current, Φdl is driven towards larger values and the fluctuation
is enhanced, otherwise it decays. Therefore the stability of the branch depends on
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Figure 2.3: (a) N-shaped I/Φdl curve with three load lines for three different U
values. The bistable region is bounded by the two outer load lines. (b) The char-
acteristic current-voltage curve corresponding to (a). The system goes through a
saddle-node (sn) bifurcation to enter the bistable region. (c) The two parameter
bifurcation diagram of an N-NDR system, in the external resistance vs. applied
voltage plane. The sn bifurcations show the boarders of the bistable region. Taken
from [41].

the ohmic resistance value.

The steady state solutions (dΦdl/dt = 0) of Eq. 2.1 can be obtained graphically by
plotting the load lines and I/Φdl in the same graph, as it is shown in figure 2.3(a).
The intersections of the load lines with the current-potential characteristic curve of
the electrode/electrolyte interface are the fixed points of the system. From figure
2.3(a) it is obvious that the system has three steady states in a certain parameter
range. The stability analysis of these fixed points shows that the system is stable
unless:

Z < 0 and R > |Z| (2.2)

where Z is the zero frequency faradaic impedance. From the first inequality of Eq.
2.2 it can be seen easily that instabilities can arise in a region with a negative differ-
ential resistance on the I/Φdl curve. The second one shows that when the sum of the
external resistances is larger than the faradaic impedance the steady states become
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unstable. Applying these stability criteria to the system shown in figure 2.3(a) we
see that the system possesses two stable fixed points on the outer branches of the
I/Φdl curve with a positive slope and one unstable fixed point on the middle branch
with the negative slope. Depending on the direction of the perturbation, the system
is driven from the unstable fixed point to either of the two stable steady states.

Figures 2.3(b) and (c) depict the current-voltage curve and the location of the
bistable parameter region in the R-U plane, respectively. Two saddle-node (sn)
bifurcations mark the boarder of the bistability region. Figure 2.3(c) shows the
saddle-node bifurcations separating the monostable and bistable regions. At higher
U and with increasing resistance the bistable region becomes broader.

2.2.2 Oscillations

As discussed above, bistable systems are characterized by a positive feedback loop in
Φdl. For oscillations to occur, the system requires at least another degree of freedom.
If a second slow process introduces a negative feedback loop to the system, with Φdl

being a member of the loop, it will start oscillating. Often oscillatory systems can
be described as so-called activator-inhibitor systems. The autocatalytic species, in
general the activator and in our case Φdl, activates the production of the inhibitor
species which, in turn, slows down or inhibits the growth of the activator and estab-
lishes the negative feedback loop.

x1

x2

µµc

Figure 2.4: Bifurcation diagram of a supercritical Hopf bifurcation.
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The occurrence of oscillations in a system points to the existence of a limit cycle in
phase space. A limit cycle is an isolated closed loop in phase space which is stable
if the neighboring phase space points are attracted to it and unstable if they are
repelled from it. The most common mechanism leading to the emergence of a limit
cycle is called a Hopf bifurcation. To understand the occurrence of a Hopf bifurca-
tion in activator-inhibitor system, consider the following set of ordinary differential
equations

u̇ = f(u, v, µ)

v̇ = g(u, v, µ)
(2.3)

with u the activator variable and v the inhibitor variable.

Let us assume that (u∗, v∗) = (0, 0) is the steady state of the system. Linearizion of
Eq. 2.3 around the steady state gives

∂u

∂t
= fuu+ fvv + h.o.t.

∂v

∂t
= guu+ gvv + h.o.t.

(2.4)

with the Jacobian matrix

J =

(∂f
∂u

∂f
∂v

∂g
∂u

∂g
∂v

) ∣∣∣
0,0
≡
(
fu fv
gu gv

)
(2.5)

The system undergoes a Hopf bifurcation at the parameter value µ = µc if at µc the
Jacobian has purely imaginary eigenvalues

λ1,2 = ±iω and

∂λi
∂µ

∣∣∣
µ=µc
6= 0

(2.6)

Figure 2.4 illustrates the bifurcation diagram of a supercritical Hopf bifurcation
where due to the variation of the parameter µ a limit cycle is born at the bifurcation
point, µc. The radius of the limit cycle and thus the amplitude of the oscillations,
grows proportional to

√
µ− µc in the vicinity of the bifurcation point.

Figure 2.5(a) shows a typical schematic picture of oscillations in an N-NDR sys-
tem. The R/U bifurcation diagram of an N-NDR system, which is depicted in figure
2.5(b) shows that in an N-NDR system oscillations are observed in a certain param-
eter region, at comparatively low values of U and R while for increasing resistance
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Bistable

Bistable
OscillatoryOscillatory

Figure 2.5: (a) Current oscillations of an N-NDR system on a branch with negative
slope. (b) Two parameter bifurcation diagram of (a) showing the oscillatory, bistable
and monostable regions. Oscillations arise only in a certain parameter range and are
absent under galvanostatic control. (c) A typical I/U curve of an HN-NDR system
where the NDR is hidden. (d) Bifurcation diagram corresponding to (c) showing
that above a certain threshold of R, oscillations exist. Taken from [41].

and voltage the system becomes bistable. For HN-NDR systems, where the NDR is
partially hidden (figure 2.5(c)), the bifurcation diagram looks qualitatively different.
Figure 2.5(d) shows that for such systems, in a suitable potential window, the oscil-
latory region is unbounded from above which implies that when the total resistance
becomes large enough and the system enters the oscillatory regime, the oscillations
continue as the resistance increases. Hence, HN-NDR systems can oscillate under
galvanostatic control where the resistance is infinitely high. This characteristic of
HN-NDR systems marks a significant difference to N-NDR systems which do not
oscillate under galvanostatic conditions.

Close to the Hopf bifurcation point, the oscillatory dynamics of an individual oscil-
lator can be mapped to the Stuart-Landau equation [42] shown in Eq. 2.7.

Ẇ = W − (1 + ic2) |W |2W (2.7)

where W is a complex order parameter and c2 is a measure of the dependence of the
oscillation frequency on the amplitude of the oscillation.
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2.3 Spatial coupling in electrochemical systems

Spatially extended systems can be assumed to be composed of many individual oscil-
lators which are coupled by some means. The collective behavior of these oscillators
has been the subject of many different studies. For such distributed oscillatory sys-
tems it is important to know how individual oscillators ’communicate’ among each
other or how they are coupled.

The electric field in the solution induces the basic spatial coupling mechanism in
electrochemical systems, the so-called migration coupling. However, in many cases,
this is not the only way in which the oscillators are coupled. The external control,
for instance, can introduce an additional coupling between different sites of the elec-
trode. Due to the control of the experiment the dynamics of different locations on
the electrode may depend on the average double layer potential which means that
any local variation in the double layer potential is ’felt’ with the same strength by
all other locations along the electrode, independent of their distance to the position
of the perturbation. This type of coupling is called global coupling. Diffusion is
another coupling mechanism in electrochemical systems which acts locally and will
be explained in the last section. In this section migration coupling and positive and
negative global coupling will be briefly introduced.

2.3.1 Migration coupling

When the system is coupled through the electric field of the electrolyte, reaction-
migration equations describe the local evolution of the double layer potential where
the dynamic equation for Φdl(x, t) can be written as the local charge balance at the
WE:

Csp
∂Φdl

∂t
= −iF − σ

∂Φe

∂z

∣∣∣∣
z=−w

(2.8)

In Eq. 2.8 Csp stands for the specific double layer capacitance (capacitance per unit
area), iF is the faradaic current density, σ the specific conductivity of the electrolyte,
z the spatial coordinate perpendicular to the working electrode and Φe represents
the electrical potential within the electrolyte. The last term on the right hand side
represents the migration current flowing into the double layer at the position -w,
which is at the WE. In the bulk solution it can be assumed that the concentration
and the conductivity are uniform and therefore the distribution of electric potential
is described by Laplace’s equation. The boundary conditions required for Laplace’s
equation bring about that the geometry of the system plays an important role for
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pattern formation in electrochemical systems [43].

Migration coupling is non-local which means that a local change affects different
locations at the electrode with different strength, depending on their distance from
the location of the perturbation, whereas in local or diffusive coupling only the
neighboring positions are affected by the changes. The non-locality can be under-
stood intuitively for migration coupling: due to the tendency of the electrolyte to
stay electroneutral any local variation in the interfacial potential influences the po-
tential distribution, and thus the electric field, in the whole electrolyte which, in
turn, affects different locations on the electrode. The coupling range decreases with
decreasing WE/CE distance [43] which is another evidence of the effect of the cell
geometry. For a laterally homogeneous potential distribution between the WE and
the CE, the last term in Eq. 2.8 can be reformulated:

− σ
∂Φe

∂z

∣∣∣∣
z=−w

=
σ

w
(Φe|z=0 − Φe|z=−w) =

σ

w
(U − Φdl) (2.9)

where Φe|z=0 = 0.

with Eq. 2.9, Eq. 2.8 can be written as

Csp
∂Φdl

∂t
= f(u,Φdl)− σ(

∂Φe

∂z

∣∣∣∣
z=−w

+
U − Φdl

w
) (2.10)

In Eqs. 2.9 and 2.10, z = 0 is at the position of the CE (and the RE accordingly,
since it is assumed to be in the same height as the CE). The function f(u,Φdl)

accounts for the homogeneous dynamics.

Christoph et al. [44,45] have described the migration coupling by introducing a cou-
pling function H that only depends on the geometry of the cell. With the help of a
Green function formalism they have expressed the potential distribution in the elec-
trolyte in terms of the boundary conditions of the electrode. The spatial coupling is
expressed in terms of the integral of the coupling function over the electrode area.
For a homogeneous ring-electrode the spatial coupling term vanishes whereas for
an inhomogeneous situation the coupling function, H(x-x′), expresses the effect that
any position x′ has on the dynamics of the system at location x. For a ring-electrode
with negligible width of the ring, the spatial coupling function, H(x-x′), is visualized
in figure 2.6.

In figure 2.6 the non-local nature of the coupling is evident. Since every point along
the electrode contributes to the temporal evolution of every other point, the coupling
function is positive everywhere; in other words, migration coupling is synchronizing
and evens out any potential profile tangential to the WE. In case of a local coupling
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Figure 2.6: The coupling functions H(x-x′) of a one-dimensional ring-electrode
with circumference L for migration coupling (solid line) and local, diffusive coupling
(dotted line). Taken from [31].

(the dashed line in figure 2.6) the coupling function is zero except for locations in
the immediate neighborhood of the point x.

2.3.2 Global coupling

Migration coupling as explained above is a non-local spatial coupling, which is
present in all electrochemical systems. Depending on the relative arrangement of
WE, CE and RE, as well as the experimental operation mode, different positions on
the electrode can be additionally coupled by a positive or a negative global coupling .
Through a global coupling the dynamics of every location on the electrode is affected
by any local perturbation of Φdl, independent of its distance to the perturbation.
Both potentiostatic and galvanostatic modes can give rise to a global coupling. The
global coupling caused by a galvanostatic control is a positive global coupling while
compensating part of the cell resistance under potentiostatic control induces a neg-
ative global coupling. Since all the experiments of this work are performed under
potentiostatic control, the positive global coupling is not further discussed here.1.

To understand how the potentiostatic control can induce a negative global coupling,
first one should recall that the boundary conditions and therefore the potential dis-

1For details of the global coupling under galvanostatic control see ref [25, 46]
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tribution at the electrode determine the potential within the electrolyte. Here we
assume that at some position on the electrode Φdl has changed. This alters the
electric potential distribution in the entire electrolyte to keep the electrolyte elec-
troneutral. The changes of the electric potential in the electrolyte are the larger the
closer a location is to the WE. If the RE is close to the WE, the electric potential in
the electrolyte at the position of the RE changes noticeably due to a local fluctuation
of Φdl. To compensate for the change in the potential difference between the WE
and the RE and to keep it at the set value, the potentiostat changes the potential
at the WE until the set value is reached again. This, in turn, affects the interfacial
potential everywhere along the electrode/electrolyte interface. In this manner, a
local perturbation of the double layer potential has changed the interfacial potential
at any location of the electrolyte, independent of its distance to the potential fluctu-
ation. However, it should be noted that this requirement can be only fulfilled with a
symmetric cell geometry where the WE is a thin ring-electrode and the RE is placed
on the axis of the ring. This condition is in agreement with the experimental setup
of this work. In case of asymmetric setups and specially 2-dimensional electrodes
such as disc electrodes, the distance of different locations on the WE to the RE
are not equal, in addition to the migration coupling, the system is affected by an
’asymmetry effect’ [47].

Considering the global coupling in the case of a ring WE, the evolution equation of
the double layer potential can be written as follows [48,49]:

Csp
∂Φdl

∂t
= −iF +

U − Φdl

ARΩ(1 + γ)
− σ(

∂Φe

∂z
− Φe)

∣∣∣∣
z=−w

+
1

ARΩ

γ

1 + γ
(< Φdl > −Φdl)

(2.11)
with

γ = −Rc/RΩ

Here the cornered brackets indicate the spatial average and the remaining symbols
have been defined previously.

In Eq. 2.11 the first two terms on the rhs account for the homogeneous dynamics,
the third one describes the migration coupling and the last term expresses the global
coupling introduced to the system by compensating part of the cell resistance. The
coefficient of the last term determines the coupling strength.

From this equation, we can observe that when compensating part of the cell resis-
tance (i.e., Rc 6= 0) a global coupling with a negative sign is introduced into the
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system. For a ring shaped WE where the RE (or the tip of the Luggin-Haber cap-
illary) is placed on the axis of the WE, decreasing the distance between working
and reference electrodes is one method of compensating the cell resistance. Using
an external negative impedance device, which compensates part of the resistance,
can also introduce a negative global coupling (NGC) to the system. Global coupling
has a decisive influence on the stability of uniform states but positive and negative
GCs affect the dynamics of the system differently. The coupling induced by partial
compensation of the cell resistance under potentiostatic control, for instance, gives
rise to a NGC which is desynchronizing. The desynchronizing effect of the NGC
can be intuitively understood from Eq. 2.11. For negative coefficients of the global
coupling term, the coupling enhances the difference between <Φdl> and Φdl and
hence a perturbation in Φdl.

An instructive way to understand the influence of the global coupling on the dynamic
behavior is to investigate its effect on the stability of the linearized homogeneous
steady state of the system. Consider an activator-inhibitor system with global cou-
pling of the form

∂Φdl

∂t
= f(Φdl, θ) + σ(

∂Φe

∂z
− Φe)

∣∣∣∣
z=−w

+ α(< Φdl > −Φdl)

∂θ

∂t
= g(Φdl, θ) +

∂2θ

∂x2

(2.12)

where Φdl is the double layer potential and θ a chemical variable. Here α stands for
the strength of the global coupling which is equal to the coefficient of the last term
in Eq. 2.11 and is negative for a negative global coupling.

The Jacobi matrix of this system is shown in Eq. 2.13.

J =

(
fΦdl

+ α fθ
gΦdl

gθ

)
(2.13)

In Eq. 2.13 fΦdl
(gΦdl

) and fθ (gθ) denote the partial derivatives of f(g) with respect
to Φdl and θ, respectively. For α = 0 the matrix corresponds to the Jacobi matrix
of the homogeneous steady state with respect to homogeneous perturbations, in the
absence of the global coupling. For our periodic boundary condirions, the eigen
functions θ̂ of the spatial eigenvalue problem

∂2θ̂

∂x2
= −n2θ̂ (2.14)

are Fourier functions
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θ(x, t) = ancos(nx) + bnsin(nx), n = 0, 1, 2, ...

where n takes the role of the wave number.

The spatial eigenvalue problem regarding the spatial operator in the time evolution
of Φdl (for α = 0) is defined by

∂Φe

∂z

∣∣∣∣
z=−w

= m Φe|z=−w (2.15)

The time-dependent solution of this spatial eigenvalue problem is

Φe(x, z, t) = (cn(t)cos(nx) + dn(t)sin(nx))sinh(nz) + c0(t)z, n = 1, 2, ...

The sign of the eigenvalues of the Jacobi matrix, J , determines the stability of the
homogeneous steady state. Eq. 2.16 reveals how the eigenvalues of the J are deter-
mined by the trace (Tr) and determinant (Det) of it.

λ1,2 =
TrJ

2
±
√

(TrJ)2

4
−DetJ (2.16)

The steady state is stable if the real part of the eigenvalues are negative, which will
be realized if TrJ < 0 and DetJ > 0.

For α = 0 the real part of the eigenvalues Re(λ(n)) are negative for any n and the
perturbations decay exponentially in time. In the presence of a global coupling the
Re(λ(n)) is shifted by the value of α. Eq. 2.17 shows how TrJ and DetJ of the
globally coupled system are related to that of the homogeneous steady state in the
absence of the global coupling:

TrJ(α) = TrJ(0) + α

DetJ(α) = DetJ(0) + gθα
(2.17)

In an (H)N-NDR system where the double layer potential takes the role of the acti-
vator, gθ is negative. Hence, a positive global coupling with α > 0 can stabilize the
homogeneous stationary state and has a synchronizing effect. However, the presence
of negative global coupling where α < 0, acts in the opposite way.

When treating n as a continuous variable, the growth rate of the real part of λ(n)

versus n for the zeroth mode (n = 0) is identical to the case for α = 0. However, for
wave numbers larger than 0 (n > 0) the growth rate of the perturbation is shifted
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Figure 2.7: Schematic dispersion relation showing the growth rate of the perturba-
tions Re(λ(n)) vs. the wave number, n in the presence of a negative global coupling
in the system. Taken from [50].

by α due to the addition of the global coupling [50]. Hence, for globally coupled sys-
tems, the dispersion relation possesses a discontinuity at n = 0. Figure 2.7 presents
the dispersion relation for a negatively globally coupled system.

Since any variations in parameters which does not affect < Φdl >, and correspond-
ingly the global coupling, will not affect the discontinuity of the dispersion relation
at n = 0, whenever a change of the value of a parameter makes the homogeneous
steady state unstable, the mode with wave number 1 will be the first to become
unstable, if α < 0. This means that, in the absence of the NGC, the 0-mode oscilla-
tions destabilize before the higher modes, whereas for a globally coupled system the
Hopf bifurcation point for the 0-mode oscillations is delayed and hence, the modes
with wave number n = 1 (or n = −1) will be the first to destabilize and, give rise to
the appearance of spatially non-uniform oscillations for sufficiently large systems.

In this situation two instabilities can be distinguished. If the eigenvalue is real and
the eigenvalues corresponding to n = 1 have different signs, the bifurcation drives
the system to a stationary patterned state with two stationary domains. Examples
of such patterns are observed during the electrochemical reduction of peroxidisul-
fate [26] or the oxidation of H2 on a Pt electrode with experimental conditions
other than those used in this work [25, 27]. The second situation is observed when
Im(λ(n)) 6= 0 and the variations in the parameters cause a wave bifurcation where at
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the bifurcation point the real part of the complex conjugate eigenvalues crosses zero.
This bifurcation leads to a state whose symmetry is broken in space and time. The
resulting patterns are standing waves which consist of two domains which oscillate
180 ◦ out of phase or phase pulses which propagate on the electrode.

A standing wave can be understood as the superposition of two traveling waves or
a spatially fixed spatial profile whose amplitude oscillates in time.

Ustanding(x, t) = Aeiωteikx + Aeiωte−ikx (2.18)

where A is constant, k is equal to
2π
L

and L stands for the length of the system.
The first term on the right hand side in Eq. 2.18 presents a traveling wave prop-
agating in the right direction with n = 1 and the second term stands for a waves
traveling in the left direction, with n = −1. Accordingly, Eq. 2.18 is equivalent
to Ustanding(x, t) = a(t)sin(kx), assuming that we are sufficiently close to the bifur-
cation. These are two equivalent mathematical formulations and depending on the
context, we will make use of both formalisms.

Correspondingly, there exist two equivalent formulations for traveling waves, which
will be both employed below

Utraveling(x, t) = Beiωteikx

Utraveling(x, t) = Bei(ωt−T/4)sin(kx) +Beiωtcos(kx)
(2.19)

The second equation in 2.19 can also be written as

Utraveling(x, t) = b1(t)sin(kx) + b2(t)cos(kx) (2.20)

where b1(t) = b2(t+ T/4) or b1(t) = b2(t− T/4), with T the period of the traveling
wave.

Fukushima et al. [51] have investigated pattern selection principles for standing and
traveling waves that are induced by a global coupling. They have shown that, the
prediction of the selected spatiotemporal pattern can be achieved with a weakly
nonlinear bifurcation analysis, in which the second and third order terms are taken
into account.

The traveling pulses described above have also been investigated experimentally.
For electrochemical systems, traveling pulses were first observed by Otterstedt et
al. during cobalt electrodissolution [31, 52] where they observed traveling domains
of high activity on an otherwise passive surface. Similar phenomena were later ob-
served for other systems, e.g. formic acid electrooxidation [28,53], H2O2 reduction on



2.4. The electrochemical system 25

platinum electrodes [54] and oxidation of H2 on Pt in the presence of poisons [23,30].

In most of the experimental work of this thesis traveling pulses constitute our ref-
erence state. By choosing a suitable global coupling strength and in the presence of
Cl− ions, whose role in the electrochemistry of the system will be discussed in the
next section, the system possesses stable traveling pulses. Experimental examples
of phase pulses observed with the electrochemical system of this thesis will be pre-
sented in chapter 4.

2.4 The electrochemical system

The electrochemical system studied in this work is the hydrogen electrooxidation
reaction (HOR) in the presence of strongly adsorbing cations and anions. This is
a prototypical HN-NDR electrochemical oscillator whose dynamics is well under-
stood [34]. The oscillation mechanisms of this system will be presented in this
section.

The hydrogen oxidation reaction (HOR) on a platinum surface is a widely studied
system [55–58]. Addition of electrosorbing metals such as Cu2+ and strongly ad-
sorbing anions like Cl− and Br− changes the system to a HN-NDR oscillator which
exhibits oscillations in a wide parameter range. The N-shaped NDR in the I/U
characteristic curve of this system is caused by the presence of the halide ions which
inhibit the oxidation of hydrogen by occupying active Pt sites. Adding Cu2+ ions to
the solution hides the NDR branch partially and results in oscillations around the
hidden N-shaped NDR branch. These oscillations occur under both potentiostatic
and galvanostatic conditions, provided that under potentiostatic control the uncom-
pensated resistance is larger than a critical value (see figure 2.5(d)). Throughout this
work Cu2+, Cl− or Br− are used as the electrosorbing cation and anion, respectively.

The I/Φdl curve of H2 oxidation in a pure H2-saturated sulfuric acid solution shows
a steep increase in the current followed by a plateau (solid line in figure 2.8). Here
we observe diffusion-controlled reaction rates at relatively low potentials which are
caused by the high rate constant of hydrogen oxidation on Pt. This makes the ox-
idation current almost independent of the potential. Addition of Cl− ions to the
solution leads to the decrease of the current with increasing potential as a result of
Cl− adsorption on the Pt surface (dashed line in figure 2.8). Further addition of
the Cu2+ ions to the electrolyte suppresses the reaction almost completely and de-
creases the oxidation current to zero in the potential region where copper deposits.
Desorption of the Cu2+ is marked by the increase in the current (dotted line in fig-
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Figure 2.8: (a) I-Φdl characteristics of a Pt electrode in H2 saturated H2SO4

electrolyte (solid curve), in H2 saturated H2SO4 electrolyte after addition of small
amounts of Cl− ions (dashed curve) and after addition of a small amount of Cl−

and Cu2+ ions (dotted curve), (b) the same as the dotted curve as in (a), but with
a large series resistance. For experimental details see [24,34]. Taken from [24].

ure 2.8). The oxidation current then takes on the values of the Cu2+ free electrolyte.

Adsorption of both Cu2+ and Cl− ions inhibits hydrogen oxidation on the surface.
However, since ad- and desorption of these ions possess different potential depen-
dences, they establish the positive and negative feedback loops in the system. Ad-
sorption of metal ions occurs at low potentials, while above a critical potential they
desorb from the surface. The specific adsorption of the anions, on the contrary, is
favored with increasing potentials. It is also necessary that the Cl− ad- and des-
orption process that gives rise to the negative impedance is faster than the Cu2+

deposition and dissolution which hides the negative impedance region. As discussed
in section 2.2, in the presence of both feedback loops the system starts oscillating.

These feedback loops are shown in figure 2.9. In the positive feedback loop (the
upper circle in figure 2.9), any change of the double layer potential to more positive
values leads to its further increase. As the potential increases, the Cl− ions adsorb
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Figure 2.9: Schematic picture of the positive (upper) and negative (lower) feed-
back loops of the HOR system in the presence of Cl− and Cu2+ ions.

on the Pt surface and block free Pt surface sites. The increase in chloride coverage,
θCl, with increasing potential initiates an autocatalytic process. Higher θCl decreases
the oxidation current and under potentiostatic control, where U = Φdl + IR, the
potentiostat shifts Φdl to more positive values to keep the voltage constant. In the
negative feedback loop, on the other hand, an initial increase in Φdl is suppressed.
The decrease in the Cu2+ coverage at higher potentials increases the oxidation cur-
rent which in turn, drives Φdl to lower values and inhibits its further increase. This
general mechanism applies to measurements under galvanostatic control too.

Figure 2.10: (a) Cyclic voltammogram of HOR in H2 saturated 0.5 mM H2SO4,
0.05 mM CuSO4 and 0.06 mM HCl. γ = 0. Rotation rate = 20 Hz. (b) Anodic
turning point in the oscillatory regime. Oscillations continue on the negative sweep.
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Figure 2.10 displays two cyclic voltammograms obtained during HOR in the pres-
ence of Cu2+ and Cl− ions and a sufficiently large external resistance. In figure
2.10(a) it can be observed that the oscillatory region begins at about 0.5 V during
the positive sweep. The oscillations continue until about 1.87 V where a bifurcation
destroys the limit cycle and stops the oscillations. Further increase of the voltage
gives rise to oxide formation that prevents the oxidation of hydrogen by blocking
the surface. The residual current at these potentials is caused by oxygen evolu-
tion. In the negative sweep the current decreases and goes to zero at about 1 V
and remains close to zero until 0.37 V where the oxide is reduced and dissolved. It
is shown [24] that the formation and reduction of oxides roughens the Pt surface.
Hence, for the experiments in this thesis, we have avoided entering that region and
measured only within the oscillatory regime. Figure 2.10(b) shows an example of a
cyclic voltammogram where the sweep direction was reversed before the occurrence
of the bifurcation, the oscillations continue on the negative sweep.

2.5 External Forcing

The influence of a spatially uniform time-periodic external forcing on the dynamics
of a single oscillating system and spatially extended oscillators will be discussed here.

Homogeneous systems

The governing equations in an oscillatory system with limit cycle behavior contain
no explicit time dependence. Hence, there exists a continuous time translation sym-
metry. Introducing a periodic external forcing to the system, makes the time shifts
only symmetric in multiples of the forcing frequency. In other words, inducing the
external perturbation breaks the time translational symmetry of the system and

leaves a discrete symmetry where t → t +
2π

ff
, where ff denotes the frequency of

the externally applied signal. The difference between the natural frequency of the
oscillating system, f0, and the forcing frequency, ff , f0-ff , is called the frequency de-
tuning and is designated by ν. To determine the effect of the external forcing on the
systems dynamics, it is convenient to study the phase difference between both sig-
nals, where the phase of the sinusoidal forcing signal is defined as Φf (t) = 2πff t+φf
and of a response with the dominant frequency fr is Φr(t) = 2πfrt+ φr. φr and φf
are the initial phase shifts. At small positive or negative detuning, the frequency of
the forced oscillating system adjusts itself to the externally applied frequency and
hence, the frequency of the driven oscillator or the response frequency, fr, becomes
equal to the forcing frequency or a rational multiple of it [8]:
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ff
fr

=
m

n
(2.21)

where n and m are integers without a common divisor. At this state, the response
of the system is periodic and synchronous and the system is entrained or frequency
locked . The phases of the external perturbation and the oscillator are not equal but
the phase difference ∆Φ = Φf − Φr, is constant.

The range of forcing control parameters (e.g. frequency and amplitude), where only
periodic responses appear is referred to as a m : n resonance region. In a 1:1 res-
onance regime, for example, the forcing frequency is close to the natural frequency
of the oscillator and the response frequency , fr adjusts itself to exactly the forcing
frequency.

When the frequency detuning grows and exceeds a critical value, the forcing will not
be strong enough to entrain the oscillator and the response becomes quasiperiodic;
i.e. it is characterized by oscillations with more than one frequency. The power
spectrum of the driven oscillator in this parameter regime shows that in addition
to ff or one of its multiples, the so-called beat frequency is also present. The beat
frequency is given by the difference between the response frequency of the system
and the frequency of the externally applied signal.

In the presence of an external perturbation with a low amplitude, an attractive
two-dimensional torus exists in the phase space for this system where the trajectory
continually winds around the torus in the short direction (executing f0/2π rotations
per unit time) and long direction (making ff/2π rotations per unit time). The aver-
age number of times that the orbit goes around the torus in the short direction during
one forcing period is defined as the winding number . For a rational winding number,
w =

n

m
where m and n are integers without a common divisor, the trajectory ap-

proaches a periodic solution for n times winding during m periods whereas, for the
irrational winding numbers the trajectories wind around endlessly, fill the torus but
never close in exactly onto itself. In this case each trajectory comes arbitrarily close
to any point on the torus and is dense on it and gives rise to quasiperiodic dynamics.

When the response of the system to an external forcing is spanned in the plane of
the forcing parameters, which are commonly frequency ratio (ff/f0) and amplitude
A, the resulting curves show that the n:m resonance regimes appear as regions with
a finite width which are surrounded by parameter regimes with irrational winding
numbers. The tongue-shaped regions with rational winding number are called the
Arnold tongues [7]. Figure 2.11 displays a 1:1, 2:1 and a m : n resonance region in
an amplitude - frequency ratio plane.
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Figure 2.11: The tongue shaped resonance regimes depicted by plotting the forcing
parameters, amplitude, A, vs. the ratio of the forcing frequency, ff to the oscillations
frequency, f0. Inside each tongue the oscillator is frequency-locked and in the area
between two tongues the respond is quasiperiodic. Taken from [59].

The two-dimensional attractive toroidal surface in phase space corresponds to an
attractive invariant circle in the Poincaré (stroboscopic) map. A periodic solution
on the torus becomes a fixed point of period n. From the definition of the winding
number it follows that since every point of a period n orbit is mapped to itself after
n forcing periods, the nth iteration of the Poincaré map of a limit cycle with period
n possesses n fixed points.

Studying the stroboscopic phase portrait of the driven system inside and outside
the entrainment band and at the transition point between the synchronous and
asynchronous regions is helpful to understand the dynamics of the system in these
parameter regimes. Figure 2.12 depicts such picture for a forced oscillatory system
close to the 2:1 resonance region. This picture is obtained by following points on a
1-parameter cut through the 2:1 resonance region, as indicated in figure 2.11. The
phase portrait is displayed for four of the points marked in figure 2.11. At the edges
of the entrainment band a saddle-node bifurcation of limit cycles takes place on
the torus, through which two limit cycles collide and disappear [60]. At the bifur-
cation point a half-stable limit cycle is born which splits into a pair of stable and
unstable limit cycles as the bifurcation parameter grows. The saddle-node which
appears on the torus at the border of the entrainment band has a period m and is
attractive at one side and repulsive on the other side. At point d the saddle and the
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Figure 2.12: Poincaré map of an externally forced oscillatory system (c) and (g)
close to, and (d) and (f) inside the 2:1 entrainment band. The phase portraits
corresponds to the parameter values marked in figure 2.11. Taken from [59].

node have split and give rise to two limit cycles with period m that wind around
the torus. Close to the other transition point (point f), the saddle and the node
move in opposite directions which causes the limit cycles to collide and disappear
through another saddle-node bifurcation. In the parameter region surrounding the
synchronous regime the dynamics are quasiperiodic. However, in a region close to
the borders of the tongue (points c and g) the iterations of the Poincaré map close to
the position where the saddle-node pair is born is slowed down. This phenomenon
is also called the critical slowing down [61, 62].

From the definition of the entrainment it is clear that inside the entrainment band
where the system is locked to the forcing and fr =

n

m
ff , the phase difference between

the externally applied signal and the response is either zero or constant. However,
the dynamics of this phase difference changes as the frequency detuning is varied.
Figure 2.13 presents the dynamics of the phase difference between the sinusoidal
forcing signal and the time series of the response, ∆Φ, at the different parameter
regions marked in figure 2.11. The figure shows that at zero detuning (point e) and
at low detuning where the phase of the system is still locked by the phase of the
driving force (points d and f) the driven system oscillates in-phase or with a con-
stant phase difference to the driving force. When the frequency detuning becomes
large enough so that the external forcing is not strong enough to entrain the system,
a nonzero phase difference appears which grows infinitely in time. However, as it
can be seen in figure 2.13, the growth of ∆Φ is not uniform unless the detuning
becomes very large. In the vicinity of the transition points (points c and g) the
dynamics of ∆Φ are highly nonuniform. Here, the system stays in a quasi-locked
state for a long time with a nearly constant ∆Φ which is followed by short time

interval where ∆Φ gains (or loses)
2π

n
. This jump in the phase difference between

the force and the driven system is called a phase slip. The nonuniform growth of
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∆Φ in the close neighborhood of the synchronization region is a manifestation of
the critical slowing down which was discussed above. As the detuning increases the
time intervals of the phase slip become longer than the oscillation period (point b)
and finally the unbounded growth of ∆Φ becomes uniform. Hence, studying the
dynamics of ∆Φ provides considerable insight into the behavior of the system with
respect to entrainment.

ΔΦ

time

d
e

f

c

b

a

g

Figure 2.13: The dynamics of the phase difference between the externally applied
forcing signal and the response of the driven system at different parameter points
shown in figure 2.11.

It is intuitive that since fr always lies between f0 and ff , for positive frequency
detuning where f0 is larger than ff the phase difference between the forcing signal
and the unlocked response grows in positive direction, whereas when f0 is lower than
ff , the latter phase relation grows in negative direction.

The variations of the beat frequency, and correspondingly the response frequency,
with increasing and decreasing detuning within the quasiperiodic parameter region
is an important characteristic of the dynamics in this region. Figure 2.14 shows that
the dependence of the beat frequency on the frequency detuning is monotonic. How-
ever, in the neighborhood of the resonance regime where the system goes through
critical slowing down, the increase (decrease) is not linear anymore but obeys a
square-root low and becomes proportional to

√
ν − νt, νt being the frequency mis-

match at the transition point between synchronous and asynchronous regions [8].
When the mismatch between the forcing frequency and the natural frequency of
the system becomes large, the response oscillates with the natural frequency of the
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fr - ff

ν

Figure 2.14: Difference between the response and forcing frequency as a function
of frequency detuning. Taken from [8].

system. It is clear that for frequency locked responses the beat frequency is zero,
which appears as a horizontal line in figure 2.14.

Spatially extended systems: Reaction-diffusion systems

Reaction-diffusion systems are an important class of the spatially extended systems
which are considered as prototype examples of pattern forming systems. The spa-
tiotemporal patterns arise due to the interaction of homogeneous dynamics and
diffusive spatial coupling. In general, reaction-diffusion systems can be expressed by
a system of partial differential equations of the form.

∂ci
∂t

= Ri(c) +Di∇2ci i = 1, 2, ..., n (2.22)

where Di is the diffusion coefficient of the ith species, ∇2 the Laplace operator and
Ri is the rate law that depends on a set of concentrations c = (c1...ci...cn). From
Eq. 2.22 it is obvious that there are two ways in which the concentration of the ith
species (ci) can change, either the chemical species is produced or consumed, or it
diffuses in or out. Hence, the evolution of ci can be decomposed into a reaction term,
Ri, and a diffusion term Di∇2ci. The reaction term stands for the local dependence
on the value of other variables and the diffusion term accounts for the transport
processes that spatially couple the different locations of the electrode. The inter-
action of the homogeneous or reaction part with diffusion gives rise to interesting
spatiotemporal patterns [63–65].
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Externally forced spatially extended systems, specially reaction-diffusion systems,
have been studied theoretically and experimentally to investigate if the universal fea-
tures of frequency locking that single oscillators exhibit persist for spatially extended
oscillators [15–18,66]. The theoretical investigations of phase locking in spatially ex-
tended systems which suggest continuum models of forced pattern forming systems,
are either based on a kinetic model or on amplitude equation. In the works of the
first group, the unforced system is described by a coupled kinetic model, such as
the Brusselator, Oregonator1 or FitzHugh-Nagumo model, and then the external
forcing is added to the system by modulating one of its parameters periodically in
time [15, 70]. The investigations of the second group are based on the description
of the unforced system with the complex Ginzburg-landau equation. The complex
Ginzburg-Landau equation (CGLE) is a universal equation that describes the dy-
namics of a spatially extended oscillating system close to the Hopf bifurcation. Here,
it is assumed that the instability of the uniform stationary state gives rise to the
occurrence of oscillations. To account for the external forcing in these systems a
term controlling the forcing strength is added to the CGLE [18–20,71]. The CGLE
and forced CGLE will be explained in detail in the next section.

Considering chemical reactions, one of the early experimental studies focusing on the
response of a reaction-diffusion system to external time-periodic forcing was carried
out by Swinney et al. [13] who reported resonant patterns arising when subjecting
the light-sensitive Belousov-Zhabotinsky (BZ) reaction 2 to time-periodic illumina-
tions as an external perturbation. Following that, Anna Lin et al. reported the
formation of various resonant patterns in the light perturbed BZ reaction [15, 16].
In their experiments unforced quasi-two-dimensional oscillating system exhibited ro-
tating spirals which after applying the external forcing resulted in the appearance of
a wide range of phenomena not normally seen for single oscillators. Both Swinney
et al. [13] and Anna Lin et al. [16] have shown experimentally that when applying
the perturbation with 1:1 parameters, the only synchronized solution that appeared
were spatially homogeneous, completely phase synchronized oscillations. This has
been confirmed by the theoretical work of H.K. Park [19]. Chate and Pikovsky [74]

1The Brusselator model was developed by Glansdorff and Prigogine [67] and can be seen as a
generic form of a chemical oscillator. It contains only the equations for two intermediary species
and not for the specific components of the BZ. The most accepted description of BZ reaction is the
so called FKN model [68], suggested by Field, Körös and Noyes which consists of 18 reactions. The
simplified version of this mechanism which only considers the essential steps of the full model, is
called the Oregonator model [69]. In Eq. 2.22, the term Ri(c) contains no explicit time dependence
which corresponds to an unforced dynamics. To model an externally forced reaction-diffusion
system, the frequency ω, and strength of the external force, k are included in Ri(c) which gives
Ri(c; k, ωt), where Ri is required to be periodic with respect to ωt.

2A description of the BZ chemical reaction can be found in [72,73].
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and later Kim et al. [75] reported the theoretical observation of spatially homoge-
neous responses which change to stripes when the forcing strength is reduced below
a certain threshold. However, their simulations are performed in the phase turbulent
region (Benjamin-Feir unstable regime).

The responses around a 2:1 resonance are the most widely studied ones, where a
variety of rich resonant patterns are observed. Experimentally, labyrinthine stand-
ing wave patterns and π-fronts were observed by Petrov et al. [13]. π-fronts consist
of two oscillating spatially uniform domains which oscillate with a π phase shift.
Along with the two uniform phase states, front solutions bi-asymptotic to the two
stable phases exist. Later Anna Lin et al. reported about the observation of several
qualitatively different standing wave patterns [15,16,66] which were also reproduced
in the simulations they presented. The theoretical works which focused on the same
resonance region, reproduced the experimentally observed spatiotemporal patterns
and studied some of them in detail [18, 19, 76, 77]. Furthermore, other resonance
regimes such as 3:1 and 4:1 were investigated too [17,19,75].

In all the works mentioned above, the entrained responses appear in tongue shaped
structures, similar to those observed for single oscillators. However, H.K. Park
showed that when a diffusively coupled oscillator is subjected to an external per-
turbation, both forcing and coupling term due to diffusion, affect the frequency of
the driven system and depending on the forcing parameters, they can act together,
resulting in the enhancement of the frequency locked region or against each other
giving rise to the suppression of entrainment in different parameter regimes. Hence,
although the resulting Arnold tongue structures nearly coincide with the Arnold
tongues obtained for a single oscillator, the diffusive spatial coupling between differ-
ent locations of a spatially extended oscillator can modify the frequency locking by
reducing or increasing the range of frequency locking in the system [19]. Later, it was
shown that pattern formation mechanisms can affect the extent of frequency lock-
ing. For 2:1 forcing parameters Yochelis et al. showed that mechanisms associated
with phase-front instabilities result in the transition of resonant stationary patterns
to non-resonant traveling waves [78]. This mechanism, called the nonequilibrium
Ising-Bloch bifurcation, affects the frequency locking and hence, the width of the
resonance region [76]. Moreover, appearance of a finite-wave number or Turing like
instability, induced by the periodic forcing can also extend or reduce the resonance
region of a spatially extended system [76,79].

However, to my current knowledge, no reports on the response of non-uniform os-
cillations, that emerge through a non-trivial Hopf bifurcation of wave number one,
to temporal modulation were found in the context of chemical reactions. One of
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the early studies of such a driven system was presented by Rehberg et al. in 1988
in the context of liquid crystals. They investigated the influence of temporal forc-
ing on traveling waves that appear in nematic liquid crystals and showed that this
modulation can stabilize standing waves when the forcing is applied with twice their
autonomous frequency [12]. Followed by that, the forced traveling waves were also
studied theoretically using the complex Ginzburg-Landau equation [33].

2.6 The complex Ginzburg-Landau equation

It was mentioned in 2.2.2 that the dynamics of a single nonlinear oscillator close to
the onset of oscillations can be described by a universal mathematical model called
the Stuart-Landau equation, based on an ordinary differential equation of a complex
order parameter W . The time evolution of W describes the dynamics of a point like
system. For spatially extended systems where different locations are locally coupled
by diffusion, the oscillating dynamics close to the Hopf bifurcation is described by
the complex Ginzburg-Landau equation (CGLE), which reads [42,80,81]:

∂tW = W − (1 + ic2) |W |2W + (1 + ic1)∂2
xW (2.23)

In this universal equation, except for the system length, there are only two free
parameters c1 and c2 [82]. Here, c2 is a measure of the dependence of the oscilla-
tion frequency on the amplitude of the oscillation and c1 depending on the diffusion
coefficients of the two variables. Hence, the first two terms on the right hand side
of Eq. 2.23 describe the uniform dynamics of a point like system and the last term
represents the spatial coupling through diffusion. In Eq. 2.23 the system is in a
rotating reference frame, which rotates with, ω0, the autonomous frequency of the
oscillator and hence, the frequency of the autonomous oscillator does not appear in
the equation.

The stability of uniform oscillations is determined by the value of c1c2 + 1. In the
c1-c2 parameter plane the line at which c1c2 = 1 is called the Benjamin-Feir line.
By crossing the Benjamin-Feir line and moving from positive values of c1c2 + 1 to
negative values, the stable uniform oscillations become unstable. This parameter
region is referred to as the Benjamin-Feir unstable regime [42,81,83,84].

Considering the general equation describing the time evolution of W for a diffu-
sively coupled spatially extended one-dimensional system with length L and, peri-
odic boundary conditions, we see that the general solution can be expanded in a
Fourier series:
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W (x, t) =
+∞∑

n=−∞

Wn(t)ei2πnx/L (2.24)

where n is the Fourier mode number. Knowing that W (x, t) is periodic with respect
to L, i.e. W (x, t) = W (x+L, t), it is clear that all solutions of Eq. 2.24 satisfy this
condition, too.

The Fourier mode with n = 0 corresponds to the spatially homogeneous mode and
every other Fourier mode with n 6= 0, to a periodic solution in space with the wave
number 2πn/L. The time evolution of Wn for each Fourier mode can be calculated
by substituting Eq. 2.24 in Eq. 2.23, which after integration, gives the time depen-
dent complex amplitudeWn(t), for each n. The cubic term in the resulting equation
couples the Fourier modes.

2.6.1 Forced complex Ginzburg-Landau equation

In 2.5 it was shown that when a diffusively coupled spatially extended oscillator is
subjected to an externally applied force, the force breaks the continuous translational
time symmetry of the systems by adding a periodicity which introduces an additional
time scale. When the external forcing is incorporated, Eq. 2.23 becomes

∂tW = (1 + iν)W − (1 + ic2) |W |2W + (1 + ic1)∂2
xW + δm ·W ∗(m−1) (2.25)

In this equation, ν represents the frequency detuning of the external force and the
autonomous frequency of the driven system. The last term on the rhs contains the
forcing parameters where δ controls the strength of the forcing signal, the term W ∗

is the complex conjugate of W and m stands for the ratio of the forcing and nat-
ural frequency in a m : 1 resonance. By introducing the forcing to the CGLE, the
equation has moved to a rotating reference frame which moves with the frequency
of the externally applied forcing.

Eq. 2.25 is invariant to phase transformations of the form W → Wei2π/m. This can
be seen by replacing W = ReiΦ in Eq. 2.25 which results in n different stationary
solutions which are separated by 2π/m and each corresponds to one phase locked
state [14].
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2.7 Characterization of spatiotemporal patterns

2.7.1 The Karhunen-Loève Decomposition

The Karhunen-Loève Decomposition (KLD) or Proper Orthogonal Decomposition
(POD) is a statistical pattern analysis technique for analyzing an ensemble of spa-
tially distributed data and finding their dominant structure. This technique de-
composes the data into an orthogonal basis and time dependent coefficients. The
analysis also gives a measure of the relative contribution of each basis function to
the total "energy".

In 1956 Lorenz applied this technique in weather forecast context [85] and since then
this method has been largely used for analyzing spatiotemporal turbulent patterns
in many contexts among them chemical systems [86–88]. Using the KL decom-
position, a spatiotemporally varying set of data can be decomposed into a set of
time-independent spatial structures and their time dependent scalar amplitudes.
This enables us to detect the spatially coherent modes, e.g. the most important
spatial structures in the system.

Throughout this work the interfacial potential measured along the ring-electrode
(UPP (x,t)) is analyzed by the KL decomposition.

If we measure N discrete points in space at M instants in time, the elements of the
correlation matrix R are:

rij =
1

M

M∑
m=1

[Upp(xi, tm)Upp(xj, tm)] i, j = 1....N. (2.26)

The eigenvectors of this matrix, Φi , form a complete orthonormal set. The state
of the system at any instant can be given in terms of these eigenvectors. The
corresponding eigenvalues, λi, give a measure of the contribution of the ’modes’
(eigenvectors) to the total spatiotemporal pattern and is maximized when:

λi =< (Upp,Φi)
2 > (2.27)

where the angle brackets stands for the average and the parenthesis for the inner
product.

We can easily project the UPP (x,t) onto these ’modes’ and reduce the data to sev-
eral time series. Eq. 2.28 shows how the data can be described in terms of the
eigenvectors and the corresponding coefficients, Eq. 2.29, shows how the coefficients
are calculated.
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Upp(x, t) =
M∑
j=1

bj(t)Φj(x) (2.28)

bi(t) = (Φj(x), Upp(x, t)) (2.29)

Normalizing the values of the eigenvalues λi provides the values of the energy . Dis-
tribution of the energy between the spatial modes indicates the contribution of each
KL mode in the dynamics.

2.7.2 Hilbert transform

The Hilbert transform or the analytic signal approach [8,89] is a useful approach for
obtaining phase and amplitude variable of an oscillating systems whose definition
of phase, according to Pikovsky et al. [90], is not unique. The Hilbert transform of
a variable UPP(x,t) can be calculated by producing a variable Ũpp from the experi-
mental time series for each location on the electrode, in the following way

Ũpp(x, t) = π−1

∫ ∞
−∞

Upp(x, t′)
(t− t′)

dt′ (2.30)

In practical implementations, the Hilbert transform is calculated by obtaining the
Fourier transformation of the UPP and shifting each complex Fourier coefficient by
π/2. Finally the backward Fourier transform will provide the Hilbert transform. By
projecting the dynamics into the plane spanned by the experimental signal and its
Hilbert transform, the complex variable ζ, or the analytic signal, is obtained.

ζ(x, t) = Upp(x, t) + iŨpp(x, t) (2.31)

Using the polar coordinate representation of ζ in the complex plane the instan-
taneous state of the dynamical system is defined by the time dependent spatial
distribution of phase, φ and amplitude, ρ, as shown in Eq. 2.32.

φ(x, t) = arg(ζ) and ρ = |ζ| (2.32)

Here, I would like to mention that all the KL decomposition and Hilbert transform
analysis of this work has been done by Prof. Dr. Adrian Bîrzu, whose collaboration
is greatly appreciated.
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Chapter 3

Experimental

This chapter presents a detailed description of the experimental setup, chemicals
and instrumentation, which were used for carrying out the measurements of this
thesis.

3.1 The electrochemical cell and the electrodes

The electrochemical cell which were used for the experiments, is depicted in figure
3.1. This cell consists of a cylindrical glass cell of 400 cm3 volume with two gas
inlets opposite to each other, a small glass cylinder inside the cell, three electrodes
and a potential probe.

Figure 3.1: Electrochemical cell. WE: working electrode; CE: counter electrode;
RE: reference electrode; PP: potential probe.

41
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Working electrode

For the experiments a ring shaped polycrystalline platinum electrode, embedded
into Teflon, was used as the working electrode. The inner and outer diameters of
the ring were 30 mm and 32 mm, respectively. Prior to each experiment the ring
was polished to a mirror finish on a polishing cloth with fine diamond pastes with a
particle size down to 0.25 µm. The ring was then ultrasonically cleaned in acetone,
ethanol,methanol and water respectively. Finally, the working electrode was elec-
trochemically annealed [91] by cycling between -0.65 and 0.7 V (vs. Hg/Hg2SO4)
with 0.1 V/s in a 0.5 M H2SO4 solution under Ar bubbling for 30 minutes. Figure
3.2 shows a cyclic voltammogram of the platinum ring after pretreatment.

Figure 3.2: Cyclic voltammogram of a rotating Pt ring-electrode measured in Ar
saturated 0.5 M H2SO4, with 0.1 Vs−1 scan rate and 20 Hz rotation rate.

Counter electrode

In these experiments the counter electrode was a ring shaped platinum wire (thick-
ness 1 mm) with a diameter of 65 mm. The ring was fixed in a plane parallel to the
plane of the WE and in a distance of 40 mm away from the working electrode to
ensure a defined distance between the working and the counter electrodes.

Reference electrode

All the measurements in this work were done under potential control, i.e., the poten-
tial difference between the working and reference electrode was kept fix. Throughout
all the experiments a mercury-mercurous sulfate (Hg/Hg2SO4) electrode was used as
reference electrode. The electrode was placed in a separate compartment which was
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connected to the main cell below the counter electrode. It was important to have
the RE at the plane of the CE to avoid any geometry induced negative differential
resistance.

Potential probe (PP)

Throughout the work of this thesis, we monitored the spatiotemporal pattern for-
mation on the surface of the ring-electrode by measuring the interfacial potential
drop along the angular direction of the working electrode insitu. To do this, a
home-made Ag/AgCl electrode (for details see [92]) was put into a J-shaped glass
capillary which was placed underneath the working electrode. The tip of the glass
capillary was about 1 mm away from the surface of the ring. Throughout this work,
the potential which was measured by the potential probe is designated by UPP.

The small glass cylinder inside the cell distributes the gas and prevents the forma-
tion of bubbles on the Pt ring surface. The cell was placed in a Faraday cage, which
is a conductive box connected to the ground, to reduce the current and voltage noise
on the working and reference electrode, respectively.

3.2 Chemicals, electrolytes and experimental param-
eters

It is important to use pure chemicals for these experiments to avoid any adsorption
of impurities on the surface. All electrolyte solutions for these experiments were
prepared using ultra-pure water produced by a combination of a Millipore Elix 5
and Millipore Milli-Q water system. The specific resistance of water was 18.2 MΩcm
and had less than 4 ppb TOC (total organic carbon). For the pre-treatment of the
ring-electrode suprapure H2SO4 96% from Merk was used. For the rest of the elec-
trolytes HCl 37% (Merck), CuSO4.5H2O (Merck) and KBr (Fluka) were used as
received. The purity levels of the Ar and H2 (Westfalen) used were 99.999%.

The electrolyte which was used to performe the experiments in chapter 4 consisted
of 0.5 mM H2SO4, 0.05 mM CuSO4 and 0.06 mM HCl.

Experiments presented in chapter 5 were performed in the presence of Br− as anion.
The measurements were done using electrolytes consisting 0.5 mM H2SO4, 0.1 mM
CuSO4 and two different concentrations of the anion, 0.01 mM KBr and 0.005 mM
KBr, respectively.
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All the electrolytes were saturated with H2.

The values of the other experimental parameters such as the cell resistance, RΩ, the
compensated resistance, Rc, or the fixed voltage, U0 during the stationary measure-
ments, are specified for each experiment in the caption of the respective figure. It
should be noted that the voltage values are not IR-corrected. Moreover, since an
amplifier was used to reduce noise the presented values of the potential probe are
multiplied by a factor of 10.

3.3 Instrumentation and data processing

In addition to the electrochemical cell, the setup consisted of a potentiostat, a Na-
tional Instrument data acquisition board, a rotating electrode system, a device to
provide the negative global coupling and a function generator to generate a sinu-
soidal signal.

A potentiostat is an electronic device that keeps a selected potential difference be-
tween the RE and WE fix and measures the current flowing between the WE and
the CE. It should be noted that in the measurement setup of this work the WE was
grounded. The potentiostat employed for the experiments of this work was built by
the Electronic Laboratory of the Fritz-Haber-Institute der MPG, Berlin. For further
data analysis applied voltage, current, potential of the PP and a photocell signal,
which will be explained later, were acquired with the data acquisition board, which
was controlled by a labview program.

The rotating system is of particular importance in the setup of these experiments.
It ensures a defined and efficient transport of H2, Cu2+ and Cl− from the bulk
electrolyte to the surface of the working electrode and one is that it enables us to
measure the interfacial potential along the working electrode by placing the tip of
the stationary potential probe close to the surface of the ring. In all the experiments
the working electrode was rotating over the potential probe with 20 Hz. With a data
acquisition rate of 1 kHz we measured the interfacial potential with a resolution of
50 points on the ring per rotation. The rotation system consisted of a rod that
connected the working electrode to a rotator with a controller and adjustable speed
from Pine Research Instrumentation.

As mentioned in section 2.3.2, in electrochemical systems a negative global coupling
(NGC) can be introduced to the system by compensating part of the cell resistance.
In all experiments discussed in this thesis part of the electrolyte resistance is com-
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pensated by means of the built-in negative impedance device of the potentiostat
which is in series with the WE.

The external periodic forcing was produced by a programmable function generator
with adjustable frequency and amplitude (Hameg HM 8130). By connecting the out-
put of the function generator to the potentiostat, this sinusoidal signal was added
to the external voltage so the applied voltage is describe by U = U0 + U1Sin(2πff t).
During the stationary experiments U0 is kept constant.

The slight imprecisions of the frequency of the rotating system causes a drift of
5 rotations in 120 seconds which should be corrected for long measurements. The
precise rotation speed is measured by producing a light signal with a nontransparent
marker fixed on the rotating rod which is detected by a photocell connected to the
data acquisition board. This light signal was used for interpolation of the data to
eliminate the drift. More details of the interpolation can be found in [93]. Since UPP

is subject to the same drift as the light signal, this signal can be used to correct the
drift in the potential data too.

During the measurements the data points are acquired one after another which ap-
points a different time to each measured point. To correct this time shift for the
spatial profiles at one instant in time, all the data points are interpolated along the
time axis [93]. Figure 3.3 shows the change of the light signal and the interfacial
potential after drift and time shift corrections.

Figure 3.3: (a) light signal acquired from the rotor, (b) light signal after drift
correction, (c) signal acquired from the potential probe after drift correction, (d)
signal acquired from the potential probe after drift and time shift corrections. The
X axis depicts the position on the ring and the Y axis the time.
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Chapter 4

Time-periodic Forcing of a Traveling
Pulse on a Ring

The impact of a time-periodic, spatially uniform external forcing on a non-uniformly
oscillating system, is one of the key questions that this work addresses. The system
investigated is the electrooxidation of hydrogen on a Pt ring-electrode in the pres-
ence of Cl− and Cu2+ ions under NGC. The global coupling rendered the uniform
oscillations unstable and induced the emergence of stable phase-pulse solutions. The
results of the systematic studies of the response of the oscillatory HOR system in
the presence of NGC to the external perturbation are presented in this chapter.

4.1 Introduction

As already discussed in chapter 2, the Pt|H2SO4,Cl−,Cu2+|H2 system is a prototype
example of an HN-NDR oscillator that exhibits different oscillations under potentio-
static control. Already about two decades ago Krischer et al. investigated this sys-
tem and reported a rich variety of temporal patterns exhibited by this system [94–96].
Later, they reported the systems spatiotemporal dynamics in the absence and the
presence of negative global coupling [23–25,30]. Before introducing a negative global
coupling, the system exhibits spatially weakly modulated oscillations in the entire
measured potential window. An example of such oscillations is shown in figure 4.1
where the time evolution of the inhomogeneous part of the interfacial potential,
UPP− < UPP >x, is displayed together with the corresponding current time series.
These relaxation-like oscillations are characterized by fast passive/active, (low/high)
and active/passive current transitions separated by a relatively long time interval in
which the system is in the active or the passive region. The abrupt change of the
current from a passive (low) to an active (high) state or vice versa breaks up the
homogeneous interfacial potential distribution, as can be seen in figure 4.1. Here,
any deviation of the colors from green, where UPP− < UPP >x is about zero, indi-
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Figure 4.1: Nearly homogeneous oscillations observed during HOR on a Pt ring-
electrode in the absence of a NGC under potentiostatic control. Upper plate:
UPP− < UPP >x(x,t) lower plate: I(t). The electrolyte consisted of 0.5 mM H2SO4,
0.05 mM CuSO4 and 0.06 mM HCl saturated with H2. Rotation rate of the WE:
ω = 20Hz.

cates a spatial structure. A spatial instability of the homogeneous limit cycle gives
rise to this spatial modulation.

Figure 4.2: Current-voltage characteristic in the presence of NGC during a poten-
tiodynamic experiment. Scan rate 0.01 V/s, for Rc = 300 Ω and RΩ = 540 Ω. The
remaining experimental conditions are the same as in figure 4.1.

Addition of a negative global coupling changes the dynamics of the system quali-
tatively. For the experiments of this work the NGC was induced by compensating
a part of the total cell resistance (RΩ), using the built-in IR compensation device
of the potentiostat which is de facto a negative impedance device. The change in
the dynamics due to the presence of the NGC is obvious when comparing figure 4.2,
where the data were acquired in the presence of NGC with figure 2.10, where the
system is only coupled through migration coupling. In figure 4.2 one can see that a
jump in the current at U = 0.17 V marks the onset of irregular oscillations, which
keep their irregularity during the entire potential ramp.
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Different from the above discussed oscillations in the absence of NGC, shown in
figure 4.1, in the presence of NGC stable large amplitude patterns with periodic
dynamics establish under potentiostatic control. The type of spatiotemporal pat-
tern that is observed depends on the strength of the NGC. At low NGC strength,
first (asymmetric) target patterns emerged, at higher NGC strength traveling pulses
prevailed. This sequence is in agreement with a previous report in the literature [24].

Figure 4.3: (a) and (b) UPP as a function of time and ring position, (c) and (d)
UPP− < UPP >x(x,t), (e) and (f) the current time series of (a) and (b), respectively.
Measured at (a) U0 = 0.60 V, RΩ = 540Ω, Rc = 300Ω and (b) U0 = 0.30 V,
RΩ = 550Ω, Rc = 350Ω.

Figure 4.3(a) and (b) show two typical space-time measurements in the oscillatory
region in the presence of NGC at a constant value of the external potential. In both
measurements, traveling pulse solutions establish which propagate with a constant
velocity and shape such as in figure 4.3(a) or have some imperfections in the pulse
shape as can be seen in figure 4.3(b). Figure 4.3(e) and (f) present the current
time series of the system in these two measurements. The amplitude of the current
oscillations are proportional to that of the uniform mode, < UPP >x, thus one can
see that in the experiments corresponding to 4.3(f) the spatially homogeneous mode
oscillates with a higher amplitude than the measurement corresponding to 4.3(e).
The period of these oscillations corresponds to the time in which the pulse trav-
els once around the ring. In the ideal case, a constant pulse shape would exhibit
stationary current and different positions on the electrode would oscillate locally.
However, during the experiments of this thesis, and similar to reports of experimen-
tal observations of traveling pulses with the same electrochemical system [23,30,49],
the pulses have never been ’perfect’ and their width changed during propagation on
the ring at each rotation. In previous works, the modulations in the pulse width
have been attributed to Pt surface inhomogeneities. The electrode surface, like any
other catalytic surface, contains small morphological non-uniformities which result
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in slight differences in the local catalytic properties of the surface. The quality of the
surface could also vary slightly with time and thus local and possibly also temporal
changes of surface properties might affect the pulse propagation. The origin of the
pulse width modulation and the oscillations of the spatially uniform mode will be
later discussed in detail in this chapter.

To gain more insight into the spatiotemporal dynamics and to obtain more possi-
bilities for analyzing the response of the globally coupled oscillating system to the
periodic external modulation, a Karhunen-Loève decomposition is performed for all
the measurements. In section 2.7.1 it was shown that with the help of the KLD, the
spatially active coherent modes that govern the spatiotemporal patterns are identi-
fied and their respective contributions to the patterns is determined. Originally, the
spatiotemporal data acquired consisted of a time series at 50 points in space. As
will be demonstrated below KL decomposition reveals that all the measured data
can be well represented by just two or three spatial modes. Hence, performing a KL
decomposition on a set of data results in an enormous data compression.

With help of KL decomposition, the space-time evolution of UPP(x,t) is given by:

Upp(x, t) =
N∑
j=1

bj(t)Φj(x) (4.1)

where for each j the term bj(t)Φj(x) contains the contribution of mode j at position
x and time t to the signal UPP at position x and time t.

Figure 4.4(a) and (b) display the results of the KL decomposition of the traveling
pulse shown in figure 4.3(a). Figure 4.4(a) quantifies how much of the observed
pattern is captured by the first 10 KL spatial modes by presenting the energy distri-
bution between them. The figure reveals that the traveling pulse can be captured by
the first two spatial modes only, whose contribution to the total energy are nearly
equal. Figure 4.4(b) shows how the spatial profiles of these two KL modes look like,
on the top as a pseudocolor representation and in the bottom row as profiles along
the spatial axis. They clearly present a sine and a cosine mode with wave number
kn with n = 1.

Figure 4.5 depicts the time dependent coefficients, b1(t) and b2(t) that correspond
to the two KL spatial modes presented in figure 4.4(b). One can see that the two
time series oscillate with the same amplitude and frequency, however, they are time-
shifted by π/2.
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Figure 4.4: Results of the KLD analysis of the traveling pulse presented in figure
4.3(a): (a) distribution of the normalized energy between the first 10 KL spatial
modes of UPP(x,t), (b) the spatial profile of the first two KL spatial modes in pseudo-
color representation (top) and in a Φ-x graph (bottom).

Figure 4.5: Time dependent coefficients of the two KL spatial modes depicted in
figure 4.4(b).

The KL decomposition confirms that the pulse structures shown in figure 4.3(a) are
well captured by the superposition of two spatial structures of a sine-shape and its
90 ◦ space-shifted version, called in the following the pulse modes :

UPP (x, t) = a1(t)sin(
2πx

L
) + a2(t)cos(

2πx

L
) (4.2)

where L is the circumference of the ring-electrode. Hence, the results are in agree-
ment with the description that the pulses emerge through a non-trivial Hopf bifur-
cation with n = 1, induced by the negative global coupling.
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Figure 4.6: The two KL spatial modes which describe the space-time evolution of
UPP for pulses shown in figure 4.3(b).

Figure 4.6 shows the results of the KL decomposition of the traveling pulses shown
in figure 4.3(b), where the spatially uniform mode oscillates with high amplitude,
compared to figure 4.3(a). These results show that also here, the first two KL spatial
modes of UPP are sufficient to describe the spatiotemporal data, however, the sine
and cosine-shaped spatial profiles are shifted by an offset caused by the spatially
uniform mode. The effect of this offset appears in form of slight modulations in the
width of the pulses as can be observed in figure 4.3(b). Subtracting the uniform mode
from the UPP decreases or eliminates the modulations in the pulse width as shown in
figure 4.3(d). Also the results of the KL decomposition of the inhomogeneous part
of UPP, confirm that the pulse modes of UPP− < UPP >x do not contain an offset.
Therefore, to account for the influence of the oscillations of the uniform mode in the
description of UPP, three terms have been considered:

UPP (x, t) = a1(t)sin(
2πx

L
) + a2(t)cos(

2πx

L
) + a0(t) (4.3)

In Eq. 4.3, the first two terms on the right hand side stand for the inhomoge-
neous part of the spatiotemporal data and a0(t) represents the oscillations of the
spatially uniform mode with time. Hence, analyzing the full spatiotemporal data,
UPP, which provides an insight into how the spatially uniform mode affects the other
spatial modes of the system and the inhomogeneous part, which consists of the pulse
modes, will provide a complete understanding of the response of the dynamical sys-
tem. In the data analysis presented in this chapter, the time dependent coefficients
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of the complete set of spatiotemporal data, resulting from the KL decomposition of
UPP and that of the KL spatial modes obtained from the KL decomposition of the
UPP− < UPP >x are designated with bi(t) and ai(t), respectively, for i = 1, 2, 3, ....

Subjecting the pulses to external time-periodic forcing

As explained in 2.3.2, traveling pulses in a periodic domain correspond to limit cycles
in phase space. Hence, when they are subjected to an external periodic perturba-
tion, within a certain parameter region in the plane of forcing amplitude - forcing
frequency, one can expect that the oscillations entrain to rational multiples of the
perturbation frequency, giving rise to a variety of different spatiotemporal patterns.
To experimentally measure the response of this system to different forcing param-
eters, first the traveling pulses which served as the reference state of the unforced
system were established and followed for several periods of oscillations. Then the
external sinusoidal signal was added to the voltage and the response of the driven
system to the external forcing was measured. Finally, after the termination of the
external forcing the unforced system continued oscillating, reestablishing the trav-
eling pulses again, which ensured the stability of the reference state.

Similar to the unforced dynamical system, analyzing the response of the oscillat-
ing system to the external forcing by means of KL decomposition is a very helpful
method. Since after subtracting the spatial average of UPP(x, t), the remaining,
inhomogeneous part of the response consists of the same main spatial modes as the
unforced pulse, the question of determining the entrainment regions of the system
reduces to monitoring the behavior of these two spatial modes together with the
spatially uniform mode with respect to the forcing signal.

The phase difference between the external sinusoidal modulation and each of the
time series of the KLD coefficients, ∆Φ, is determined by calculating the time dif-
ference (∆t) between one maximum in the forcing signal with the corresponding
maximum in the amplitudes of the time dependent KL coefficients, a1(t) and a2(t).
To determine the phase difference between the spatially homogeneous mode and the
forcing signal, ∆t is determined between the forcing signal and a0(t). The resulting
stroboscopic phase differences are denoted with ∆Φ0, ∆Φ1 and ∆Φ2 for the phase
difference of the spatially uniform mode and the two pulse modes to the forcing sig-
nal, respectively. It was explained in section 2.5 that entrained responses establish a
bounded phase relation to the forcing signal, whereas the phase difference between
the forcing signal and a quasiperiodic response grows in negative or positive direc-
tion with time.
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In the framework of this thesis, the response of this globally coupled electrochemical
system to external forcing was studied in three different parameter ranges. First, the
external sinusoidal signal oscillated with frequencies, close or equal to the natural
frequency of the system, f0. Then, the response of the system to a time-periodic
forcing where ff ≈ 2f0 was studied. Finally, the patterns that prevailed as a result
of applying an external modulation with a frequency close to half of the natural
frequency were investigated.

In these parameter regions several different sub- and superharmonic synchroniza-
tion areas are present as well, such as the 1:3 or the 2:3 tongue, which exist close to
the 1:2 tongue. However, the focus of this work will be on studying the three men-
tioned Arnold tongues which are the largest ones in the measured parameter regime.
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4.2 The 1:1 Arnold Tongue

In this section we explore the pattern formation within a regime in which the forcing
frequency is slightly detuned with respect to the natural frequency of the system
and, hence, 1:1 resonance is expected.

To understand the dynamical responses of the system at different forcing param-
eters the first step is to distinguish between the locked and unlocked responses of
the system for each measurement point, or in other words to determine the location
of the 1:1 entrainment band in the forcing amplitude - frequency parameter plane.
For this analysis the phase differences between the external forcing and the time
dependent coefficients of the KL spatial modes of UPP− < UPP >x, as well as the
phase relation of the forcing signal to the time series of the spatially uniform mode
are determined.

The spatiotemporal patterns that appear in different parameter regions, inside and
outside of this entrainment band exhibit a large variety of responses which will be
discussed in detail in the following sections.

4.2.1 Determination of the entrained region

The phase difference between the forcing signal and the time series of the KL spatial
modes of UPP− < UPP >x, and the oscillating spatially uniform mode are calculated
as explained in the introduction of this chapter and the advances of theses phase
differences with time are used to discriminate between the locked and quasiperiodic
responses.

Figure 4.7 shows an overview of the parameter combinations of forcing frequency
and forcing amplitude at which measurements were carried out. The designation I,
II and III refers to the forcing amplitudes 20, 40 and 80 mV, respectively. At each
forcing strength the values of ff/f0 discussed in the text are marked with a letter.
Although the KL decomposition and analysis of the advances of the ∆Φ0, ∆Φ1 and
∆Φ2 are performed for all points, only those ∆Φ evolutions which are important for
the discussion are presented.

A) Forcing amplitude 20 mV

For the forcing strength of 20 mV the variations of ∆Φ0, ∆Φ1 and ∆Φ2 are depicted
in figures 4.8, 4.9 and 4.10, respectively. It can be observed in all three figures that
except for point I-d and I-e, the phase differences between the forcing signal and
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Figure 4.7: Location of the experimentally measured points in the amplitude -
frequency parameter space.

the three spatial modes grow unboundedly in positive or negative directions. This
indicates that the forcing fails to entrain the system at these points and they are
located in the quasiperiodic region. At point I-d and I-e, on the other hand, the
phase differences stay constant, thus the system exhibits synchronous behavior and
two points lie in the resonance regime.

Figure 4.8: 20 mV forcing amplitude: Phase difference between the sinusoidal
forcing signal and the spatially uniform mode vs. time. The letters in the caption
correspond to the points in figure 4.7.
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Figure 4.9: 20 mV forcing amplitude: Phase difference between the external signal
and the time series of the first KL mode, a1(t) vs. time. The letters correspond to
the marked measurement points in figure 4.7

Figure 4.10: 20 mV forcing amplitude: Phase difference between the external signal
and the time series of the second KL mode, a2(t) vs. time. The letters correspond
to the marked measurement points in figure 4.7

As summarized in section 2.5, within the quasiperiodic region in the vicinity of the
synchronous regime, phase slips between quasi-stationary states are expected to oc-
cur. However, in figures 4.8, 4.9 and 4.10 it can be seen that the advances of ∆Φ0,
∆Φ1 and ∆Φ2 drift continuously and no phase slips appear. To study the transition
between the quasiperiodic region and the entrained region further, power spectra of
a1(t) and a2(t) were determined. In each power spectrum the frequency with the
highest intensity was identified as the response frequency of that time series. The
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response frequency of a1(t) was equal to that of a2(t) at all parameter values. The
green curve in figure 4.11 shows a plot of fr-ff vs. f0-ff . The blue curve in figure
4.11 is the diagonal where f0 = ff , and thus on this line the periodic perturbation
does not affect the base frequency of the forced system. The two points where the
fr-ff is zero correspond to the entrained responses at I-d and I-e. One can see in
the figure that except for the adjacent point on the left side of the entrained region
and the last measurement point on the right hand side which lie above the green
line in the rest of the parameter region all quasiperiodic points fall in a line on the
diagonal. Hence, except for the two points where the response frequency is larger
than f0, the times series of all responses stay unaffected by the forcing and oscillate
with the natural frequency of the system. Considering this fact, the data does not
contain evidence of a square-root like pushing of the frequency towards the forcing
frequency as a characteristic behavior of dynamical systems which go through a
saddle-node bifurcation at the borders of the synchronization regime (compare to
figure 2.14). This is perfectly in line with the missing phase slips in figures 4.8, 4.9
and 4.10.

Figure 4.11: 20 mV forcing amplitude: The green curve shows the variations of
the difference between the response frequency of a1 and the forcing frequency with
changing detuning. The blue line has a slope of 1 and is added for comparison.

B) Forcing amplitude 40 mV

Figures 4.12, 4.13 and 4.14 display the phase shifts between of the external pertur-
bation and the time series of the coefficients of the uniform mode and the first two
KL modes of the non-uniform part of the interfacial potential, respectively.

From the constant phase difference between the forcing signal and the time series of
the spatially uniform mode in figure 4.12 it can be deduced that a forcing strength
of 40 mV is strong enough to lock the uniform mode of the driven system to the
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Figure 4.12: 40 mV forcing amplitude: The phase difference between the sinusoidal
modulation and the spatially uniform mode a0 for different measurement points
marked on figure 4.7.

forcing in the entire investigated ff interval. However, at ff/f0 = 0.93, due to noise
or internal changes ∆Φ0 makes a 2π jump from the state of constant phase difference
and again establishes a constant phase relation to the forcing signal.

Figure 4.13: 40 mV forcing amplitude: The advances of ∆Φ1 for different mea-
surement points marked in figure 4.7.

From figure 4.13 and 4.14 the boundaries between the resonance regime and the
quasiperiodic region can be determined on both sides. In the parameter region be-
tween point II-f (ff/f0 = 0.96) and II-d (ff/f0 = 1) the system is entrained by
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the forcing, since all three spatial modes lock to the external modulation. However,
at ff/f0 = 1 and ff/f0 = 0.96 we observe also time series with a continuous and
slow drift of ∆Φ1 and ∆Φ2 with time (curves (g) and (c) in figures 4.13 and 4.14).
This points to the existence of a bistability between entrained and quasiperiodic
responses at these two parameter points.

Figure 4.14: 40 mV forcing amplitude: Phase difference between the external signal
and the time series of the second KL mode, a2(t) vs. time. The letters correspond
to the marked measurement points in figure 4.7.

Similar to the responses to 20 mV forcing amplitude, at 40 mV forcing amplitude
no phase slips can be observed in the growth of ∆Φ1 and ∆Φ2. However, to inves-
tigate the influence of the detuning on the response of the dynamical system and
the presence of critical slowing down in the system, the dependence of fr-ff on the
detuning is shown in the green curve in figure 4.15. The blue curve marks again the
curve for fr = f0.

Since the synchronous region is not symmetric around ff/f0 = 1, the green curve in
figure 4.15 is not symmetric around zero either. In the parameter area close to the
boundaries of the synchronization regime f0 is pulled towards ff and hence, fr lies
between ff and f0 and the variations of fr are not linear. Contrary to the responses
observed for 20 mV forcing amplitude, here only for high detuning the points come
close to the diagonal. Hence, except for high detuning, the driven system is influ-
enced by the external forcing. However, this influence does not follow any trend in
the increase or decrease of the response frequency of the points adjacent to the en-
trainment area. Therefore, one cannot find any evidence of the existence of critical
slowing down in the system. This is again in agreement with the missing phase slips
during the advances of ∆Φ1 and ∆Φ2.
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Figure 4.15: 40 mV forcing amplitude: Variations of the difference between the
response frequency of a1 and the externally applied forcing frequency vs. the detun-
ing.

C) Forcing amplitude 80 mV

At this forcing strength, the spatially uniform mode locks to the forcing signal within
the entire parameter region and the phase difference of a0 to the sinusoidal pertur-
bation signal remains nearly unchanged at zero. This constant phase relation of this
spatial mode to the forcing signal can be observed in figure 4.16.

Figure 4.16: 80 mV forcing amplitude: Advances of the phase difference between
the external modulation and the spatially uniform mode. The letters correspond to
different points in figure 4.7.

The phase relation of a1(t) and a2(t) to the external sinusoidal signal exhibited two
types of responses. In the first type of response, the time series of the coefficients
of the first and second KL spatial modes of UPP− < UPP >x, oscillate periodically
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with the forcing frequency and establish a constant phase relation to the forcing
signal and thus, are phase locked. The time series of a1(t) and a2(t) of the second
type exhibit amplitude modulations which are more pronounced in the oscillations
of a2(t). Due to this amplitude modulations, at some measurement points such as
III-f and III-d, determination of the exact maxima of a2(t) and therefore, of the
phase difference between this coefficient and the forcing signal was not possible.
The growth of ∆Φ1 and ∆Φ2 at these measurement points, as far as they could be
determined, together with the FFT analysis of the time series of a1(t) and a2(t)

suggest that the responses of the system at these measurement points are not locked
to the external forcing. Later in this chapter it will be shown that the responses of
the driven system at these points are intermittent or irregular.

In the negative detuning regime, where the ff > f0, both locked and unlocked re-
sponses emerge and at measurement points III-d and III-f a bistability of entrained
and unlocked patterns occurs. Since the unlocked responses only appeared in a pa-
rameter range with negative detuning, the left border between the synchronous and
asynchronous regime cannot be determined. In contrast to the previously discussed
results at lower forcing amplitude, the drift of ∆Φ1 and ∆Φ2 of the unlocked re-
sponses with time is not uniform, but strongly modulates, some modulations arising
from 2π or 3π phase slips.

Figure 4.19 summarizes the results of the analysis for all measured parameter val-

Figure 4.17: 80 mV forcing amplitude: The changes of the phase difference between
the external modulation and the time dependent coefficients of the first KL mode
of the non-uniform part of UPP for different measurement points in figure 4.7.
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Figure 4.18: 80 mV forcing amplitude: Phase difference between the external signal
and the time series of the second KL mode, a2(t) vs. time. The letters correspond
to the marked measurement points in figure 4.7.

ues. In this figure, the unlocked and locked measurement points are distinguished
by filled diamonds and circles, respectively. Different colors, are used to distinguish
between various qualitatively different behaviors of the system.
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Figure 4.19: Different responses of the system around the 1:1 resonance tongue.
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4.2.2 Entrained behavior

Within the 1:1 resonance region a variety of qualitatively different entrained behav-
ior established. However, from the results of the KL decomposition of UPP it can
be deduced that despite the qualitative differences between the entrained responses
of the system to the external modulation, the first two KL eigenvectors of UPP are
always sufficient to describe the space-time evolution of UPP at all entrained mea-
surement points. Figure 4.20(a), (b) and (c) display the contribution of the first
eight KL spatial modes of UPP for three entrained responses.

N
or

m
al

iz
ed

 e
ne

rg
y

Mode number Mode number Mode number

Symmetric pulses
Point I-d

Symmetric pulses
Point II-c

Asymmetric entrainment
Point III-h

(a) (b) (c)

Figure 4.20: Energy distributions of first eight KL modes of UPP of three examples
of entrained responses in the synchronous regions of the 1:1 tongue.

The analysis of the inhomogeneous part of UPP sheds light on the phenomenological
differences between the observed entrained responses. Based on the specific features
of different locked responses, such as the response of each pulse mode to the exter-
nal forcing, the relative contribution of each of the two spatial modes to the total
dynamics, or the influence of the external forcing on the oscillations of the uniform
mode, they can be classified into three types: Symmetric responses with suppressed
uniform mode, Symmetric responses with ’breaking point’ behavior and asymmetric
entrained responses. The characteristics of each type and the dynamics that lead to
the appearance of these patterns will be discussed in the following.



4.2. The 1:1 Arnold Tongue 65

A) Symmetric entrainment

i) Suppression of the spatially homogeneous mode

The type of entrained response at which the external forcing suppresses the spatially
homogeneous mode is only observed at low amplitude (20 mV) forcing, at measure-
ment point I-d (ff/f0 = 1.01).
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Figure 4.21: Point I-d in figure 4.19: (a) and (b) The first two KL spatial modes of
UPP before and after applying the external forcing, respectively, (c) the time-space
evolution of the UPP, (d) spatiotemporal evolution of UPP− < UPP >x, (e) red curve
I(t) and black curve U(t). U0 = 0.6 V. Rc = 300Ω, RΩ = 540Ω.

Figure 4.21(e) displays the variations of applied voltage (the black curve) and cur-
rent (the red curve) with time. One can see that adding the sinusoidal signal to the
voltage at t = 40 s results in the decrease of the current amplitude. Since current
and electrode potential Φdl are related by the potentiostatic control by U = IR +
Φdl, the total current is directly proportional to the contribution of the uniform
mode to the dynamics. Therefore, the reduction of the current amplitude in the
red curve in figure 4.21(e) is equivalent to the reduction of the oscillation amplitude
of the coefficient of the uniform mode, thus the homogeneous oscillations of the
electrode potential are suppressed through the time-periodic forcing. The reduction
of the uniform oscillations can also be seen in the orange curve in figure 4.8 which
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depicts the phase relation between the forcing signal and the spatially homogeneous
mode for point I-d. In this figure one can see that the two signals oscillate out
of phase and keep the constant phase shift of π which leads to the suppression of
the spatially homogeneous mode. It should be noted that since the current and
the spatially homogeneous potential mode always oscillate out of phase, the phase
difference between the external signal and the current oscillations is zero.

The effect of external perturbation on the uniform mode is also reflected in the
change of the energy distribution between the KL full spatiotemporal signal before
and after switching on the forcing. Figure 4.21(a) and (b) show that because of the
suppression of the uniform mode and thus, reduction of its influence on the dynam-
ics of the system after addition of the external perturbation, the offset on the first
KL spatial mode becomes smaller.

Investigating the spatiotemporal pattern in more detail, we see that after subtract-
ing the spatially uniform mode, the inhomogeneous part of UPP (shown in figure
4.21(d)) is hardly affected by the forcing and the pulse solution is stable during the
forcing.

ii) The ’breaking point’ behavior

The measurement points at which the frequency locked systems exhibits a so-called
breaking point in the spatiotemporal evolution of UPP are marked with red and
green filled circles in figure 4.19. The latter figure shows that this spatiotemporal
pattern is observed for all three forcing amplitudes. Figure 4.22(a) and (b) depict
two examples of such spatiotemporal patterns.

Here it can be seen that the response of the system consists of traveling structures
with a local ’breaking line’ in the pulse or a position where the pulse width becomes
very narrow. These ’defects’ are practically invisible when subtracting the uniform
signal from the data, as can be seen in figure 4.22(c) and (d). The KL decomposition
of the inhomogeneous part of the data confirms that the overall signal can be de-
scribed by a superposition of the uniform mode and a traveling pulse. Figure 4.23(a)
and (b) depict the distribution of normalized energy from the data of figure 4.23(b)
at point II-c, together with the two dominant modes, respectively. Clearly, the two
first modes carry a nearly equal contribution of the energy of the inhomogeneous
part of the system and the two KL spatial modes are sine-shaped and shifted by
π/2 with respect to each other. These two spatial modes are correlated to two time
dependent, phase-shifted coefficients which exhibit regular and periodic oscillations
with time, displayed in figure 4.22(e), (f), (g) and (h). The time series of a1 and a2
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Figure 4.22: Points II-c and III-e in figure 4.19 as examples of entrained responses
with local breaking or narrowing point: (a) and (b) the spatiotemporal evolution
of UPP at (c) and (d) UPP− < UPP >x, (e) and (f) the time series of the first KL
coefficients (g) and (h) time series of the second KL coefficient. Figures on the right
hand side correspond to point III-e and figures on the left hand side to point II-c.
U0 = 0.4 V (point III-e) and 0.35 V (point II-c). Rc = 300Ω, RΩ = 540Ω.
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Figure 4.23: Point II-c in figure 4.19: (a) The energy distribution of the first 8 KL
modes of UPP− < UPP >x, (b) the first two spatial modes of UPP− < UPP >x.

have equal amplitudes and are time-shifted by π/2. Thus, ’breaking point behavior’
is the result of a linear superposition of a traveling pulse and a uniform oscillation.
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B) Asymmetric entrainment

The measurement points where the so-called asymmetric entrainment was found are
marked by red filled circles in figure 4.19. This class of response occurs only at
moderate and high forcing amplitudes. At both 40 mV and 80 mV forcing strength
the asymmetric entrainment occurs in the positive detuning regime, ff/f0 ≤ 1.

The spatiotemporal evolution of UPP look phenomenologically similar to the break-
ing point dynamics. As figure 4.24(c) shows, also at these parameters the traveling
structures possess a local breaking or narrowing line. However, the subtraction of
the uniform mode from UPP does not result in a traveling pulse solution, as can be
seen in figure 4.24(d).
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Figure 4.24: Point II-f in figure 4.19: (a) Distribution of the normalized energy
between the first 8 KL spatial modes of UPP− < UPP >x, (b) the first two KL spatial
modes of (a), (c) and (d) the space-time evolution of UPP and UPP− < UPP >x

respectively, (e) and (f) time series of the coefficients of the first and second KL
spatial mode, respectively, (g) oscillations of the spatially uniform mode with time.
U0 = 0.35 V,at ff/f0 = 0.96. Rc = 300Ω, RΩ = 540Ω.

The results of the KL decomposition of UPP− < UPP >x shown in figure 4.24(a)
and (b), reveal that the spatial eigenmodes are still sine-shaped pulse pairs, i.e. the
two spatial structures are π/2 phase shifted with respect to each other, but their
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contribution to the dynamics differs strongly. From figure 4.24(e) and (f) it is evi-
dent that the oscillations of the time dependent coefficients, a1(t) and a2(t) not only
have different amplitudes, but also different shapes. Hence, here the symmetry of
the two first inhomogeneous modes is broken. Therefore, we denote such behavior
as asymmetric entrainment.

Figures 4.25 and 4.26 present how the difference between the amplitude of a1(t) and
a2(t) changes within the resonance region, for forcing amplitudes of 40 mV and 80
mV, respectively. For the measurements depicted by green squares in figures 4.25
and 4.26 the amplitudes are only slightly different. However, when forcing with
40 mV, at ff/f0 = 1.01 and for forcing amplitude of 80 mV at ff/f0 = 1.03, the
difference between the amplitudes becomes larger. This effect can be attributed
to a pitchfork bifurcation that takes place at these parameter points where due to
the external forcing the symmetric response of the dynamical system changes to
an asymmetric entrained response. A pitchfork bifurcation is common in physical
systems with symmetry. Pitchfork bifurcations are the generic bifurcations when
a symmetric solution changes its stability and which two fixed points with a bro-
ken symmetry bifurcate. Both fixed points are either stable (supercritical pitchfork
bifurcation) or unstable (subcritical pitchfork bifurcation) [97]. In the bifurcation
diagrams shown in figure 4.25 and 4.26 the red square symbols stand for the asym-
metrically entrained responses and the points marked with green squares for the
entrained pulses. The slight differences between the amplitude of a1 and a2 of the
symmetrically entrained responses is caused by the presence of slight imperfections
in the pulse structure. The filled green triangle in figure 4.25, stands for a response
which was not experimentally measured, but its occurrence is predicted by the bi-
furcation scenario.

Observing that at 40 mV forcing amplitude and ff/f0 = 1, bistability of both sym-
metric and symmetry broken states was experimentally measured, the bifurcation
scenario presented in figure 4.25 suggests that at this parameter range a subcritical
pitchfork bifurcation takes place. At ff/f0 = 1.01 a saddle-node bifurcation gives
rise to the appearance of a stable and unstable fixed points suggesting that within
the parameter regime marked with the green line the coexistence of the two quali-
tatively different stable solutions is possible.

The bifurcation diagram at the higher forcing amplitude of 80 mV, is a nice example
of a supercritical pitchfork bifurcation that takes place close to ff/f0 = 1.03. At the
bifurcation point, the symmetry between the response of the traveling wave spatial
mode to the external forcing breaks and hence, the symmetric entrained response of
the dynamical system becomes unstable.
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Figure 4.25: The bifurcation diagram for entrained responses at 40 mV forcing
amplitude.
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Figure 4.26: The bifurcation diagram for entrained responses at 80 mV forcing
amplitude showing a supercritical pitchfork bifurcation.

With increasing distance from the bifurcation point, the asymmetry between the re-
sponses of the two spatial modes becomes more evident. This effect is also reflected
in the difference between the normalized energy of the two modes, which increases
with increasing distance from the bifurcation point.



4.2. The 1:1 Arnold Tongue 71

4.2.3 Changes of phase shifts between forcing and response
signal within the entrainment band

The phase shifts between the periodic force and the oscillating time series of the
three active modes do not only help discriminating parameter regions with entrained
and quasiperiodic responses, they also reveal much insight into the dynamics of the
entrained regions. Therefore, the behavior of ∆Φ0, ∆Φ1 and ∆Φ2 when passing
through the 1:1 Arnold tongue is studied in more detail below.

Figure 4.27: 20 mV forcing amplitude: The phase difference between the forcing
signal and (a) a1(t), (b) a2(t) and (c) the spatially uniform mode. The blue and
green curve correspond to the measurement point I-e and I-d, respectively.

Figure 4.28: 40 mV forcing amplitude: The phase difference between the forcing
signal and (a) a1 and (b) a2 for entrained responses which mark the boundaries of
the synchronization region.

Figures 4.27, 4.28 and 4.29 show how the phase difference between the forcing sig-
nal and a0, a1 and a2 change when moving within the resonance region at 20, 40
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and 80 mV forcing amplitudes, respectively. One can see in these three figures that
at all forcing strengths the phase difference between the forcing signal and one of
the traveling wave spatial modes is always constant (figures 4.27(b), 4.28(a) and
4.29(a)). However, for the phase difference between the forcing signal and the other
traveling wave spatial mode a phase shift of π is observed at some measurement
points (figures 4.27(a), 4.28(b) and 4.29(b)). This phase shift appears due to the
phase invariance of the pulse modes, i.e. a1(t)sin(x) and −a1(t)sin(-x) are equivalent
KL spatial modes and hence, the phase difference of 0 and π between the forcing
signal and the corresponding time dependent coefficient of that KL spatial mode are
equivalent too. Therefore, the change observed for the latter phase differences are
not related to their position within the tongue. As a result, one can see that when
moving from one border of the entrainment band to the other, only the phase differ-
ence between the forcing signal and the uniform mode at 20 mV forcing amplitude
changes by π and ∆(∆Φ1) and ∆(∆Φ2) stay zero.

Figure 4.29: 80 mV forcing amplitude: The phase difference between the forcing
signal and (a) a1 and (b) a2 for entrained responses to 80 mV forcing. The left
boundary of the resonance region is not experimentally measured.

4.2.4 Quasiperiodic behavior

At low and moderate forcing strengths the space-time evolution of the interfacial
potential gives rise to quasiperiodic patterns which are similar in the entire param-
eter region outside the resonance regime. The measurement points that exhibit
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quasiperiodic behavior are marked with purple diamond symbols in figure 4.19.

Figure 4.30(a) and (b) present an example of the space-time evolution of UPP and
the current oscillations with time (the black curve), respectively. The red curve in
figure 4.30(b) displays how the response of current changes when the forcing signal
is switched on at t = 33 s.

Figure 4.30: Point I-a in figure 4.19: (a) The time-space evolution of the interfacial
potential, (b) the time series of the total current (black curve) and time series of
the applied voltage (red curve) for point I-a. U0 = 0.6 V. Rc = 300Ω, RΩ = 540Ω.

The occurrence of beat oscillations characterizes all quasiperiodic responses. The
beat oscillations correspond to the oscillations of the slowly varying envelope of the
fast oscillations. They can be identified easily in the time series of the current (black
curve in figure 4.30(b)) and in the time series of a1 and a2, shown in figure 4.31(a)
and (b), respectively.

The beat frequency is the difference between the response frequency and the forcing
frequency. This frequency appears with a low intensity in the power spectrum of
the time series of a1 and a2, displayed in figure 4.31(c). Power spectrum of a2 is
identical to the one shown in figure 4.31(c) and therefore has not been displayed.

From the results of the frequency analysis of the time series of the coefficients of the
first and second KL spatial modes of UPP− < UPP >x shown in figure 4.31(c) it can
be deduced that the coefficients mainly oscillate with a response frequency which
lies between ff and f0. In addition to fr, ff , f0 and fr+ff are also present in the
oscillations, however, with considerably lower intensity compared to fr. In the ex-

ample depicted in figure 4.31 the response frequency is equal to
ff + f0

2
. Hence, here

and in similar examples, the time series can be understood as a linear superposition
of two oscillations, one with the forcing frequency and one with the autonomous
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Figure 4.31: Point II-i in figure 4.19: (a) and (b) The time series of the coefficients
of the first and second KL spatial modes of UPP− < UPP >x, respectively, (c)
Frequency spectrum of (a). U0 = 0.35 V. Rc = 300Ω, RΩ = 540Ω.

frequency.

The results of the KL decomposition of UPP shed more light on the dynamics of
the system in this parameter range. The energy distribution between the first 8 KL
spatial modes of UPP shows that the first three spatial modes capture over 95 % of
the total energy and are therefore the main eigenvectors constructing the spatiotem-
poral data of UPP. The spatially uniform mode appears as an offset on one, two or
all of them.

After subtracting the spatially uniform mode, the remaining patterns are traveling
spatial structures with width modulations. The width modulations are the result of
the excitation of the traveling mode pair by both the forcing and the autonomous
frequency. Figure 4.32(b) and (a) display the first and second KL spatial modes of
the traveling wave and their corresponding contribution to the construction of the
UPP− < UPP >x, respectively.

From the results of the KL decomposition of UPP for entrained and quasiperiodic
responses it becomes evident that outside the resonance region three KL eigenvec-
tors are required for capturing the spatiotemporal response of the system whereas
within the synchronous regime the first two spatially coherent modes are sufficient
to describe the spatiotemporal data. This observation elucidates that entrainment
by the external modulation reduces the active degrees of freedom in the system from
three to two.
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Figure 4.32: Point II-i in figure 4.19: (a) Distribution of the normalized energy
between the first 8 KL spatial modes of UPP− < UPP >x, (b) the first two KL
spatial modes, (c) and (d) the space-time evolution of UPP and UPP− < UPP >x,
respectively, (e) and (f) time series of the coefficients of the first and second KL
spatial mode, respectively, (g) oscillations of the spatially uniform mode with time.
U0 = 0.35 V. Rc = 300Ω, RΩ = 540Ω.

4.2.5 Intermittent responses

In section 4.2.1 it was shown that when the system is forced with 80 mV forcing
amplitude unlocked responses appear in the negative detuning region. For these
states the coefficients of the spatial modes exhibit strong amplitude modulations.
The measurement points with such a response are marked with dark purple diamond
symbols in figure 4.19.

To gain more insight into the characteristics of this type of responses, the time series
of the coefficients of the first and second spatial modes of UPP− < UPP >x and the
spatially homogeneous mode were analyzed by means of a Hilbert transform. The
Hilbert transform describes an oscillatory time series through the temporal evolu-
tion of phase, Φ(t), and amplitude, ρ(t), respectively. However, when investigating
an externally forced system it is useful to follow the changes of Φ(t) and ρ(t) of the
coefficients at fixed phases of the external forcing. To obtain this stroboscopic map-
ping, the phase and amplitude obtained from the Hilbert transform are observed at
tk = k ·Tf where Tf is the forcing period and k = 1, 2, 3, .... Plotting cos(Φ(tk)) ver-
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sus sin(Φ(tk)) presents the distribution of the phase at times which are multiples of
the forcing period on the unit circle. Multiplying the cos(Φ(tk)) and the sin(Φ(tk))
by the time dependent amplitude, ρ(tk), and plotting them provides a presentation
of the stroboscopic phase and amplitude of the time series. Figure 4.33 presents
an example of the two latter graphs which are obtained from the time series of the
coefficients of the first and second KL spatial mode of UPP− < UPP >x and the
spatially homogeneous mode at point III-c. The time dependent coefficients and
the spatially uniform mode at point III-c are depicted in figure 4.34(c), (d) and (e),
respectively. In figures 4.33(a) and (c) it can be seen that the time dependent phase
of the first and second KL spatial modes are somewhat inhomogeneously distributed
but fill almost the whole unit circle. The chaotic modulations of the amplitudes of
the a1 and a2 manifest itself in the scattered points in figure 4.33(b) and (d), respec-
tively. The results of the Hilbert transform analysis of the spatially uniform mode
which are shown in figure 4.33(e) and (f), show that the variations of the phase are
confined to a certain region of phases, which is a manifestation of the fact that this
mode is synchronized by the forcing.

Figure 4.33: Point III-c in figure 4.19: (a), (c) and (d) distribution of strobo-
scopically measured phase on unit circle obtained from a1, a2 and a0, respectively.
(b), (d) and (f) stroboscopic image of distribution of time dependent phase and
amplitude obtained from a1, a2 and a0, respectively.
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The results of the Hilbert transform analysis for all marked points are very similar
to those shown for points III-c in figure 4.33. This confirms that, the measurement
points marked with dark purple in figure 4.19 are not entrained by the forcing.

The response of the dynamical system at measurement points III-c, III-d and III-f
show an intermittency between regular and irregular spatiotemporal patterns. At
measurement point III-c, for instance, pulses with a traveling breaking point are
interrupted by bouts of irregular patterns and return to the breaking point behavior
again, which can be seen in figures 4.34(a). Figure 4.34(b) shows that the inter-
mittency is preserved after subtracting the spatially homogeneous mode. Therefore,
the intermittent behavior is also reflected in the oscillations of the time series of
the coefficients of the first and second spatial modes of the inhomogeneous part of
UPP. The time series of a1 and a2 in figure 4.34(c) and (d) reveal that the chaotic
modulation of a1 and a2 amplitudes in regions where irregular pattern appear are
followed by periodic oscillations with nearly equal amplitudes that gives rise to the
intermittent traveling pulses.

Figure 4.34: Point III-c in figure 4.19: (a) and (b) The space-time evolution
of the UPP and UPP− < UPP >x respectively, (c), (d) and (e) oscillations of the
coefficients of the first and 2nd KL spatial modes and the spatially homogeneous
mode, respectively. U0 = 0.40 V. Rc = 300Ω, RΩ = 540Ω.

Figure 4.35(a) and (b) present the space-time evolution of UPP and UPP− < UPP >x

at measurement point III-f, as another example of the intermittent behavior in this
parameter range. The switching on and off of one of the coefficients, and the am-
plitude modulations which cause the irregular patterns are also observed in figure
4.35(b) and (c).

At point III-a and III-b long periods of entrained standing pattern were followed
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by long periods of unlocked solutions. This suggests that there exists a heteroclinic
loop in the phase space between these two patterns. Figure 4.36(a) and (b) display
the space-time evolution of UPP and UPP− < UPP >x while the dynamical system
is close to the locked state. A closer look at the time series of the coefficients of
the first and second KL spatial modes of UPP− < UPP >x in figures 4.36(c) and (d)
reveals that the first KL spatial mode of UPP− < UPP >x oscillates with half of the
forcing frequency whereas the coefficient of the second KL spatial mode oscillates
with ff and exhibits period-2 oscillations. Hence, the first and second KL spatial
modes of the system are influenced by different resonances and are locked to the 2:1
and 1:1 forcing, respectively.

After a short transient time, the periodic oscillations of a1(t) and a2(t) become ir-
regular oscillations with apparently chaotic amplitude modulations. The unlocked
irregular response observed at measurement points III-a and III-b are similar. The
spatiotemporal pattern of the system at this state and the time dependent coef-
ficients of the corresponding spatial modes are displayed in figure 4.37 for point
III-b. It is worth while to investigate whether the unlocked response is deterministic
chaotic. To elucidate the existence of chaos in the unlocked responses at measure-
ment points III-a and III-b next-maximum mapping is used. A next-maximum map,
which is obtained by plotting the maximum of a1(tn+1) (and a2(tn+1)) versus the

Figure 4.35: Point III-f in figure 4.19: (a) UPP (x, t), (b) UPP− < UPP >x (x, t),
(c) and (d) the coefficients of the first and second KL spatial modes of the inhomo-
geneous part of UPP, (f) the time series of the spatially uniform mode. U0 = 0.40
V. Rc = 300Ω, RΩ = 540Ω.
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Figure 4.36: Point III-a in figure 4.19: (a) UPP(x, t), (b) UPP− < UPP >x (x, t),
(c) and (d) time dependent coefficients of the first and second KL modes of UPP− <

UPP >x. U0 = 0.4 V. Rc = 300Ω, RΩ = 540Ω.

maximum at tn, reduces the time-continuous dynamics to a time-discrete map. Spe-
cific structures of this map point to the existence of a certain behavior in the system
such as period-2 oscillations or chaotic behavior. They are therefore, finger prints of
specific dynamics. Figure 4.38(a) and (b) depict the next-maximum maps obtained
from the time series of a1 and a2 in figure 4.37(c) and (d), respectively. However,
from both figures it is clear that the maps possess no distinguishable structures,
such as a unimodal map, which could be attributed to a low dimensional chaotic
system.

Figure 4.37: Point III-b in figure 4.19: (a) The spatiotemporal evolution of UPP,
(b) the spatiotemporal evolution of UPP− < UPP >x, (c) and (d) the coefficients of
the first and second KL spatial modes of the inhomogeneous part of UPP− < UPP >x.
U0 = 0.40 V. Rc = 300Ω, RΩ = 540Ω.

The results of the Hilbert transform analysis of a1 and a2 also do not show any



80 4. Time-periodic Forcing of a Traveling Pulse on a Ring

specific structure which could provide evidence of the existence of chaos.

Figure 4.38: The next-maximum maps for (a) a1(t) and (b) a2(t) shown in figure
4.37(c) and (d), respectively.

The energy distribution between the first 8 KL spatial modes of UPP shows that sim-
ilar to the quasiperiodic responses, the unlocked intermittent responses of the system
in this parameter region require three eigenvectors to capture the spatiotemporal dy-
namics phenomenologically. As it was observed for the quasiperiodic response, also
here either the second or the third KL spatial mode contains an offset caused by the
spatially uniform oscillations.



4.3. The 2:1 Arnold Tongue 81

4.3 The 2:1 Arnold Tongue

In this section the response of the oscillatory system to a time-periodic forcing at a
frequency about twice as large as the one of the unforced systems is presented. In
the following, after determination of the entrainment regions for the 2:1 forcing with
20, 40 and 80 mV forcing amplitudes, the different locked dynamical responses of
the system within this resonance regime will be studied. Furthermore, the behavior
of the system outside the resonance region is investigated.

4.3.1 Determination of the entrained region

The determination of the resonance region was carried out similarly to the procedure
described for the 1:1 tongue. Also here, at each forcing amplitude the results of the
KL decomposition of the inhomogeneous part of UPP together with the response
of the spatially uniform mode are used to distinguish between locked and unlocked
responses. However, to obtain the correct phase relation for the 2:1 external forcing,

the phase is calculated for ff/2, i.e. the phase difference is given by
2π

2Tf
(∆t), where

∆t is the time difference between every second maximum of the forcing signal and
a local maximum of the coefficients of the spatial modes. A phase advancement of
2π of the forcing is defined to occur in 2Tf and thus, the phase at half of the forcing
frequency is compared to that of the KL mode coefficients. When the spatial modes
oscillate with the forcing frequency, as it was found for the uniform mode, the phase
differences are calculated as explained for the 1:1 tongue.

Figure 4.39 shows all the parameter values at which measurements were carried out.
Like in the experiments of the 1:1 resonance regime, the forcing has been applied
with three forcing amplitudes.

A) Forcing amplitude 20 mV

Figure 4.40, 4.41 and 4.42 depict the advances of the phase difference between the
spatially uniform mode, the first and the second coefficients of the KL spatial mode
of UPP− < UPP >x, and the sinusoidal forcing signal, respectively, for a forcing
amplitude of 20 mV.

For all the measurement points the phase shifts between the spatially uniform mode
and the sinusoidal forcing signal stay constant. This can be seen in figure 4.40
where ∆Φ0 is depicted for several measurement points. Thus, the forcing entrains
the uniform mode of the system independent of the forcing frequency. The time
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Figure 4.39: The experimentally measured points plotted in the amplitude - fre-
quency parameter plane.

Figure 4.40: 20 mV forcing amplitude: Advances of the phase difference of the
spatially uniform mode to the forcing signal for measurement points marked on
figure 4.39.

series of the spatially uniform mode show that this mode oscillates with the forcing
frequency, hence the phase relations of this spatial mode to the forcing signal were
calculated identically to the 1:1 resonance regime.

The response of the spatially uniform mode to the forcing signal with 20 mV am-
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plitude distinguishes the behavior of the system at this forcing parameters from the
responses around the 1:1 resonance where the forcing was not strong enough to en-
train the spatially homogeneous mode.

From figures 4.41 and 4.42 it is clear that the response of the first and second KL
spatial modes of UPP− < UPP >x, depends on the forcing frequency. The coefficient
a1 is locked to the forcing at points I-h, I-i, I-g, I-f, I-e, I-c and I-a and the rest of
the measured points are unlocked. Figure 4.41 depicts the evolution of ∆Φ1 with
time for some of the measurement points. For the advances of ∆Φ2 one finds that
at point I-h, I-i, I-g and I-a the phase difference between a2 and the forcing signal is
not constant and thus, the second KL spatial mode of these measurements are not
entrained by the forcing signal. This can be observed in figure 4.42 for measurement
points I-i and I-g. This phenomenon of half entrainment results in the appearance of
modulated standing anti-phase oscillations and will be discussed later in this section
in detail.

Figure 4.41: 20 mV forcing amplitude: Evolution of the phase difference between
the forcing signal and the coefficient of the first KL spatial mode with time for
measurement points that are marked on figure 4.39.

There are two points which deserve special attention. According to the results of
the KL decomposition for point I-c, which will be presented below, the first KL
spatial mode of UPP− < UPP >x is sufficient to describe the behavior of the system
at this point hence, ∆Φ2 of this point is not depicted in figure 4.42. At point I-l we
observe in figure 4.41 that ∆Φ1 is nearly constant during the time interval 4x2Tf
and 12x2Tf . Figure 4.42 shows that in the same period of time, ∆Φ2 exhibits a
pronounced drift, but subsequently remains nearly constant. Hence, we see that
at this point there is an exchange in the entrainment of the KL coefficients. This
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Figure 4.42: 20 mV forcing amplitude: Evolution of ∆Φ2 with time for different
measurement points in figure 4.39.

phenomenon which is caused by intermittency in the system will also be explained
in detail below.

These results show that when forcing the system with low forcing amplitude, the
entrainment region is very narrow. Moreover, unlocked responses were observed in
between the entrained responses.

B) Forcing amplitude 40 mV

Similar to the responses at 20 mV forcing, when applying a sinusoidal perturbation
with an amplitude of 40 mV the spatially uniform mode oscillates with the forcing
frequency and thus, is entrained by the external perturbation at all measurement
points. The phase shift of the time series to the sinusoidal signal is always close to
zero, as in the case of 20 mV forcing amplitude (see figure 4.40). Hence, this spatial
mode oscillates in-phase with the forcing in the entire detuning range considered in
this section.

For several of the experimentally measured points the phase differences of a1 and a2

to the sinusoidal external modulation are displayed in figures 4.43 and 4.44, respec-
tively. At points II-q, II-g and II-e the constant phase difference between forcing
signal and a1 suggests that the system is entrained by the external perturbation.
Measurement points II-q and II-e correspond to a standing pattern which is de-
scribed only by the first KL spatial mode, thus due to the low contribution of a2,
the corresponding ∆Φ2 are not depicted in figure 4.44. At measurement points
where the system fails to lock to the external modulation, a continuous phase drift
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Figure 4.43: 40 mV forcing amplitude: Advances of the phase difference of the spa-
tially uniform mode to the forcing signal with time for measurement points marked
in figure 4.39.

Figure 4.44: 40 mV forcing amplitude: Growth of ∆Φ2 with time for different
measurement points in figure 4.39.

is observed and the system exhibits no phase slips.

C) Forcing amplitude 80 mV

When forcing the system with 80 mV amplitude, the spatially uniform mode is en-
trained by the forcing throughout the entire measured frequency range and thus,
the uniform mode oscillates again in-phase with the forcing signal. The advances of
∆Φ1 and ∆Φ2 are depicted in figures 4.45 and 4.46, respectively, for representative
values of the forcing frequency. The figures show that at all measurement points the
advances of ∆Φ1 and ∆Φ2 are unbounded, indicating that all the experimentally
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measured points are located outside the resonance region. Moreover, in the entire
frequency interval between ff/f0 = 1.76 and 2.24, ∆Φ1 and ∆Φ2 grow only in neg-
ative direction, independent of the sign of the detuning. This is in contrast to the
expected phase advancement for positive detuning. An analysis of the time series
of the KL mode coefficients, a1(t) and a2(t), by fast Fourier transform (FFT), (see
figure 4.47) reveals that the main oscillation frequency present in the time series are

indeed lower than ff/2 which is in line with the determined negative slope
d(∆Φ1)

dn

and
d(∆Φ2)

dn
.

Figure 4.45: 80 mV forcing amplitude: The advances of ∆Φ1 with time for different
measured points marked at figure 4.39.

In contrast to the behavior at a moderate forcing strength of 40 mV, where only
continuous phase drifts were observed, at 80 mV forcing amplitude ∆Φ1 and ∆Φ2

make phase slips of about π/3 between quasi-locked regions at certain ranges of
forcing frequency. Plotting ∆Φ2(n) on the unit circle (see figure 4.48) provides a
clear picture of the phase slips of the system and also the phase drifts.

Figures 4.45 and 4.46 show that at positive detuning (ff/f0 < 2) the system is in a
quasi-locked state for a long time, but once in a while undergoes fast phase slips by
about 60 ◦. This is shown for ∆Φ2 at three parameter values in figure 4.48 (upper
row). The advances of ∆Φ1 and ∆Φ2 in the positive detuning region are continuous
and exhibit non-uniformities but no clear phase slips. This can be seen clearly in
figure 4.48 where the advancement of ∆Φ2 exhibit uniform modulations which re-
sults in scattered phase differences on the unit circle (figure 4.48 (lower row)).

From the three accumulation centers in the upper plate of figure 4.48 it can be seen
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Figure 4.46: 80 mV forcing amplitude: Evolution of the phase difference between
the forcing signal and the time series of a2 with time for different measured points
marked in figure 4.39.

Figure 4.47: Point III-g in figure 4.39: First and third plate: time series of the first
two KL mode coefficients, respectively, second and fourth plate: frequency power
spectra corresponding to a1 and a2, respectively.

that when the system is forced with positive detuning, at 80 mV forcing amplitude,
it possesses three quasi-stationary fixed points between 0 and π. Together with
their counter parts, these three quasi-stationary fixed points result in the presence
of 6 quasi-stationary fixed points in the second iterate on the Poincaré map. Each
accumulation center represents a point on the invariant circle where a saddle-node
bifurcation would be expected and hence, is the ghost of a saddle-node bifurcation
of a period-6 orbit.

Figure 4.49 gives an overview, where synchronous and asynchronous behavior is
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Figure 4.48: ∆Φ2 of several of the measurement points shown in figure 4.45 plotted
on the unit circle.

found in the forcing amplitude - forcing frequency parameter plane. The locked
responses are marked with filled circles and the unlocked responses are shown with
filled diamonds. The measurement points marked with filled triangles designate
the parameter regions where the system exhibits transient or intermittent behavior
which will be explained later in this section.
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Figure 4.49: 2:1 resonant tongue depicted in the forcing frequency to natural
frequency - amplitude parameter plane.
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4.3.2 Entrained behavior

In this section the qualitatively different entrained patterns observed in the 2:1
tongue are discussed in detail.

(A) Standing anti-phase oscillations

The measurement points which exhibit standing anti-phase oscillations are marked
with filled gray circles in figure 4.49. This synchronous response is the most common
type of entrained behavior at 40 mV and it also appears at one measurement point
at 20 mV forcing strength. Figure 4.50 depicts the dominant KL modes together
with the energy distribution for the full data (4.50(a)) and the inhomogeneous part
of it (4.50(b)). The results of the KL decomposition at these points reveal that
the standing spatiotemporal pattern of UPP is dominated by one sinusoidal spatial
structure and the spatially uniform mode. Figure 4.50(a) and (c) confirm that the
third spatial mode which is the 90 ◦ space-shifted version of the first spatial mode,
hardly contributes to the energy of this data set.
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Figure 4.50: Point II-q in figure 4.49: (a) and (b) Distribution of the normalized
energy of the KL spatial modes of UPP and UPP− < UPP >x, respectively, (c) and
(d) the KL spatial modes corresponding to (a) and (b), respectively.

The energy distribution of the KL modes of UPP− < UPP >x confirms that one of
the spatial modes of the pulse pair contains nearly all the energy and the second
one is suppressed.

Figure 4.51(a) shows the standing anti-phase oscillations formed by the space-time
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Figure 4.51: Point II-c in figure 4.49: (a) UPP− < UPP >x as a function of ring
position and time, (b) and (c) time series of the coefficients of the first and second
KL spatial mode of UPP− < UPP >x, (d) time series of the spatially uniform mode.
U0 = 0.32 V. RΩ = 550Ω, Rc = 350Ω.

evolution of the inhomogeneous part of the interfacial potential. The time depen-
dent coefficients of the KL spatial modes, (see figure 4.50(d)) are depicted in figure
4.51(b) and (c). The difference between the amplitudes of the oscillations of a1(t)

and a2(t) confirms that the second spatial mode of the traveling wave pair has a
very low contribution to the pattern.

(B) Asymmetric entrainment

At measurement points marked with filled pink circles in figure 4.49, the driven sys-
tem is locked to the forcing but the response of the traveling wave spatial modes to
the external perturbation is asymmetric. This type of synchronous response is simi-
lar to the asymmetric entrainment that occurs in the 1:1 resonance region. At these
forcing parameters, the externally applied forcing breaks the symmetry between
the two spatial modes of the traveling wave and results in spatiotemporal patterns,
which deviate from the pulse behavior. However, in contrast to the behavior found
in the 1:1 Arnold tongue, here an asymmetrically locked response occurs also at 20
mV forcing amplitude whereas in the 1:1 resonance regime entrained pulses were the
only locked response that appeared.

A typical example of an asymmetrically entrained response is depicted in figure
4.52(c) and (d). The space-time evolution of UPP− < UPP >x (4.52(d)) exhibits a
traveling structure with strong modulations in width and height during one circula-
tion around the ring. The spatial profile of the KL modes of UPP− < UPP >x (figure
4.52(b)) and the distribution of the energy between them (figure 4.52(a)) give some
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Figure 4.52: Point II-l in figure 4.49: (a) The energy distribution of the KL spatial
modes of UPP− < UPP >x, (b) the first two KL spatial modes of UPP− < UPP >x,
(c) UPP(x,t), (d) UPP− < UPP >x (x,t), (e) and (f) time series of the coefficients of
the spatial modes shown in (b), (g) time series of the spatially uniform mode. U0 =
0.35 V. RΩ = 540Ω, Rc = 300Ω.

insight into this dynamics. Although the pattern is constructed by a sin(x) and its
90 ◦ space-shifted profile, the contribution of the modes to the total energy differs
considerably. Furthermore, the oscillations of the coefficients of the spatial modes
shown in figure 4.52(e) and (f) deviate from sinusoidal behavior. This is more pro-
nounced in the oscillations of the second coefficient, a2. One can also see that the
time series of a1 and a2 are not π/2 phase-shifted. It is clear that both entrained
coefficients oscillate with 1/2ff , while the spatially uniform mode exhibits period-2
oscillations with the dominant frequencies of ff and 1/2ff (figure 4.52(g)).

The asymmetric spatiotemporal responses that form in the 2:1 resonance tongue are
similar to those observed for the symmetric and asymmetric entrained responses in
the 1:1 tongue. Also here, the system exhibits pulses with the so-called breaking
point or a narrowing line. Examples of these type of patterns can be observed in fig-
ures 4.52(c), 4.53(a). One can see this resemblance by comparing the latter figures
with figures 4.22(a) and 4.24(c). However, since the homogeneous mode exhibits
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Figure 4.53: Point II-g and I-f in figure 4.49: (a) UPP(x,t), (b) UPP− < UPP >x

as a function of ring position and time, (c) and (d) time series of the first and the
second KL spatial mode, respectively, (e) time series of the spatially uniform mode.
U0 = 0.21 V (point I-f) and 0.32 V (point II-g). RΩ = 530Ω, Rc = 350Ω.

period-2 oscillations within the 2:1 resonance tongue, the linear superposition of
this spatial mode with the pulse modes gives rise to the formation of two breaking
points or narrowing lines.

4.3.3 Half entrained responses

At measurement points marked by dark blue symbols in figure 4.49 the response is
half entrained , i.e., only one of the two time series of a1 and a2 locks to the forcing
signal. Phenomenologically the spatiotemporal behavior can be described as irreg-
ularly modulated standing anti -phase oscillations .

Figure 4.54 shows a typical example, depicting the spatiotemporal evolution of
UPP− < UPP >x (4.54(b)), the time series of the coefficients of the first and sec-
ond KL spatial modes (4.54(c) and (e)) and the spatially uniform mode (4.54(g))
together with their corresponding phase shifts to the forcing signal (4.54(d), (f) and
(h)).

In figure 4.54(b), no particular structure can be distinguished in the spatiotemporal
evolution of UPP− < UPP >x. The irregular patterns that form are neither similar
to the standing structures observed in the previous section, nor do they resemble
the traveling spatiotemporal structures that form outside the entrainment band (for
an example of the latter see figure 4.58(a)).
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The energy distributions between the first and the second KL modes of UPP− <

UPP >x sheds light on the origin of this phenomenon. Figure 4.54(a) shows that
the first spatial mode contains nearly 70% and the second KL mode less than 30%
of the information. Here, the second spatial mode acts as an unlocked modulation
superimposed on the entrained first KL mode and prevents the system from forming
a standing anti-phase pattern as observed in figure 4.51 at point II-c (ff/f0 = 2.16).
The resulting phenomenon is best termed as irregularly modulated standing anti-
phase oscillation.

The time series of the first KL coefficient and of the spatially uniform mode, a0,
oscillate with ff/2 and ff , respectively. Hence, the changes of their phase difference
to the external sinusoidal signal are minor and bounded, indicating that these two
modes are entrained by the external modulation. However, the unbounded advances
of ∆Φ2 shows that the forcing fails to entrain to the forcing. Figures 4.54(d), (f)
and (g) depict the phase relations of a1, a2 and a0 to the forcing frequency.
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Figure 4.54: Point I-i in figure 4.49: (a) Energy distribution between the KL
spatial modes of UPP− < UPP >x, depicted for the first 8 ones, (b) UPP− < UPP >x

as a function of ring position and time, (c) a1(t), (e) a2(t), (g) a0(t), (d), (f) and (h)
the phase difference of (c), (e) and (g) to the forcing signal respectively. U0 = 0.21
V. RΩ = 530Ω, Rc = 350Ω.
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A FFT analysis of the time series of a2(t) shows that the main oscillation frequency
of this spatial mode is much lower than ff/2 and hence, the changes of ∆Φ2 with
time are faster than expected for the position of the corresponding measurement
points in the resonance region. This can be well seen in figure 4.42 where the ad-
vances of ∆Φ2 are shown for 2:1 forcing parameters at 20 mV amplitude.

4.3.4 Changes of phase shifts between forcing and response
signal within the entrainment band

To gain more understanding of the dynamics of the driven system it is helpful to
follow the behavior of ∆Φ1 and ∆Φ2 as the frequency is varied within the entrain-
ment band.

Figure 4.49 shows that at constant forcing amplitude of 20 mV in the parameter
region between the two entrained responses, I-c and I-f, unlocked and intermittent
responses appear, hence,the borders between the synchronous and asynchronous re-
gions are not exactly clear. However, since at measurement points II-h, II-i, II-g and
II-a half entrained responses emerge, whose first KL spatial modes are entrained,
the changes of ∆Φ1 can be followed in the parameter range between points II-h
at ff/f0 = 2.04 and II-a at ff/f0 = 2.18. Figure 4.55 depicts the variations of
∆Φ1 at the latter points with time. Similar to the entrained responses within the
1:1 entrainment band, also here the π phase difference between ∆Φ1 at points II-f
(ff/f0 = 2.08) and II-c (ff/f0 = 2.11) and the other data is due to the phase in-
variance of the results of the KL decomposition. Hence, at 20 mV forcing amplitude
the phase difference between the forcing signal and a1(t) of the entrained and half
entrained responses stays approximately constant as the forcing frequency changes.

Figure 4.55: Variations of ∆Φ1 with increasing detuning, measured at 20 mV
forcing amplitude.
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When the driven system is forced with a higher amplitude of 40 mV, a synchroniza-
tion region exits between ff/f0 = 1.85 and 2.16. Figure 4.56 shows the changes of
∆Φ1 within this synchronous region at constant forcing amplitude of 40 mV. Also
here, ∆Φ1 does not change considerably when moving from one border of the en-
trainment band to the other.

Figure 4.56: Changes of the phase difference between the forcing signal and the
time series of a1 within the synchronization region at constant forcing amplitude of
40 mV.

It is obvious from figure 4.49 that for a forcing strength of 80 mV no resonance
region was experimentally measured.

4.3.5 Unlocked responses

The measurement points where the unlocked responses appeared are marked with
diamond symbols in figure 4.49. Outside the 2:1 resonance region mainly three types
of unlocked behavior appear. The half entrained modulated standing anti-phase os-
cillations have already been discussed, the traveling anti-phase oscillations and the
breathing pulses will be presented in the following.

The KL decomposition of UPP of the three types of unlocked responses show that
similar to the unlocked responses to the 1:1 forcing parameters, three spatial modes
have the main contribution to the spatiotemporal pattern and hence, the system
has three active degrees of freedom. Figure 4.57(a) shows the energy distribution
between the KL spatial modes of UPP for point II-r, as a representative example.
Figure 4.57(b) displays the three spatial modes which capture nearly all the energy.
When the forcing strength is increased to 80 mV, the sequence of the KL spatial
modes which carry most of energy is slightly different than that shown in figure
4.57(b) and the traveling wave spatial modes (which may contain an offset caused
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by the spatially uniform mode) are the second and third KL modes. The spatial
mode with the highest contribution is either a spatially homogeneous mode or a
spatial mode with a low amplitude structure.
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Figure 4.57: Point II-r in figure 4.49: (a) Energy distribution between the first 8
KL spatial modes of UPP, (b) the first three KL spatial modes depicted in (a).

(A) Traveling anti-phase oscillations:

The red colored diamond symbols in figure 4.49 stand for the appearance of traveling
anti-phase oscillations.

Figure 4.58(a) presents the spatiotemporal pattern of the inhomogeneous part of
UPP for point II-r, where traveling anti-phase oscillations occur. In figure 4.58(b)
and (c) the time series of the coefficients of the first and second KL modes of the
inhomogeneous part of the UPP are displayed. Here it can be observed that a1 and
a2 exhibit quasiperiodicity in their time series and that the corresponding changes
of the amplitude stay within the same range for both coefficients. The oscillations of
the spatially uniform mode, which are depicted in figure 4.58(d), are not quasiperi-
odic but oscillate with the forcing frequency.

The traveling anti-phase oscillations at 80 mV and 40 mV forcing amplitudes can be
easily distinguished by looking at the spatiotemporal pattern of UPP and UPP− <

UPP >x. One can see in figures 4.58(b) and (c) that whenever a1 oscillations have
the largest amplitude, a2 oscillates with the lowest amplitude, which give rise to the
appearance of cluster patterns seen in figure 4.58(a). However, at 80 mV forcing
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Figure 4.58: Point II-r in figure 4.49: (a) The spatiotemporal evolution of the
inhomogeneous part of the interfacial potential, (b) the time series of the coefficients
of the first two KL modes of the UPP− < UPP >x and the spatially homogeneous
mode, (c) the corresponding phase differences of the time series in (b) to the forcing
signal. U0 = 0.32 V. RΩ = 550Ω, Rc = 350Ω.

strength the amplitude modulations in the times series of a1 and a2 (figures 4.59(b)
and (c)) are less pronounced than the modulations observed in figures 4.58(b) and
(c) and leading to a pattern between propagating pulses and traveling anti-phase
oscillations. Moreover, due to the higher strength of the forcing amplitude when
applying the forcing with 80 mV, ff appears with a higher intensity in the power
spectrum of a1 and a2 of the traveling anti-phase oscillations. This can be easily seen
in the time series of a1 and a2 in figures 4.59(b) and (c) where due to the presence of
ff with high intensity small structures appear on the low amplitude oscillation peaks.

The beat frequency present in the quasiperiodic oscillations that appear at 40 and
80 mV applied forcing amplitudes is equal to 2fr-ff , which is similar to the responses
to the 1:1 tongue, when considering the 2:1 relation of ff and f0 in these forcing
parameter range.

(B) Breathing pulses:

The filled yellow diamond symbols in figure 4.49 represent the third type of unlocked
response that appears when applying a 2:1 external forcing. The spatiotemporal pat-
terns observed at these measurement points are structures which exhibit repeated
width narrowing followed by a thickening during one rotation on the ring-electrode
and are therefore called breathing pulses .

Analyzing the KL decomposition of the system after subtraction of the spatial aver-
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Figure 4.59: Point III-b in figure 4.49: (a) (UPP− < UPP >x)(x,t), (b) and (c) the
time series of the coefficients of the first two KL modes of the UPP− < UPP >x,(d)
time series of the spatially homogeneous mode. U0 = 0.35 V. RΩ = 550Ω, Rc = 350Ω.

age from the interfacial potential shows that the inhomogeneous part of the system
consists of two spatial modes, a sine shaped profile and the 90 ◦ space-shifted ver-
sion of it whose contributions to the total energy differ considerably. The energy
distribution between the KL spatial modes of the inhomogeneous part of UPP show
that at point II-j the first KL spatial mode of UPP− < UPP >x carries about 58%
of the normalized energy whereas the second spatial mode contains about 32% of
it. At measurement points with 20 mV forcing amplitude the difference is lower but
still clearly distinguishable.

Figure 4.60: Point II-j in figure 4.49: (a) UPP(x,t), (b) (UPP− < UPP >x)(x,t),
(c) and (d) the time series of the coefficients of the first two KL modes of the
UPP− < UPP >x,(e) time series of the spatially homogeneous mode. U0 = 0.29 V.
RΩ = 530Ω, Rc = 350Ω.
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Figure 4.60(c) and (d) depict the time series of a1 and a2 at point II-j. One can
see that contrary to the traveling anti-phase oscillations, the oscillation amplitude
exhibits only slight modulations. Therefore, instead of the cluster patterns of figure
4.58(a) and 4.59(a), traveling structures appear with a strongly modulated width.

Moreover, the coefficient of the second KL spatial mode oscillates with a slightly
lower frequency than the coefficient of the first mode, as a result the phase difference
between the forcing signal and a2 grows faster than ∆Φ1, which can be seen in figures
4.43 and 4.44 for points II-n and II-j. Therefore, the phase difference between ∆Φ2

and ∆Φ1 drifts continuously or make phase slips of several periods and increases
with time. However, ∆Φ2-∆Φ1 corresponding to traveling anti-phase oscillations
oscillates periodically, with bounded amplitudes not larger than π/2. This can be
observed in figure 4.61 where the phase relation between a1 and a2 are shown for
traveling anti-phase oscillations (points II-a and II-r) and breathing pulses (point
II-j and II-n).

Figure 4.61: The phase shift between the time series of the coefficients of the
second and the first KL spatial mode of UPP− < UPP >x.

4.3.6 Intermittent responses

The parameter values at which intermittent responses occur are marked with green
triangles in figure 4.49. From this figure it is evident that within the forcing pa-
rameters of this tongue, the intermittent patterns appear only at low and moderate
forcing amplitudes whereas in the 1:1 resonance regime the intermittent dynamics
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due to the forcing appeared exclusively for a forcing amplitude of 80 mV.

When looking at the spatiotemporal pattern of the interfacial potential at each
marked point, it can be seen that the time scales of the change between the intermit-
tent patterns differ from one measurement point to the other. Figure 4.62(a) shows
the space-time evolution of UPP− < UPP >x at point II-p. This response is a good
example of intermittent responses where a certain pattern, here traveling structures
with width modulation, is repeatedly interrupted by another pattern for a short
time. The coefficients of the first and second KL spatial modes of UPP− < UPP >x,
which are shown in figure 4.62(b) and (d) for point II-p, reflect this interruption well.
As it can be seen in both figures, during the quasi-stationary intervals both coeffi-
cients a1 and a2 oscillate periodically in time, which gives rise to the appearance of
the traveling pattern. However, after several periods of oscillations, the second coef-
ficient misses one oscillation period which causes the appearance of the short bursts
that interrupt the traveling pulses. The missing oscillation appears as phase slips of
about π (measured with the second iterate, 2Tf ) in the plot of ∆Φ2 in figure 4.62(e).

Studying the time series of the coefficients of the first and second KL spatial modes
of similar intermittent responses shows that whenever few periods of irregular oscil-
lations appear as repeated bursts between regular oscillations where the system is at
a quasi-stationary state, the occurrence of the interruptions in the pattern are due
to the changes in oscillation period or strong variations in the amplitude of a2(t).
The time series of the first KL spatial mode and the spatially homogeneous mode
exhibit moderate or strong amplitude modulations, but no changes in the periods
of their oscillations.

In the intermittent responses discussed above, the occurrence of a base pattern is
interrupted by comparatively short bursts. At measurement points II-h and II-i
(both at ff/f0 = 2.01), however, the dynamical system changes back and forth
between an entrained response that is stable over many periods of oscillations and
an asynchronous pattern that also appears for a long time. This repeated exchange
between the locked and unlocked states suggests that the presence of a heteroclinic
loop between the latter states. Figure 4.63(a) presents the space-time evolution of
UPP− < UPP >x for point II-h, where the change from locked behavior to unlocked
at about 95 seconds can be easily seen. Figure 4.63(c) and (d) display that after
about 95 seconds the periodic oscillations of a1 and a2 change to quasiperiodic ones.
The spatially uniform mode possesses period-2 oscillations as the system is locked
to the forcing which are replaced by strong amplitude modulations as the system
enters the asynchronous state.
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Figure 4.62: Point II-p in figure 4.49: (a) Spatiotemporal evolution of UPP− <

UPP >x, (b) the coefficients of the 1st and 2nd KL mode of UPP− < UPP >x and
the oscillations of the spatially homogeneous mode, (c) the phase differences a1, a2

and a0 to the forcing signal. U0 = 0.32 V. RΩ = 550Ω, Rc = 350Ω.

Figure 4.63: Point II-h in figure 4.49: (a) Spatiotemporal evolution of the inhomo-
geneous part of the interfacial potential, UPP− < UPP >x, (b) and (c) oscillations
of the first and second KL mode coefficients with time, (d) the time series of the
spatially uniform mode. U0 = 0.35 V. RΩ = 540Ω, Rc = 300Ω.

Further study of the intermittent spatiotemporal patterns that appear when forcing
the systme with 40 mV, one can see that at several measurement points the external
modulation seems to support successive changes in the propagation direction of the
traveling pulse. Thus, the perturbation seems to change the phase of one of the
two coefficients of the KL spatial modes by π. An example of this phenomenon is
depicted in figure 4.64.
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Figure 4.64: Point I-e in figure 4.49 as an example for repeated change of propa-
gation direction in pulses due to the external forcing. Upper plate: UPP(x,t), Lower
plate: (UPP− < UPP >x)(x,t).
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4.4 The 1:2 Arnold Tongue

In this section the dynamical response of the oscillating system to an external forc-
ing with approximately half of the natural frequency is investigated. Figure 4.65
gives an overview of the parameter values which were experimentally investigated,
close to the 1:2 subharmonic resonance.
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Figure 4.65: The experimentally measured points in the amplitude - frequency
parameter plane.

4.4.1 Determination of the entrained region

When the system is forced with nearly half the natural frequency, the phase dif-
ference between the forcing signal and the coefficients of the KL spatial modes are
determined by calculating the time difference between the nth local maximum of
the forcing signal and the 2nth maximum of the time series of the KL spatial mode
coefficients. Whenever the oscillation frequency of the response is equal to ff , the
phase relation between the forcing signal and the response is obtained as shown for
the responses to the 1:1 resonance.

(A) Forcing amplitude 20 mV

When applying a 1:2 forcing to the system, a forcing strength of 20 mV is sufficient



104 4. Time-periodic Forcing of a Traveling Pulse on a Ring

Figure 4.66: 20 mV forcing amplitude: The phase difference between the forcing
signal and the time series of the spatially uniform mode.

to entrain the spatially uniform mode of the oscillating system. Hence, as figure
4.66 shows, the phase difference between the sinusoidal forcing signal and the time
series of the spatially uniform mode stays constant at about zero in the entire forc-
ing parameter regime. However, although the time series of the spatially uniform
mode of the forced system oscillates with ff , the frequency power spectra of the
time series show that it also contains the superharmonics and in several cases ad-
ditional noise from the measurement setup, which makes the determination of the
exact local maximum of each peak difficult. This results in slight variations in the
phase relation between the forcing signal and the spatially uniform mode, like in
points I-h, I-f and I-c in figure 4.66.

Figures 4.67 and 4.68 show the advances of the phase difference between the forcing
signal and a1 and a2. The nearly constant value of ∆Φ1 and ∆Φ2 at points I-f and
I-e indicate that the system locks to the forcing at these two measurement points.

At point I-g an initial increase in the values of ∆Φ1 and ∆Φ2 is followed by a plateau
which starts at n = 5. This type of behavior suggests that the system goes through
a transition from an unlocked to a locked state.

At the remaining measurement points the advances of the phase difference between
the sinusoidal external signal and the two coefficients drift continuously, in positive
or negative direction showing that these measurement points are located outside the
resonance region.



4.4. The 1:2 Arnold Tongue 105

Figure 4.67: 20 mV forcing amplitude: Variations of ∆Φ1 with time at constant
forcing amplitude measured for points marked on figure 4.65.

Figure 4.68: 20 mV forcing amplitude: Advances of ∆Φ2 at different measurement
points in figure 4.65.
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(B) Forcing amplitude 40 mV

When the system is forced with 40 mV forcing amplitude, the time series of the
spatially uniform mode shows that this spatial mode oscillates with ff . The con-
stant phase difference of zero between the forcing signal and the time series of the
spatially uniform mode reveals that the external modulation is in-phase with this
spatial mode of the system.

Figure 4.69: 40 mV forcing amplitude: Advances of ∆Φ1 measured for points
marked in figure 4.65.

Figure 4.70: 40 mV forcing amplitude: Variations of ∆Φ2 with time at constant
forcing amplitude for several different measurement points in figure 4.65.

The advances of ∆Φ1 and ∆Φ2 are depicted in figures 4.69 and 4.70, respectively.
The analysis of the KL spatial modes of UPP− < UPP >x and the spatially homoge-
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neous mode show that at this forcing parameters only at measurement points II-l,
II-h and II-j the systems entrains to the forcing. However, within this parameter
region unlocked responses appear too.

Both figures 4.69 and 4.70 show that the phase difference between the forcing signal
and a1 and a2 for the unlocked responses drift continuously and for none of the mea-
surement points a phase slip is observed. In order to get insight into the existence of
critical slowing down close to zero detuning, where 1/2f0-ff = 0, it is helpful to in-
vestigate the changes of the response frequency as the detuning changes. Therefore,
the variations in the difference between 1/2fr and ff versus detuning is plotted in
green in figure 4.71. It is clear that for the entrained responses 1/2fr-ff = 0. Figure
4.71 shows that for the unlocked responses fr grows almost linearly as detuning in-
creases in positive and negative direction. The blue curve in figure 4.71 has a slope
of one and thus comparing the green curve with the blue curve suggests that the
response frequency of the driven system is always smaller than its natural frequency
and even at large values of detuning fr does not become equal to f0.

Figure 4.71: 40 mV forcing amplitude: Variations of the difference between the
response frequency and the forcing frequency versus detuning.

(C) Forcing amplitude 80 mV

Similar to the response of the spatially homogeneous mode to external forcing with
low and moderate forcing amplitudes, the spatially uniform mode oscillates in-phase
with the forcing frequency. Thus, the phase difference of its oscillations to the forc-
ing signal does not grow with time and at 80 mV forcing amplitude the spatially
uniform mode stays entrained within the entire measured region.
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Figures 4.72 and 4.73 depict the advances of the phase difference between the ex-
ternally applied sinusoidal signal and the coefficients of the first and second KL
modes. The figures show that between point III-j and III-h the growth of the phase
relation between the forcing signal and a1 and a2 changes sign, which indicates that
within this parameter region the system locks to the forcing and thus these points
are located close to the border of the synchronization regime.

Due to the strong amplitude modulations and presence of several different frequen-
cies in the time series of a2 at the measurement point III-f, at ff/f0 = 0.50, deter-
mination of the exact maxima was not possible. At the measurement point III-d
(ff/f0 = 0.54) intermittent standing patterns appear and the amplitude of the a2

oscillations are very low, which makes the determination of maxima difficult, too.
Thus, the changes of the phase could not be obtained for these points and are cor-
respondingly not shown in figure 4.73.

Figure 4.72: 80 mV forcing amplitude: The advances of the phase difference be-
tween the forcing signal and the time dependent coefficients of the first KL spatial
mode for several measurement points marked on figure 4.65.

Figure 4.74 summarizes the results of the above presented analysis for the 1:2 forcing
parameters. On the figure the entrained responses are marked by filled circles and
the unlocked responses are designated by filled diamond symbols.
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Figure 4.73: 80 mV forcing amplitude: The changes of ∆Φ2 for different measure-
ment points marked on figure 4.65.

4.4.2 Breathing pulses

When the system is forced with 20 mV and 40 mV forcing amplitudes the syn-
chronous and asynchronous patterns that appear are phenomenologically very simi-
lar. The results of KL decomposition of UPP show that at low and moderate forcing
strengths independent of the behavior of the system with respect to entrainment, the
description of the space-time evolution of UPP at each measurement point requires
three spatial modes. Hence, unlike the dynamical behavior of the system within
the 1:1 and 2:1 resonance regimes, entrainment does not influence the number of
spatially active coherent modes that govern the spatiotemporal patterns. This can
be seen in figure 4.75 which depicts the energy distribution between the first 8 KL
spatial modes of UPP (figure 4.75(a)) and the first three KL spatial modes (figure
4.75(b)) that construct the entrained response shown in 4.75(c). Hence, the syn-
chronous and asynchronous responses can only be distinguished by monitoring the
growth of the phase relations of the forcing signal with a0, a1 and a2 and the fre-
quencies that are present in the time series of these three spatial modes. In figure
4.74 the locked responses are marked with filled light blue circles and the unlocked
responses with filled red diamonds.

The spatiotemporal patterns that arise in this parameter regime are pulse like struc-
tures which go through a width narrowing followed by a thickening, and hence are
termed breathing pulses. However, the pulses that appear in two successive circu-
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Figure 4.74: The 1:2 resonance region depicted in the amplitude - frequency pa-
rameter space.

lations around the ring look slightly different and can be differentiated from each
other, which results in the appearance of spatiotemporal period-2 pattern in UPP.
Examples of such patterns that result from the space-time evolution of UPP are dis-
played in figures 4.75(c) and 4.77(c). However, in figure 4.75(c), due to the stronger
influence of the spatially homogeneous mode on the KL spatial modes of UPP, the
local narrowing has changed to a breaking point. The higher strength of the spa-
tially homogeneous mode can be recognized in figure 4.75(b) where the spatially
uniform mode appears as an offset to the second KL spatial mode of UPP.

The KL decomposition of the inhomogeneous part of the interfacial potential shows
that at all measured points the system consists of a traveling wave pair, a sinusoidal
profile and its 90 ◦ space-shifted version. However, the influence of the externally
applied forcing on the response of the pulse modes depends on the applied forcing
frequency and is not equal in the entire parameter range. This can be clearly seen
when comparing the space-time evolution of UPP− < UPP >x at point II-l (ff/f0 =
0.46) in figure 4.76(c) with that of the point II-a (ff/f0 = 0.68) in figure 4.77(d).
Studying the results of the KL decomposition of the inhomogeneous part of UPP in-
dicates that in a parameter regime with negative detuning the inhomogeneous part
of UPP is almost unaffected by the external perturbation and the response is nearly
a linear superposition of the pulse and the spatially uniform mode. However, when
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Figure 4.75: Point II-h in figure 4.74: (a) Energy distribution of the first 8 KL
modes of UPP, (b) the first three KL spatial modes, (c) UPP(x,t), (d), (e) and (f)
the time dependent coefficients of the KL spatial modes shown in (b). U0 = 0.28,
ff/f0 = 0.46. RΩ = 550Ω, Rc = 350Ω.

the detuning is positive, the interaction of the pulse solution with the forcing causes
an unequal distribution of the normalized energy between the two traveling wave
spatial modes, as it can be seen in figure 4.76(a). Hence, the response is asymmetric
and deviates from a pulse behavior. Figures 4.76(d) and (e) depict the time series
of the coefficients of the two KL spatial modes of UPP− < UPP >x where both time
series exhibit a periodicity of 2.

Studying the frequency analysis of the time series of a1 and a2 of the responses in
the entire parameter region sheds light on how the external forcing affects the re-
sponses to these forcing parameters. Figure 4.78(a) shows the space-time evolution
of the inhomogeneous part of the interfacial potential at constant forcing strength
of 40 mV for different applied forcing frequencies, where the change from period-2
patterns to traveling pulses can be observed. The corresponding power spectra of
the time series of the first and second KL spatial mode coefficients show that at
positive detuning, the time series of a1 and a2 contain two extra frequencies f0+ff
and f0-ff , which appear with very low intensity in the frequency power spectra of
the coefficients of the responses when the detuning is negative. In figure 4.78(b)
the intensity of the two frequencies f0+ff and f0-ff are plotted versus ff/f0. It is
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Figure 4.76: Point II-l in figure 4.74: (a) Energy distribution of the first 8 KL
modes of UPP− < UPP >x, (b) the first three KL spatial modes, (c) (UPP− <

UPP >x)(x,t), (d) a1(t), (e) a2(t), (f) the time series of the spatially homogeneous
mode. U0 = 0.28. RΩ = 550Ω, Rc = 350Ω.

obvious that the intensity decreases as the positive detuning becomes smaller. This
trend continues as one goes through the 1:2 tongue to negative values of detuning.
Hence, the strong influence of the external forcing, which manifests itself in the
time-space evolution of UPP− < UPP >x, causes the excitation of oscillations with
frequencies f0+ff and f0-ff in the time series of a1 and a2.

It is interesting to notice that when the detuning is positive both locked and unlocked
responses experience a strong influence of the forcing. Examples can be observed in
figure 4.78(a) point II-j where the system is entrained and at points II-o and II-n
where the responses are unlocked.

4.4.3 Irregular responses

Irregular responses only appear when the system is forced with 80 mV amplitude.
In figure 4.74 green and dark red diamonds mark the parameter values where irreg-
ular patterns were observed. It was already shown in the first part of this section
that all the measured responses of this system to a 1:2 external forcing with 80 mV
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Figure 4.77: Point II-a in figure 4.74: (a) Energy distribution of the first 8 KL
modes of UPP− < UPP >x, (b) the first three KL spatial modes, (c) (UPP− <

UPP >x)(x,t), (d) a1(t), (e) a2(t), (f) the time series of the spatially homogeneous
mode. U0 = 0.28. RΩ = 550Ω, Rc = 350Ω.

amplitude are unlocked.

When looking at the spatiotemporal patterns of the interfacial potential at different
parameter values, it seems that two types of irregular responses can be distinguished,
according to their phenomenology. Figure 4.79 presents examples of the two pat-
terns. The irregular pattern shown in figure 4.79(a) contains fragments of the a
pulse and is more coherent compared to the spatiotemporal structures displayed in
figure 4.79(b) where fractions of space that are quasi-uniform pop up at irregular
moments in time and at different positions in space with variable width.

The distribution of the two types of irregular patterns on the forcing amplitude-
frequency plane indicates that the type of irregular pattern that appears at a mea-
surement point is not determined by the forcing frequency at each point. The
occurrence of the two different types of patterns is a result of the slight changes
of the surface, which manifests itself in the structure of the traveling pulses of the
reference state. Figure 4.80(c) and (d) show the pulses before applying the external
perturbation, for the experiments shown in figure 4.79(a) and(b). In the type I
unforced traveling pulses, displayed in figure 4.80(c), the results of the KL decom-
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(a)

(b)

Figure 4.78: (a) The spatiotemporal evolution of UPP− < UPP >x for measure-
ment points at different forcing frequencies (b) the intensity of the ff+f0 and ff -f0

frequencies in the oscillations of a1 with time.

position reveal that the first two KL eigenvectors of the system contain over 99%
of the information and the higher modes hardly play a role in the reconstruction
of the traveling pulse. The type II pulses, on the other hand, are constructed by
spatial sine and cosine profiles but the higher modes capture more than 10% energy.
The third spatial mode of the type II unforced pulses is either completely or mostly
spatially homogeneous, the forth and fifth spatial pair correspond to sin(2x) and
cos(2x). This difference in the reference state results in the appearance of the two
types of irregular responses, shown in figure 4.79. However, to determine possible
qualitative differences between the two types of pattern it is necessary to study and
compare the results of the KL decomposition for each type.

The results of the KL decomposition of UPP for an example of each pattern is pre-
sented in figure 4.81. The KL decomposition of UPP at all measured points shows
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Figure 4.79: Point III-g and III-e in figure 4.74: (a) and (b) Spatiotemporal
evolution of the interfacial potential at ff/f0 = 0.48 and 0.51, respectively, (c) and
(d) spatiotemporal evolution of the inhomogeneous part of the interfacial potential
for the same two measurement points. Measured at (a) U0 = 0.28 V and (b) U0 =
0.33 V. RΩ = 550Ω, Rc = 350Ω.

that in the presence of forcing the system can be described by three spatial modes
where the spatial mode which possesses the highest energy is uniform. An example
of the first three KL modes is displayed in figure 4.81(e). Figure 4.81(c) shows that
the contribution of the second KL mode to the construction of structures presented
in 4.81(b) is considerably lower than the structures in figure 4.81(a).

Comparing figures 4.82(a) and (b) with 4.81(a) and (b) shows that subtraction of
the spatially uniform mode does not considerably change the irregular spatiotempo-
ral patterns that appear. The inhomogeneous part of UPP consists of a sinusoidal
and its 90 ◦ space-shifted spatial profiles. Yet, figure 4.82(c) and (d) show that in
the type II irregular patterns (figure 4.82(b)) the eigenvalues corresponding to the
two dominant modes are more similar in the type II irregular patterns than the type
I patterns.

Figure 4.83 and 4.84 present the time series of the coefficients of the KL spatial
modes of UPP− < UPP >x, for points III-c and III-d in figure 4.74 as representative
examples of the two types of irregular patterns. Figure 4.83(b) and (c) show that
at point III-c, the second coefficient of UPP− < UPP >x has lower amplitudes and
larger amplitude modulations than the first coefficient. However, at point III-d, the
amplitudes of a1 and a2 in figure 4.82(b) and (c) have nearly equal amplitudes and
exhibit similar amplitude modulations, which may point to higher correlations be-
tween a1 and a2 at point III-d (ff/f0 = 0.54) compared to point III-c (ff/f0 = 0.55).
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Figure 4.80: Two different types of traveling pulses prevailed by the unforced
electrochemical system at point III-g and III-e: (a) and (b) The energy distribution
of the first 8 KL modes of UPP at points III-g and III-e, respectively, (c) and (d) the
spatiotemporal evolution of UPP at point III-g and III-e, respectively. Measured at
(a) U0 = 0.28 V, (b)U0 = 0.33 V. RΩ = 550Ω, Rc = 350Ω.

To gain a quantitative measure of the correlation between the two KL mode co-
efficients of UPP− < UPP >x the cross correlation function is calculated. The
normalized cross correlation function is defined as shown in equation 4.4 [98] and
provides a measure of how closely two signals are related to each other.

ρXY (τ) =
1

N

∑
n

(X(tn)Y (tn+τ )) (4.4)

where the lag, τ , is an integer multiple of the sampling interval.

Figure 4.85(e) and (f) display the cross correlation of a1 and a2 for points III-c and
III-e in figure 4.74, respectively. The natural frequency of the reference state of the
system at point III-c, which is also the main oscillation frequency of a1, is 0.51 Hz.
From figure 4.85(e) it can be observed that the cross correlation function of a1 and a2

of a type I irregular pattern oscillates with a frequency close to f0, whereas ρa1a2(τ)

at point III-e in figure 4.85(f) contains additional frequencies other than f0 = 0.55

Hz and exhibits period-2 oscillations during the first 12 seconds. Furthermore, since
the first two eigenvectors of the inhomogeneous part of UPP are the traveling wave
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Figure 4.81: Point III-c and III-f in figure 4.74: (a) and (b) Spatiotemporal evolu-
tion of UPP at point III-c and III-f, respectively, (c) and (d) the energy distribution
of the first 8 KL modes of UPP for (a) and (b) respectively, (e) the first three KL
modes of (a). Measured at (a) U0 = 0.28 V, (b) U0 = at 0.33 V. RΩ = 550Ω,
Rc = 350Ω.

spatial modes, sin(x) and cos(x), the comparison of the cross correlation between a1

and a2 with corresponding one of the unforced pulse, provides us a measure of how
much of the original pulse is left in the response. The blue curve in figure 4.86(a) and
(b) display the cross correlation functions for the unforced traveling pulses at the
measurement points III-c (ff/f0 = 0.55) and III-e (ff/f0 = 0.51), respectively. The
comparison with ρa1a2(τ) of the responses to the external forcing (the green curves)
shows that the blue and green curve in figure 4.86(a) oscillate with the same fre-
quency whereas the green curve in figure 4.86(b), presenting the correlation function
of a1 and a2 of the response at point III-e oscillates with a different frequency than its
reference state. Hence, the results confirm that the irregular response at point III-c,
as an example of type I irregular patterns, preserves more of the original pulse than
the response at point III-e, which is representative for the type II irregular responses.

In addition to the above mentioned characteristics of the two types of irregular re-
sponses, each type exhibits dynamical features which are not observed for the other
one. At first glance, oscillations of a1 with time, shown in figure 4.83(b), seem to
possess an intrinsic period, however, the amplitudes of the oscillations are irregularly



118 4. Time-periodic Forcing of a Traveling Pulse on a Ring

Figure 4.82: Point III-c and III-d in figure 4.74: (a) and (b) Spatiotemporal
evolution of UPP− < UPP >x at point III-c and III-d, respectively, (c) and (d)
the energy distribution of the first 8 KL modes of UPP− < UPP >x for (a) and
(b) respectively. Measured at (a) U0 = 0.28 V, (b) U0 = at 0.33 V. RΩ = 550Ω,
Rc = 350Ω.

Figure 4.83: Point III-c in figure 4.74: (a) (UPP− < UPP >x)(x,t) (b) and (c)
time dependent coefficients of the first and second KL modes (d) time series of the
spatially uniform mode. U0 = 0.28 V. RΩ = 550Ω, Rc = 350Ω.

modulated and resemble time series observed for Rössler-type chaotic systems. The
Rössler system is a set of three differential equations which possess one nonlinear
term and exhibits a strange attractor [60].

To obtain a measure for comparing the type I irregular response of the system with
the Rössler system, the next-maximum map of the present system can be compared
to that of a Rössler system. For obtaining the next-maximum map, the succes-
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Figure 4.84: Point III-d in figure 4.74: (a) The time-space evolution of the inho-
mogeneous part of UPP, (b) and (c) the time dependent coefficients of the first and
second KL mode, respectively, (d) the oscillations of the spatially uniform part of
UPP with time. U0 = 0.33 V. RΩ = 550Ω, Rc = 350Ω.

Figure 4.85: Point III-c and III-e in figure 4.74: (a) and (c) The time series of the
first and second KL coefficients of UPP− < UPP >x for measurement point III-c,
(e) the cross correlation between (a) and (c), (b) and (d) the first and second time
dependent KL coefficients of UPP− < UPP >x for measurement point III-e, (f) the
cross correlation between (b) and (d). Point III-c (ff/f0 = 0.55) measured at U0 =
0.28 V and point III-e (ff/f0 = 0.51) at U0 = 0.33 V.

sive local maxima of a1(t) are recorded and then a
max(n+1)

1 is plotted vs. a
max(n)

1

where amax(n)

1 denotes the nth local maximum of a1(t). Figure 4.87 depicts the
next-maximum map of a1 for the measured point III-c at ff/f0 = 0.55, shown in
figure 4.83(b). It is known that [60] the next-maximum map of systems which pos-
sess a Rössler-type attractor, lie on a unimodal map whereas in figure 4.87 and the
other maps of the type I data no specific structure can be distinguished. This shows
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Figure 4.86: Comparison between the cross correlation of the KL spatial mode
coefficients of the inhomogeneous part of the traveling pulse before applying the
perturbation and the cross correlation of the coefficients of the first two KL spatial
modes of the response to forcing.

Figure 4.87: A representative example of a next-maximum map of the coefficient
of the first KL mode of UPP− < UPP >x for type I irregular patterns.

that the irregular type-I patterns cannot be classified as Rössler-type chaotic system.

The type II irregular dynamics exhibits intermittent intervals that is not observed
for the type I irregular dynamics. Here, the system switches from an irregular to a
standing pattern. Figure 4.88(a) displays the intermittent spatiotemporal pattern
observed at point III-d (ff/f0 = 0.54). The time series of the first two KL modes,
which are shown in figure 4.88(b) and (c) show how the changes in the dynamics
give rise to the standing patterns. Between 40 and 75 seconds a1 and a2 oscillate
in a complicated manner and the oscillations of the uniform mode exhibit chaotic
amplitude modulations. As the forcing continues, the internal alternations of the
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dynamics give rise to a reduction in the amplitude of a2, which prevails standing
patterns. Moreover, the oscillations of a1 and the spatially uniform mode become
periodic and regular. This coherent state occurs only intermittently, and after some
time the system gets back to the irregular state. Similar behaviors are observed at
point III-b (ff/f0 = 0.55) and III-a (ff/f0 = 0.58).

Figure 4.88: Point III-d in figure 4.74: (a) (UPP− < UPP >x)(x,t), (b) and (c) the
time series of the first and second KL mode coefficients of UPP− < UPP >x, (d) the
oscillations of the spatially uniform mode with time. U0 = 0.33 V. ff/f0 = 0.54.
RΩ = 550Ω, Rc = 350Ω.

The phenomenological difference between the type I and type II irregular patterns
is also clearly reflected in the advances of the phase difference between the forcing
signal and the first and second KL coefficients of UPP− < UPP >x, depicted in
figures 4.72 and 4.73. One can see in these two figures that the phase difference of
the type I responses to the forcing signal grows with a lower slope than the phase
difference of the type II responses to the forcing signal (compare the advances of
∆Φ1 and ∆Φ2 at point III-f with point III-c). This shows that the frequencies of a1

in type I irregular responses are closer to 2ff .
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4.5 Discussion

Before we start the discussion, we summarize the most important observations of
our studies:

• The reference state of the system was a traveling pulse on a ring-electrode,
i.e., in a spatially quasi 1-dimensional domain with periodic boundary con-
ditions, superimposed by a uniform oscillation. The period of the uniform
oscillation was always equal to the time of one circulation of the pulse around
the ring. The pulse was induced by a negative global coupling and emerged
in a non-trivial Hopf bifurcation with wave number 1. Thus, from a more
theoretical point of view, the studies can be classified as investigations of the
impact of periodic perturbations on an oscillatory medium where the base
instabilities leading to the oscillations is a non-trivial Hopf bifurcation, and
mode selection stabilizes a traveling wave solution. The experimental evolu-
tion of the spatiotemporal dynamics could be phenomenologically captured by
the evolution of three spatial modes, the uniform mode and a sinusoidal ’pulse

pair’, sin(
2πx

L
+ φ) and cos(

2πx

L
+ φ) with L being the circumference of the

ring-electrode.

• The additive harmonic forcing applied to the reference state gave rise to four
base types of entrainment: none, one, two or three of the active spatial modes
were observed to lock to the forcing. The system was classified as being en-
trained when all modes locked to the external signal, half entrained when two
modes locked to it and as not entrained when just one or none of the modes
locked.

• The suppression of the oscillations of both pulse modes leading to uniformly
oscillating responses was never observed. A suppression of the uniform mode
occurred only at low forcing strength within the 1:1 tongue.

• The transition into the entrained regions was not accompanied by a critical
slowing down and no experimental evidence existed showing that the Arnold
tongue is bounded by saddle-node bifurcations, as characteristic for forced indi-
vidual oscillators. This includes the behavior of the phase difference between
the driving force and the time series of the coefficients of the three spatial
modes, inside the entrainment band. For a simple forced oscillator the phase
difference changes by π/m in a m : n entrainment band. In our experiments,
however, the phase differences stayed approximately constant when transvers-
ing the tongue. Again, there is one exception to this statement at low forcing
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strength in the 1:1 tongue, where the phase difference between the forcing sig-
nal and the uniform mode changed by π, between the two sides of the tongue
while those of the coefficients of the spatial modes were not affected.

• The uniform mode was synchronized to the external forcing at nearly all pa-
rameter values with a phase difference of around zero to the forcing signal.
Only at low forcing strength around the 1:1 tongue it oscillated quasiperiodi-
cally.

• The patterns that prevailed in the Arnold tongues depended on the resonance
region as well as the forcing parameters.
- Forcing around a 1:1 resonance mainly results in the appearance of entrained
pulses and asymmetrically entrained patterns. Asymmetric entrainment is re-
ferred to the state where applying the external forcing breaks the symmetry
between the two equivalent traveling wave spatial modes. In this situation,
the contribution of the two traveling waves to the construction of the pattern
is not equal anymore. This difference in the contribution of the spatial modes
manifests itself in the amplitude difference between the time series of their
corresponding coefficients, a1(t) and a2(t).
- Within the 2:1 entrainment band standing anti-phase oscillations are the
most commonly observed synchronous response of the system to the exter-
nal forcing. Moreover, the asymmetrically entrained responses occur in this
forcing parameter regime too. A characteristic feature of the 2:1 resonance
region is the appearance of half entrainment which gives rise to the occurrence
of modulated standing anti-phase oscillations. However, the half entrained
responses are considered unlocked, since only one of the two traveling wave
spatial modes is entrained by the forcing.
- The resonance region due to applying a 1:2 forcing is very narrow, compared
to the other two measured entrainment bands. The resonant patterns that
appear in this parameter regime are breathing pulses. The term breathing
pulses is referred to traveling pulses whose width modulates in such a way
that a decrease in the width is followed by an increase, during one rotation of
the pulse along the ring-electrode.

The experimental investigations of this work are a continuation of several experi-
mental and theoretical works, which focused on the study of the influence of external
forcing on spatially distributed systems. An overview of the studies in the context of
chemical reactions was presented in 2.5. The oscillations of the unforced system of
the dynamical systems in theses studies emerge through an instability of a uniform
stationary state where the wave number of the most unstable mode is zero, i.e., a
’trivial’ Hopf bifurcation. These oscillations can be spatially uniform or non-uniform
such as the rotating spiral waves observed in the experiments [13, 15–17, 66]. With
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the assumption that the forced system is close to the bifurcation point, most of the
theoretical investigations were based on the forced complex Ginzburg-Landau equa-
tion [18–20, 74–76].However, in the above presented chapter it was shown in detail
that the reference state of this work consists of non-uniform oscillations which arise
through a non-trivial Hopf bifurcation with wave number one, superimposed with
uniform oscillations. Examples of applying a temporal forcing to traveling waves
have been reported in the convection and fluid dynamics experiments where trav-
eling waves that arise through a Hopf bifurcation are subjected to time-periodic
forcing [12, 32]. However, no evidence for the oscillation of the spatially uniform
mode during the propagation of the traveling pulses was found in these works.

Therefore, due to this fundamental dynamical difference between the reference states
of the system studied in this thesis and the previous investigations, the work pre-
sented here sheds new light on the dynamics of driven spatially extended systems.

The spatiotemporal responses caused by forcing traveling pulses with frequencies
very close to their natural frequency, provide the best example for understanding
the important role of the negative global coupling on the dynamics of the driven
system. When oscillations which arise through a ’trivial’ Hopf bifurcation are sub-
ject to external forcing the system establishes a defined phase relation to the forcing
signal and around the 1:1 resonance their response is similar to the behavior of single
oscillators subject to external forcing. Experimental and theoretical works in the
literature show that when applying an external forcing with 1:1 frequency ratio to
uniform oscillations and rotating spiral waves, an entrained, homogeneous state with
no spatial structure is stable [13, 16, 19, 66, 74]. However, it was shown in 4.2 that
when traveling waves are externally forced due to the different phase relations of the
different spatial modes to the external forcing two qualitatively different entrained
responses appear which are not spatially uniform.

The theoretical investigations of the 2:1 resonance region showed that forced com-
plex Ginzburg-Landau equation has both resonant spatially uniform solutions and
resonant two-phase standing wave pattern solutions. The boundaries of the reso-
nance region where the spatially uniform solutions appear coincides with the Arnold
tongues of single forced oscillators. Similar to single oscillators, two stable uniform
phase-locked solutions are formed in a pair of saddle-node bifurcations, which mark
the border of the synchronization regime [78]. However, the parameter range of
resonant standing wave patterns does not always coincide with the tongue of spa-
tially uniform oscillations and occurrence of bifurcations can influence the range of
frequency locking of standing waves. The standing patterns consist of two spatially
uniform domains that oscillate with half of the forcing frequency and are phase
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shifted by π. Similar to these studies, during the experiments of this thesis stand-
ing anti-phase oscillations appeared as the most common entrained response of the
system to 2:1 forcing. Also here, the traveling wave modes oscillated with half the
forcing frequency.

Theoretical and experimental reports in show that the occurrence of nonequilibrium
Ising-Bloch bifurcation causes the resonant standing wave patterns lose stability and
non-resonant Bloch-front spiral waves prevail [76,78]. Similarly, it was observed dur-
ing the experiments of our work that at the breakdown of synchronization standing
anti-phase oscillations lost stability and unlocked traveling anti-phase oscillations ap-
peared. However, for positive frequency detuning, half entrained responses occurred
on the boundary between the standing and traveling anti-phase oscillations. Fur-
thermore, in our system standing anti-phase oscillations are not the only entrained
responses that occur. Experimental results showed that in a narrow parameter re-
gion inside the 2:1 entrainment band asymmetrically entrained responses appear
too. Contrary to the standing anti-phase oscillations, the asymmetrically entrained
responses are traveling structures. At the fixed forcing strength of 40 mV close to
ff/f0 = 1.97 (see figure 4.49) a transition from standing anti-phase oscillations to
traveling asymmetrically entrained responses takes place. The latter entrained re-
sponses then change to standing patterns again at about ff/f0 = 2.04. Hence, in
addition to the transition from resonance standing patterns to unlocked traveling
patterns which was already reported in the literature, a transition from standing to
traveling entrained responses is observed within the 2:1 resonance region. However,
the mechanism of none of the latter transitions is yet understood.

In addition to the studies above where the standing waves appeared as a result of
applying an external forcing to spiral waves [13, 15] during the experiments with
nematic liquid crystals traveling waves were externally forced which also gave rise
to the appearance of standing waves [33]. However, also here, no reports on the
existence of traveling entrained patterns were found.

Moreover, despite the diversity of the numerous theoretical and experimental works
that have focused on the study of the dynamics of externally driven spatially ex-
tended systems, to the current knowledge of the author of this work, no results on
the responses of these systems around a 1:2 resonance regime were found in the lit-
erature and thus, the above presented studies are the first reports on the dynamics

of a spatially extended system with forcing parameters ff =
1

2
f0.
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4.5.1 A prototypical model equation

We have seen that in our experiments the oscillations emerge through a non-trivial
Hopf bifurcation with wave number 1. Close to a Hopf bifurcation all oscillatory
media exhibit universal dynamics which can be described by the complex Ginzburg-
Landau equation. In the presence of a sinusoidal forcing it reads:

∂tW = (1 + iν)W − (1 + ic2) |W |2W + (1 + ic1)∂2
xW + δm ·W ∗(m−1) (4.5)

Here, the first two terms on the right hand side describe the local oscillator, the
third one the diffusive coupling and the forth one accounts for the periodic force.
δm is the strength of the forcing, W ∗ the complex conjugate of the complex order
parameter W and m denotes the nominator of the resonance tongue m : n under
investigation. The system is in a rotating reference frame with the frequency of the
external forcing. The parameter ν accounts for the frequency mismatch between the
autonomous and forcing frequencies.
In Eq. 4.5 diffusion is the only spatial coupling present in the system hence, to
account for the influence of the negative global coupling present in the dynamical
system of this work Eq. 4.5 is modified to

∂tW = (1+iν)W+γ < W >x −(1+ic2) |W |2W+(1+ic1)∂2
xW+δm ·W ∗(m−1) (4.6)

where the second term on the right hand side represents the global coupling. Here,
γ is the coupling strength.. For negative global coupling γ < 0. The term < W >x

stands for the spatially uniform mode. The presence of the negative global coupling
only affects the spatially uniform mode such that the trivial Hopf bifurcation is
delayed and the modes with wave number kn for n = ±1 are the first to become
unstable through a non-trivial Hopf bifurcation.

The simulations of Eq. 4.6 were carried out using a pseudo spectral method. The
basic idea of a pseudo spectral method is that the solution can be represented in the
spectral domain by a set of orthogonal eigenfunctions, such as Fourier series with
time dependent coefficients. The simulations presented here were performed with
256 Fourier modes. Discretization of a partial differential equation using a Fourier
spectral method results in the separation of the equation to a linear part, which is
diagonal and a nonlinear part. This equations were then solved using an exponential
time stepping algorithm [99]. The program used in this thesis was written in Matlab
by Dr. V. García-Morales.
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4.5.2 The reference state

The reference state of our experiments was traveling pulse, which was superimposed
by a uniform oscillation with the pulse frequency.

As the first step to gain more understanding of the experimental results a correspond-
ing reference state has to be established. In a parameter range where c1 = −0.9,
c2 = 0.5, γ = −1.11 and the system length, L is equal to 10, traveling pulses with
constant shape and speed emerge as the stable solution of Eq. 4.6. Figure 4.89(a)
displays these traveling pulses and figures 4.89(b) and (c) present rn, the moduli of
the complex order parameter |Wn|, for the modes with n = 0 and n = 1, respectively.

Figure 4.89: (a) The space-time evolution of the real part of W (x, t) which appear
as traveling pulses, (b) and (c) the moduli of the spatially homogeneous mode and
the traveling wave spatial mode with n = 1, respectively. c1 = −0.9, c2 = 0.5,
γ = −1.11, L = 10, δ = 0 and ν = 0.

From figure 4.89(b) it is clear that the spatially homogeneous mode does not oscil-
late. The same result was obtained with a realistic model for the electrooxidation
of hydrogen in the presence of poisons and negative global coupling [48, 100]. This
physical model is based on four variables; the surface coverages of the anions and
cations, Φdl and the copper concentration in front of the electrode. The model
also predicts that traveling pulses with constant width and velocity appear at suffi-
ciently large coupling strength and a stationary current density [23,30]. As already
mentioned, this is in contrast to our and former experimentally observed traveling
pulses which exhibited slight modulations in width during one rotation along the
ring-electrode, accompanied by current oscillations with the same frequency as the
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traveling pulses. These modulations were attributed to slight inhomogeneities in
the geometry of the ring-electrode or the catalytic activities of the electrode sur-
face [30, 49]. Since in none of our simulations or the previous simulaitons involving
the physical model modulated pulses could be obtained, we introduced in the fol-
lowing an inhomogeneity of the local dynamics.

As already mentioned, the parameter c2 describes the dependency of the frequency
of local oscillators on the amplitude of the oscillations. By adding an inhomogeneity
this parameter changes to c2(x) = c0 + b(x). The inhomogeneity b, was chosen as a
Gaussian and is thus described by:

b(x) = η · 1√
2πσ2

· exp(−x
2

2σ2
) (4.7)

where σ and η control the width and the height of the inhomogeneity, respectively.
Figure 4.90 depicts how c2 varies in space for η = 1 and σ = 1.

Figure 4.90: Parameter c2(x) after addition of a Gaussian function b(x) to account
for the local surface inhomogeneities on the ring-electrode which is assumed to have
a length L.

After introducing the space dependence in c2 into Eq. 4.6, in a wide range of param-
eters modulated traveling pulses with oscillations of the spatially homogeneous mode
appear as the stable solution. Figure 4.91(a) shows an example of such traveling
pulses with η = 1 and σ = 1. Figure 4.91(c) depicts that the spatially homoge-
neous mode with n = 0, has a non-zero modulus and hence, oscillates. As expected,
decreasing the inhomogeneity reduces the modulations. This can be seen in figure
4.91(b) where η and σ are reduced while the other parameters are kept constant.
Comparing figures 4.91(c) and (d) reveals that the amplitude of the oscillations of
the spatially uniform mode is also influenced by the strength of the inhomogeneity.
This leads to smaller amplitudes of < W >x.
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Traveling wave solutions can be described as a1(t)sin(
2πx

L
) + a2(t)cos(

2πx

L
), where

a1(t) = a2(t ± T/4). When using this presentation, it becomes obvious that the
presence of the local inhomogeneity results in slight amplitude differences of about
10% between the amplitudes of the a1(t) and a2(t), respectively.

Figure 4.91: Upper plate: The real part ofW (x, t) presenting modulated traveling
pulses (a) with large surface inhomogeneity η = 1 and σ = 1 and (b) with small
inhomogeneity η = 0.2 and σ = 0.5. (c) and (d) present the moduli of periodic
solutions with n = 0, (e) and (f) show the moduli of periodic solutions with n = 1

and (g) and (h) show the moduli of periodic solutions with n = −1, corresponding
to (a) and (b). c1 = −0.9, c0 = 0.5, γ = −1.11, L = 10, δ = 0 and ν = 0.

Figure 4.92(a) and (b) depict traveling pulses resulting from the simulations in the
presence of a local inhomogeneity and a typical example of traveling pulses which
appeared in the experiments during the oscillations of the unforced electrochemical
system, respectively. One can see that the simulated traveling pulses reproduce the
width modulations and the slight non-uniformities in the height of the experimen-
tally measured pulses well. The slight difference between the oscillation amplitude
of a1(t) and a2(t) was also observed experimentally.

The simulations reveal also that the presence of slight inhomogeneities on the surface
results in the activation of spatial modes with n > 1 (or n < −1), however, with a
small amplitude. Figures 4.93(a) and (b) depict the time evolution of the diffusion
term in Eq. 4.6 in the Fourier space, for the first 10 spatial modes of the spatiotem-
poral pattern, in the absence and presence of a local inhomogeneity, respectively.
One can see that before introducing the local unevenness except for the spatial mode
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Figure 4.92: Traveling pulses (a) obtained in the simulation in the presence of
surface inhomogeneity: η = 1 and σ = 1, before applying a forcing, (b) observed
experimentally for the unforced electrochemical oscillating system in the presence
of negative global coupling, (c) and (d) after subtraction of the spatially uniform
mode corresponding to (a) and (b), respectively. c1 = −0.9, c0 = 0.5, γ = −1.11,
L = 10, δ = 0 and ν = 0.

with n = 1 all other modes have no contribution to the inhomogeneous part of the
equation and their diffusion term is zero. However, figure 4.93(b) reveals that in
the presence of the local inhomogeneity, in addition to the mode with n = 1, the 3
following higher modes with n = 2, 3 and 4 are also activated and thus, have a small
contribution to the traveling waves dynamics. Hence, despite the low contribution
of the spatial modes with n > 1 to the dynamics, compared to the spatial modes
with n = ±1, considering their influence is necessary for describing the system.

The above presented simulation results confirm the assumption presented in the lit-
erature [30,49], that for a perfectly uniform surface the spatially homogeneous mode
is not excited by a traveling pulse (figure 4.89(b)). Only when introducing a local
surface inhomogeneity, the spatially homogeneous mode starts oscillating. In figures
4.91(e) and (h) one can see that the presence of the inhomogeneity also activates
the traveling pulse which propagates in the opposite direction and hence, the contri-
bution of the traveling pulse with an opposite wave number is larger than zero. It is
the interaction between the traveling wave with the opposite wave number and the
spatially uniform mode which excites the oscillation of the spatially uniform mode.
However, comparing figures 4.92(a) and (b) with figures 4.92(c) and (d) which dis-
play traveling pulses with and without the spatially uniform mode, indicates that
the subtraction of the spatially uniform mode decreases the width modulations of
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Figure 4.93: The time evolution of the diffusion term in Fourier space, with kn =
2πn

L
, for modes with n = 0...10, where n = 0 represents the spatially homogeneous

mode, (a) in the absence of the local inhomogeneity and (b) in the presence of a
local inhomogeneity with η = 0.5 and σ = 1. c1 = −0.9, c0 = 0.5, γ = −1.11,
L = 10, δ = 0 and ν = 0.

the pulse during one rotation, but it does not eliminate them. The remaining mod-
ulations can be attributed to the influence of the spatial modes with higher wave
numbers which are activated due to the presence of the local inhomogeneities (figure
4.93(b)).

4.5.3 The 1:1 resonance region

In order to investigate the response of the oscillating system to a time-periodic ex-
ternal forcing, the forcing strength,γ, and the frequency mismatch, ν, are varied.
For the 1:1 resonance tongue m = 1 in Eq. 4.5 and thus the forcing term is the
constant δ. The simulations were performed in a parameter region where c1 = −0.9,
c0 = 0.5, γ = −1.11 and L = 10, unless mentioned otherwise.

Figure 4.94 depicts 1:1 resonance tongue calculated for the spatially uniform sys-
tem. Standing waves are the only locked solutions of Eq. 4.6. Outside the resonance
region, when the frequency mismatch, ν, is negative the system exhibits only trav-
eling patterns whereas for positive ν close to the border of the entrainment band
the unlocked solutions are standing patterns and only at higher values of frequency
mismatch unlocked traveling patterns appear. Considering the variety of qualita-
tively different entrained solutions which were experimentally observed inside the
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Figure 4.94: Different responses of the system in the 1:1 resonance region, depicted
in the frequency mismatch-forcing strength plane measured for a homogeneous elec-
trode surface. η = 0.

1:1 resonance regime, the entrainment band in figure 4.94 is not in agreement with
the experimentally observed results shown in this chapter. This confirms that a
perfectly uniform surface does not represent the experimental condition.

Now, the important question is to find the right parameters η and σ which resemble
the surface inhomogeneities that reproduce the experimental conditions. Hence, the
response of the dynamical system to a 1:1 forcing was investigated for different inho-
mogeneity values. Figure 4.95 depicts the 1:1 entrainment band for a small surface
unevenness with η = 0.2 and σ = 0.5.

When the externally applied forcing is weak, entrained pulses are the only locked
response that is prevailed by the system. By increasing the forcing strength, asym-
metrically entrained responses and standing waves appear too. At moderate forcing
strength, standing waves are only observed at one side of the resonance regime,
while at higher values of δ standing waves appear on both sides. Above a certain
forcing strength, standing waves are the only entrained response observed for the
system. At moderate and high forcing strength half entrained responses occur in
addition. The tongue shaped entrainment band is asymmetric, in terms of the width
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Figure 4.95: Different responses of the system in the 1:1 resonance region, de-
picted in the frequency mismatch-forcing strength plane, in the presence of surface
inhomogeneity: η = 0.2 and σ = 0.5.

of the entrainment regimes around ν = 0, and also in terms of the types of responses
that appear. The experimentally observed entrained pulses and the asymmetrically
entrained responses also appeared in the 1:1 entrainment band. Hence, in contrast
to a uniform medium, a Gaussian distribution of local parameters reproduces these
features. However, as shown in figure 4.19 in the experiments at a constant forc-
ing amplitude both entrained pulses and asymmetric responses were found whereas
in figure 4.95 at a given forcing strength either entrained pulses or asymmetrically
entrained responses occur. The only exception is seen at δ = 0.28 where asym-
metrically entrained responses appear in a very narrow region, close to entrained
pulses. Moreover, contrary to the experimentally measured 1:1 resonance region,
the entrainment band in figure 4.95 does not become broader with increasing forc-
ing strength. Another clear difference between the responses in figure 4.95 and the
experimentally measured ones is the appearance of unlocked responses within the
resonance region at δ = 0.27. These points indicate that with the selected inhomo-
geneity parameter values many experimental observations cannot be reproduced.
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In the following the impact of the inhomogeneity parameters on the dynamics is
investigated further. Figure 4.96 depicts the 1:1 entrainment band which results
from introducing a broader local inhomogeneity with σ = 1.5 and η = 0.2. One can
see that the stable synchronous solutions of the system are similar to those observed
in figure 4.95, and also in this parameter regime, the simultaneous existence of en-
trained pulses and asymmetrically entrained responses at a fixed forcing strength is
not observed.
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Figure 4.96: Different responses of the system in the 1:1 resonance region, de-
picted in the forcing strength-frequency mismatch plane in the presence of surface
inhomogeneity: η = 0.2 and σ = 1.5.

Figure 4.97 shows another 1:1 resonance region, simulated with η = 1 and σ = 1.
Comparing this figure with figures 4.95 and 4.96 it becomes evident that the width
and height of the local inhomogeneity do not influence the types of stable entrained
solutions that appear. However, one can see that at larger unevenness (figure
4.97) entrained pulse solutions appear in a broader region at fixed values of forc-
ing strength. Furthermore when the forcing strength is between δ = 0.2 and 0.37,
variation of frequency at a fixed forcing strength results in the appearance of both
entrained pulses and asymmetrically entrained responses. When δ < 0.2 entrained
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pulses are the only stable solution of the system. These results are in good agree-
ment with the experimental observations shown in figure 4.19.
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Figure 4.97: Different responses of the system in the 1:1 resonance region, de-
picted in the frequency mismatch-forcing strength plane, in the presence of surface
inhomogeneity: η = 1 and σ = 1.

As can be seen in figure 4.97 for the forcing strengths between 0.20 and 0.25, the
asymmetrically entrained responses appear only at one side of the entrainment band
close to the border. When increasing the forcing strength they appear on both sides
but still only close to the borders of the synchronization region. Interestingly, in this
parameter range the transition from synchronous to asynchronous behavior happens
through the appearance of half entrained responses whereas at lower forcing strength
the entrained pulses change to unlocked traveling structures as the border is crossed.
At higher forcing strengths standing waves appear within the 1:1 entrainment band,
too. Comparing these theoretical predictions with our experimental results, we ob-
serve a discrepancy. The half entrained responses and the standing waves are not
observed in the experiments. The reason may be that the half entrained responses
occur only within a narrow parameter region on the border, where no measurements
where performed. Moreover, apparently the highest experimentally applied forcing
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strength was still not high enough for the occurrence of the standing waves observed
in figure 4.97.

Figure 4.98: The time evolution of the phase difference between the forcing signal
and (a) the spatially homogeneous mode, (b) and (c) the time dependent coefficients
of the first and second traveling wave spatial modes, respectively which correspond
to an entrained pulse obtained in a parameter region with. η = 1, σ = 1, δ = 0.25

and ν = 0.04.

Figure 4.98(a), (b) and (c) show the evolution of the phase difference between the
forcing signal and the spatially homogeneous mode, a1(t) and a2(t) for an entrained
pulse from figure 4.97, respectively. As expected for entrained pulses, the phase dif-
ference between ∆Φ1 and ∆Φ2 is 90 ◦, however, the amplitude of a1(t) and a2(t) are
not exactly equal, due to the imperfection caused by the local inhomogeneity in the
unforced pulse. Still, the asymmetrically entrained responses can be distinguished
from the entrained pulses by the considerably large amplitude difference between
a1(t) and a2(t).

A noticeable feature of the experimental 1:1 resonance regime was that outside the
resonance tongue the homogeneous mode was entrained for higher forcing strength
but not at low forcing strength. The evolution of the phase difference between the
forcing signal and the spatially homogeneous mode in simulations with δ = 0.1

outside the resonance region is unbounded. However, at δ = 0.17 the spatially ho-
mogeneous mode locks to the forcing in the entire frequency region. Figure 4.99 and
4.100 show the advances of ∆Φ0 for forcing strengths of 0.1 and 0.17, respectively.

Figure 4.101 and 4.102 depict the advances of the phase difference between the forc-
ing signal and a1(t) and a2(t) with time, for the responses shown in figure 4.97, at
δ = 0.17. These two figures are comparable with those obtained experimentally for
the 1:1 forcing parameters (figures 4.13 and 4.14 ). In both experiments and simu-
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lations the growth rate of ∆Φ1 and ∆Φ2 increase with increasing distance from the
resonance region. However, it was shown in the experiments that the system did not
exhibit critical slowing down close to the resonance tongue. The phase difference
between the forcing signal and the coefficient of the traveling wave spatial modes
grew continuously, with slight non-uniformities but without exhibiting clear phase
slips. This observation is obviously in contrast to the well known scenario for single
oscillators, where the saddle-node bifurcation that takes place at the borders of the
synchronous regime results in the occurrence of critical slowing down (see section
2.5). Another contradiction to this scenario is the absence of π phase shift of ∆Φ1

and ∆Φ2 when moving from one border of the entrainment band to the other. Fig-
ure 4.28 and 4.29 showed that within the 1:1 entrainment band ∆Φ1 and ∆Φ2 stay
constant, independent of the applied forcing frequency. The π phase shift was only
observed for ∆Φ0 at low forcing amplitude (figure 4.27). Hence, these observations
suggest that the transition from the synchronous to the asynchronous state does not
take place through a saddle-node bifurcation. In contrast, in the simulations indica-
tions that the border of the resonance tongue is formed by a saddle-node bifurcation,
are obtained. The growths of ∆Φ1 and ∆Φ2 with time are highly non-uniform and
exhibit phase slips of about 3π/2 and slow motion of the trajectory over a phase
angel of π/2. These phase slips can be clearly seen in figure 4.103. For larger values
of ν the growth becomes less non-uniform and the phase slips become smaller. Yet,
there are also features which cannot be understood immediately. When transvers-
ing the resonance region, ∆(∆Φ1) and ∆(∆Φ2) are non-zero, but not equal to π,
as expected for systems which lose or gain synchronization through a saddle-node
bifurcation at the borders. Furthermore, the values of ∆(∆Φ1) and ∆(∆Φ2) are

Figure 4.99: Advances of the phase difference between the spatially uniform mode
and the forcing signal, calculated for η = 1, σ = 1 (figure 4.97), for δ = 0.1.



138 4. Time-periodic Forcing of a Traveling Pulse on a Ring

Figure 4.100: Advances of the phase difference between the spatially homogeneous
mode and the forcing signal, calculated for η = 1, σ = 1 (figure 4.97), for δ = 0.17.

different at different forcing strengths. The experimentally observed π phase shift
of ∆(∆Φ0) was not theoretically found either.

These results show that although the theoretical observations exhibit similarities
to the dynamics observed for single oscillators, both experimental and theoretical
results exhibit features that differ from it and their understanding requires further
experimental and theoretical investigations which were beyond the scope of this the-
sis.

Another experimentally observed feature of the 1:1 resonance region which is worth
investigating theoretically, is the existence of a pitchfork bifurcation within the en-
trainment band (figures 4.25 and 4.26). Figure 4.104 presents the changes of the
difference between the amplitude of a1(t) and a2(t) with ν, for the entrained re-
sponses at δ = 0.27 in figure 4.97. From this figure it is obvious that a supercritical
pitchfork bifurcation takes place within the simulated 1:1 resonance region, depicted
in figure 4.97. Here it should be mentioned that, the experimental results as well
as the results of the simulations show that the effect of the local inhomogeneities,
and correspondingly the width modulations, is also reflected in the amplitudes of
the time dependent coefficients of the sine and cosine-shaped spatial profiles, a1 and
a2. Due to the presence of the inhomogeneities, the amplitudes of a1 and a2 differ
about 5% for symmetric pulses, whereas in the absence of the inhomogeneities the
amplitudes of the two time dependent coefficients are equal, as expected for perfect
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Figure 4.101: Advances of the phase difference between the first traveling wave
spatial mode and the forcing signal, calculated for η = 1, σ = 1 (figure 4.97), for
δ = 0.17.

Figure 4.102: Advances of the phase difference between the second traveling wave
spatial mode and the forcing signal, calculated for η = 1, σ = 1 (figure 4.97), for
δ = 0.17.
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Figure 4.103: Phase slips observed close to the border of the entrainment band
depicted for ν = −0.01 in figure 4.101.

traveling pulses. This slight asymmetric behavior of a1 and a2 can be easily observed
in the experimentally and theoretically obtained bifurcation diagrams (figures 4.26
and 4.104) since the values marked in green, which correspond to the entrained
pulses, are larger than zero. The bistability between the asymmetrically entrained
responses and the locked pulses which appears at ff/f0 = 1 for forcing amplitude of
40 mV, in figure 4.19 was not reproduced in the simulations. Hence, the subcritical
pitchfork bifurcation observed for forcing strength of 40 mV was not found either.
Moreover, one can see in figure 4.104 that the growth of the amplitude difference in
the theoretically obtained bifurcation diagram does not follow the square root behav-
ior, as it was observed in the experiments and is expected for a pitchfork bifurcation.

4.5.4 The 2:1 resonance region

The dynamics of the forced system inside the 2:1 resonance region was found to be
by far less sensitive to the applied forcing amplitude than in the 1:1 Arnold tongue.
Within the 2:1 entrainment band standing anti-phase oscillations are the most com-
mon locked solutions of the system. Asymmetrically entrained responses were also
observed in a narrow parameter region.

With Eq. 4.6, the 2:1 resonance region of this system can be theoretically studied
as well. It is clear that when the forcing frequency is twice the natural frequency, m
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Figure 4.104: The bifurcation diagram depicting the pitchfork bifurcation observed
within the 1:1 resonance regime calculated for η = 1, σ = 1 (figure 4.97), for forcing
strength of δ = 0.27. The red square symbols stand for the asymmetrically entrained
responses and the green points represent the entrained pulses.

in Eq. 4.6 is equal to 2. Thus, the forcing term is δ ·W ∗. Figure 4.105 presents the
tongue shaped 2:1 entrainment band for the inhomogeneity parameters that best fit
the experimentally observed results.

Figure 4.105 shows that the resonant patterns predicted by the simulations are in
good agreement with those observed experimentally and depicted in figure 4.49.
However, the behavior of the spatially uniform mode marks a significant difference
between the experimentally and theoretically obtained results. It was shown that
during the experiments, the spatially homogeneous mode always oscillated in phase
with the external forcing, in the entire frequency region inside and outside the en-
trainment band (figure 4.40). This locking behavior is not found in the simulations.
The results of the simulations showed that the spatially homogeneous mode only
locks within the 2:1 entrainment band.

Considering the behavior of the system close to the borders of synchronization re-
gion, the experimental and theoretical observations are very similar to the what was
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Figure 4.105: Different responses of the system in the 2:1 resonance region, de-
picted in the frequency mismatch-forcing strength plane, in the presence of surface
inhomogeneity: η = 0.8 and σ = 1.5.

shown for the 1:1 entrainment band. The advances of ∆Φ0, ∆Φ1 and ∆Φ2 outside
the 2:1 entrainment band show the same trends shown for the 1:1 entrainment band
in figures 4.99, 4.101 and 4.102. Also here, in the vicinity of the 2:1 resonance regime
the growth of ∆Φ0, ∆Φ1 and ∆Φ2 are highly non-uniform, exhibiting phase slips
and thus, critical slowing down. However, figure 4.106 depicts that close to the 2:1
entrainment bands the phase slips are slightly larger than π/2 which, together with
the slowly moving period amounts the π phase slips observed for single oscillators
close to the border of the 2:1 entrainment band. When moving from one side of the
entrainment band to the other side ∆(∆Φ0), ∆(∆Φ1) and ∆(∆Φ2) are non-zero but
also not equal to the π/2 phase shift which is observed for single oscillators. Hence,
similar to the theoretical results of the 1:1 resonance regime the occurrence of phase
slips and critical slowing down in the vicinity of the 2:1 entrainment band suggests
the occurrence of a saddle-node bifurcation at the synchronization borders. Yet, the
changes of the phase differences ∆(∆Φ1) and ∆(∆Φ2) are different than expected
and cannot be explained yet.
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Figure 4.106: Phase slips observed close to the border of the 2:1 entrainment band
depicted for the response at δ = 0.2 and ν = 0.04 in figure 4.105.

Figure 4.105 shows that the transition from synchronous to asynchronous behav-
ior is through the occurrence of half entrained responses. However, for forcing
strength higher than δ = 0.35 a new type of response is found theoretically which
was not observed during the experiments. This new type is termed as the type-II
half entrainment and is marked with yellow squares in figure 4.105. Here, the re-
sponse corresponding to a standing wave, which locks to the forcing is superimposed
by an unlocked uniform mode.

The occurrence of the type-II half entrained responses at the border between the
entrained standing patterns and the half entrained responses indicates that in this
parameter regime the spatially uniform mode is the first mode to loses synchroniza-
tion. This is then followed by the lose of synchronization by one of the traveling
wave modes, which gives rise to half entrainment. With increasing ν the second
traveling wave mode cannot be entrained by the forcing either, resulting in the un-
locked traveling structures.

As one can see in figure 4.105 the type-II half entrained behavior only appears at
one side of the 2:1 entrainment band. In contrast, the half entrained responses are
found on both sides of the entrainment band at the border between the synchronous
and asynchronous regions. However, the half entrained responses that appear at
negative frequency detuning can be distinguished from those that occur at positive
values of ν. Due to the early loss of synchronization in the spatially uniform mode
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at negative values of ν, the spatially uniform mode of the half entrained responses
in this region is unlocked whereas at positive detuning this spatial mode of the half
entrained responses is entrained by the forcing. It is evident that since the spatially
uniform mode is always entrained by the forcing during the experiments this phe-
nomenon was not observed experimentally.

At moderate forcing strength such as at δ = 0.3, the half entrained responses also
appear at the border between the asymmetrically entrained and standing wave re-
sponses. A similar behavior was found during the experiments with 20 mV forcing
amplitude. The spatially uniform mode of the theoretically obtained half entrained
responses in this region are entrained.

Although the applied forcing amplitude does not affect the type of resonant pat-
terns that appear within the 2:1 entrainment band, it has an influence on the be-
havior of the system in the asynchronous parameter regime. It was shown in figure
4.49 that outside the 2:1 entrainment band two types of unlocked behavior can be
distinguished. The traveling anti-phase oscillations appear only at higher forcing
amplitudes whereas for the forcing strength of 20 mV, only breathing pulses prevail.
However, in the theoretically obtained unlocked responses only traveling anti-phase
oscillations were found.

4.5.5 The 1:2 resonance region

The entrainment region that results from applying a forcing frequency with approx-
imately half of the natural frequency is very narrow at low forcing amplitude. At
moderate forcing strength asynchronous responses appear in between locked solu-
tions and hence,it is difficult to distinguish an entrainment region. When the forcing
amplitude increases to 80 mV, only unlocked behavior is observed. Comparing the
responses to an applied forcing of 20 and 40 mV with that of 80 mV, shows that the
dynamics of the driven system at low and moderate forcing amplitudes are almost
identical, whereas higher forcing strength of 80 mV changes the behavior of the
driven system drastically, such that only irregular spatiotemporal patterns appear.
Furthermore, at the latter parameter region two types of irregular responses appear
that can be differentiated phenomenologically. The difference between the two types
arises due to the differences in their corresponding unforced reference states, where
slight changes in the surface quality has increased the local inhomogeneities, which
in turn has activeted the higher spatial modes as can be seen in figure 4.80.

The most interesting characteristic of the 1:2 resonance region is that the syn-
chronous and asynchronous spatiotemporal patterns that appear at low and mod-
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erate forcing amplitudes are identical and cannot be distinguished only through ob-
serving the spatiotemproal patterns. The KL decomposition of the inhomogeneous
part of UPP confirms that this spatiotemporal pattern, shown in figure 4.75(c) con-
sists of three spatial modes (figure 4.75(a) and (b)). This feature, distinguishes
the 1:2 resonance band from the previously shown 1:1 and 2:1 entrainment regions,
where the spatiotemporal patterns of the entrained and unlocked responses looked
clearly different from each other and that locking reduced the number of active de-
grees of freedom in the system from three to two.
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Chapter 5

Dynamics in the Presence of Br−

Ions: Stochastic Excursions

In this chapter experiments in the presence of Br− ions (Pt|H2SO4,Br−,Cu2+|H2)
will be presented. The phenomena encountered in these experiments demonstrate
differences to measurements carried out with Cl− ions in a similar parameter range.
This points to an active role of the nature of the anion. Here, we observe the ran-
dom occurrence of global uniform oscillations of the double layer potential and local
excursions that are confined to some regions of the ring-electrode. These stochastic
phenomena are observed for both the negatively globally coupled and the uncoupled
HOR system. In the first section of this chapter different types of oscillations that
prevail in this parameter range are introduced. In the second and third section the
phenomena of emergence of burst oscillations and the stochastic emergence of the
uniform and non-uniform excursions will be presented and discussed qualitatively.
The last section sheds light on the influence of external forcing on the stochastic
dynamics. The specific experimental details are presented in the caption of the cor-
responding figures.

5.1 Non-stationary long term dynamics

The HOR system with Br− as electrosorbing anion exhibits a variety of oscillations.
They appear in transient experiments in which the potential is slowly ramped and
also in stationary experiments at constant potential. The system is quasi-stationary
over 100-200 oscillations, however, when the experiment is run several hours a slight
change of parameters in time can be observed. This drift can be best followed by
measuring the cyclic voltammogram of the system at different points of time during
one measurement day. The alternation of the cyclic voltammograms with time shows
a similar trend in all experiments and indicates changes in the dynamics due to the

147
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slow drift of some parameters.

Figure 5.1: Cyclic voltammograms of a Pt electrode in H2 saturated electrolyte
consisting 0.5 mM H2SO4, 0.1 mM CuSO4 and 0.01 mM KBr in the absence of
negative global coupling. Scan rate 20 mV/s. (a), (b) and (c) show the changes in the
dynamics in the measured sequence. A typical time difference between (a), the first
measured and (c), the last measured cyclic voltammogram during one experiment
day is is about 7 hours. Intermittent type behavior such as (b) is observed at several
times during one measurement day.

Figure 5.1 displays examples of the cyclic voltammograms recorded at different
times. In the beginning, the system either exhibits small fluctuations or low ampli-
tude oscillations. Here, as demonstrated in figure 5.1(a), the oscillation amplitude
takes larger values with increasing voltage, which points to an emergence of a limit
cycle through a Hopf bifurcation. The decrease in the signal to noise ratio with
time, makes the noise dominant and suspends the low amplitude oscillations in fur-
ther stages of the experiment. The low amplitude oscillations, depicted in figure
5.2(a), are irregular. As already explained in chapter 2, in this parameter range, in
the vicinity of the Hopf bifurcation, the self-organized spatiotemporal phenomena
of the system are described by the complex Ginzburg-Landau equation (CGLE) and
the instability that underly the transition from uniform to spatially instable oscilla-
tions are called the Benjamin-Feir (BF) instabilities. At the onset of the oscillations,
where the low amplitude oscillations appear, the system can be Benjamin-Feir un-
stable and is in a weak turbulent regime which can explain the irregularities observed
in the low amplitude oscillations [101].

Figure 5.1(b) and (c) show how current-potential scan changes in the course of time.
In particular, the onset of oscillations is qualitatively different. Instead of low am-
plitude oscillations, large amplitude, periodic relaxation oscillations (figure 5.2(d))
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Figure 5.2: Upper plates: spatiotemporal evolution of UPP for (a) low amplitude
oscillations observed at the beginning of a measurement day and (b) relaxation
oscillations observed after 4-5 hours, Lower plates: time series of current (c) corre-
sponding to (a) and (d) to (b). Both time series acquired at onset of oscillations.
For other experimental details see figure 5.1.

mark the beginning of the oscillatory regime. Figures 5.2(a) and (b) depict the spa-
tiotemporal patterns that appear during the occurrence of the irregular oscillations
and the relaxation oscillations, respectively. One can see that the large amplitude
relaxation oscillations (5.2(b)) are spatially homogeneous whereas during the low
amplitude irregular oscillations (5.2(a)) some spatial inhomogeneities, though with
a low amplitude, occur.

To understand the alternation in dynamics with time, two parameters can be taken
into account. It has been shown [24] that the formation and dissolution of oxide
layers on Pt surface changes the morphology of the surface and makes it rougher.
Thus, the surface quality changes slightly with time. The interaction of the nonlin-
earities with the inhomogeneities of the surface could give rise to the changes in the
dynamics.

On the other hand, while on the surface of the WE Cu2+ ions compete with Br−

ions and H2 for free Pt sites, on the CE, Cu2+ is deposited as the counter reaction
to that on the WE. This deposition could change the copper concentration in the
electrolyte with time and cause changes in the type and origin of oscillations. Wolf
et al. presented a series of experiments which confirms this assumption [10]. In
their measurements the Cu2+ concentration was changed as the concentration of the
anion (Cl−) was kept constant. The resulting cyclic voltammograms showed that
for a Cu2+ concentration of 1.5x10−4 M only irregular small amplitude oscillations
are observed. Only by reducing the concentration to 3x10−5 M regular, periodic
oscillations started to appear. They observed relaxation oscillations at the onset



150 5. Dynamics in the Presence of Br− Ions: Stochastic Excursions

the oscillations, when the Cu2+ concentration was 1.5x10−6 M. However, calculat-
ing the change of Cu2+ concentration during the experiments of this work is not
straightforward. When the Cu current is diffusion limited the potentiostat shifts
the electrode potential to negative values such that H+ is reduced and hence it is
difficult to determine the copper deposition current.

5.2 Burst oscillations

Figure 5.3: Burst oscillations: (a) Spatiotemporal variations of UPP as a function of
time and ring position during the oscillations, (b) the current time series correspond-
ing to (a). Distance from the onset of oscillations 1.25 V. For other experimental
details see figure 5.1.

Looking closer at figure 5.1(b) and (c), we see that at potentials about 1.5 V, os-
cillations emerge which are a characterized by a first large amplitude uniform peak,
followed by a series of high frequency oscillations with lower amplitudes. These type
of oscillations are termed burst oscillations. The ’bursting’ type periodic behavior
is characterized by flares of high frequency oscillations, where oscillations take the
form of bursts of action potential, regularly spaced from each other by phases of
quiescence [102]. One of the best-characterized examples of this mode of oscillatory
behavior is provided by a biological system by the R15 neuron of Aplysia [103,104].
Other examples can be found during electrodissolution of metals [105,106]. In phase
space the trajectory associated with bursting oscillations takes the form of a limit
cycle with several loops, corresponding to as many existing successive peaks.
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Figure 5.4: Homogeneous oscillations followed by high frequency oscillations ap-
pear as transients. The top row displays the time evolution of the double layer
potential as a function of ring position and the bottom row presents the current
oscillations with time. The Br− concentration is 5x10−6 M and γ = −0.17. For the
other experimental details see figure 5.1.

Figure 5.3(b) shows an example of burst oscillations observed during the HOR in
the presence of Br−. Emergence of the burst oscillations starts at the intermittent
time stage of the experiments, as can be seen in figures 5.1(b) and (c). One can
see in figure 5.3(a) and 5.4 (top row) that the fast oscillations which follow the high
amplitude oscillation, are spatially uniform.

Inducing a negative global coupling to the system, during the appearance of the
burst oscillation and changing the coupling strength showed that the emergence and
stability of burst oscillations is not influenced by a desynchronizing coupling.

Furthermore, experiments which were carried out over a long time showed that the
burst oscillations appear to be long transients in which we observe a progressive de-
crease in the number of small peaks that follow the large amplitude spike, with time.
Figure 5.4 displays the transition from burst oscillations to uniform high amplitude
spikes.
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5.3 Stochastic global and local excursions

To gain further understanding of the behavior of the dynamical system in the pres-
ence of Br− ions, in addition to the non-stationary measurements several stationary
experiments were carried out in which the potential was kept at a constant value
and the current response was recorded. Figure 5.5(c) shows a typical current time
series observed during a stationary measurement.

Figure 5.5: A long stationary measurement showing (a) UPP(x, t), (b) (UPP− <

UPP >x)(x, t) and (c) the current time series corresponding to (a) and (b). Distance
from the onset of oscillations: 1 V. For other experimental details see figure 5.1.

Considering the time series presented in figure 5.5(c) and several similar ones, at
different potentials with respect to the onset of oscillations, the oscillation peaks
can be mainly divided into two classes, with respect to their amplitudes and the
corresponding spatiotemporal pattern that appears during their occurrence. The
first type are relaxation like excursions with a high amplitude which are spatially
uniform. One current oscillation begins with a sharp and steep increase whose de-
crease starts slowly and continues fast and gives rise to two flanks that each exhibit
sinusoidal structures. During one high amplitude oscillation the entire electrode
area makes an excursion and stays spatially uniform. Hence, this type of peaks will
be referred to as global . The second type, on the other hand, can be easily dis-
tinguished by their amplitude which is considerably lower compared to that of the
globally uniform excursions. The low amplitude oscillations exhibit a spatial pattern
which is confined to a portion of the electrode. Therefore, this type of excursions
are termed as local . Examples of both globally uniform and local excursions are
depicted in figure 5.6. The global and local nature of the patterns are very well
observed in figure 5.6(a).



5.3. Stochastic global and local excursions 153

Figure 5.6: The global and local excursions observed during the oscillations in the
presence of Br−: (a) Upp(x, t), (b) (Upp- < Upp >x)(x, t), (c) the current time series
showing the high and low amplitude current oscillations. Distance from the onset
of oscillations: 1 V. For other experimental details see figure 5.1.

By observing the behavior of the dynamical system in this parameter region over
a long period of time it can be elucidated that the appearance of the two types of
peaks is a random phenomenon, and hence, contrary to the oscillations observed
in the presence of Cl− ions, these oscillations possess no intrinsic frequency. This
in turn, indicates that in phase space no limit cycle exists for this system, in this
parameter range. Another interesting aspect of this stochastic phenomenon is the
equal possibility of observing spatially uniform global excursions and the spatiotem-
poral patterns that are confined to a certain region of the ring-electrode. Current
time series such as the one shown in figure 5.5(c), which are measured over a long
time, provide good statistics of the latter random events. Based on the statistics
data, one can study the influence of different parameters on initiation of the excur-
sions and also the favored emergence of a specific type of excursions.

Figure 5.7 shows how the mean frequency value of excursions is influenced by the
value of the applied potential i.e., the distance from the onset of oscillations. More-
over, the figure shows how the potential value affects the emergence of the globally
uniform and local excursions. One can see as the potential becomes more positive
than the onset potential, the total number of excursions increases until a threshold
potential difference is reached. At this point the stochastic nature of the excursion
vanishes and a periodicity could be observed. A further increase in the difference
between the set potential and the onset potential results in the significant decrease
of the total number of oscillations, however, the number continues rising with a con-
siderably lower slope. This is depicted in figure 5.7(a) with the blue curve. However,
the applied potential does not influence the emergence of a specific type of oscilla-
tions. This can be observed in figure 5.7(b) where the ratio of the number of local
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excursions to the total number of peaks is depicted. Although in some potential
windows the occurrence of the local peaks is favored over the globally uniform ones,
no trend could be distinguished.

Figure 5.7: (a) Displays how the occurrence of excursions changes as the potential
becomes more positive than the potential at the oscillation onset, (b) shows the
change of the ratio of local peaks to the total number of excursions with increasing
potential difference. The results were obtained in the absence of NGC.

5.3.1 Effect of negative global coupling

To gain more knowledge about the parameters that may influence the emergence
of the random excursions, or support the occurrence of a certain type of excursion,
a negative global coupling was induced to the dynamical system. Considering the
desynchronizing effect of a negative global coupling, one could expect that through
the addition of a NGC to the system the occurrence of the non-synchronized, lo-
cal excursions would be favored over the emergence of the globally uniform current
spikes. Figure 5.8(a) depicts the mean frequency value of the excursions as the po-
tential increases. Comparing the blue curves in figure 5.7(a) and 5.8(a), it is clear
that the mean frequency of the excursions is much less for the coupled system. How-
ever, the dependency of the stochastic occurrence of the total number of excursions
on the potential shows a similar trend at some parameter range. The total number
of excursions (the blue curve in figure 5.8(a)) increases with rather constant slope
as the distance to the onset potential becomes larger. It is clear from figure 5.8(b)
that despite the high number of global excursions the emergence of local oscillations
is favored with increasing potential difference.

Increasing the coupling strength to γ = -0.4, favors the initiation of more excursions
and increases the total number of excursions compared to figure 5.8(a). Interest-
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Figure 5.8: (a) and (b) show the mean peak frequency of random excursions
and the ratio of the global peaks to the total number of random oscillations as a
function of potential distance from the oscillation onset, respectively. A negative
global coupling is added to the system (-0.18 < γ < -0.2).

ingly, at higher desynchronizing coupling, the appearance of local structures is the
main phenomenon, hence the ratio of local to global excursions is higher than one
in the measured potential windows. Moreover, the presence of the negative global
coupling results in inhomogenizing the oscillations such that the high amplitude os-
cillations are no more spatially uniform and the entire electrode makes a non-uniform
excursion. This may show that, a certain strength of the NGC is required for desyn-
chronizing the global uniform excursions and producing more local spatiotemporal
patterns. To prove this, however, more experiments with different coupling strengths
are required.

5.3.2 Effect of external forcing

In the above mentioned experiments we have observed that in a certain parame-
ter range the HOR system in the presence of Br− ions demonstrates a reproducible
stochastic phenomenon whose occurrence and stability is not significantly influenced
by the presence of a destabilizing global coupling. For further understanding of this
phenomenon, it would be interesting to know if an opposite effect, namely the ad-
dition of an externally applied signal which acts towards the synchronization of the
system, affects the stability of the excursions. To investigate that, an external time
periodic signal was added to the voltage and the respond of the system was stud-
ied. Similar to the experiments presented in chapter 4, the forcing parameters are
the frequency and the amplitude of the externally applied signal. A sinusoidal sig-
nal with two frequencies, 0.1 Hz and 0.5 Hz, was employed whose amplitudes were
changed. It is important to bear in mind that, in the contrary to the HOR system
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in presence of Cl− ions which was discussed in chapter 4, the system studied in this
section does not posses an intrinsic frequency and therefore one can not speak of a
resonance tongues.

Figure 5.9: A Sinusoidal signal with 0.5 Hz frequency and 240 mV amplitude
was externally added to the voltage. (a) shows the space-time evolution of the
inhomogeneous part of the interfacial potential and (b) depicts the external voltage
(black curve) and the current time series (red curve). Distance from the onset of
oscillations: 1.25 V. For the rest of experimental details see figure 5.1.

Figure 5.9 shows the response of the globally uncoupled system after adding an
external sinusoidal signal to the applied voltage. The sinusoidal signal oscillates
with 0.5 Hz and 240 mV amplitude. From this picture it is obvious that neither
the spatially uniform peaks nor the local oscillations are influenced by the external
perturbation and only the base current is modulated by the forcing. Changing the
forcing parameters shows that the external periodic perturbation, which has a global
effect, hardly influences the random characteristic of the peak occurrence.

Despite the fact that the system does not entrain to the forcing and the stochastic na-
ture of the phenomenon is preserved, certain forcing parameters seem to favor more
frequent excursions. Figure 5.10 displays how the number of excursions changes by
increasing the forcing amplitude for the two perturbation frequencies.

At 0.1 Hz, increasing the forcing strength decreases the emergence of the random
peaks which contradicts the expected effect of the external forcing. However, by
increasing the forcing frequency to 0.5 Hz, the variation with higher forcing ampli-
tudes affects the system and gives rise to more excursions. In this case the potential
distance from the onset of the oscillations seems to be less important. The raise in
the total number of current spikes can be due to the impact of the variation in the
externally applied voltage on the chemical reaction or on the interaction between
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Figure 5.10: Effect of an externally applied forcing on the occurrence of the random
excursions. (a) and (c) show the change in the mean frequency of the excursions with
increasing forcing strength, for 0.1 Hz and 0.5 Hz forcing frequencies, respectively,
(b) and (d) display the influence of forcing strength on the emergence of global
peaks for 0.1 Hz and 0.5 Hz forcing frequencies, respectively. All measurements are
performed in the absence of NGC.

the molecules. This, however, does not impact the type of oscillations and their
corresponding spatiotemporal structures at 0.5 Hz.

Another interesting issue to investigate is the response of the dynamical system to
the simultaneous presence of a desynchronizing global coupling and an externally
applied forcing. Applying the external forcing with low frequency and different am-
plitudes to the negatively globally coupled system shows that the dynamics of the
system are robust against the impacts of the NGC and the external perturbation
with 0.1 Hz. In this parameter range, the behavior is very similar to the uncoupled
und unforced system and the stochastic phenomenon is preserved. Here, as in the
unforced system, the globally coupled system with γ = −0.4 favors the locally con-
fined patterns over the globally uniform excursions and thus, more local oscillations
are observed.

Adding a sinusoidal signal with 0.5 Hz frequency and 80 mV amplitude, keeps the
dynamics unchanged and fails to entrain the system. By increasing the forcing am-
plitude to 160 mV, at a fixed forcing frequency, the system exhibits intermittency
between unlocked traveling anti-phase patterns and entrained homogeneous oscil-
lations. The intermittent behavior continues at higher forcing amplitude. Figure
5.11 depicts the traveling anti-phase oscillations observed at forcing strength of 200
mV which are followed by the homogeneous oscillations which oscillate in-phase and
with half of the frequency of the forcing signal. The traveling anti-phase patterns
observed for this parameter range are very similar to the anti-phase structures dur-
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Figure 5.11: (a) Space-time evolution of (UPP− < UPP >x) showing traveling
anti-phase oscillations and homogeneous oscillations, (b) the times series of current
(red curve) and voltage (black curve). The externally added sinusoidal signal has
a frequency of 0.5 Hz and an amplitude of 200 mV. γ = -0.4. For the rest of the
experimental detail see figure 5.1.

ing 2:1 forcing of the pulses, discussed in chapter 4.

5.4 Summary and Discussion

The focus of the present chapter was the phenomena observed during the electroox-
idation of H2 in the presence of Cu2+ and Br− ions on Pt ring-electrode. During
the non-stationary measurements different types of oscillations were observed, which
despite slight shifts in the parameters, were persistent. However, observing the sta-
tionary behavior of the system indicated that in the presence of Br− ions, in addition
to the burst type oscillations, the oscillations that appear can be classified to two
classes: high amplitude, globally spatially uniform and low amplitude excursions
which exhibit a spatially confined patterns. These oscillations appear as random
events and possess no intrinsic frequency.

The emergence of long amplitude excursions during the oxidation of hydrogen on
Pt electrode in presence of Cu2+ and Br− ions is comparable to the behavior of
excitable systems. Excitability is a typical dynamic phenomenon of systems far
from equilibrium. The common feature of all excitable systems is that they posses
a globally attracting rest state where the unperturbed system stays. Addition of a
weak perturbation would bring the system away from this state, however, it relaxes
back to the resting position without initiating any phenomenon. However, if the
perturbation is stronger than a certain threshold, the system leaves the rest state
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and makes an excursion in phase space, giving rise to the appearance of spikes, be-
fore resting again. As long as the perturbation exceeds the threshold, the amount of
it does not influence the spikes [60]. Applying two well separated perturbing signals
would give rise to the appearance of two spikes, one after another. Hence, the high
amplitude excursions observed in the presence of Br− ions can be attributed to the
large excursions of the system in phase space which is caused by noise. In the ex-
citable systems, if the time interval between the two following perturbations are not
large enough, the system does not respond noticeably to the second perturbation
and would give rise to the occurrence of a high amplitude spike, followed by a low
amplitude peak. The reason is that after each excursion the system takes a certain
recovery time before it can react to the second perturbation [107]. However, since
the time intervals between the appearance of the global and local oscillations are ran-
dom, the emergence of low amplitude oscillations cannot be attributed to this effect.

The phenomena observed during the oxidation of hydrogen on Pt ring-electrode in
presence of Cu2+ and Br− ions are significantly different from the behavior observed
in the presence of Cl− ions. In chapter 4 it was shown that during the oxidation
of hydrogen on Pt ring-electrode in presence of Cu2+ and Cl− ions, nearly uniform,
periodic relaxation oscillations appear (see figure 4.1). Although the globally spa-
tially uniform excursions that appear in the presence of Br− ions are similar to these
relaxation oscillations, the emergence of local peaks and, the stochastic nature of
the excursions indicates that changing the anion affects the mechanism that gives
rise to the oscillations.

Furthermore, experiments in the presence of negative global coupling showed that
the stochastic excursions that occurred in the presence of Br− were not affected by
the desynchronizing global coupling significantly, whereas during the oscillations in
the presence of Cl− ions, the presence of a negative global coupling resulted in the
appearance of phase pulse which traveled along the ring-electrode.

The response of the dynamical system to an externally applied signal points to an-
other crucial difference between the behavior in the presence of Cl− and Br−. In the
experiments presented in this chapter it was shown that the synchronizing effect of
external forcing does not considerably influence the stochastic phenomenon. This
is of course, in contrast to the rich variety of resonant patterns observed in globally
coupled electrochemical oscillator in the presence of Cl− ions. In the presence of Br−

only at high forcing and global coupling strength their simultaneous effect influences
the system and gives rise to the appearance of traveling anti-phase oscillations. The
traveling anti-phase oscillations are intermittent and are follow by a locked spatially
uniform behavior. One can see that contrary to responses observed in chapter 4 ap-
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plying the external forcing to this system gives rise to spatially uniform responses.
However, one can see that a high strength of the external forcing and the negative
global coupling are needed to initiate a change in the dynamics. Considering that in
the HN-NDR electrochemical system under the study, the potential takes the role
of the activator and that, negative global coupling as well as the external forcing
act on the activator, the observations presented in this chapter indicate that the
emergence and characteristic features of the globally uniform and local excursions
are robust against the perturbations induced to the activator variable of the system.

It should be mentioned that during the few experiments which were performed in a
different parameter regime than those presented above, the system exhibited peri-
odic relaxation oscillations and turbulent behavior within various potential windows.
However, further experimental studies together with theoretical considerations are
required for elucidating the underlying mechanism resulting in the appearance of
the stochastic phenomenon and, understanding the role of the anion.



Chapter 6

Summary

The main focus of this work was dedicated to the study of the response of an elec-
trochemical oscillator close to a non-trivial Hopf bifurcation to a spatially uniform,
time-periodic external perturbation.

The electrochemical system used to perform the experiments was the oxidation of
H2 on a Pt ring-electrode in the presence of poisons, more precisely Cu2+ and Cl− or
Br− ions. In the presence of Cl− anions the system exhibits spatially uniform oscil-
lations under potentiostatic measurement control. By compensating part of the cell
resistance a negative global coupling induces to the system, which in turn, causes
the emergence of traveling phase pulses through a non-trivial Hopf bifurcation of
wave number one. The traveling pulses were superimposed by uniform oscillations
with the same frequency as the phase pulses. These propagating waves constituted
the reference state that was subject to a sinusoidal variations of the applied voltage.
The response of the system was studied as a function of frequency and amplitude of
the externally applied signal, whereby the focus was on the 1:1, 1:2 and 2:1 resonance
regions. Despite of the spatially uniform forcing, the uniform oscillation was never
stabilized, in contrast to experiments on oscillatory media close to the trivial Hopf
bifurcation [13,16]. Yet, a Karhunen-Loève decomposition revealed that there were
no more than three active degrees of freedom, the spatially uniform mode and the
sinusoidal pulse-mode pair, Φ(θ) and Φ(θ+π/2), with θ being the angular variable.

The participation of three spatial modes in the dynamics allowed for four different
types of responses: the entrainment of none, one, two or all three spatial modes
to the forcing. In this respect, the dynamical system was considered as entrained
when all three spatial modes were locked, half entrained when two of the spatial
modes were entrained and unlocked when only one or none of the spatial modes was
entrained by the external forcing.
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Inside as well as outside of the Arnold tongues, the dynamics exhibited unusual
features, differing from those found in other forced oscillating systems. The most
remarkable of them was the behavior of the phase relation between the oscillations
of the coefficients of the three spatial modes and the external forcing. With the
exception of a small parameter region close to the 1:1 resonance of low forcing am-
plitude, the uniform mode always locked in phase to the forcing signal, inside as
well as outside of the entrainment bands. The oscillations of the two pulse modes
exhibited a constant phase difference to the external forcing inside the entrainment
bands. Outside the tongues the phase differences drifted with a constant velocity,
thus lacking any sign of a critical slowing down, and, also a saddle-node bifurcation.

Special emphasis was also given to the characterization of the coherent entrained
patterns inside the resonance regions. Entrained traveling pulse structures prevailed
in the 1:1 region, however in a restricted parameter interval. The loss of the π/2-time
translation symmetry between the oscillations of the pulse-mode pair in a pitchfork
bifurcation led to asymmetrically entrained responses. These two types of responses
were also observed within the 1:2 entrainment band where they both appeared in
the form of breathing pulses. Furthermore, for high forcing amplitudes various in-
termittent and irregular patterns existed outside the 1:1 and 1:2 entrainment bands,
respectively. Within the 2:1 tongue, standing anti-phase oscillations established.
In addition, asymmetrically entrained traveling structures were observed within a
narrow parameter range inside this resonance regime. Just outside it, half entrained
responses with only one of the pulse modes entrained to the external forcing, ap-
peared in the form of modulated standing anti-phase oscillations.

To gain more understanding of the experimental results theoretical simulations were
performed, based on the forced complex Ginzburg-Landau equation (FCGLE) on
one dimensional domain with periodic boundary conditions. To establish the ref-
erence state, a negative global coupling term was added to the CGLE. While a
non-trivial Hopf bifurcation could be established that gave rise to a stable pulse
solution, the uniform mode was never excited simultaneously with the pulse mode.

A characteristic of the experiments was that the homogeneous mode oscillated al-
ways with the propagating frequency of the pulse. This suggested that the electrode
surface was not perfectly uniform but exhibited local catalytic variations. When
allowing for slight spatial variations of the local oscillator properties in CGLE, the
reference state with three active degrees of freedom could be established. In further
studies, simulations of the response of this reference system with local parameter
variations to time-periodic uniform forcing was investigated.
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In the simulations a number of the experimental observations could be reproduced,
most noticeably the entrained pulses as well as the pitchfork bifurcation within the
1:1 Arnold tongue, standing anti-phase patterns in the 2:1 Arnold tongue as well
as the half entrained responses close to this resonance region. However, there were
also discrepancies between simulations and experiments. The most considerable one
was the entrainment behavior of the uniform mode. While in the experiments the
uniform mode was also entrained outside the 2:1 resonance tongues, this was not
the case in the simulations. In contrast, in the simulations also responses with en-
trained pulse modes but unlocked uniform mode existed. This suggests that the non-
uniformities in the reactivity of the ring electrode were not completely captured in
the model. Furthermore, in the simulations the transition from quasiperiodic behav-
ior to complete entrainment was accompanied by critical slowing down, indicating
that the bifurcations at the entrainment borders differ in experiment and theory. In
conclusion, both experiments and simulations showed that a spatially non-uniformly
oscillating system respond in a much richer way to a time-periodic forcing than an
oscillatory system close to a trivial Hopf bifurcation. Some experimental aspects
were satisfyingly understood with the simulations presented here others, however,
call for more intricate treatment by theoreticians. Furthermore, the experiments of
this work were carried out in a spatially quasi-1 dimensional domain with periodic
boundary conditions. Performing similar experiments in a spatially 2-dimensional
medium such as on a disc electrode and considering different boundary conditions
will shed new light on the influence of geometry, on the dynamics of externally forced
spatially extended systems.

Chapter 5 of this work focused on the investigation the qualitative changes in the
dynamics of the unforced oscillating system as the Cl− anions were replaced by Br−.
Exchanging these two anions led to the occurrence of oscillations of a stochastic na-
ture which lacked an intrinsic frequency. Those oscillations occurred either as large
amplitude excursions which were spatially uniform or as low amplitude oscillations
which connected to the excitation of a confined area of the ring-electrode. Hence,
replacing the anion offered us a new reference state of the electrochemical oscillator.

Inducing a negative global coupling to this system did not affect the dynamics qual-
itatively. It was shown that the globally spatially uniform excursions and the local
oscillations were preserved in the presence of negative global coupling. However,
above a certain threshold of coupling strength, the desynchronizing coupling favored
the occurrence of locally patterned oscillations over globally uniform excursions.

The stochastic large and low amplitude excursions were not significantly influenced
by the presence of an externally applied time-periodic perturbation. Furthermore,
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the stochastic phenomena proved to be robust against the simultaneous influence of
a negative global coupling and an externally applied forcing at low amplitude applied
forcing and low coupling strength. Only when the coupling strength and applied
forcing amplitude were high enough did the system prevail traveling anti-phase os-
cillations, such as those observed around the 2:1 entrainment band in chapter 4.
These results show that our understanding of forced spatially extended oscillatory
media is still in its infancy and many exciting studies still lie ahead of us.
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