
TECHNISCHEN UNIVERSITÄT MÜNCHEN

Forschungs- und Lehreinheit I

Angewandte Softwaretechnik

Ontology-based Model Integration for

the Conceptual Design of Aircraft

Martin Glas

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität
München zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Dr. Ernst W. Mayr

Prüfer der Dissertation: 1. Univ.-Prof. Bernd Brügge, Ph.D.

2. Univ.-Prof. Dr. Mirko Hornung

Die Dissertation wurde am 31.01.2013 bei der Technischen Universität München
eingereicht und durch die Fakultät für Informatik am 17.04.2013 angenommen.

Acknowledgements

I am deeply grateful to Prof. Bernd Brügge, Ph.D. for his advice and
encouragement during the development of this dissertation.
I am also very thankful to Prof. Mirko Hornung and Dr. Gernot
Stenz for their trust in and support of my dissertation at Bauhaus
Luftfahrt.
I would also like to thank Dr. Steffen Prochnow, Dr. Daniel Ratiu,
Dr. Sven Ziemer, and the colleagues at the Chair of Applied Software
Engineering for their valuable and constructive feedback.
Last but not least, I would like to thank my co-workers at Bauhaus
Luftfahrt for their belief in interdisciplinary research, in particular
Clément Pornet, Dr. Arne Seitz, Hans-Jörg Steiner, and Dr. Kerstin
Wieczorek, who readily contributed their time and expertise as
participants and user interface reviewers for my case studies.

Abstract

The development of a new aircraft begins with the conceptual design phase which aims to
incorporate the latest technologies and methods into a novel design and its assessment.
The development process is usually distributed across several teams which concurrently
create models with overlapping content. If overlapping model parts are refined in one
model without immediate propagation of the refinements to the other models, they
become inconsistent. Exchanging model parts is, however, hampered due to the het-
erogeneity of these models resulting from discipline-specific modeling approaches. Cur-
rently, there are two approaches to tackling this problem: a clear separation of concerns
between models to avoid overlapping content and standardized data formats which allow
designers to exchange model parts. However, clear separation of design models is diffi-
cult to establish during conceptual aircraft design, as the contributing disciplines have
considerably overlapping concerns in this phase. Accordingly, overlapping content of de-
sign models is unavoidable. Therefore, the problem of consistency and model exchange
is addressed by standardized data formats which are interpreted by different tools in the
same way. However, conceptual aircraft designers mostly use generic data formats which
enable the high degree of flexibility required for this early and explorative phase of de-
sign. However, as domain-specific concepts and structures are deliberately not specified
by these formats, the meaning of object names and the model decomposition remains
implicit knowledge. Therefore, overlapping content and conflicts between models cannot
be identified automatically. As a consequence, the maintenance of consistency remains
an inefficient and error-prone task. Furthermore, the exchange of concept model parts
between disciplines contributing to the same project, and the reuse of existing legacy
models is still not well supported by tools.

This dissertation describes a semiautomated ontology-based approach for model inte-
gration. An essential part of this approach is the Oida framework which uses a domain-
specific reference ontology to facilitate semiautomated consolidation of overlapping con-
tent and exchange of selected non-overlapping content between discipline-specific models.
Thereby, the owners of the different models map their model elements to the reference
ontology. The Oida framework evaluates these mappings, identifies matching model ele-
ments, and supports the model owners in resolving conflicts and in optionally importing
parts from other models. These capabilities of the Oida framework were evaluated in
five quasi-experiments and six case studies using a prototypical implementation of the
Oida framework and real sample models originating from different conceptual aircraft
design tools. The aircraft designers who operated the prototype during case studies were
able to use the framework without help and considered the automatically generated re-
sults to be correct from their professional point of view. The solution presented in this
dissertation not only contributes to a more automated integration of aircraft models but
also to a better collaboration during the interdisciplinary process of conceptual aircraft
design.

Zusammenfassung

Die Entwicklung eines neuen Flugzeugskonzepts ist ein interdisziplinärer Prozess, in
dem so früh wie möglich neueste Technologien und Methoden aus den verschiedenen
Fachbereichen in den Entwurf einfließen. Da die Modelle, welche in den verschiedenen
Fachbereichen entstehen, gewöhnlich eine große inhaltliche Überlappung aufweisen und
gleichzeitig getrennt voneinander mit unterschiedlichem Schwerpunkt verfeinert werden,
entstehen Inkonsistenzen. Außerdem erschwert die Heterogenität der Modelle, die auf
Grund von unterschiedlichen Herangehensweisen der Fachbereiche entsteht, einen effizi-
enten Modellaustausch. Gegenwärtig gibt es zwei Ansätze, diesen Problemen zu begeg-
nen: Eine starke inhaltliche Abgrenzung von Modelle und standardisierte Datenformate,
um in den unterschiedlichen Fachbereichen dieselben Daten verwenden zu können. Eine
stärkere inhaltliche Abgrenzung von Modellen, ist insbesondere im Flugzeugkonzeptent-
wurf schwer möglich, da sich hier die beitragenden Fachbereiche stark überschneiden.
Inhaltliche Überlappungen zwischen den Modellen sind daher nicht vermeidbar. Daher
versucht man durch den Einsatz von standardisierten Datenformaten Konsistenz und Da-
tenaustausch zwischen den Modellen effizient zu realisieren, da sie von Werkzeugen gleich
interpretiert werden. Allerdings werden im Fugzeugkonzeptentwurf eher generische Stan-
darddatenformate verwendet, um ein hohes Maß an Flexibilität zu ermöglichen. Da diese
Formate bewusst keine konkreten Konzepte und Strukturen aus den Fachbereichen defi-
nieren, bleibt die Semantik der Namensgebung und des Modellaufbaus implizites Wissen.
Inhaltliche Überlappungen und Konflikte können so nicht automatisch erkannt werden.
Die daher erforderliche manuelle Arbeit macht den Abgleich von Konzeptmodellen inef-
fizient und fehlerträchtig. Außerdem wird der gegenseitige Modellaustauch zwischen den
Fachbereichen desselben Projekts oder die Wiederverwendung von existierenden Model-
len aus vorhergehenden Projekten von Werkzeugen kaum unterstützt.

In dieser Dissertation wird ein Ontologie-basierter Ansatz zur Modellintegration vor-
gestellt. Ein essenzieller Bestandteil dieses Ansatzes ist das Oida Framework, welches
eine fachgebietsspezifische Referenzontologie einsetzt, um den Automatisierungsgrad bei
der Integration von Systemstrukturmodellen aus dem Flugzeugentwurf zu erhöhen. Je-
der Modellverwalter verknüpft sein Modell mit Konzepten der Referenzontologie. Das
Oida Framework wertet diese Verknüpfungen aus und erkennt so automatisch inhalt-
liche Überlappungen und Konflikte. Darüber hinaus ermöglicht das Framework dem
Modellverwalter, augewählte Teile eines anderen Modells in sein Modell zu übertragen.
Diese Fähigkeiten des Oida Frameworks wurden durch eine prototypische Implemen-
tierung in sechs Fallstudien und fünf Quasi-Experimenten mit Ergebnissen evaluiert.
Dabei wurden echte Flugzeugmodelle als Testobjekte verwendet, die aus Werkzeugen
mit unterschiedlichendem inhaltlichem Schwerpunkt stammen. Die Luftfahrtingenieure,
welche an diesen Fallstudien als Modellverwalter teilnahmen, konnten den Prozess weit-
gehend selbständig durchführen und hielten die automatisch generierten Ergebnisse aus
fachlicher Sicht für korrekt. Die vorgestellte Lösung steigert den Automatisierungsgrad
bei der Modellintegration von Flugzeugkonzeptmodellen wodurch die Zusammenarbeit
zwischen den Fachdisziplinen im Flugzeugentwurfsprozess wesentlich verbessert werden
kann.

Contents

1. Introduction 1
1.1. Current Practice . 3
1.2. Ontology-based Model Integration: Overview 5

1.2.1. Match Models Use Case . 7
1.2.2. Merge Models Partially . 8
1.2.3. Co-Evolve Integration Artifacts Use Case 8
1.2.4. Research Questions . 9
1.2.5. Scoping . 9

1.3. Research Process and Outline . 12

2. Terminology 13
2.1. Equivalence . 13
2.2. Mereology . 15
2.3. Technological Spaces . 17

3. Problem Definition and Related Work 21
3.1. Sample Models . 21
3.2. Oida Requirements and Constraints . 24
3.3. Related Work . 26

3.3.1. Tool and Model Integration . 26
3.3.2. Ontology Generation and Matching 28
3.3.3. Evolution of Coupled Artifacts . 28

4. The Oida Functional Model 31
4.1. The Model Matching Capability . 31
4.2. The Partial Model Merge Capability . 40
4.3. The Co-Evolution Capability . 41

5. The Oida Analysis Object Model 51
5.1. Analysis Objects of the Match Models Use Case 51
5.2. Analysis Objects of the Ontology-based Model Transformation TM 52
5.3. Analysis Objects of Merge Models Partially Use Case 58
5.4. Analysis Objects of Co-Evolve Integration Artifacts Use Case 66

6. The Oida Framework Design 71
6.1. Design Goals and Architecture . 71
6.2. Platform Layer . 72

ix

Contents

6.3. Provider Layer . 72
6.4. Transformation Layer . 79
6.5. Service Layer . 80
6.6. Application Layer . 87
6.7. Oida Knowledge Sources: Overview . 91

7. Evaluation 97
7.1. Evaluation Design . 97
7.2. Empirical Studies . 99

7.2.1. Evaluation of the Transformation TMO 100
7.2.2. Evaluation of the Model Matching Capability 104
7.2.3. Evaluation of the Partial Models Merge Capability 110
7.2.4. Evaluation of the Co-Evolution Capability 114
7.2.5. Threats to Validity . 120

7.3. Results . 120

8. Conclusion and Outlook 123
8.1. Contributions . 123
8.2. Integrating other Dimensions of Conceptual Models 126

A. Implementation of the Oida Prototype 127
A.1. Selection of Basic Frameworks . 127
A.2. ModelProvider Plug-in . 129
A.3. OntologyProvider Plug-in . 130
A.4. Transformation Plug-in . 131
A.5. Matching Plug-in . 134
A.6. Merging Plug-in . 135
A.7. Evolution Plug-in . 136
A.8. MatchingApp Plug-in . 136
A.9. MergingApp Plug-in . 137

B. Implementation of the Reference Ontology Prototype 141

x

Contents

Typographical Conventions

Throughout this dissertation the following conventions are used:

• Citations are given in a comprehensive form (e.g. [ABC08]), indicating the first
three authors (e.g. Alpha, Bravo, Charlie) of an article by capital letters followed
by the year of publication (2008). If a “+” appears in the citation, then more than
three authors have contributed. In the case of a single author, the first letter of
his last name is written in capitals, followed by two further lower case letters.

• The Unified Modeling Language (UML) is used for diagrams illustrating software
components.

• The typewriter typeface is used for names of software analysis and design objects,
such as RenamerStrategy.

• Other technical terms and concept terms are written in italics when they appear
for the first time.

• Lower capitals are used for product names, such as Eclipse.

xi

1. Introduction

The development process which begins with a first product idea and eventually leads to
the blueprints for a new aircraft is usually divided into three phases: conceptual, prelim-
inary, and detailed design. According to Raymer [Ray06] the objective of the conceptual
design phase is the development of layouts and assessments of distinct design alterna-
tives addressing a common set of requirements. Thereby, the design space is explored
by an iterative process of requirements engineering, analysis, sizing, optimization, and
downselection of technologies and architectures. As depicted in Figure 1.1, the aircraft
model is refined involving an increasing number of disciplines specialized in certain as-
pects of aircraft design. The next phase begins after one concept has been selected to
be elaborated and scrutinized in the preliminary design phase. In order to prepare for
the decision on whether to build the product, the selected design alternative is refined
and validated by more sophisticated numerical methods and small-scale physical exper-
iments. If the decision is made to build the aircraft, the following detailed design phase
results in all the documents required for the realization of the new aircraft.

Compared to the later design phases, conceptual aircraft design has a high level of
design freedom but a low level of model detail and fidelity as it has to rely entirely on si-
mulation and legacy models which have been validated and calibrated against previously
built products. However, these legacy models need to be adapted to the new product by
reconfiguration and extension. Modification and recombination resulting from new fea-
tures of the aircraft require a revalidation of the newly created concept model to ensure
its credibility. Due to the intentional volatility of the layout during conceptual design,
conceptual models are not validated by physical experiments, such as wind tunnel tests.
Instead, the credibility of the concept model is increased by applying more sophisticated
estimation and simulation methods. The efficient application of these methods requires
expert knowledge in certain disciplines. In general, a discipline is a part of a scientific do-
main. The context of conceptual aircraft design is typically associated with engineering
disciplines, such as aerodynamics, structural mechanics, and thermodynamics. However,
an aircraft concept is also driven by non-engineering disciplines, such as economics and
psychology. Each of these disciplines models an aircraft with overlapping scope, thus
sharing methods, terminology, and tools. For instance, most disciplines model the outer
shape of the aircraft. Aerodynamics examines effects of fluids on the outer shape of the
aircraft while the inner structure is generally not relevant. Structural mechanics focuses
on the effects of loads to the inner structure of the aircraft which implicitly defines the
outer shape. Accordingly, the discipline of structural mechanics shares model parts with
aerodynamics such as aerodynamic loads, but for a different purpose. Currently, most
aircraft propulsion systems are based on the conversion of thermal to mechanical energy.
Therefore, the discipline of thermodynamics is the main driver of the propulsion sys-

1

1. Introduction

Design
Requirements

New Concept
Ideas

Technology
Availability

Concept
Sketch

Initial
Layout

Revised
Layout

Initial
Analysis:

Aerodynamics
Weights

Propulsion

Analysis:
Aerodynamics

Weights
Propulsion

Stability & Control
Structures

Cost
Subsystems

etc. . .

Refined Sizing
& Performance

Optimization

Sizing & Per-
formance

Optimization

First-guess
sizing

Preliminary Design

Detailed Design

New Aircraft

Requirements Trade-offs

Figure 1.1.: Aircraft conceptual design process according to Raymer [Ray06]

2

1.1. Current Practice

tem. Aircraft components outside the propulsion system are only relevant as far as they
influence the flow field of matter and energy of the propulsion system, e.g., the outer
shape near the engine mountings or the inner structure of mechanical joints. Even these
relatively small examples demonstrate that certain properties of the aircraft need to be
shared among models during aircraft design.

If distributed overlapping models are refined without immediate propagation of mod-
ifications to all models, they become inconsistent towards each other. The risk of incon-
sistency is aggravated if the employed design methods deliver results after different time
periods. For instance, statistics-based performance estimation methods take a consid-
erably shorter time to yield a result than physics-based numerical methods. If a design
team works using data which are inconsistent with the data of another team, their model
refinements and design assessments may become obsolete if the conflict is not resolved
in favor of their variant. Concurrent model refinement also leads to similar but incom-
patible variants which are created in parallel. During the early phases of development,
parallel refinements and incompatible variants are often pursued to explore the design
space collaboratively. However, as the process progresses towards a more mature state
of the product design, inconsistencies stemming from this explorative approach become
increasingly undesirable for two reasons. First, if the results of other teams cannot be
reused, the benefit of cross-fertilization between concurrently working interdisciplinary
design teams is not realized. Second, if equivalent variants are not explicitly coupled
across the different design models, changes and especially exclusions of variants are not
efficiently propagated to all models. The more time elapses between the integration of
the distributed models, the more expensive the integration becomes.

A more frequent integration of all design models has two advantages: First, the dif-
ferences between models are less complex and the amount of work which is potentially
obsolete due to inconsistencies is smaller. Second, costly manual mappings between
equivalent data sets from different models are reduced as tool independent data ex-
change based on a common data schema requires considerably fewer mappings.

The following Section 1.1 gives an overview of current practices addressing these prob-
lems. Subsequently, Section 1.2 introduces the approach pursued in this dissertation by
three characteristic use cases and describes the research method.

1.1. Current Practice

There have been several initiatives supported by industry and academia to develop
and establish tool independent standard formats. In the following, STEP, SysML,
and CPACS are examined briefly in particular regarding their extensibility by the user
which is an essential capability in conceptual aircraft design. De facto standard formats
which are based on commercial tools, such as Matlab or Microsoft Excel, are not
considered, as they have not been developed in an open standardization process.

The STandard for the Exchange of Product Data (STEP)[ISO94] defines a data model
and specifies entities from different engineering domains including 3D geometry and
management of organizations. According to Peak et al. [Pea+04], STEP is difficult

3

1. Introduction

to extend for an individual solution outside the standard approval process. A part
of the STEP standard is the data modeling language EXPRESS. There are different
representation standards for the EXPRESS language. ISO 10303-21 defines an ASCI
character-based syntax whereas ISO 10303-28 specifies an XML schema. ISO 10303-25
specifies bindings between Express and XMI which is used as an XML syntax for UML
models. Aircraft concepts are usually not modeled using STEP as it is not an open
standard which can be extended by the user without losing tool support. Indeed, STEP
is commonly used to transfer geometry data, as most CAD tools support the standard.
However, the mapping of the entire tool-specific geometry model to the STEP standard
is usually not bijective. Therefore, round-trip engineering via STEP can lead to data
loss.

The Unified Modeling Language (UML) is predominantly used in the domain of soft-
ware engineering and well supported by several Computer Aided Software Engineering
(CASE) tools. The user can extend UML by profiles. For instance, the Systems Mod-
eling Language (SysML) [Gro12] was developed as a profile for systems engineering.
Unlike STEP, SysML and UML are not designed to mediate between different tools
as an exchange data format. They are standardized modeling languages which system
developers can use directly throughout the development process. Currently, SysML is
commonly used in academia and industry especially for the development of embedded
systems. For instance, spacecraft designers use SysML not only for the development of
embedded systems but also for the overall spacecraft. In contrast, designers of aircraft
concepts have rarely adopted SysML because its concepts are not well applicable to
modeling essential features of an aircraft and its mission.

The German National Aerospace Center (DLR) has recently issued the Common
Parametric Aircraft Configuration Schema (CPACS), an XML schema for data
exchange between aerospace related tools [Böh12]. The schema defines standard data
types and data structures which are commonly used in aerospace models. Furthermore,
aircraft designers are provided with aircraft-specific concepts. Thereby, the designers
can model an aircraft complying to a schema which has standardized semantics by con-
vention. The data structure, however, is limited to the conventional civil transport
aircraft configuration. If an aircraft designer wants to model unconventional aircraft
components and configurations, such as electric motors or a blended wing body config-
uration, he cannot extend the schema in such a way that other clients can interpret it
unambiguously.

STEP, SysML, and CPACS define schemata of data types and a standard decompo-
sition of exchange files. The semantics of the data are defined implicitly by convention.
However, none of these standards allows the user of the schema to define user exten-
sions formally, e.g., by logical statements, which can be interpreted by existing tools.
Therefore, the standard can only be extended by an agreement on a new schema which
has to be ratified by tool developers. An exchange standard for a particular domain,
such as conceptual aircraft, design is created in a trade-off between domain specificity
and general applicability. The more concepts a schema comprises the more difficult it
is to attain an agreement to a standard. Narrowing the scope is also not viable for an
exchange standard in a multidisciplinary development process.

4

1.2. Ontology-based Model Integration: Overview

Within the context of conceptual aircraft design the aforementioned exchange formats
are supported weakly by tools regarding aircraft specific concepts. Therefore, the de-
signers have to manually map every data object to an equivalent object in the exchange
format.

More generic de facto standard model data formats provided by commercial tools like
Matlab or Excel are easier to agree upon. However, a generic standard allows the
designers to interpret the format’s constructs differently. In particular, a generic for-
mat allows designers to use different naming conventions and data model decomposition
strategies. Tools depend on formal semantics of the standard and its extension mecha-
nism to allow designers to adapt a tool to their particular domain. The current modeling
languages and exchange standards are not supported by formal semantics. Accordingly,
domain-specific extensions of generic modeling languages like SysML for the domain
of aircraft design or the extension of existing domain-specific standards like CPACS
for unconventional system architectures are mostly established by conventions and style
guides within an organization.

In a design environment where the meanings of data objects are more informally
defined than explicitly specified by the exchange format, tools hardly support the keeping
of distributed design models consistent, especially in the likely event that the structure
of the designed aircraft is changed fundamentally. As a consequence, the matching
between objects from different design models is currently a tedious and error-prone
task for domain experts. Furthermore, this practice limits the model complexity and
flexibility supported by tools, which in turn limits aircraft designers in their exploration
of the design space and in the evaluation of novel concepts.

1.2. Ontology-based Model Integration: Overview

Ontology-based model integration supports an interdisciplinary development process by
making discipline-specific models consistent and facilitating exchange of model parts
between them. The following section defines the basic use cases of ontology-based model
integration.

During the conceptual aircraft design process different models are created which have
overlapping scopes but are focused on specific aspects of the aircraft concept. In general,
each model has a Model Owner. The Model Owners have to ensure that their respective
model is not only consistent with the other models within the interdisciplinary design
process, but also have to decide whether to import more detailed parts from another
model. This task is called model integration in order to reflect that models are not only
consolidated but partly exchanged. Model integration is similar to the model merge
operation described by Brunet et al. [Bru+06].

Definition 1 The operation merge : model × model × relationship → relationship
creates a consistent union of two given models. Model merge includes the resolution of
conflicts between overlapping elements from the source models.

Model merge requires a model match operation employing a matching criterion.

5

1. Introduction

OIDA System
OIDA System

<<include>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

Match Models

Merge Models Partially

Resolve Model
Conflicts

Migrate
Model Parts

Co-Evolve Inte-
gration Artifacts

Reasoner

Model Owner

Ontology Owner

Figure 1.2.: Diagram of the top-level use cases of model integration in conceptual aircraft
design

6

1.2. Ontology-based Model Integration: Overview

Definition 2 The operation match : model×model→ relationship creates a mapping
between the objects of two models according to a matching criterion

The challenge for the Model Owner during conceptual aircraft design is to keep the
complexity of the model at an appropriate level for the specific focus and problem context
and to maintain naming decomposition conventions which are adapted to the specific
methodology and tool environment of the model. This challenge is addressed by the
model integration capability.

Definition 3 Model integration between discipline-specific models Mi and Mj is the
partial merge of models preserving the specific structure and nomenclature of each model.
This is achieved by resolving only conflicts between matched objects and by importing
unmatched objects only upon the demand of the respective Model Owner.

The Ontology-based Integration of Data models for Aeronautics (Oida1) framework
described in this dissertation supports Model Owners in performing model integration.

Internally, the Oida framework generates new artifacts and relations between them as
depicted in Figure 1.3 in a semiautuomated process witch involves the Match Models and
Merge Models Partially use case. As model integration has to be performed more then
once after periods of independent distributed modification of discipline-specific models,
the Co-Evolve Integration Artifacts use case addresses the problem of co-evolution of
artifacts which are interrelated by the Oida framework. In the following, these three
main use cases are briefly described as well as the research questions and the scope of
this dissertation which have led to the development of the Oida framework.

1.2.1. Match Models Use Case

A fundamental challenge of model integration is to identify abstract objects which repre-
sent the same concrete object across different nomenclatures and decomposition strate-
gies. As elaborated in Chapter 2 this challenge is addressed by a matching criterion that
is used to identify commonalities and differences between models. However, in order to
ensure that objects are interchangeable between different model contexts of conceptual
design, a matching criterion has to be supplemented by user decisions. This interactive
matching process is addressed by the Match Models use case. In this use case the models
are not directly but indirectly matched via a common reference ontology. Corresponding
to Gruber [Gru09], an ontology can be defined as follows

Definition 4 An ontology is a set of concepts of a certain domain, such as entities and
relations. An ontology formally defines the meaning and context of these concepts by
logical statements.

Ontologies are essential artifacts in all use cases of ontology-model integration. There-
fore, Match Models involves not only the Model Owner but also the Ontology Owner who
is responsible for ensuring especially the quality of the reference ontology. Both actors
are supported by a Reasoner, an external system which evaluates the logical statements
of ontologies in order to detect inconsistencies and infer new statements.

1In ancient Greek oÚda, oida means “I know”

7

1. Introduction

1.2.2. Merge Models Partially

The Match Models use case enables performance of the Merge Models Partially which
effectuates the actual model integration. In contrast to the merge operation, model in-
tegration only ensures that objects which represent the same entity are consistent. Un-
matched content is only exchanged upon the demand of the respective Model Owner. Ac-
cordingly, Merge Models Partially includes the Resolve Model Conflicts use case whereas
Migrate Model Parts is optionally performed.

During the Resolve Model Conflicts use case Oida computes the differences between
the model Mi of the Model Owner and another discipline-specific model Mj which have
both been matched before in Match Models. Mj is either a legacy model which has
been developed for a previous aircraft concept or is a model concurrently developed by
another Model Owner. The Model Owner cannot only decide to resolve the conflict by
adopting the values of Mj but can also report an implausible matching to the Ontology
Owner.

In the optional Migrate Model Parts use case the Model Owner can choose objects in
Mj to be migrated to Mi.

Definition 5 Model migration is the transfer of model parts from a source model to a
target model which have been selected by the Model Owner of the target model. If the
metamodel of the source and the target model is not the same, model migration employs
model transformation.

Definition 6 A model transformation translates objects conformal to a source meta-
model MMi to objects in a target model Mj conformal to a target metamodel MMj.
If both source and target metamodels are different in scope and level of abstraction, a
transformation between them is not bijective.

Accordingly, the main challenge of the Merge Models Partially use case is to overcome
the heterogeneity of models which stems not only from different metamodels but also
fromS different and naming and decomposition conventions. The Oida framework real-
izes this bridge by evaluating equivalence statements from the discipline-specific concepts
in Mi to the reference ontology.

1.2.3. Co-Evolve Integration Artifacts Use Case

In an aircraft design process the model data is distributed across different artifacts
coupled by transformations. In the Co-Evolution the Oida framework facilitates the
efficient propagation of changes in one artifact to other artifacts in order to maintain
consistency.

Ideally, a small change in one artifact requires only small changes in the other artifacts
coupled to the changed artifact. The Oida framework is developed to increase the effi-
ciency of change propagation by exploiting knowledge on small modifications which have
been performed on the particular artifacts. Co-Evolution is important for the overall
efficiency of a process imposed by a framework like Oida which introduces additional
artifacts, such as ontologies.

8

1.2. Ontology-based Model Integration: Overview

1.2.4. Research Questions

This dissertation provides a problem analysis, a solution concept, and an evaluation of
the implementation which address the following research questions:

RQ 1: What is the nature of the differences observed between different discipline-
specific models representing the same physical system? Discipline-specific models
describe the same physical system in slightly different ways. These differences stem
from different concepts and approaches applied by the developers. For instance, the
geometry of the same aircraft is modeled differently in aerodynamics and structural
mechanics as these disciplines focus on different features of the aircraft. Furthermore,
the different tools influence the practice of modeling, e.g., by assuming a certain aircraft
configuration. A deeper understanding of these differences is the basis for the design of
an improved methodology for model integration.

RQ 2: How can a software system automate the integration process of concurrently
evolving discipline-specific models? During the model integration process the owners
of the different models cannot yet fully rely on a software service which automatically
performs the model integration. However, a software system can assist the model owner
in finding data representing the same physical object and identify conflicts. At the same
time, such a software system must be transparent for the respective Model Owner who
has to understand and confirm the differences found between models, and has to decide
on conflicts.

RQ 3: How can a software system assist co-evolution of dicipline specific mod-
els? During the aircraft design process the integration of design models from different
disciplines and associated artifacts has to be performed frequently. Model integration
requires additional effort from the Model Owner, such as the matching of a model to a
common reference. Therefore, how a software system developed for model integration
can decrease this effort if model integration is performed frequently has to be shown.

1.2.5. Scoping

This dissertation is focused on the management of discipline-specific models during the
conceptual aircraft design process. The problems of detecting topological inconsistencies,
integration of system behavior models and system architecture trades are not covered in
this dissertation:

1. Aircraft models represent not only the system attributes but also its system struc-
ture. During the distributed conceptual design process, structural conflicts can
emerge. A model integration system should extract the information about the sys-
tem structure from different source models and identify matching and conflicting
content. In this dissertation, different meanings of model decomposition are ana-
lyzed. However, the Oida does not address the identification of structural system
design conflicts.

9

1. Introduction

2. Product models represent not only the structural aspects of a product system
but also its behavior. A model of the system behavior is mostly relevant for the
assessment of the operational performance of the product. However, behavioral
aspects of the system are not taken into account.

3. One goal of conceptual aircraft design is to generate and assess feasible variants of
the product’s system architecture. However, especially during the design of civil
aircraft, the system architecture of the aircraft is fixed from the beginning. There-
fore, this dissertation does not address the management of different architecture
variants.

This scope includes essential aspects of the current practice of conceptual aircraft
design. In particular, the limitation to the structural model aspects of one aircraft
architecture is a reasonable context for the development and evaluation of ontology-
based model integration.

10

1.2. Ontology-based Model Integration: Overview

R
ef

er
en

ce
M

et
am

o
d

el
M

M
R

O
n
to

lo
gy

O
R

M
o
d

el
M

iR
M

o
d

el
M

jR
M

o
d

el
M

i

M
et

am
o
d

el
M

M
i

O
n
to

lo
gy

O
i

M
o
d

el
M

j

M
et

am
o
d

el
M

M
j

O
n
to

lo
gy

O
j

T
M

O

T
iR

m
a
n
u

a
l

m
ap

p
in

g
P
iR

T
M

O

T
jR

m
an

u
al

m
ap

p
in

g
P
jR

C
on

fl
ic

t
R

es
ol

u
ti

on

M
ig

ra
ti

on
,

T
O
M

F
ig

u
re

1
.3

.:
T

h
e

d
at

a
fl

ow
re

la
ti

on
s

b
et

w
ee

n
d

iff
er

en
t

ar
ti

fa
ct

s
d

u
ri

n
g

th
e

on
to

lo
gy

-b
as

ed
m

o
d

el
in

te
gr

at
io

n
p

ro
ce

ss
.
M

i
a
n

d
M

j
re

p
re

se
n
t

a
p

ai
r

of
m

o
d

el
s

fr
om

a
se

t
of

m
o
d

el
s

w
h

ic
h

h
av

e
to

b
e

in
te

gr
at

ed
.

11

1. Introduction

1.3. Research Process and Outline

The current tool environments for conceptual aircraft design have been developed in a
trade-off between flexibility to model new system architectures and components, and
the efficient management of consistency and exchange of models from different tools
which requires adherence to constraining standards. This dissertation contributes to an
improvement of these problems not by a substitution but by an extension of components
of existing tools and practices. The basic idea of this dissertation is the mapping of
the concrete problem of model integration to an abstract solution of ontology matching.
However, the research process evaluates not only the effectivity of the Oida framework
but also efficiency of its application from the perspective of typical users which is a critical
criterion for its applicability. Accordingly, this dissertation is structured as follows:

In Chapter 2 the fundamental terminology of the problem analysis and the description
of the solution is defined. In particular, concepts of equivalence and mereology are
introduced as well as the technological spaces of modeling and ontology.

Chapter 3 translates a concrete problem of concurrent model refinement during the
conceptual design of aircraft to the abstract problem of model integration. Thereby,
based on an analysis of sample models, the problem is defined by requirements and
constraints of the Oida framework. Additionally, this chapter gives an overview of
related work.

Chapter 4 describes the most important capabilities of the Oida use cases. These use
cases are analyzed in Chapter 5 in order to identify participating objects and their rela-
tions. The topic of Chapter 6 is the design of the Oida architecture and its components.

Chapter 7 evaluates whether the abstract solution of ontology-based model integration
translates back to the concrete context of conceptual aircraft design.

Chapter 8 summarizes the contributions of this dissertation and discusses topics for
future work.

12

2. Terminology

In the following equivalence, mereology, and technological spaces are defined. The con-
cept of equivalence between objects is introduced stepwise from the concept of identity
to equality. Mereology defines kinds of part-whole relationships between entities. Both
concepts are especially important for the analysis of the problem addressed in this disser-
tation. The next section addresses especially the approach and the design of the Oida by
defining and comparing the terminology of modeling and ontology technological spaces.

2.1. Equivalence

Comparing two models regarding matching and distinctive content is an essential ca-
pability of model integration as it enables identification of conflicts and content which
exists only in one model. This capability requires an operation determining whether two
objects from different models represent the same physical object.

As an example consider two objects A and B from the models Mi and Mj . Both
models are stored at different locations and can be modified independently. Before it is
determined whether A and B represent the same object, it has to be determined whether
A and B are actually identical.

Definition 7 The identity of an object comprises all its properties which distinguishes
it from all other objects.

As an object can only be identical to itself, Dilworth [Dil88] discusses whether identity
is actually a kind of relation. Practically, two objects are not identical iff at least one
discriminating property is measurable. In the following, we assume that neither Mi and
Mj nor A and B are identical as they have at least different names.

For complex objects it is usually impractical to determine identity. However, in a
concrete application it is usually sufficient to determine whether two objects are equal
assuming an abstract object model.

Definition 8 Equality is a relation between two objects which can substitute for each
other assuming an object model which defines a subset of measurable properties I of an
object which are relevant for a certain purpose.

In the following we assume the object model proposed by Khoshafian and Copeland
[KC86]. The properties of an object are attributes and references. An attribute has a
type and a value. A reference is a link to another object. The references between a
set of objects define a topology of the set which is a graph of objects which disregards

13

2. Terminology

the object attributes. In this object model the behavior of an object is disregarded.
According to this object model, two objects can be substituted for each other if they are
deep-equal.

Definition 9 Two objects are deep-equal if their property values are identical, and re-
cursively the property values of all referenced objects.

If all objects are globally unique, deep-equal objects are also shallow-equal

Definition 10 Two objects are shallow-equal if their property values are identical.

Shallow-equality between A and B is less complex to determine than deep-equality
as it does not require determination of the identity of property values of all referenced
objects recursively. Khoshafian and Copeland [KC86] argue that unique information
objects do not necessarily change their identity if their property values or location are
modified. Therefore, they propose a more abstract object identity.

Definition 11 An object identity O is a subset of the object model which is globally
unique and independent of property values and location of the object.

Usually O is implemented as an immutable attribute value that is generated at the
creation of every object. If Mi and Mj are only discernible by their location, A and B
can have identical O if Mi and Mj are always synchronized, which means that every
modification in Mi or Mj is propagated to the other model to ensure that objects with
identical O are deep-equal. Now assuming that Mi and Mj are not synchronized, A and
B represent the same thing if they are a deep copy of each other.

Definition 12 Two objects are a deep copy of each other if they are deep-equal except
regarding O of the two objects and the recursively referenced objects.

If A is a deep copy of B, both objects can represent unmodified local copies of an
identical ancestor object.

Definition 13 If A has been created by a deep copy of B, B is the ancestor object of A

Now it is given that A is not a deep copy of B but equivalent to it.

Definition 14 Equivalence is a relation between objects which can substitute for each
other in a certain context. An equivalence criterion defines a subset E of the object model
which can intersect with O. Equivalence between two objects can only be determined if
all properties in E can be measured in both objects. Two objects are equivalent if all
property values in E are identical in both objects. If no property value in E is identical,
the two objects are disjoint.

14

2.2. Mereology

The equivalence, equality, and identity are characterized as reflexive, transitive, and
symmetric relations. All these relations are reflexive because they always exist from an
object to itself. They are all transitive because if one of these relations exists between
object A and B, and between B and C, the relation always exists also between A and C.
They are all reflexive because if one of these relations exists from A to B it always exists
also from B to A. However, these relation characteristics require a bijective mapping
of all object properties, i.e. an identical object model. Assuming that Mi and Mj have
been created for a different purpose and have a different object model, their objects can
be equivalent in a certain context but are not necessarily deep-equal. For instance, 2 and
2.0 are equivalent in a context which disregards decimal digits. However, the example
illustrates that a transitive and symmetric equality relation cannot be established for
these objects.

2.2. Mereology

Mereology , derived from ancient Greek mèroc meros “part” and lìgoc logos “word, ratio-
nality”, is a discipline which analyzes and describes different kinds of part-whole relation-
ships between objects. Mereology is relevant for model integration as aircraft designers
tend to decompose their aircraft model according the the part-whole relationships of the
physical aircraft. Thereby, aircraft designers use modeling language constructs which
represent containment relations. For instance, UML defines the composition association
which is a directed relation between two objects. One object can have a composition
relation to more than one object but every object can only be contained in one object.
If object A is related to B by a composition, B is contained in A. B is destroyed if A is
destroyed.

However, containment relations between objects have more differentiated properties.
Winston et al. [WCH87] propose a taxonomy of six different kinds of containment which
are discriminated by the three properties configurational, homeomeric and invariant.
A containment is configurational if it relates objects that have a specific functional or
structural relationship to one another or to the object they constitute. A containment
relation is homeomeric if the parts are of the same kind as the whole. A containment
relation is invariant if the parts can be separated from the whole. Odell [Ode94] adopts
these criteria, but proposes a slightly different taxonomy of the following six kinds of
composition (see Table 2.1):

• A component-integral object composition is a relationship between an entity and
its constituting entities. This part-whole relationship can be tangible, abstract or
organizational. For example, an engine blade is an integral part of a turbo engine.
In contrast to Winston et al., Odell states that if two objects are separated they
can no longer have this kind of relation.

• A material-object composition interrelates an entity to materials “the entity is
made of”, e.g., the Boeing B 747 aircraft primary structure is made of aluminium.

15

2. Terminology

Configurational Homeomeric Invariant

Component-integral object Yes No No

Material-object Yes No Yes

Portion-object Yes Yes No

Place-area Yes Yes Yes

Member-bunch No No No

Member-partnership No No Yes

Table 2.1.: Six kinds of composition according to Odell

• A portion-object composition describes a composition where the parts are all of the
same kind as the whole. For example, a foot is a part of a nautical mile. Both
quantities are lengths.

• A place-area composition is a relation of a geographic spot to a geographic area
that completely surrounds it. For instance, the threshold is part of the runway.

• A member-bunch composition is a relation of entities to a group they constitute.
The member-bunch relation is accidental , i.e., the group is not destroyed if a
member leaves the group. In the aviation domain, several aircraft are in a member-
bunch composition to a particular carrier fleet.

• A member-partnership composition is a relation of entities which together form a
partnership entity. Thereby, the constituting members are essential to the part-
nership entity. In aeronautics, the pilot and the co-pilot constitute a cockpit crew.
If one of the members leaves the crew, the crew ceases to exist.

The examples from aeronautics not only illustrate their relevancy for conceptual air-
craft design but also that common modeling language constructs, such as Composition
in UML, can represent these relations but do not differentiate between them.

Beyond these composition relations, Odell defines four other kinds of relations which
are in practice often mistakenly expressed as part-whole relations:

• A topological inclusion of an object into another surrounding object is not a part-
whole relationship as long as there is no close relationship between the two objects.
For instance, if a person is in a building, the person is not a part of that building.

• If an entity is an instance of a certain class, entity and class are not in a member-
bunch relationship but in a classification inclusion relationship. For instance, if
Man has the instance Bob, Man is not a bunch but an abstract class. Accordingly,
Bob is not a member of Man.

16

2.3. Technological Spaces

• An attribution is the relation of an entity to its attributes. By this relation,
attributes are associated with an entity but are not components of it, e.g., if a box
is red, the color red is not a part of the box.

• An attachment is a relation between linked objects. Linked objects are not neces-
sarily in a part-whole relationship. For example, a lid on a pot is connected and
has a functional relationship to the pot but is not part of it.

• Ownership is a relation from one entity to another entity which it possesses. If an
entity A owns entity B, it does not mean that B is part of A, e.g., if Alice owns a
dog, the dog is not part of her.

The occurrence of these pseudo-containment relations is an important symptom of
models which represent the same system but with a different decomposition strategy.

2.3. Technological Spaces

According to Kurtev et al. [KBA02] a technological space (TS) is a combination of
methodologies and tools, which are learned, applied, and further developed by a com-
munity of persons. In contrast to disciplines, the technological space concept emphasizes
a degree of self sufficiency which allows its members to solve a problem within its bound-
aries. Basically, the Oida framework establishes a mapping between the Modeling TS
and the Ontology TS . By this mapping the problem of model integration is transformed
to a problem of ontology integration. The problem is solved in the Ontology TS and
propagated back to the Modeling TS. In the following, both technological spaces are
briefly described by defining some of their fundamental concepts.

Concepts of the Modeling Technological Space

The Modeling Technological Space (Modeling TS) is a working environment realizing the
Model Driven Architecture (MDA) proposed by the Object Management Group (OMG)
[Mel+02]. The artifacts of this technological space are models and metamodels. MDA
also stipulates transformations between Platform Dependent Models (PDMs) and Plat-
form Independent Models (PIMs). The basic idea of MDA is to improve the efficiency of
developing and maintaining systems by making changes on platform-independent mod-
els (PIM) and to generate platform-dependent models (PDM) by these transformations.
An important framework of the MDA is the Meta Object Facility (MOF) [Gro11] which
proposes a framework of four layers of abstraction.

The M0 layer contains objects from the real world . A set of these objects is a system.
For instance, physical systems and a running software system exist at the M0 level.

The M1 layer contain objects which are abstract representations of the state and
behavior of real world objects and their relations on the M0 level. A set of these objects
is a model of a system. For instance, the software source code is a model of a running
program.

17

2. Terminology

Objects on the M2 layer are abstract specifications of properties and operations of
objects and relations at the M1 level. A set of these objects is a metamodel. Objects
in a model are instances of objects in a metamodel. Thereby, a metamodel can specify
a formal language. For instance, the Unified Modeling Language (UML) [OMG11] is
specified on the M2 layer.

Objects on the M3 layer are an abstract specification of objects and relations at the
M2 layer. A set of these objects is called a meta-metamodel. For instance, MOF is on
the M3 layer. MOF is not only the metamodel of UML on the M2 layer but defines
also its own metamodel by the fundamental concepts classifier, instance, and reflection.
The latter enables the navigation between classifier and instance objects.

The object model specified by the common classifier of an object can be used as
an equivalence criterion as the instanceOf relation ensures that these properties are
measurable in both objects.

Abstraction has the consequence that an identical real object can be represented by
objects with a non-identical set of properties. For example, if two have been created
from two different metamodels or the same metamodel has been interpreted differently,
two objects representing the same real entity can only be determined by matching.

Definition 15 A match is a relation between objects that are not necessarily equivalent
but represent the same object. The relation is determined by a matching criterion which
defines a subset S of properties in an equivalence criterion E. Two objects do not match
if at least one property which is measurable in both objects is not identical.

In contrast to equivalence, the match relation is reflexive but not transitive and sym-
metric. Two matching objects cannot substitute for each other if they are not equivalent.
Given that two objects match each other, e.g., (name: wingspan, measure: 3; unit: m)
matches (name: span; measure: 3), substituting span for wingspan would reduce infor-
mation in the name and unit attribute.

A common matching criterion is a common ancestor object. This equivalence criterion
determines equivalence between local copies, which have been modified independently.
However, to determine a match between two objects if they were created independently
or if the ancestor object is not measurable, an equivalence criterion must define necessary
and sufficient conditions specific for a concrete application.

If object A and B match but are not equivalent they are in conflict.

Definition 16 Conflict is a relation which can only exist between matching objects. A
conflict criterion C is the relative complement of S in E. If at least one property in C
is not identical, the equivalent objects are in conflict.

Now given that A and B are in conflict, the conflict can be resolved.

Definition 17 A conflict between two equivalent objects is resolved by modifying every
property in C to an identical value.

18

2.3. Technological Spaces

Usually a conflict is resolved by copying all values from one of the objects to the other.
After a conflict resolution two matched objects are equivalent in a certain context. How-
ever, the two objects are only equal if they have the same classifier which is fully covered
by E and C. All possible classifiers of a model are defined in its metamodel. Therefore,
equality between two models can only be ensured if they have an equal metamodel.

Concepts of the Ontology Technological Space

The Ontology Technological Space (Ontology TS) is a combination of methods and tools
for knowledge representation and automated reasoning. In particular, an ontology lan-
guage is used to represent the knowledge in an ontology.

The term ontology is derived from the ancient Greek words eÊmÐ eimi “I am” and lìgoc

logos “word, rationality”. In philosophy it means the study of “being” entities and their
structure. In the domain of computer science “[. . .] an ontology defines a set of repre-
sentational primitives with which to model a domain of knowledge or discourse”[Gru09].
Accordingly, an ontology defines entities and relations between these entities which are
constrained by logical statements. Thereby, the semantics of the entities can be for-
mally defined. The intended application of an ontology is an important feature. For
instance, the primary application of the reference ontology in this dissertation is to
provide a representation of knowledge in the domain of conceptual aircraft design. A
machine-readable ontology representation can be used for automated reasoning. The
basic functionality of an automated reasoner is the classification of entities. Thereby, a
reasoner not only determines the consistency of statements in an ontology but can also
infer new statements.

Ontologies can be connected to each other in a hierarchy. For example, an ontology
containing application-specific concepts can import another ontology containing more
general concepts and use it as an upper ontology [Sch03].

Definition 18 An upper ontology comprises abstract and generic concepts which can be
shared across domains, such as mereology or physical measures.

Ontologies can be designed with the help of tools or derived from natural language or ex-
isting models. An ontology language can express semantic relation by logical statements
which can be evaluated by a reasoner.

Model vs. Ontology

Models and ontologies both deal with the representation of physical and virtual concepts.
However, models and ontologies are generally used with different intentions [Hen11].
Models are prescriptive representations which are usually based on the closed world
and unique name assumption, which makes them more adept for systems design and
implementation. In contrast, ontologies are descriptive representations which are usually
founded on the open world assumption. For example, a model and an ontology represent
the facts that every person can only have one mother and that there are two persons
Bob and Bob’s mother Peggy. Both model and ontology can be queried as to whether

19

2. Terminology

Margret is Bob’s mother. According to the closed world assumption, the answer for the
model is “No”, because the model does not contain an explicit statement that Margret
and Peggy are the same person. In contrast, according to the open world assumption, the
result of the query to the ontology is ”Unknown”, because there is no explicit statement
that Peggy and Margret are not the same person. Now the fact that Margret is Bob’s
mother is added to both model and ontology. Based on the unique name assumption the
model would become invalid, as Bob cannot have two mothers. As the ontology does not
assume unique names for entities, the ontology does not become invalid. Additionally,
an automated reasoner can evaluate the ontology and infer that Margret and Peggy are
the same person. In this example, the ontology is not only more robust than the model
dealing with different perspectives to the same object but has derived new knowledge.

Ontologies represent concepts by entities and properties. Entities are classes and
individuals who are instances of classes. Properties are relations from entities to other
entities or to data types. In contrast to modeling languages, ontology languages allow
declaration of an equivalence relation between concepts by an equivalence statement. For
instance, an equivalence statement between two individuals (name: wingspan; measure:
3; unit: m) and (name: span; measure: 3) has the effect that both objects are treated
as (name: wingspan, span; measure: 3; unit: m). Accordingly, the conflict resolution
and the declaration of equivalence between two matched objects leads to equal concepts
even if the concepts have a different set of properties.

20

3. Problem Definition and Related Work

The problem context addressed in this dissertation is the conceptual aircraft design
phase which is software intensive as it has to rely predominantly on virtual product
models. The different levels of abstraction and the flexibility of modeling languages
allow different naming and decomposition conventions, which inhibits efficient matching
objects between different models. However, despite the abstraction of design models their
integration is based on the assumption that design models represent the same physical
object. Therefore, the following chapter gives an analysis of differences between sample
models from conceptual aircraft design. Based on these observations, the problem is
defined by stating the requirements and constraints of the Oida which is put into the
context of related work already performed by other researchers.

3.1. Sample Models

The concept of ontology-based model integration was developed and evaluated using
three sample models from different tools called Simcad, APA, and APD.

These tools were chosen as they cover a variety of typical data models in aircraft
conceptual design with respect to scope, complexity, and focus. Although they are
generally not used concurrently in the same project, they describe structural aspects of
the same type of aircraft. Therefore, they can be used to simulate the situation when
three models of the same aircraft are generated by independent design groups.

Simcad is a tool which has been developed at the Airbus Future Projects Office
for conceptual aircraft design studies. It is basically a collection of scripts executable
on the Scilab platform. Scilab is an open source numerical calculation environment
similar to Matlab. Simcad employs two types of internal data exchange: (1) the
processing blocks passing data via function parameters and (2) the processing blocks
manipulating data on a globally accessible data structure like reading from and writing
on a black board. The black board is a data structure which is used as a global look-up
tree for aircraft design algorithms, such as weight and performance estimation. Within
the black board the naming convention for variables is widely comprehensible for any
aircraft design expert. A special Simcad script serializes the black board using a specific
syntax. The script not only encodes the treelike data structure but specifies units for
every scalar value. As the black board data structure mostly contained structural aspects
of the aircraft was used as the Simcad sample model.

The Advanced Propulsion Analysis tool (APA) has been developed at Bauhaus Luft-
fahrt based on Matlab. It was originally developed by Seitz [Sei12] to compare the

21

3. Problem Definition and Related Work

ac model

geom

fuselage

length: 37 m

height: 4 m

gwa: 391 m2

[...]

wing

span: 37 m

ar: 9.5

gwa: 233 m2

sref: 143 m2

[...]

cabin

first ...

business ...

economy

n pax: 150

n pax abreast: 6

[...]

prop ...

[...]

mass

wing: 9797 kg

fuselage: 8536 kg

engines: 8057 kg

furnishings: 2750 kg

[...]

aero ...

prop ...

perfo

take off

landing

mission

max fuel

range: 2891 nm

payload: 14495 kg

[...]

max payload...

[...]

MODEL

CONFIG

AC

W Payload: 20279

W Fuel: 12843.4

W TO: 73399.4

LTO

cL Max: 3

Vstall: 56.6

MIS

Alt Cruise: 10668

Range: 2870600

WING

S Ref: 122.4

DownWash Grad: 0.45

[...]

FUS

L: 37.6

D: 3.9

[...]

PPS

D Fan: 1.6

D Nacelle: 2.0

S Wet: 28.1

[...]

GEO ...

WING ...

FUS ...

PPS ...

[...]

WEIGHTS

PL ...

FUEL ...

FUS ...

WING ...

PPS

total: 6752.8

Fan Group: 868.2

[...]

[...]

Figure 3.1.: Excerpts of the Simcad sample model (left) and the APA sample model
(right) which show different interpretations of the same metamodel as well as
different naming convention and decomposition strategies while representing
a similar aircraft

22

3.1. Sample Models

“Open Rotor” versus the “Ducted Geared Turbo Fan” propulsion concepts on a com-
mon basis. Accordingly, the structural aspect of the model covers the overall aircraft
but is focused on propulsion-related aspects of the system. APA employs a central
data structure representing aircraft system attributes, which are used by the calculation
scripts both as data source and target. In accordance with common practice of mod-
eling in Matlab, the units of measure for each attribute are not specified in the data
structure. Instead, a Matlab script responsible for serialization of this data structure
contains a unit specification and short description of each value as comment. The nam-
ing convention of variables in APA is mostly oriented to symbols commonly used in
aircraft design literature. However, without the comments in a separate script file, the
nomenclature is difficult to comprehend. The central data structure contains a consid-
erable amount of data which do not define structural aspects of the aircraft, and thus
are beyond the scope of this dissertation, e.g., the results of mission simulations which
rather describe the behavior of the system. However, the model objects associated with
these aspects are arranged in subtrees of the model which could be clearly separated.
The remaining APA central data structure was exported to a file and used as the APA
sample model.

The Pace Lab Suite is a commercial tool developed by Pace Lab for conceptual
aircraft design. Pace Lab offers the Aircraft Preliminary Design (APD) plug-in
which provides a collection of implemented common preliminary aircraft design methods
and models of recent civil transport aircraft, such as the Airbus A320. These aircraft
models are used to benchmark new aircraft concepts or calibrate new performance es-
timation methods. Generally, the models cover the overall aircraft and have no focus
on a specific subsystem. The aircraft model parameters can be serialized to a comma
separated values (CSV) file. Each entry in the CSV file contains the name of the parent
object representing the hierarchical model structure. Entries representing scalar values
additionally specify the respective unit of measure. The APD parameters also contain
data which describe the system behavior. For instance, there are data tables on the spe-
cific fuel consumption (SFC) of the engine in different system states. The identification
of equivalent state variables like SFC requires not only matching of their dependencies to
system states but also interdependencies among system states. However, the integration
of system states, which are part of the behavioral model of an aircraft system, is not
addressed in this dissertation. Therefore, SFC tables were removed early from the CSV
file by filtering representations of scalar values. The result was used as the APD sample
model.

The similar structure of the tool data models allows the transformation a tool spe-
cific format to a common metamodel. For this conversion, the tool connectors of the
Conceptual Design Tool (OpenCDT) [ZGS11] were used which transfer the variable
names and the data structure of the original models directly to MOF-compliant Java
object models. Using this representation, the following comparative observations could
be made:

• The sample models exhibit considerable semantic overlap. As a consequence, el-
ements from different source models represent the same physical object. Under

23

3. Problem Definition and Related Work

the assumption that the models represent the same aircraft, these overlaps are a
potential source of inconsistencies.

• The sample models contain attributes which characterize the modeled aircraft.
These characteristics either explicitly describe the system topology , e.g., the num-
ber of windows, or describe measurable attributes of system components. They
can be scalar, or be represented in more complex structures, such as vectors, or
tensors. Only the Simcad and the APD sample model explicitly state units of
measure.

• All sample models use the object composition association for different decompo-
sition strategies. In the Simcad model, for instance, it can be observed, that
the containment relation is used for three different kinds of decomposition. There
is a geometry tree representing a component-integral object decomposition. The
mass container represents classification inclusion decomposition. The take-off

container represents a decomposition oriented to an attribution relation to system
states. Only the geom container and its child objects have a component-integral
object relation which can be classified as containment. The APD model shows the
same types of decomposition. The APA consistently uses classification inclusion
relations at the first tree level and an attribution relation in the second layer. It
can be concluded that the decomposition strategy of all sample models is rather de-
signed more towards efficient access to data entries during the numeric calculation
processes within the respective tool than towards data exchange.

• Generally, the name attribute of a model element indicates the physical entity it
represents. However, this naming convention is not standardized. Especially, in
APA the objects are named by abbreviations which are difficult to comprehend
without further documentation outside the model.

3.2. Oida Requirements and Constraints

Based on the analysis of the sample models, the Oida framework has been developed
according to the following top-level requirements:

• The entities of all models must be matched with a common reference ontology.
Model elements representing data specific to tools or disciplines can be deliber-
ately excluded from the integration process by the model owner. Furthermore,
model parts representing non-structural aspects of the aircraft as well as non-scalar
attribute values are generally excluded from the mapping process.

• The Oida framework must facilitate the detection and resolution of conflicts be-
tween equivalent model elements from different sample models. Thereby, one of
the models is declared to be the Chief Engineering Model which overrules the
other models in the case of conflict. This scenario assumes that a chief engineer is
entitled to propagate his design decisions to the other models.

24

3.2. Oida Requirements and Constraints

• The Oida framework must give Model Owners an essential role in the ontology-
based model integration. In particular, Model Owners must perceive the process
of ontology-based model integration as efficient and the result as plausible from
the aircraft design expert point of view.

• Repeated performance of the model integration process with small changes in the
source models, the reference ontology, or the integration related algorithms must
require only small changes on the other coupled artifacts to maintain overall con-
sistency.

The following design constraints have been posed early in the development process in
order to foster a simple but meaningful and extensible proof-of-concept:

Reference Ontology It was decided to use an ontology as a common reference for
the integration of discipline-specific models. A classification of technical approaches to
model integration was described by Noy [Noy04]. She discriminated between ontology-
based integration and heuristics-based integration techniques. The latter are commonly
used in database schema integration and are based on lexical and structural analysis of
the given models. In contrast to these techniques, ontology-based approaches exploit
the semantics of relationships between entities. Generally, not only ontology languages
but also modeling languages allow defining and constraining entities and links. For in-
stance, UML defines relationships like Generalization, Composition, and Attribute,
which can be constrained by OCL. However, the semantics of these relationships are not
formally specified. In contrast, an ontology language, such as OWL, can express formal
semantics by description logic [BHS08] which can be interpreted by automated reasoners.
The resultant reference ontology can potentially be reused in other application contexts.

Simple Equivalence Another early decision was to realize the matching of discipline-
specific models exclusively by equivalence statements between ontologies. Weaker nu-
ances of equivalence would allow the domain expert to adequately express relation be-
tween similar concepts. However, these nuances of equivalence are not defined in stan-
dard ontology languages. Furthermore, application of similarity relations during Match
Models requires a shared understanding of similarity among all Model Owners which
would add organizational complexity. Therefore, Oida only uses equivalence relations.
This constraint also limits the complexity of the ontology, as the Model Owners only
add an equivalence relation between two concepts if they consider them to represent the
same object. Furthermore, the limitation on standardized simple equivalence facilitates
the development and evaluation of ontology processing capabilities as these relationships
are well supported by existing ontology frameworks and reasoners.

Simple Part-whole Relationship As described in Section 2.2 mereology is an important
feature of physical systems and the models representing them. Therefore, a simple
mereology upper ontology is provided as a common basis for both the reference ontology
and ontology-based transformation algorithms. The mereology upper ontology defines

25

3. Problem Definition and Related Work

the transitive properties isPartOf and its opposite hasPart as well as the corresponding
subproperties isPartOf directly and hasPart directly. The reference ontology uses
these properties as a generic foundation of a component-integral object relation, whereas
the ontology-based transformation algorithms asserts the hasPart directly property
as a formal representation for the composition association of UML. The detailed design
of the mereology upper ontology and its application in the reference ontology is provided
in Appendix B.

3.3. Related Work

The application of ontologies for the integration in conceptual aircraft models is based
on work already conducted by other researchers who have already successfully applied
the consolidation and transformation of models from different sources. However, their
approaches do not address the level of heterogeneity and domain specificity pursued in
this dissertation.

3.3.1. Tool and Model Integration

Kramler et al. [Kra+06] describe the idea of a semantic infrastructure for tool integration.
The metamodels of tools are “lifted” to so called tool ontologies, i.e. the metamodel
elements are mapped to ontologies which contain tool-specific concepts. These tool
ontologies are “bound” to a generic ontology, i.e. the tool specific concepts are mapped
to generic concepts. To give an example from business process modeling, the concept
Action from UML and Activity from BPEL can be bound to the generic concept of
ProcessStep. The resulting bindings are used to generate model transformations which
allow transformation of models from one tool to another. This infrastructure is similar
to the Oida framework. However, analysis of the sample models revealed that the gap
between the abstraction levels of the metamodels and the instance models allowed too
much ambiguity of the object model regarding its meaning and relation to other model
elements. Thus, mapping on the metamodel level proposed by Kramler et al. [Kra+06]
is not sufficient for the reliable determination of overlaps between the sample models.

Maalej [Maa10] uses ontologies as an essential component of his solution for tool
integration. While his work focuses on seamless work flow integration, his description
of specific features of ontologies as enabling technology also applies to the integration
of design models. Therefore, his considerations also motivated the design decision to
develop an ontology-based approach for model integration.

Del Fabro and Valduriez [DFV07] claim that the efficient generation of model trans-
formation is a key technology for efficient model integration. The authors describe the
automated generation of a weaving model which contains a structured mapping between
two metamodels. For instance, given two metamodels from business process modelling
the waving model would contain a mapping object between the classes ActionItem and
Task. This mapping object would further contain mapping objects between the respec-
tive attributes and associations of these classes. The automated generator of such a
weaving model identifies synonym relationships between metamodel entities by queries

26

3.3. Related Work

to the WordNet ontology [Fel10]. However, their solution is only based on metamodel
matching, and does not evaluate meaning or context of instance model elements. Fur-
thermore, the solution does not address the situation when WordNet does not contain
a concept, a situation which is likely in conceptual aircraft design. In contrast, Oida
allows addition of new concepts to the reference ontology during the Match Models use
case.

Simon Zayas et al. [SZMA11] apply model matching via a reference representation of
the product system model. This reference representation is not realized by an ontology
but by a model which is separately created in one of the tools. This reference model
allows matching of models from different tools representing different developmental as-
pects to the same avionics system. However, the reference model strongly depends on
a specific tool and development domain which limits its reuse in another application
context. Furthermore, the language of the reference model does not have the expressiv-
ity of an ontology language regarding semantics and cannot be directly processed by a
reasoner. For this reason, as discussed in Section 3.2, the Oida uses an OWL ontology
as common reference for integration.

Roser [Ros08] realizes ontology-based model transformation by employing different
nuances of equivalence, such as similarity and overlap, for the matching of metamodel
elements, as well as OWL and an automated reasoner in order to facilitate the matching
of the metamodel concepts. The transformation is generated using the indirect matchings
of target and source metamodels of the transformation via a reference ontology. Oida
also uses a reference ontology to realize model transformation and matching. The generic
data format of sample models allowed a simple transformation of the sample models to
the same metamodel using the tool connector capability of OpenCDT. Therefore, the
Oida framework addresses the problem of matching different interpretations of the same
generic metamodel, which manifests in different naming and decomposition conventions
of the sample models. Furthermore, in contrast to Roser’s solution which is fully auto-
mated, the Oida engages the Model Owners in an interactive process. Thereby, Model
Owners not only control the process, but also report errors of automated matching
algorithms and extend the reference ontology in the process

Different types of model integration approaches are categorized regarding organiza-
tional effort by Jardim-Goncalves et al. [JAS10] by estimating the time required for
communication between organizations. They discriminate between slack, unregulated,
standard-based, semantic interoperability, and sustainable interoperability. Accordingly,
the Oida framework is a semantic interoperability type approach which is more efficient
than standard-based interoperability approach, e.g., CPACS or SysML, if the mapping
of the model data to a common ontology is faster than solving data clarification issues
for each model exchange by experts. Therefore, in order to support the assessment
ontology-based model integration, the evaluation in Chapter 7 investigates the efficiency
perceived by Model Owners during the Match Models case studies and the measurable
efficiency in Co-Evolve Integration Artifacts quasi-experiments.

27

3. Problem Definition and Related Work

3.3.2. Ontology Generation and Matching

Gašević et al. [Gaš+04] aim at a seamless integration of ontology tools with UML-based
modeling tools. They present a transformation from the Ontology Definition Metamodel
Specification (ODM) [Obj09] to OWL, based on the eXtensible Stylesheet Language
Transformation (XSLT). The mapping between UML and OWL which is defined in the
annex of the ODM specification served as a template for the model-to-ontology and
ontology-to-model transformations of Oida. However, Oida is not designed to provide
an ontology-based aircraft modeling tool but to facilitate the integration of existing
aircraft models employing ontology-based technologies. Therefore, Oida uses separate
specialized frameworks for handling models and ontologies, respectively.

Halpin and Hayes [HH10] describe the history of the concept identity and the conse-
quences of a sameAs relation between concepts from different ontologies. The authors
argue that this kind of equivalence relation is a strong statement and should be used
carefully in distributed information systems, such as the semantic web. Their recommen-
dation opposes the constraint stated in Section 3.2 that the Oida framework only uses
simple equivalence relations. However, the sample models are significantly less complex
than the semantic web. Furthermore, the Match Models use case stipulates the Ontology
Owner who can advise the Model Owner to declare an equivalence relation in undoubted
cases.

Doan et al. [Doa+03] propose a schema-matching algorithm GLUE which uses a set
of “learning strategies” for finding the best match between schema items. “Learning” in
this context means that an algorithm uses a given structure to generate good propositions
for schema matching. The learning strategies used by Doan et al. are comparable with
the concept of EquivalenceFinders in Oida described in Chapter 6. For instance,
the “content finder” corresponds to the StructuralEquivalenceFinder, the “name
learner” corresponds to the NameEquivalenceFinder but also takes the containers of
the respective entity into account. The capability of a “meta-learner”, which is basically
an aggregation of the aforementioned strategies by a weighted sum, is realized in the
Oida by a Blackboard pattern. GLUE supports complex mappings between ontology
entities. For instance, the entity name in one ontology can be related to two entities
firstName and lastName. In contrast to GLUE, Oida’s ontology-matching process
does not require complex mappings during Match Models as the tool connectors of
OpenCDT transform the sample models to a common metamodel.

3.3.3. Evolution of Coupled Artifacts

Herrmannsdoerfer et al. [HBJ09] address the problem of co-evolution of metamodels
and their model instances by the EMF Edapt framework. EMF Edapt is based on
recording the user’s modifications to a metamodel which are put into the context of a
specified refactoring which the user intends to apply. After certain types of refactorings
to a metamodel have been recorded, the framework generates a transformation script
which migrates existing instance models of the old version of the metamodel to the
new version of the metamodel [HVW11]. The idea of the EMF Edapt framework to

28

3.3. Related Work

evaluate known modification to artifacts in order to facilitate the co-evolution of coupled
artifacts has inspired the design of the Oida evolution capabilities. In particular, the
Oida framework provides a prototypical support for a rename refactoring in the reference
ontology.

Kögel [Kög11] shows that a system performs significantly better than a text-based
model version control process. EMFStore, an implementation of operation-based ver-
sion control, uses recorded change operations on local copies of the model under version
control. As change operations reference the metamodel, the conflict detection and con-
flict resolution recommendations to the user are more specific to the domain context
of the user as compared to a text-based version control system, which are agnostic to
the metamodel. The software algorithm for conflict detection in Oida is not operation-
based as changes to the discipline-specific models are performed outside of the system
boundaries of the Oida framework.

29

4. The Oida Functional Model

“No two manufacturers ever split it
up quite the same way and every
mechanic is familiar with the problem
of the part you can’t buy because you
can’t find it because the manufacturer
considers it a part of something else.”

Pirsig [Pir74]

In this chapter the main use cases Match Models, Merge Models Partially, and Co-
Evolve Integration Artifacts are analyzed in detail in order to identify actors, required
capabilities of the Oida framework, and their interaction. In this dissertation the term
capability is used according to systems engineering as a high level requirement defining
an ability of a system to perform or facilitate a certain task without prescribing a certain
solution [HP08]. In particular, Section 4.1 analyses different situations of model matching
leading to the ontology-based approach realized by the Oida framework. After a brief
description of the Merge Models Partially in Section 4.2, Section 4.3 defines four scenarios
which require Co-Evolve Integration Artifacts.

4.1. The Model Matching Capability

The goal of model matching is the identification of elements in different models which
represent the same object. This capability is required to determine conflicting objects

Metamodel
MM

Model Mi Model Mj
Automated Matching

Figure 4.1.: Two models Mi and Mj conformal to the same metamodel MM . Based on
the common metamodel, model matching can be performed automatically.

31

4. The Oida Functional Model

Metamodel
MMR

Metamodel
MMi

Metamodel
MMj

Model Mi Model Mj

manual mapping manual mapping

Automated Matching

Figure 4.2.: Two models Mi and Mj conformal to different metamodels MMi and MMj .
In order to match Mi and Mj their respective metamodel must be matched
with a common reference metamodel MMR in order to generate comparable
object identifiers.

Ontology
OR

Ontology Oi

Metamodel
MMi

Model Mi

Ontology Oj

Metamodel
MMj

Model Mj

TMO

manual mapping

TMO

manual mapping

Automated Matching

Figure 4.3.: The ontology-based model matching data flow is an excerpt of Figure 1.3.
Model Mi and Mj are matched indirectly via the ontologies Oi and Oj

derived from its respective model and mapping them manually to a common
reference ontology OR. The indirect matching is based on the assumption
that the transformation TMO is injective.

32

4.1. The Model Matching Capability

and objects representing an object which is not represented in the other model. Both
results are a prerequisite for Merge Models Partially.

Figure 4.1 depicts a setup where two models have the same metamodel. In that case
objects can be matched using the object classifiers specified by the shared metamodel
as an equivalence criterion. As discussed in Chapter 2.1 a criterion based on a common
classifier is not sufficient to match objects which have been created separately using
a common metamodel, especially when the metamodel is very abstract from the ap-
plication domain. Such a metamodel allows the Model Owner to use his own naming
convention and to interpret the semantics of the metamodel elements differently.

For example, given that a metamodel MM provides a class Composite, an analysis of
the objects in model Mi reveals that Composite consistently represents a physical com-
ponent. Accordingly, Mi is structured in a system decomposition tree. Unlike model Mi,
in model Mj a Composite object represents a physical Component or mission segment.
A composition by physical components describes the spatial structure of the aircraft
whereas a decomposition by mission segments describes the temporal structure of air-
craft design missions. Now MM is extended by two classes PhysicalComponent and
MissionSegment and the objects of both models are mapped to one of these new classes.
In contrast to the mapping objects of Mi, the mapping of objects in Mj is ambiguous as
every Composite object represents a PhysicalComponent or a MissionSegment object.
As illustrated in Figure 4.2 the latter can be expressed by declaring each model con-
formal to a different metamodel and to map these metamodels to a common reference
metamodel. Different interpretations can be formalized if the common reference meta-
model provides not only the abstract concepts of the different metamodels which are
suspected of beeing interpreted differently but also concrete concepts of the application
domain. If the metamodels have been mapped to a reference metamodel, a common
reference classifier can be part of a matching criterion. However, as metamodels do not
provide a classifier for every domain concept, the objects still need to be matched by cer-
tain properties, usually the name property. If two model elements representing the same
entity are created in different models, the modeler’s strict adherence to the same nam-
ing convention is required in order to match objects by their name unambiguously. For
instance, sophisticated and complex matching algorithms are required to determine the
equivalence between an object WingSpan in one model and an object called SpanMain-

Wing in another model. Even if that equivalence can be found, it is not clear whether the
first object represents the span of the horizontal stabilizer whose context is completely
different from the span of the main wing.

If the Model Owners map not only their metamodel but also the model to a common
reference these mappings can be exploited to match models across inconsistent meta-
model usage and different naming conventions. However, the process of manual model
mapping is costly and additionally requires an agreement on the common reference.
Furthermore, the closed world assumption of models can impose unsolvable integration
problems. For instance, a UML metamodel specifies decomposition of its instance model
by composition associations between classes. If two metamodels specify a different de-
composition, an integrated object is contained in two different instances of disjoint classes
which is an invalid construct in UML. Bridging semantic heterogeneity between models

33

4. The Oida Functional Model

using the syntactically identical metamodel has been described by Maalej [Maa10]. He
also elaborated further that due to the open world assumption, ontologies particularly
enable interoperability between different tools. In accordance with his considerations for
work flow integration, the Oida framework realizes the semantic matching of different
conceptual aircraft models using an ontology as a common reference as depicted in Fig-
ure 4.3. Furthermore, the Oida framework is designed to foster the commitment of the
Model Owners to the ontology-based approach of integration. Therefore, Oida supports
Match Models involving the Model Owners in an interactive role.

Figure 4.4 shows the use case model of ontology-based model matching involving two
actors, Model Owner and Ontology Owner. Furthermore, the Reasoner ensures the
consistency of the ontologies which are created and modified within the Model Matching
and the Ontology Engineering Application.

The Model Owner initiates the use case and is the primary actor of Find Equivalences,
Review Equivalences, and Create Reference Concepts. Thereby, he is assisted by the
Ontology Owner who is responsible for a consistent use of the equivalence statements
among Model Owners.

The flow of events is described in detail in Figure 4.6 which is subsequently performed
by all Model Owners involved in the conceptual design process. The resulting mapped
ontologies establish an indirect semantic matching between the elements of the discipline
specific models they are derived from. Thus, by performing Match Models with at least
two discipline-specific models Mi the basis for the following Merge Models Partially is
founded.

Reference Ontology Maintenance

In the Revise Reference Ontology use case which is performed in a separate Ontology
Engineering System, the Ontology Owner improves the quality of the reference ontology
OR. During the matching process the Model Owners add new entities, such as individ-
uals, classes and properties to the reference ontology OR. After the Match Models the
Ontology Owner revises OR in order to maintain quality and reusability. Therefore, OR

comes under scrutiny especially regarding scope, style, context and redundancy of its
contents.

Added concepts have to be within the scope of OR. For instance, design tool-specific
concepts are generally beyond the scope as OR represents knowledge about aircraft
design domain rather than knowledge about the use of design tools.

All concepts in OR should conform to a style guide which not only addresses nomen-
clature and structural design patterns but also guidelines regarding the discrimination
between instance and metaconcept level, e.g. whether wing is an individual or a class.
The latter is of special importance for the correlation of models and their metamod-
els to ontologies [AK03]. The preliminary analysis of the sample models showed large
differences between the respective naming conventions but no difference regarding the
discrimination between instance and metaconcept level. Therefore, the naming conven-
tion of OR is independent of the sample models, whereas the discrimination between
instance and metaconcept is strongly oriented to the sample models. As a result OR

34

4.1. The Model Matching Capability

Model Matching Application
Model Matching Application

Ontology Engineering Application
Ontology Engineering Application

<<include>>

<<include>>

<<extend>>

<<include>>

<<extend>>

Match Models

Find Equivalences

Create new
Reference
Concepts

Review
Equivalences

Check Consistency

Revoke
Equivalence

Revise
Reference Ontology

Reasoner

Model Owner

Ontology Owner

Figure 4.4.: Use case diagram of Match Models use cases

35

4. The Oida Functional Model

Select Mi
Transform MMi

and Mi to Oi

Find equivalence
automatically

Find equiva-
lence manually

Review equiva-
lence mapping

Create new reference
concept in OR

Check consistency

Repeat
Revoke equiva-
lence mapping

Revise OR

No

Yes

YesNo

Confirm Decline

Inconsistent

Consistent

Yes

No

Figure 4.5.: The process of mapping an ontology Oi derived from a model Mi to a ref-
erence ontology OR. The white-filled tasks are performed automatically
whereas the gray-filled tasks are performed by the Model Owner optionally
assisted by the Ontology Owner.

36

4.1. The Model Matching Capability

Name Match Models

Participating Initiated by Model Owner
actors Communicates with Ontology Owner

Flow of events 1. The Model Owner selects the discipline-specific model Mi to
be matched with the reference ontology OR

2. Oida transforms model Mi to ontology Oi and imports
a predefined reference ontology OR into Oi.

3. Oida tries to find equivalences between classes, ob-
ject properties, or datatype properties in Oi and OR

automatically using algorithms and heuristics.

4. If an equivalent reference cannot be found automatically for a
particular concept in Oi, the Model Owner selects one in the
reference ontology manually. For instance, in order to map
a model element called span in the Simcad model, the Model
Owner selects the reference individual WingSpan as a candidate
for an equivalent concept. Thereby, the Ontology Owner assists
the Model Owner in finding the appropriate reference concept
as he is in general most familiar with OR.

5. If the Model Owner cannot find an equivalent reference con-
cept in OR, not even with the help of the Ontology Owner, the
Model Owner creates a new reference concept in OR. Thereby,
he receives advice from the Ontology Owner regarding decom-
position and naming convention of OR.

6. Every equivalence relation which has been found manually or
automatically is reviewed by both actors and either confirmed
or explicitly declined. For instance, OWL allows the declara-
tion that two concepts are not equivalent which can prevent a
false equivalence candidate being recommended again.

Figure 4.6.: Description of the Match Models use case

37

4. The Oida Functional Model

Flow of events 7. The ontology Oi with the new equivalence or nonequiv-
alence relation to OR is checked regarding consistency
by the Reasoner.

8. If the Reasoner reveals an inconsistency, the new map-
ping is revoked.

9. Regardless of the reasoner result the actors decide whether to
repeat the mapping process until the Model Owner has mapped
all model elements relevant for integration to OR.

10. If Oi is sufficiently mapped the Ontology Owner revises the
reference ontology OR.

Entry
conditions

• The Model Owner selects a model Mi he is responsible for and
wants to match with the reference ontology OR

Exit
conditions

• All model and metamodel elements of Mi which the Model
Owner considers relevant for model integration are mapped via
Oi to the reference ontology OR.

• OR is revised by the Ontology Owner regarding structural in-
tegrity and reusability.

Quality
requirements

• The Model Owner must comprehend the employed heuristics
and algorithms in order be able to assess their results.

Figure 4.6.: Description of the Match Models use case (continued)

38

4.1. The Model Matching Capability

has far more individuals than classes. This decision is convenient for matching the given
sample models but bears the risk of limited reusability of OR to more domain-specific
metamodels which could specify metaconcepts which are currently implemented as in-
stances.

Ontology classes are interrelated by object properties and anonymous classes which
can be further restricted by logical statements. Automated reasoners can evaluate these
statements to classify concepts more specifically and to check the consistency of the
overall ontology. Adding restrictions is a nontrivial maintenance task because it repre-
sents domain knowledge engineering which should be performed in collaboration with the
Model Owner. Such restrictions should be added carefully for two reasons. First, it can
be difficult for a Model Owner to discriminate between fundamental and project-specific
constraints. For instance, most aircraft must have at least two independent engines.
For civil aircraft this constraint stems from safety regulations. Military and unmanned
applications may not be subject to this regulation. Accordingly, this constraint would
limit OR to civil transport aircraft applications. Therefore, the Ontology Owner should
focus on object properties which are evaluated for the generation of matching recom-
mendations as this will make the matching process more efficient.

During Model Matching the Model Owners and Ontology Owner can add synonyms
to a concept which already exists. Generally, synonyms help the Model Owners and
automated equivalence finders to determine reference concepts during Model Matching.
For instance, MaximumTakeOffWeight, MaximumTakeOffMass and their respective ab-
breviations MTOW and MTOM are commonly used synonyms. In the reference ontology a
synonym relationship must be explicitly declared by an object property. The On-
tology Owner has to decide whether the synonym facilitates the automated matching
through better results of a name equivalence finder or unnecessarily increases the com-
plexity of OR. However, the Model Owners may create reference synonyms which are
not conformal to the reference ontology style guide or create inconsistency. For instance,
OR may contain a statement declaring Mass and Weight to be disjoint concepts. If Max-
imumTakeOffWeight and MaximumTakeOffMass have been classified as Mass and Weight

respectively, a synonym relationship would lead to an inconsistent ontology.
New ontology classes and their instances have to be classified as in a clear and in-

tuitive taxonomy. A clear taxonomy not only helps Model Owners and Ontology
Owner manually navigating through ontologies. As classifications are also the main
source of automated reasoners, they facilitate the detection of inconsistencies but also
the automated inference of new knowledge.

If the Ontology Owner decides that a new reference concept is beyond the scope
or not conformal to the style guide of OR, he changes, deletes, or moves the concept
to an external ontology. The existing equivalence mappings from ontologies derived
from discipline-specific models have to be updated accordingly. Deletion, moving, or
renaming of concepts should be performed by the Ontology Owner in collaboration with
the affected Model Owners in order to foster the common understanding of the scope
and the reference nomenclature.

As shown in Figure 4.4 the Revise Reference Ontology use case is performed in a
dedicated Ontology Engineering Application. Accordingly, the use case is important for

39

4. The Oida Functional Model

Model Merging Application
Model Merging Application

<<include>>

<<include>>

<<include>>

<<extend>>

<<extend>>

Merge Models Partially

Resolve Model
Conflicts

Migrate
Model Parts

Review Matched
Objects

Report implausibly
matched object

Model Owner

Ontology Owner

Figure 4.7.: Diagram of Merge Models Partially use cases

quality assurance of an essential artifact of the Integrate Models but is not addressed by
the following analysis and design of the Oida framework.

4.2. The Partial Model Merge Capability

The design of the Merge Models Partially use case described in this section is based on
the assumption that at least two Model Owners have performed the Match Models use
case. Furthermore, one of the models has been declared the Chief Engineering Model
which overrules the other models in the case of conflict.

Merge Models Partially is the pivotal use case of ontology-based model integration
as it realizes the Resolve Model Conflicts and Migrate Model Parts use cases described
in Section 1.2. By performing the Match Models use case, the Model Owners created
the basis for Merge Models Partially by mapping the concepts of their discipline-specific
models to a common reference ontology.

40

4.3. The Co-Evolution Capability

Partial Model Merging includes Resolve Model Conflicts and Migrate Model Parts.
These use cases can be performed by the Model Owner without assistance from the
Ontology Owner within the model integration system.

The activity diagram Figure 4.8 illustrates the linear process of Merge Models Par-
tially which is designed to give the Model Owner control over any changes applied during
the resolution of semantic model conflicts and the migration of model elements. Further-
more, the Model Owner is enabled to report detected conflicts or elements proposed for
migration which he considers implausible. The flow of events of Merge Models Partially
is described in more detail in Figure 4.9.

4.3. The Co-Evolution Capability

After performing the Match Models and Merge Models Partially use cases, artifacts, such
as discipline-specific models and ontologies, become coupled by equivalence mappings.
As both use cases are usually performed during an active design process, these artifacts
are subject to changes which are not automatically propagated to the other coupled
artifacts. This section focuses on changes which affect the matching between discipline-
specific models and the reference ontology. As these mappings are created in a semi-
automated process, their efficient evolution is critical for the overall efficiency of Integrate
Models.

Given an equivalence relationship between two entities, a change that does not affect
the existence or the meaning of both entities leaves the equivalence relation intact.
Otherwise, the equivalence relation has to be adjusted. Ideally, this adjustment can be
performed automatically. However, it is a basic assumption of the Match Models use
case that the equivalence mappings between the ontologies derived from the discipline-
specific models and the reference ontology cannot be created fully automated but require
a domain expert. Accordingly, if one end of an existing equivalence mapping has been
changed, it cannot be adjusted automatically in every case.

As the concept of an ontology-based model integration process stipulates a frequent
application, a high number of manual adjustments by the Model Owner would reduce the
overall process efficiency significantly. The idea of co-evolution of coupled artifacts based
on the hypothesis that if particular changes and their respective reason are recorded by
a software system, it can efficiently propagate changes to coupled artifacts. Generally,
a small evolutionary change requires a less complex change propagation and thus less
manual clarifications. Therefore, how different kinds of reasons for change affect model
integration related artifacts and how this knowledge can increase the applicability of
automated adjustments of equivalence mappings was investigated. Four use cases de-
picted in Figure 4.10 can be discriminated. All of them extend the general Co-Evolve
Integration Artifacts use case:

In Evolve due to Aircraft Modeling the Model Owner changes his model in an aircraft
design process. The ontology which is derived from the discipline-specific model and
its mappings to the reference ontology must be kept consistent. Metamodels of the

41

4. The Oida Functional Model

Select Mi and Mj

Generate MMR

from ontology OR

Transform Mi and
Mj to Mi,R and Mj,R

conformal to MMR

Compare Mi,R

and Mj,R

Review non-conflicting
overlapping objects

Resolve conflicting
overlapping objects

Select parts from Mj,R

to Mi,R for import

Propagate changes
to Mi and Oi

Figure 4.8.: The flow of events during the Merge Models Partially use case depicted in a
UML activity diagram. The white-filled tasks are performed automatically
whereas the gray-filled tasks are performed by the Model Owner optionally
assisted by the Ontology Owner.

42

4.3. The Co-Evolution Capability

Name Merge Models Partially

Participating Initiated by Model Owner
actor

Flow of events 1. The Model Owner selects his model Mi as the target model
and the source model Mj he wants to perform Merge Models
Partially with Merge Models Partially. Both models have been
mapped to OR.

2. A common metamodel MMR is generated from OR.

3. Mi and Mj are transformed to MMR conformal Mi,R

and Mj,R. This transformation evaluates the equiva-
lence mappings of the ontologies Oi and Oj to OR.

4. Mi,R and Mj,R are compared determining non-
conflicting matching objects, conflicting equivalent ob-
jects, and source model specific objects. The first two
sets contain elements of the source model which are
semantically matched to an equivalent element in the
target model. The latter set of objects contain model
elements which are only mapped to a reference concept
but have no correspondence in the other model.

5. The Model Owner is presented a list of matched ob-
jects which have non-conflicting attribute values.

6. The Model Owner reviews this list of matched objects and
reports implausible entries.

7. The Model Owner is presented a list of matched ob-
jects having conflicting attribute values.

8. The Model Owner reports implausible entries or decides
whether to resolve the conflict by accepting the value from
Mj,R. Assuming that he is not the owner of the source model
Mj , the conflict cannot be resolved in the opposite direction.

Figure 4.9.: Description of the Merge Models Partially use case

43

4. The Oida Functional Model

Flow of events 7. The Oida framework provides a list of objects in Mj which
could not be matched with an object in Mi. These source
model specific objects are presented according to the naming
convention of OR. Accordingly, the model owner is not exposed
directly to Mj . The Model Owner selects objects for import
and specifies an appropriate name and container object in the
target model Mi according to his convention.

8. The conflict resolution decisions are carried out by
propagating the respective attribute values from Mj,R

via Mi,R to Mi using the TMi→Mi,R
. In order to keep

Oi consistent with Mi equivalence mappings of the im-
ported objects are adopted from Oj .

Entry
conditions

• The Model Owner selects the model Mi which has been
matched with OR.

• The Chief Engineering Model has been matched with the same
OR.

Exit
conditions

• The conflict resolution and import decisions have been propa-
gated to Mi

• Oi is consistent with Mi

• Review on implausible results are reported to the Ontology
Owner

• Assuming that both Model Owner and Ontology Owner are not
responsible for Mj and Oj , both artifacts remain unmodified.

Quality
requirements

• The Model Owner must comprehend the equivalence and con-
flict criterion in order to assess their effectiveness.

• The Model Owner should not be directly exposed to the naming
and decomposition convention of Mj

Figure 4.9.: Description of the Merge Models Partially use case (continued)

44

4.3. The Co-Evolution Capability

discipline-specific models can also be subject to change. However, the propagation of
this kind of change to the instance model is beyond the scope of this dissertation.

In Evolve due to Model Integration models and ontologies are extended on two occa-
sions. First, during the Match Models process new entities can be added to the reference.
Second, during Migrate Model Parts new elements are added to the target model. After
both processes models and ontologies must be kept consistent to each other. Accordingly,
the Evolve due to Model Integration is included in the analysis of the Match Models and
Migrate Model Parts. Therefore, the further analysis of Co-Evolve Integration Artifacts
does not account for it.

The Evolve due to Integration Software Maintenance acknowledges that the imple-
mentation of the Oida framework can be subject to change. Especially changes to
the transformation algorithms have consequences for the artifacts of the ontology-based
model integration process.

The modification of the reference ontology by the Ontology Owner is treated separately
in the Evolve due to Reference Ontology Maintenance use case. The source ontologies
which are mapped to the reference must be kept consistent with those changes.

Modifications on coupled artifacts can be characterized by their impact on topology
and attributes. Topology changes affect relations of entities to each other and thus
the overall structure of a set of entities. In that sense, the creation or the deletion of
a new entity is also a topology change. Attribute changes are value modifications of a
characteristic. The complexity of the consequences of an attribute change depends on the
abstraction layer of the attribute. For example, changing the target of an aggregation
relation in a metamodel changes the decomposition structure of objects in instance
models. In contrast, changing a comma in a description attribute has considerably
smaller implications.

The situation and required action to achieve consistency among co-evolving artifacts
depends on the particular use case. In the following the situation and the respective
required actions for topology and attribute changes are described in more detail.

Evolve due to Aircraft Modeling

During the aircraft design process, changes in discipline-specific models can affect the
topology or can be limited to value changes of attributes. The latter kind of modification
is more likely late in the design process when the design of the aircraft configuration
has stabilized. The discipline-specific metamodels are usually not modified during an
aircraft design process but more in the context of tool evolution which is not addressed
in this dissertation.

Topology Changes Topology changes in models usually do not affect the semantics of
the objects but the meaning of associations between objects. For instance, if an object
CargoBay is moved from the container object Fuselage to the container object Pres-

surizedCompartments, the former composition association changes the semantics from
a component integral object composition to a classification inclusion relation. Accord-
ingly, after this modification the semantic properties of the relation from CargoBay to

45

4. The Oida Functional Model

Aircraft Modeling System
Aircraft Modeling System

Model Integration System
Model Integration System

Ontology Engineering System
Ontology Engineering System

<<extend>> <<extend>>

<<extend>>

<<extend>>

<<extend>>

<<extend>>

<<include>>

<<include>>

Co-Evolve Inte-
gration Artifacts

Evolve due to
Aircraft Modeling

Evolve due to
Model Integration

Adjust Equi-
valences Auto-

matically

Match Models

Adjust Equiva-
lences Manually

Evolve due to In-
tegration Software

Maintenance

Evolve due to Ref-
erence Ontology

Maintenance

Model Owner

Ontology Owner

Figure 4.10.: Diagram of Co-Evolve Integration Artifacts use cases in the context of
ontology-based model integration

46

4.3. The Co-Evolution Capability

its container are substantially different. However, regardless of whether the context of
CargoBay is Fuselage or PressurizedCompartments its meaning remains unchanged
and does not require manual review by the Model Owner.

Attribute Changes A value modification does not affect the semantics unless special
attributes, such as the name, are changed. In that case, revision of existing equivalence
mappings by the Model Owner is generally required. In general, attributes like concrete
measured values do not constitute the semantics of an object and should not be mapped
to a reference during the Match Models use case.

Evolve due to Integration Software Maintenance

This use case is focused on modifications to components of an Oida implementation
which affect artifacts involved in the model integration process and affect the ability
to reuse the result of previous model matching sessions. In particular, modifications
of transformation algorithms lead to changes in generated artifacts, such as derived
ontologies.

Topology Changes Modifications of transformation algorithms can effectuate a differ-
ent structure of the generated artifacts. The inheritance relation between previously
matched associations of new relations can be exploited to adjust existing equivalence
mappings.

Attribute Changes A modification of the transformation algorithms can affect at-
tribute values in the same manner as in the Evolve due to Aircraft Modeling use case.
The modification of the transformation regarding the processing of metamodels effectu-
ates the processing of instance model elements. The Oida can use refactoring methods
to adjust existing equivalence mappings of instance concepts automatically. However, a
review of these adjustments by the Model Owner is generally required.

Evolve due to Reference Ontology Maintenance

Maintenance modification of the reference ontology OR are performed in an Ontology
Engineering Application separated from the Oida system. It potentially requires changes
in all models which contain model elements that have been mapped to it.

Topology Changes In general, additive changes in the reference ontology do not require
modifications of other artifacts. Additive changes can be (1) new classes to express the
nature of concepts more discerningly, (2) new rules by anonymous classes in order to
constrain the ontology, (3) new properties to add more explicit context to an ontology,
and (4) individuals to cover more concrete instances of the classes.

However, at least the review of adjustments by the Model Owner is required if the
scope of the reference ontology is changed. For instance, the Ontology Owner may
decide to exclude certain concepts from the reference ontology in order to narrow the

47

4. The Oida Functional Model

scope without replacing it by a concept in an external ontology. Or the Ontology Owner
introduces a new concept which is incompatible with an existing one. Furthermore, the
Ontology Owner can transform a class to an individual and vice versa.

Attribute Changes In general, value modifications to an entity do not require modifi-
cations to the ontologies mapped to the reference ontology. Only renaming a reference
concept requires a migration of the mappings to the new identifier which have to be
re-validated by the Model Owner in the same manner as model attribute changes in the
Evolve due to Reference Ontology Maintenance use case.

As the Evolve due to Aircraft Modeling is governed by the Match Models and Merge
Models Partially use cases, it is treated as an integral part of both use cases. The
other use cases of Co-Evolve Integration Artifacts due to modifications outside the Oida
framework such as Evolve due to Aircraft Modeling, Evolve due to Integration Software
Maintenance, and Evolve due to Reference Ontology Maintenance can be covered by the
Adjust Equivalences Automatically Adjust Equivalences Manually which is focused on
importing previous ontology mappings to a generated ontology. Both can be combined
in the flow of events illustrated in Figure 4.11. This generic co-evolution process is
described in Figure 4.12.

The heuristics and algorithms employed in the Adjust Equivalences Automatically
use case and the generation of adjustment recommendations for the Adjust Equivalence
Manually use case must be transparent to the Model Owner in order to convey accep-
tance of the co-evolution capabilities of the Oida framework in particular and of the
sustainability of the model integration process in general. Evolutionary changes on ar-
tifacts and framework algorithms imply a continuous relation between the old and the
newly evolved state. A shared understanding of the adjustment heuristics by Model
Owner and Ontology Owner help them to initiate the Co-Evolve Integration Artifacts
use case in time, before modifications become too radical for any automated adjustment.

48

4.3. The Co-Evolution Capability

Select new
model Mi,t+1

Transform Mi,t+1

to new Oi,t+1

Select previously
mapped ontology Oi,t

Adjust equiva-
lence mappings
automatically

Adjust equivalence
mappings manually
by Match Models

Perform Match
Models with

new model parts

Figure 4.11.: The flow of events during the Co-Evolve Integration Artifacts use case
addressing the use cases Evolve due to Aircraft Modeling, Evolve due to
Integration Software Maintenance, and Evolve due to Reference Ontology
Maintenance. The white-filled tasks are performed automatically, whereas
the gray-filled tasks are performed by the Model Owner assisted by the
Ontology Owner.

49

4. The Oida Functional Model

Name Co-Evolve Integration Artifacts

Participating Initiated by Model Owner
actors Communicates with Ontology Owner

Flow of events 1. The Model Owner selects a new model Mi,t+1.

2. The Model Owner selects ontology Oi,t which contains the pre-
viously created equivalence mappings.

3. Mi,t+1 is transformed to a new ontology Oi,t+1 by the
new transformation TMO,t+1.

4. Oida adjusts both ends of every equivalence mapping
to Mi,t+1 and OR,t+1. If one of the ends of the mapping
cannot be found or if there is more than one solution,
the mapping is declared obsolete and put on a list for
later manual adjustment.

5. The Model Owner reviews the obsolete mappings and either
decides to discard them or adjusts them manually.

6. The Model Owner performs the Match Models use case as de-
scribed in Figure 4.6.

Entry
conditions

• Mi,t, which is a previous version of the new discipline-specific
model Mi,t+1, has been mapped to the old reference ontology
OR,t in a Match Models use case declaring equivalence state-
ments in Oi,t.

Exit
conditions

• Previously created equivalence mappings have been readjusted
to the new versions of Mi,t+1 and Oida framework.

Quality
requirements

• Most of the existing equivalence mappings could be readjusted
automatically.

• The Model Owner comprehends the automated adjustments
made by Oida.

Figure 4.12.: Detailed description of the Co-Evolve Integration Artifacts Mi, Oi, and OR

which have been modified between the points in time t and t+ 1. This use
case addresses Evolve due to Aircraft Modeling, Evolve due to Integration
Software Maintenance, and Evolve due to Reference Ontology Maintenance

50

5. The Oida Analysis Object Model

”[. . .] because in the age of
information overload the ultimate
luxury is meaning and context.”

Wired premiere issue

An analysis object model defines and formalizes participating objects and their rela-
tions to each other. The objects are categorized in Entity Objects, Boundary Objects,
and Control Objects as defined by Jacobson et al. [JBR99]. Entity Objects represent
information objects which are created or read from external resources, manipulated
and linked with other objects, and destroyed or written to external resources by soft-
ware system. Boundary Objects enable the communication of the system with other
external systems or actors. Control Objects are concerned with effective and efficient
performance of system components during use cases and their interaction with the users
through Boundary Objects. In the following chapter, this analysis is carried out to cover
the participating objects of the Match Models, Merge Models Partially, and Co-Evolve
Integration Artifacts use cases. Additionally, this chapter also elaborates the analysis of
the ontology-based model transformation TM as an automated operation.

5.1. Analysis Objects of the Match Models Use Case

The Match Models use case enables the matching of semantically equivalent elements of
different discipline-specific models by mapping the discipline-specific concepts extracted
from the models to concepts in a reference ontology.

The Oida facilitates the semi-automated mapping process by proposing automatically
identified equivalences and by supporting the Model Owner in creating equivalence re-
lations and in reviewing the relations manually. Thereby, the Ontology Owner being
more familiar with the capabilities of the Oida and the reference ontology moderates
the process and guides the Model Owner’s actions in a consultative manner.

In the following, the participating objects of the Match Models use case are identified.
The use case is described in Section 4.1.

Figure 5.1 shows Entity Objects and their associations with each other. The use
case is initiated by the Model Owner who selects the DisciplineSpecificModel he
owns. This action triggers the generation of the DerivedOntology by the Ontology-

Generator. The EquvivalenceFinder imports the ReferenceOntology and starts cre-
ating EquivalenceCandidates if it finds semantically equivalent ReferenceConcepts

for given DisciplineSpecificConcepts. If EquivalenceCandidates cannot be found

51

5. The Oida Analysis Object Model

automatically, the Model Owner creates them manually, if necessary by creating new
ReferenceConcepts in the ReferenceOntology. The Model Owner reviews all Equi-
valenceCandidates by confirming, declining, or discarding them. The review is ten-
tatively carried out in the reference ontology by creating equivalence statements spec-
ified by confirmed EquivalenceCandidates and nonequivalence relations specified by
declined EquivalenceCandidates. The ontology extended by these new statements
is checked for consistency using the automated Reasoner. Newly created statements
which cause inconsistency are rolled back. The semi-automated semantic mapping be-
tween DerivedOntology and ReferenceOntology is repeated until the Model Owner

has mapped all objects in scope of the reference ontology. Thereby, the Ontology Owner
assists the Model Owner in manually finding EquivalenceCandidates and creating new
ReferenceConcepts according to the style guide of the ReferenceOntology. The On-

tology Owner uses his deeper understanding of the Oida capabilities and the Refe-

renceOntology, and his experience with other Model Owners to convey a consistent use
of the Oida framework and a sustainable evolution of the ReferenceOntology. In a
conciliatory manner, the Ontology Owner should not only guide the Model Owner but
also communicate the rationale of the Oida framework in general and heuristics of the
EquivalenceFinder in particular. A list of the identified Entity Objects is given in
Table 5.1.

The identified Boundary Objects and their relation to the Entity Objects of the Match
Models use case are depicted in Figure 5.2. The Model Owner uses a ModelNavigator

to select the DisciplineSpecificModel he owns. For the manual creation of Equi-

valenceCandidates, the Model Owner uses the OntologyNavigator to navigate the
DerivedOntology and ReferenceOntology. The navigators must display the available
models and ontologies respectively in a representation which is familiar to the Model

Owner. The EquivalenceReviewForm provides the Model Owner with automatically and
manually found EquivalenceCandidates for review. A list of these Boundary Objects
in Table 5.2 describes them in more detail.

The Match Models use case is controlled by MatchingControl depicted in Figure 5.3.
It triggers and records the creation of equivalence and nonequivalence relationships in
order to roll back the creation if the Reasoner determines an inconsistency in the on-
tologies. A definition of the identified Control Object is given in Table 5.3.

5.2. Analysis Objects of the Ontology-based Model
Transformation TM

The ontology-based model transformation is an operation associated with the Match
Models use case as it realizes the essential capability of the Oida framework to match
objects from DisciplineSpecificModels which are neither conformal to the same meta-
model nor have the same convention for naming and model structure. However, it is
not performed immediately after a Match Models session but immediately before the
Merge Models Partially use case in order to use the latest semantic mappings created
by the Model Owner. Generally, the particular algorithm of this transformation is not

52

5.2. Analysis Objects of the Ontology-based Model Transformation TM

*

*

*

*

DerivedOntology

importReferenceOntology()
checkConsistency()
query()
queryReferenceOntology()
createEquivalence()
createNonEquivalence()

ReferenceOntology

query()

OntologyGenerator

generateOntology()

DisciplineSpecificModel

query()

DisciplineSpecificConcept

Reasoner

checkOntologyConsistency()
classifyConcept()

EquivalenceFinder

createEquivalenceCandidate()

EquivalenceCandidate

reviewedBy
foundBy

confirm()
decline()
discard()

ReferenceConcept

Figure 5.1.: Diagram of Entity Objects of the Match Models use case

53

5. The Oida Analysis Object Model

Entity Object Definition

DisciplineSpecific-

Model

The DisciplineSpecificModel is owned by the Model

Owner. It is a MOF conformal conceptual aircraft model
which has a specific scope and focus on the overall aircraft.

OntologyGenerator Generator which extracts concepts from a given Disci-

plineSpecificModel to create a DerivedOntology

DerivedOntology This ontology represents the concepts of the Discipline-

SpecificModel, such as ontology classes, object properties,
datatype properties, and individuals. It contains equiva-
lence or nonequivalence relations to the ReferenceOnto-

logy which are tagged with the creator and reviewer of the
EquivalenceCandidate they have been created from.

DisciplineSpecific-

Concept

An ontology representation of a semantically relevant ele-
ment of the DisciplineSpecificModel.

ReferenceOntology An ontology which contains a formal representation of air-
craft design specific concepts in a reference naming conven-
tion.

ReferenceConcept Different kinds of concept representations in the reference
ontology, such as class, object property, datatype property
or individual.

EquivalenceFinder Automatically finds semantically equivalent Reference-

Concepts for given DisciplineSpecificConcepts and
creates EquivalenceCandidates

EquivalenceCandi-

date

Holds a reference to a DiscriplineSpecificConcept and a
semantically equivalent ReferenceConcept. It is reviewed
by the Model Owner. Confirming the EquivalenceCan-

didate triggers the creation of an equivalence relation in
the DerivedOntology, declining triggers the creation of a
nonequivalence relation in the DerivedOntology, discard-
ing triggers the deletion of the EquivalenceCandidate. It
records its creator and reviewer.

Reasoner The automated Reasoner checks the ontologies for consis-
tency or classifies particular concepts.

Table 5.1.: Definitions of Entity Objects of the Match Models use case

54

5.2. Analysis Objects of the Ontology-based Model Transformation TM

*

*

*

DerivedOntology

importReferenceOntology()
checkConsistency()
query()
queryReferenceOntology()
createEquivalence()
createNonEquivalence()

ReferenceOntology

query()

DisciplineSpecificModel

query()

OntologyNavigatorForm

createReferenceConcept()
createEquivalenceCandidate()

ModelNavigatorForm

selectModelElement()

EquivalenceReviewForm

reviewEquivalenceCandidate()

EquivalenceCandidate

reviewedBy
foundBy

confirm()
decline()
discard()

Figure 5.2.: Diagram of Boundary Objects of the Match Models use case

Boundary Object Definition

ModelNavigatorForm Displays available MOF conformal DisciplineSpecific-
Models and allows the Model Owner to select a model he
wants to match.

OntologyNavigatorForm Supports the Model Owner to manually find Equiva-

lenceCandidates by presenting DisciplineSpecific-

Concepts and ReferenceConcepts in a structure which
is clear and intuitive.

EquivalenceReviewForm Supports the Model Owner in the review of Equivalence-
Candidates

Table 5.2.: Definitions of Boundary Objects of the Match Models use case

55

5. The Oida Analysis Object Model

MatchingControl

initiateModelMatching()

OntologyGenerator

generateOntology()

EquivalenceFinder

createEquivalenceCandidate()

OntologyNavigatorForm

createReferenceConcept()
createEquivalenceCandidate()

EquivalenceReviewForm

reviewEquivalenceCandidate()

Figure 5.3.: Diagram of the MatchingControl object of the Match Models use case and
its relations to other analysis objects

Control Object Definition

MatchingControl Manages the flow of events in the Match Models use case. It
triggers the generation of the DerivedOntology, the import
of the ReferenceOntology and commences the iterative semi-
automated creation of equivalence relationships from Derive-

dOntology to the ReferenceOntology.

Table 5.3.: Definition of the MatchingControl object of the Match Models use case

56

5.2. Analysis Objects of the Ontology-based Model Transformation TM

* *

DisciplineSpecificModel

DisciplineSpecificObject

getDisciplineSpecificClass()

DerivedOntology

importReference()
lookUpEquivalence()

ReferenceOntology

ModelTransformation

createReferenceConformModel()

MetamodelGenerator

generateReferenceMetamodel()

ReferenceConformModel

createReferenceConformObject()

ReferenceConformObject

ReferenceMetamodel

lookUpReferenceClass()

Figure 5.4.: Diagram of Entity Objects of the ontology-based model transformation TM

57

5. The Oida Analysis Object Model

TransformationControl

initiateModelTransformation()

MetamodelGenerator

generateReferenceMetamodel()

ModelTransformation

createReferenceConformModel()

Figure 5.5.: Diagram of Control Object of the ontology-based model tansformation TM

relevant for the Model Owner whereas the Ontology Owner must understand it in order
to moderate the Match Models in a way that the equivalence relations can be well pro-
cessed and to be able to assess the result. The following object analysis model of the
ontology-based model transformation describes how the Oida framework uses the result
of one Match Models and prepares the Merge Models Partially use case.

Table 5.4 gives an overview of the aforementioned Entity Objects of the ontology-based
model transformation. At first the MetamodelGenerator translates the metaconcepts
of the ReferenceOntology to the MOF conformal ReferenceMetamodel. This meta-
model is the target metamodel which provides classes in the type system of the Oida
runtime environment. Then the ModelTransformation is triggered to start creating the
ReferenceConformModel. Thereby, for each DisciplineSpecificObject in the Disci-
plineSpecificModel, the ModelTransformation queries the DerivedOntology for the
appropriate equivalence relation to the ReferenceOntology. If it can find an equivalent
reference concept for the DisciplineSpecificObject, the ModelTransformation looks
up the appropriate target reference class and transforms the DisciplineSpecificOb-

ject to the found reference class. By the transformation of all DisciplineSpecifi-
cObjects which have been mapped to the ReferenceOntology the ReferenceConfor-

mModel is created.

The process is controlled by the TransformationControl defined in Table 5.5 which
triggers the MetamodelGenerator and the ModelTransformation. Its relation to other
Entity Objects is depicted in Figure 5.5

By this ontology-based model transformation, all models which have been matched
with the ReferenceOntology can be translated into a common metamodel which allows
use of off-the-shelf model comparison and merging technologies.

5.3. Analysis Objects of Merge Models Partially Use Case

During the Merge Models Partially use case described in Section 4.2 the Oida framework
enables the Model Owner to resolve conflicts between semantically overlapping models

58

5.3. Analysis Objects of Merge Models Partially Use Case

Entity Object Definition

MetamodelGenerator Translates the ReferenceOntology into the type sys-
tem of the runtime environment of the Oida framework
generating a ReferenceMetamodel.

ReferenceOntology See Table 5.1

ReferenceMetamodel MOF conformal metamodel generated from the Refe-

renceOntology providing the concepts of the reference
ontology in the type system of the Merge Models Par-
tially runtime environment.

ModelTransformation Transforms all objects of a DisciplineSpecificModel

to objects in the ReferenceConformModel. Thereby,
for the creation of a new ReferenceObject as instance
of the equivalent class of the ReferenceMetamodel, it
queries the DerivedOntology for the equivalence map-
ping of each DisciplineSpecificObject to the Refe-

renceOntology.

DisciplineSpecificModel See Table 5.1.

DerivedOntology See Table 5.1.

ReferenceConformModel A model which conforms to the ReferenceMetamodel

and has been generated from the DisciplineSpeci-

ficModel by ModelTransformation.

Table 5.4.: Definitions of Entity Objects of the ontology-based transformation of models
to a common reference metamodel

Control Object Definition

TransformationControl Manages the ontology-based model transformation by
triggering the MetamodelGenerator and the ModelTrans-
formation. Thereby, it keeps track of the mapping be-
tween DisciplineSpecificObjects and ReferenceCon-

formObjects.

Table 5.5.: Definition of the Control Object of ontology-based transformation of models
to a common reference metamodel

59

5. The Oida Analysis Object Model

and to import model elements from a discipline-specific source model to a discipline-
specific target model. Figure 5.6 shows the participating Entity Objects of this use
case.

The Model Owner selects the DisciplineSpecificSourceModel as source and the
DiscriplineSpecificTargetModel as target of the Merge Models Partially use case.
This triggers the ontology-based model transformation of both models to the Reference-
ConformSourceModel and ReferenceConformTargetModel, respectively, conformal to
the same ReferenceMetamodel. When these transformations have been completed, the
ModelComparator tries to match the ReferenceConformSourceObjects to equivalent
ReferenceConformTargetObjects. For every pair of matched objects, the ModelCom-

parator creates SemanticMatching or a SemanticConflict if the matched objects are
in a conflicting state. If a ReferenceConformSourceObject cannot be matched, the
ModelComparator creates an ImportCandidate which references the ReferenceCon-

formSourceObject which has no apparent semantic correspondence in the Reference-

ConformTargetModel.
The Model Owner reviews instances of SemanticMatching, SemanticConflict, and

ImportCandidate. The Model Owner can tag any of them for later fixing if he consid-
ers them to be implausible. If he confirms a SemanticMatching he indicates that he
considers it to b plausible. By confirming a SemanticConflict he accepts adoption of
the state of the ReferenceConformSourceObject to the ReferenceConformTargetOb-

ject. The Oida framework does not allow resolution of a conflict by an adoption in
the opposite direction as it assumes that the Model Owner only has authority over the
DisciplineSpecificTargetModel. If an ImportCandidate is confirmed, it needs to be
prepared for the import to the DisciplineSpecificTargetModel. For this purpose,
the Model Owner assigns an appropriate name for the imported Object and a container
Object both adhering to the naming and decomposition convention of the Discipline-

SpecificTargetModel he owns.
When the Model Owner has completed the review, the ChangePropagator is triggered

to carry out the required changes. For every confirmed SemanticConflict it copies the
state from the referenced ReferenceConformSourceObject to the ReferenceConform-

TargetObject and changes the corresponding DisciplineConformSourceObject. For
every confirmed ImportCandidate, it copies the ReferenceConformSourceObject to the
ReferenceConformTargetModel creating a SemanticMatching. Then it creates an ap-
propriate DisciplineSpecificTargetObject in the DisciplineSpecificTargetModel
using the ontology-based ModelTansformation in the opposite direction. The change
propagation is concluded by addition of a newly derived concept to the DerivedOntol-

ogy and an equivalence mapping to the ReferenceConcept which is derived from the
identifier of the ReferenceConformTargetObject. Thereby, the ChangePropagator not
only establishes consistency between semantically equivalent objects from two different
DomainSpecificModels but also updates the DerivedOntology.

During the Merge Models Partially use case, the Model Owner uses the Boundary
Objects depicted in Figure 5.7. The SemanticReviewForm supports the Model Owner
in confirming or reporting SemanticMatchings, SemanticConflicts and ImportCan-

didates. Concerning the latter, the ImportCandidateCompletionForm supports the

60

5.3. Analysis Objects of Merge Models Partially Use Case

*

*

SemanticMatching

reviewedBy

report()
confirm()

ModelComparator

compareModels()
createSemanticMatchings()

ReferenceMetamodel

ChangePropagator

propagateChanges()

ReferenceConformTargetModel ReferenceConformSourceModel

ReferenceConformTargetObject ReferenceConformSourceObject

SemanticConflict

resolveConflict()

ImportCandidate

setDisciplineSpecificName()
setDisciplineSpecificContext()

DisciplineSpecificTargetModel

changeStructuralFeatures()
createNewObject()

DerivedOntology

createEquivalence()

Figure 5.6.: Diagram of Entity Objects of the Merge Models Partially use case

61

5. The Oida Analysis Object Model

Entity Object Definition

ChiefEngineering-

Model

A kind of DisciplineSpecificModel which is owned by the
Chief Engineer who is entitled to finally decide on design con-
flicts.

LegacyModel A kind of DisciplineSpecificModel which has been devel-
oped in preceding aircraft design projects.

DisciplineSpecific-

SourceModel

A kind of DisciplineSpecificModel which is selected by the
Model Owner for Merge Models Partially. It can be a Legacy

Model or the Chief Engineering Model. The Model Owner
is usually not entitled to modify it.

ReferenceMetamodel See Table 5.4

ReferenceConform-

SourceModel

A kind of ReferenceConformModel which has been trans-
formed from the DisciplineSpecificTargetModel. The
Model Owner wants to integrate his DisciplineSpecific-

TargetModel with it as it is usually the Chief Engineering
Model

ReferenceConform-

SourceObject

A kind of ReferenceConformObject which has been trans-
formed from the DisciplineSpecificSourceModel

ReferenceConform-

TargetModel

A kind of ReferenceConformModel which is owned by the
Model Owner. This model is the target of the ReferenceCon-

formSourceObjects which the Model Owner wants to import.
It contains ReferenceConformTargetObjects.

ReferenceConform-

TargetObject

A kind of ReferenceConformObject which has been trans-
formed from the DisciplineSpecificTargetModel.

ModelComparator Compares two models conformal to the same Refer-

enceMetamodel creating SemanticMatchings between equiv-
alent ReferenceConformSourceObjects and Reference-

ConformTargetObjects or a SemanticConflict if the objects
are in a conflicting state. It creates ImportCandidates from
the ReferenceConformSourceObjects it cannot match.

SemanticConflict A kind of SemanticMapping between two objects in a conflict-
ing state. The conflict can be resolved by adopting the state
of the source object.

ImportCandidate Reference to an unmatched ReferenceConformSourceObject

which can be imported into the DisciplineSpecificTarget-
Model if the Model Owner specifies a name and container for
the object, conformal to the naming and structure convention
of the target model.

Table 5.6.: Definitions of Entity Objects of the Merge Models Partially use case

62

5.3. Analysis Objects of Merge Models Partially Use Case

Entity Object Definition

ChangePropagator Propagates the conflict resolution and import decisions of the
Model Owner to his DisciplineSpecificTargetModel and its
latest DerivedOntology.

DisciplineSpecific-

TargetModel

A kind of DisciplineSpecificModel owned by the Model
Owner. In this model, the ChangePropagation changes the
state of existing objects to resolve conflicts with the source
model and creates new objects which have been imported from
the source model.

DerivedOntology The ontology derived from the DisciplineSpecificTarget-

Model is a target of ChangePropagation which creates new
derived concepts and maps them to the ReferenceOntology

(see Table 5.1).

Table 5.6.: Definitions of Entity Objects of the Merge Models Partially use case
(continued)

Model Owner in specifying a domain-specific name and container object for the respec-
tive ImportCandidate. These Boundary Objects are defined in Table 5.2 in more detail.

The Merge Models Partially use case is controlled by PartialMergingControl defined
in Table 5.8. This Control Object and its relation to other Analysis Objects are depicted
in Figure 5.8. It starts the Ontology-based Model Transformation after the Model Owner
has selected the source and the target model of the current Merge Models Partially use
case. At the end of the use case when the Model Owner has completed the review of
SemanticMatchings and SemanticConflicts as well as the selection and preparation
of the ImportCandidates, it starts the ChangePropagator.

Boundary Object Definition

SemanticMatchingReviewForm Supports the Model Owner in reviewing and de-
ciding on conflicting SemanticMatchings and
SemanticConflicts.

ImportCandidateCompletionForm Supports the Model Owner in selecting and com-
pleting ImportCandidates. Thereby, it con-
tains a ModelNavigator which allows selection
of new existing or creation of new container ob-
jects in the DisciplineSpecificTargetModel.

Table 5.7.: Definitions of Boundary Objects of the Merge Models Partially use case

63

5. The Oida Analysis Object Model

*

*

SemanticMatching

reviewedBy

report()
confirm()

SemanticMatchingReviewForm

reviewSemanticMatching()

ImportCandidateCompletionForm

completeImportCandidate()

ModelNavigatorForm

selectModelElement()

DisciplineSpecificTargetModel

initiateModelMatching()

ImportCandidate

setDisciplineSpecificName()
setDisciplineSPecificContext()

Figure 5.7.: Diagram of Boundary Objects of the Merge Models Partially use case and
its relations to other Analysis Objects

Control Object Definition

PartialMergingControl Manages the flow of events during the Merge Models Par-
tially use case. It triggers the generation and comparison
of the ReferenceConformModels, generates progress re-
ports, and eventually triggers the propagation of changes.

Table 5.8.: Definition of the Control Object of the Merge Models Partially use case

64

5.3. Analysis Objects of Merge Models Partially Use Case

2

PartialMergeControl

initiatePartialModelMerge()
updateProgressReports()

ModelTransformationControl

initiateModelTransformation()
ModelComparator

compareModels()
createSemanticMatchings()

SemanticMatchingReviewForm

reviewSemanticMatchings()

ImportCandidateCompletion

completeImportCandidate()ChangePropagator

propagateChanges()

Figure 5.8.: Diagram of Control objects of the Merge Models Partially and its relations
to other Analysis Objects

65

5. The Oida Analysis Object Model

5.4. Analysis Objects of Co-Evolve Integration Artifacts Use
Case

The Co-Evolve Integration Artifacts function described in Section 4.3 is similar to the
Match Models function. Both functions result in equivalence statements from Disci-

plineSpecificConcepts to the ReferenceOntology. Ideally, the Model Owner is only
required to match new concepts which have been added to his DisciplineSpecific-

Model, whereas, previously created equivalence statements can be reused. To facilitate
this goal the Oida framework provides components which analyze the components of
the framework, artifacts involved in the ontology-based model integration process, and
changes known to them, readjusts previous equivalence mappings automatically and sup-
port the Model Owner in deciding on ambiguous cases and in creating new equivalence
mappings. Especially, the effectiveness of the heuristics employed for the adjustment
of existing equivalence relations is crucial for the reuse of work by the Model Owner
and, thus, for the overall efficiency of the whole ontology-based model integration. Fig-
ure 5.9 depicts the relations of participating Entity Objects of the Co-Evolve Integration
Artifacts use case.

The use case is initiated by the Model Owner by selecting the NewDisciplineSpeci-

ficModel he owns and the OldDerivedOntology which contains previously made equiv-
alence relations to the OldReferenceOntology. This triggers the NewOntologyGen-

erator to generate the NewDerivedOntology. The AdjustmentHeuristic uses known
changes of the Oida components and artifacts as well as a generic analysis of the artifacts
to create adjusted EquivalenceCandidates. The Model Owner reviews these Equiva-

lenceCandidates and creates new EquivalenceCandidates manually as described in
Section 5.1. Thereby, the AdjustmentHeuristic creates recommendations, including
previous equivalence relations which could not be adjusted unambiguously. The itera-
tive process of creating and reviewing EquivalenceCandidates, the creation of equiv-
alence statements and their validation by the Reasoner is carried out as described in
Section 5.1. As a result, the NewDisciplineSpecificModel, NewOntologyGenerator,
and NewReferenceOntology are consistent, while previously created equivalence rela-
tions are reused whenever possible. Table 5.1 lists the Entity Objects involved and a
short definition.

The Co-Evolve Integration Artifacts use case is controlled by CoevolutionControl.
It manages old and new versions of artifacts and triggers the MatchingControl. A
definition of the Control Objects is given in Table 5.10. CoevolutionControl and its
relation to other Analysis Objects is depicted in Figure 5.10.

The Boundary Objects of the Match Models use case are reused in this use case.

66

5.4. Analysis Objects of Co-Evolve Integration Artifacts Use Case

AdjustmentHeuristic

recommendAdjustment()
createAdjustedEquivalenceCandidate()

OldReferenceOntology

OldDerivedOntology

EquivalenceCandidate

foundBy
reviewedBy

confirm()
decline()
discard()

NewDerivedOntology

importNewReference()
createEquivalence()
createNonequivalence()

NewReferenceOntology

NewOntologyGenerator

generateOntology()

NewDisciplineSpecificModel

Figure 5.9.: Diagram of Entity Objects of the Co-Evolve Integration Artifacts use case

67

5. The Oida Analysis Object Model

Entity Object Definition

NewDisciplineSpecificModel A new version of a DisciplineSpecificModel de-
scribed in Table 5.1 modified by or under the super-
vision of the Model Owner

NewOntologyGenerator A new version of an OntologyGenerator described
in Table 5.1 which has been modified by or is under
the supervision of the Ontology Owner

NewDerivedOntology A kind of DerivedOntology as described in Ta-
ble 5.1 which has been derived from the NewDisci-

plineSpecificModel by the NewOntologyGenera-

tor.

NewReferenceOntology A new version of a ReferenceOntology which is
imported by NewDerivedOntology.

OldReferenceOntology An old version of a ReferenceOntology which was
imported by OldDerivedOntology.

OldDerivedOntology A new version of a DerivedOntology which has
been generated by an old version of the Ontolo-

gyGenerator and from an old version of the Dis-

ciplineSpecificModel. It contains equivalence re-
lations to the OldDerivedOntology created by an
old Match Models use case.

AdjustmentHeuristic Creates adjusted EquivalenceCandidates based
on existing equivalence and nonequivalence rela-
tions in OldDerivedOntology by finding equivalent
new concepts automatically using a simple heuristic.
Ambiguous findings of the heuristic are passed on
to the Model Owner as recommendations for manual
adjustment.

EquivalenceCandidate See Table 5.6

Table 5.9.: Definitions of Entity Objects of the Co-Evolve Integration Artifacts use case

68

5.4. Analysis Objects of Co-Evolve Integration Artifacts Use Case

CoevolutionControl

loadOldOntologies()
initiateAutomatedAdjustment()
initiateManualAdjustment()

OldDerivedOntology

OldReferenceOntology

AdjustmentHeuristic

createAdjustedEquivalenceCandidate()
recommendAdjustment()

MatchingControl

initiateModelMatching()

Figure 5.10.: Diagram of Control Objects of the Co-Evolve Integration Artifacts use case
and its relations to other Analysis Objects

Control Object Definition

CoevolutionControl Manages the flow of events during the Co-Evolve Integration
Artifacts use case. It manages versions of artifacts, triggers
the MatchingControl, and generates progress reports.

MatchingControl See Table 5.3

Table 5.10.: Definitions of Control Objects of the Co-Evolve Integration Artifacts use
case

69

6. The Oida Framework Design

This chapter addresses the design goals and the design rationale of the Oida framework
with regard to its decomposition. Furthermore, the subsystems of the framework are
described in detail.

6.1. Design Goals and Architecture

The design of the Oida framework is based on requirements and constraints stated in
Section 3.2 as well as on the following design goals:

User Acceptance Oida has to give the user full control over the ontology-based model
integration process especially when assigning formal semantics to model elements. In-
stead of using complex automated matching algorithms, an easily comprehensible rec-
ommendation system must be applied. Furthermore, the framework is designed for a
minimal number of user actions. In particular, the user should not have to switch be-
tween applications while performing ontology-based model integration. In addition, the
user’s perception of control should be amplified by a responsive user interface.

Extension of Existing Modeling Frameworks The framework has to be integrated into
existing modeling systems. Acknowledging the variety of existing systems in conceptual
aircraft design, the framework should not depend on the metamodel of a specific modeling
application but on a common meta-metamodel, such as MOF. By using a common
meta-metamodel, Oida can reuse general purpose modeling frameworks and still can be
integrated as a component in existing conceptual aircraft design tools.

Compliance to Standards Oida must comply to standard formats. This enables file
exchange with existing modeling and ontology engineering tools. It allows verification
of Oida’s transformation algorithms by experts and inspection of models and ontologies
in external tools.

The Oida framework is structured in an open layered architecture. The integration
system architecture depicted in Figure 6.1 shows eleven subsystems arranged in five
layers: Platform, Provider, Transformation, Service, and Application.

The Platform layer is not part of the Oida framework but represents existing con-
ceptual aircraft design tools and standard modeling frameworks. All Oida subsystems
are realized as plug-ins depending on this platform. As a standard ontology framework

71

6. The Oida Framework Design

is currently not part of any aircraft modeling platform it is integrated into the Ontol-

ogyProvider subsystem in the Provider layer. The Transformation subsystem in the
layer of the same name generates mappings between models, metamodels, and ontolo-
gies. The Services layer contains subsystems which provide the infrastructure and the
services for the ontology-based model integration capabilities. As Oida integrates the
Model Owner as an essential contributor and controller of the Oida capabilities, the Ap-
plication layer contains subsystems facilitating the use cases Match Models and Merge
Models Partially.

6.2. Platform Layer

The Platform layer represents existing conceptual aircraft modeling tools. As such, it
provides services required by the Oida framework as shown in Figure 6.1. Accordingly,
the assumed components of the Platform layer are arranged in an open plug-in archi-
tecture. Therefore, the MOF Service of the ModelingFramework is also available with
the Model Repository service.

The basis of the Platform layer is the ModelingFramework which provides the MOF
Service which facilitates the dynamic and reflexive creation of models and metamodels
consisting of MOF conformal elements. Figure 6.2 shows the model elements which
are required by the Oida framework for model creation and manipulation. Based on
the MOF Service, the ModelingClientPlatform subsystem provides the MOF Confor-

mal Client Service, which includes user interface capabilities. Especially, the Model-

NavigatorForm is reused by the Oida framework. Thereby, when browsing existing or
Oida-generated models during use cases of ontology-based model, integration the Model
Owner operates on a user interface he is familiar with from his experience with the
AircraftModelingApplication. The AircraftModelingApplication adds discipline-
specific modeling services. In particular, it provides the Model Repository Service.
The FileHandlerStrategy provides the capability of file-based model exchange with
other aircraft conceptual design tools.

6.3. Provider Layer

The Provider layer is the connection of an Oida system to an existing AircraftMod-

elingApplication and the host file system. It provides a standardized interface to
models, metamodels, and ontologies. In particular, the OntologyProvider subsystem
connects directly to the host file system whereas the ModelProvider connects indirectly
via the AircraftModelingApplication in the Platform layer. It allows file-based data
exchange of models and ontologies. Additionally, the ModelProvider offers references
to existing model elements of the ModelRepository. This allows Oida subsystems to
manipulate existing models in the AircraftModelingApplication at runtime.

72

6.3. Provider Layer

Application Layer

Service Layer

Transformation Layer

Provider Layer

Platform Layer

MatchingAppMatchingAppMergingAppMergingApp

MergingMerging MatchingMatchingEvolutionEvolution

TransformationTransformation

ModelProviderModelProviderOntologyProviderOntologyProvider

AircraftModelingApplicationAircraftModelingApplication

ModelingClientPlatformModelingClientPlatformModelingFrameworkModelingFramework MOF Service

MOF Conformal Client Service

Partial Model Merging Service

Evolution of Matchings Service

Model Matching Service

Semantic Transformation Service Ontology Generation Service

Model Feature Extraction Service

Ontology Feature Extraction Service

Model Repository Service

Figure 6.1.: Component diagram of the Oida framework architecture

73

6. The Oida Framework Design

Aircraft Modeling Application

Modeling Client Platform

Modeling Framework

1

*

*

modelRootObject1

*

instanceOf1

referenceType

*

ModelRepository

+ findObject()

ToolConnector

+ synchronize()

<<interface>>
FileHandlerStrategy

+ readFromFile()
+ writeToFile()

ModelNavigatorForm

+ selectObject()

Object NamedElement

name : String

Class StructuralFeature

AttributeReference

containment : Boolean

Figure 6.2.: Diagram of important classes of the Platform layer

74

6.3. Provider Layer

ModelProvider Subsystem

The ModelProvider in the Provider layer contributes to an infrastructure for Mod-

elElementFilters and ModelMetrics. Due to the reflection capabilities of the MOF-
based ModelingFramework, these services apply not only to model elements in the
ModelRepository on the instance level but also on the metamodel level. A Model-

Metrics object (see Figure 6.3) performs measurements on model elements, such as the
depth of the containment hierarchy of a certain model. Like ModelElementFilters these
need to be resynchronized if the metered model changes. ModelMetrics are not only
used in the Oida framework for progress and performance measurements of Integrate
Models use cases, but also for framework maintenance and validation. For instance,
a ModelMetric object can measure the number of metamodel classes used by a given
disciplineModel. A ModelElementFilter object accesses the ModelRepository and
generates references to certain kind of model elements. If the filtered model changes, it
must be resynchronized by calling refresh(). For instance, the StructuralFeatures-

Filter creates references to all StructuralFeatures, i.e. Attributes and References,
used by instanceObjects contained by a specified modelRootObject. Within the Oida
framework, ModelElementFilters are required especially for generating ontologies.

OntologyProvider Subsystem

The OntologyProvider subsystem equips the Oida framework with an infrastructure
for the creation, measurement, and query of ontologies employing an external ontol-
ogy framework. Figure 6.4 shows that the OntologyProvider is structured similarly
to ModelProvider. Following an Adapter pattern [Gam+94] Oida requires an im-
plementation of the interfaces in the OntologyFrameworkAdapter package to an ontol-
ogy framework. These Adapter interfaces are depicted in Figure 6.4 and Figure 6.5.
In particular, Oida requires not only a Factory pattern [Gam+94] for OntologyRe-

sources and automated reasoning capabilities for validation and inference of generated
and modified ontologies. It also requires an OntologyFileHandler for file-based ontol-
ogy exchange. Similar to the ModelProvider, the OntologyProvider subsystem offers
an infrastructure to set up OntologyFilters and OntologyMetrics. OntologyFilters
hold references to specific types of ontology resources, such as Individuals, Ontolo-
gyClasses, or Properties. OntologyMetrics are applied for measuring ontologies for
progress reports as well as validation and maintenance of the framework. For instance,
an OntologyMetric can measure how many OntologyResources have an equivalence
statement to an OntologyResource in the referenceOntology. Both OntologyFilter

and OntologyMetric are operated analogously to ModelElementFilter and ModelMet-

ric in the ModelProvider.

75

6. The Oida Framework Design

ModelProvider Subsystem

*

*

ModelProvider

+ isSynchronized() : Boolean
+ refreshMetrics()
+ refreshFilters()

<<interface>>
ModelElementFilter

+ isSynchronized() : Boolean
+ refresh()
+ getModelElements() : ModelElements

<<interface>>
ModelMetric

+ isSynchronized() : Boolean
+ measure()
+ getMeasurement() : Measurement

StructuralFeaturesFilter

modelRootObject : Object

+ isSynchronized() : Boolean
+ refresh()
+ getModelElements() : StructuralFeatures

InstanceObjectsFilter

modelRootObject : Object

+ isSynchronized() : Boolean
+ refresh()
+ getModelElements() : Objects

ClassFilter

modelRootObject : Object

+ isSynchronized() : Boolean
+ refresh()
+ getModelElements() : Classes

Figure 6.3.: Class Diagram of the ModelProvider subsystem

76

6.3. Provider Layer

OntologyProvider Subsystem

OntologyFrameworkAdapter

*

*

OntologyProvider

mereologyURI : URI
referenceOntologyURI : URI

+ isSynchronized() : Boolean
+ measureMetrics()
+ updateFilters()

<<interface>>
OntologyFilter

+ isSynchrinized() : Boolean
+ update()
+ getResources() : OntologyResources

<<interface>>
OntologyMetric

+ isSynchronized() : Boolean
+ measure()

<<interface>>
OntologyModel

+ findOntologyResource(uri : URI) : OntologyResource

<<interface>>
InferenceModel

+ validate() : ValidationReport
+ setReasoner(reasoner : Reasoner)

<<interface>>
OntologyFileHandler

+ writeOntologyToFile(ontology : Ontology, file : File)
+ readOntologyFromFile(ontology : Ontology, file : File)

<<interface>>
OntologyResourceFactory

+ createOntology(uri : URI) : Ontology
+ createOntologyClass(uri : URI) : OntologyClass
+ createIndividual(uri : URI) : Individual
+ createDatatypeProperty(uri : URI) : DatatypeProperty
+ createObjectProperty(uri :URI) : ObjectProperty

Figure 6.4.: Class diagram of the OntologyProvider subsystem

77

6. The Oida Framework Design

OntologyFrameworkAdapter

<<interface>>
OntologyResource

+ setURI(uri : URI)
+ getURI() : URI
+ addEquivalence(target : OntologyResource)
+ addNonEquivalence(target : OntologyResource)
+ removeEquivalence(target : OntologyResource)
+ removedNonEquivalence(target : OntologyResource)
+ getEquivalences() : OntologyResources
+ getNonEquivalences() : OntologyResources

<<interface>>
OntologyClass

+ addSuperclass(class : Superclass)

<<interface>>
Property

+ addDomain(class : OntologyClass)
+ addSuperProperty(property : Property)

<<interface>>
ObjectProperty

+ addRange(class : OntologyClass)

<<interface>>
DatatypeProperty

+ addRange(datatype : Datatype)

<<interface>>
Individual

+ addClass(class : OntologyClass)

<<interface>>
Datatype

<<interface>>
Ontology

+ importOntology(uri : URI)

Figure 6.5.: Class diagram of different kinds of OntologyResources in the Ontol-

ogyFrameworkAdapter package which is part of the OntologyProvider

subsystem

78

6.4. Transformation Layer

6.4. Transformation Layer

The Transformation layer establishes couplings between different disciplineModels

and mediates between ontologies and models. This role is realized by the Transforma-

tion subsystem.

Transformation Subsystem

The Transformation subsystem provides the Semantic Transformation Service which
comprises not only semantic model transformation but also the capability to generate
ontologies and metamodels. According to Figure 6.6, TransformationControl holds
a set of Transformations which can be interdependent. In order to execute them in
the right order, every implementation of a Transformation must determine whether it
is executable and whether both the source and the target of the Transformation are
synchronized. In general, source and target model are synchronized when the Transfor-
mation has been performed and neither its source nor its target have been changed since
then. Given that TransformationControl holds instances of ModelTransformation

and MetamodelGenerator and startTransformations() is called, Transformation-

Control executes all Transformations whose isExecuteable() method returns true.
MetamodelGenerator will be executed as it does not depend on any other Transfor-

mation. ModelTransformation requires the referenceMetamodel which is generated
by the MetamodelGenerator as target metamodel. An implementation of isExecute-

able() will return the value of isSynchronized() of MetamodelGenerator. When
the MetamodelGenerator has finished the generation of the Metamodel and this value
changes to true, the TransformationControl executes the ModelTransformation. The
TransformationControl references a ModelProvider and an OntologyProvider for the
Transformations to operate on.

For instance, the MetamodelGenerator requires the referenceOntology from the
OntologyProvider in order to generate the referenceMetamodel in the ModelProvi-

der. Thereby, it registers mappings between ontology and model data types. Con-
versely, the OntologyGenerator requires a disciplineModel from the ModelProvider

and generates a disciplineOntology in the OntologyProvider. During the genera-
tion process it employs the Renamer which must generate an unambiguous name from a
disciplineObject identifier. This Renamer can be adapted to the particular context of
a disciplineModel by a concrete RenamerStrategy. The Renamer can determine if a
concrete RenamerStrategy is unambiguous for a given disciplineModel, which allows
higher layer clients of the Transformation subsystem to assess the applicability of a
particular strategy. Within the Transformation subsystem the Renamer is employed by
StatementGenerators for generating ontology statements. For instance, an Ontology-

ClassGenerator extracts all Classes used in the disciplineModel by a ClassFilter

of the ModelProvider and generates appropriate OntologyClasses.

Both MetamodelGenerator and OntologyGenerator can operate as unidirectional
transformations to facilitate the Integrate Models use cases. The ModelTransforma-

tion, however, must operate bidirectionally in order to facilitate the Partial Model

79

6. The Oida Framework Design

Merge capability which requires not only the transformation of domainModels to a
common referenceMetamodel, but also the propagation of changes in the reference-

ConformModels back to the domainModels. Therefore, the ModelTransformation cre-
ates ObjectMappings between disciplineObjects and referenceObjects at the model
level. Furthermore, every object mapping holds a mapping of the respective discipline-
Class and referenceClass and its StructuralFeatures provided by EMF. These
mappings are entirely based on the equivalence statements in the disciplineOntology.

6.5. Service Layer

The Service layer contains components which address specific capabilities such as Model
Matching, Partial Model Merge, and Co-Evolution. The layer is partitioned into appro-
priate subsystems, which provide infrastructure and decision support capabilities for
higher level subsystems with user interfaces. Whereas the Matching and Evolution

subsystems have the similar purpose of matching artifacts, the Matching subsystem
focuses on matching concurrent artifacts, whereas Evolution matches old and newer
versions of ontologies.

Matching Subsystem

The Matching subsystem must facilitate the Semantic Matching of two discipline-

Models by the semi-automated matching of a disciplineOntology generated from a
disciplineModel to a referenceOntology. The input of this subsystem is an ontology
which has been derived from a domain specific model, and a reference ontology which
initially can be empty. The Matching subsystem provides a framework which creates
statements in derivedOntology to the referenceOntology whereas the referenceOn-

tology is extended by new referenceConcepts employing the OntologyProvider.
The creation of equivalence relationships is challenging especially with respect to the

user acceptance. Matching disciplineOntology and referenceOntology in the given
problem context requires a complex algorithm that is hard for Model Owners to follow
while the quality of the result cannot be guaranteed. However, there are simple matching
algorithms and the Reasoner which can contribute to the manual creation of equivalence
relations by recommending and validating partial solutions.

The Matching subsystem is designed according to the Blackboard pattern [BHS07].
The Blackboard holds a reference to an OntologyProvider which contains not only the
concepts in the disciplineOntology which have been derived from a disciplineModel,
but also the equivalence statements which are created by the matching subsystem. The
MatchingControl realizes the Semantic Matching service which enables other subsys-
tems to contribute new KnowledgeSources and types of intermediate solutions to the
Blackboard.

Based on the assumption that automated algorithms can only propose Equivalence-

Hypotheses which eventually need to be confirmed by the Model Owner, the Black-

board holds intermediate solutions as hypotheses which are generated by a Hypothesis-

Generator. An EquivalenceHypothesis references a pair of OntologyResources which

80

6.5. Service Layer

Transformation Subsystem

*

*

*

*

TransformationControl

modelProvider : ModelProvider
ontologyProvider : OntologyProvider

+ executeTransformations()
+ allSynchronized() : Boolean()

MetamodelGenerator

basePackageURI : URI
referenceOntology : Ontology

+ isSynchronized() : Boolean
+ isExecutable() : Boolean
+ execute()

<<interface>>
Transformation

+ isSynchronized() : Boolean
+ isExecutable() : Boolean
+ execute()

Metamodel

basePackage : Package

+ createBasePackage()
+ registerType(uri : URI, type : Class)

OntologyGenerator

disciplineOntology : Ontology
disciplineModelRoot : Object

+ isSynchronized() : Boolean
+ isExecuteble() : Boolean
+ execute()

ModelTransformation

disciplineOntology : Ontology
referenceConformModelRoot : Object

+ isSynchronized() : Boolean
+ isExecuteable() : Boolean
+ execute()

Renamer

+ isAmbiguous() : Boolean

ObjectMapping

disciplineObject : Object
referenceObject : Object
disciplineIndividual : Individual
disciplineClass : Class
referenceClass : Class

+ createReferenceObject()
+ createDisciplineObject()

<<interface>>
RenamerStrategy

+ getName(o : Object) : String

<<abstract>>
StatementGenerator

+ generate()

StructuralFeatureMapping

disciplineSF: StructuralFeature
referenceSF: StructuralFeature

Figure 6.6.: Class diagram of the Transformation subsystem

81

6. The Oida Framework Design

are hypothetically equivalent as well as the URI of the HypothesisGenerator and Hypo-

thesisReviewer. HypothesisReviewer and HypothesisValidator are provided with
the following review and validation methods: By calling approve() the value of ap-

proved is set to true. Conversely, decline() changes the value, approved is changed
to false. Both approve() and decline() set the value of reviewed to true which
increases the status of an EquivalenceHypothesis from the Proposed Equivalence Hy-
pothesis level to the Reviewed Hypothesis level as shown in Figure 6.8. By calling
commit(), the EquivalenceHypothesis is added as a new equivalence or nonequiva-
lence statement to the disciplineOntology depending on the value of the approved

attribute. By calling discard() the EquivalenceHypothesis is taken from the black-
board. If an equivalence statement is created, the underlying EquivalenceHypothesis is
not deleted from the blackboard. Such an equivalence statement can be removed from the
disciplineOntology by calling reconsider(). Generally, an EquivalenceReviewer is
operated directly by the Model Owner. As the Matching subsystem does not have a user
interface it does not provide concrete EquivalenceReviewers.

Figure 6.8 illustrates the different levels of solutions and the two kinds of Knowledge-
Sources which contribute to the Blackboard. Automated HypothesisGenerators such
as the NameEquivalenceFinder and the StructureEquivalenceFinder automatically
contribute to the hypothesis level. In particular, The NameEquivalenceFinder uses the
identifiers of the ontology resources as input. It creates EquivalenceHypotheses if two
resources are equal. The StructureEquivalenceFinder uses all existing equivalence
statements and EquivalenceHypotheses to create new EquivalenceHypotheses if two
OntologyResources have equivalent Properties.

The Matching subsystem also provides the SemanticValidator as implementation of
the HypothesisValidator interface. As such, the SemanticValidator is an example
of an automated HypothesisValidator. It determines whether equivalence statements
result in a semantically consistent ontology. A SemanticValidator object uses an In-

ferenceModel provided by the OntologyProvider subsystem. If the Reasoner of this
InferenceModel determines inconsistent statements, the SemanticValidator evaluates
the validation report of the Reasoner. If a particular equivalence statement causes
an inconsistency, the SemanticValidator removes the equivalence statements from the
ontology and puts the equivalence relation as a proposed and unapproved Equivalence-

Hypothesis on the Blackboard for reconsideration. If the Reasoner determines that a
particular equivalence statement is consistent with the existing ontology it removes the
respective equivalence statement by calling the discard() method.

Merging Subsystem

The PartialModelMerge service of the Merging subsystem is provided and initiated by
MergingControl. For the Merge Models Partially use case MergingControl requires a
reference to the source and target disciplineModels which both need to be transformed
to a common MetaModel. Therefore, the MergingControl requests the Semantic Model

Transformation service from the Transformation subsystem. This service is configured

82

6.5. Service Layer

Matching Subsystem

*

*

MatchingControl

trafoControl : transformationControl

+ setupBlackboard()
– setupTransformationControl()

BlackboardControl

+ loop()
– nextSource()

<<abstract>>
HypothesisValidator

+ validateHypothesis()

SemanticValidator

infModel : InferenceModel

+ validateHypothesis()

Blackboard

ontologyProvider : OntologyProvider

+ inspect()
+ update()

<<interface>>
KnowledgeSource

– updateBlackboard()
+ executeCondition()
+ executeAction()

<<interface>>
HypothesisReviewer

– reviewHypothesis()

<<interface>>
HypothesisGenerator

– generateHypothesis()

EquivalenceHypothesis

reviewedBy : URI
approved : Boolean
foundBy : URI
disciplineOR : OntologyResource
referenceOR : OntologyResource

+ commit()
+ approve()
+ decline()
+ discard()
+ reconsider()

NameEquivalenceFinder

– updateBlackboard()
+ executeCondition()
+ executeAction()

StructureEquivalenceFinder

– updateBlackboard()
+ executeCondition()
+ executeAction()

Figure 6.7.: Class diagram of the Matching subsystem

83

6. The Oida Framework Design

Equivalence Statements

Reviewed Equivalence Hypotheses

Proposed Equivalence Hypotheses

Discipline and Reference Concepts

Structural-

Equiva-

lenceFinder

Semantic-

Validator

NameEquivalenceFinder

Figure 6.8.: Different levels of inputs and outputs of the KnowledgeSources provided
by the Matching subsystem. NameEquivalenceFinder and Structural-

EquivalenceFinder combine input from two levels to generate Proposed
Equivalence Hypotheses. The SemanticValidator also creates Equivalence
Statements.

84

6.5. Service Layer

by creating a MetamodelGenerator and two ModelTransformations for the source and
the target disciplineModel, respectively.

The MergingControl sets the ontologyProvider reference of the Transformation-

Control to the OntologyProvider which contains the DerivedOntologies of target
and source model. The OntologyResources of the DerivedOntologies are mapped
to the ReferenceOntology by equivalence statements. The disciplineOntology at-
tribute of the targetModelTransformation and sourceModelTransformation are set
to the URI of the respective derivedOntologies. The MergingControl calls the start-
Transformations() method. As a result the targetModelTransformation and source-

ModelTransformation have a reference to the root object of the respective model con-
formal to the referenceMetamodel and ObjectMappings between discipline-specific ob-
jects and reference-conformal objects.

When all Transformations are synchronized, the MergingControl creates a Model-

Comparator and sets an ObjectComparator implementation as a strategy to determine
whether two objects are semantically equivalent. Then MergingControl calls the com-

pareModels() method using the rootObjects of the reference conformal source and
target models as parameters. The ModelComparator uses the equivalence statements
in the DerivedOntologies to determine semantically matching objects. If it finds two
semantically matching objects, the ObjectComparator also determines whether these
objects have conflicting states. If the two objects do not have conflicting states, a Se-

manticMatch is created which has a reference to the ObjectMapping of the source and
the target model. If the object states are in conflict, a ConflictCandidate is created. If
an object from the source model cannot be correlated to an equivalent target object, an
ImportCandidate is created, which initially only references the sourceObjectMapping.

After this initialization the ModelComparator holds a list of SemanticMatchings

between the source and the target disciplineModels which can be reviewed by the
Model Owner. The user interface for review and decisions on ImportCandidates and
ConflictCandidates is not facilitated by the Merging subsystem but by subsystems
on higher layers of the Oida framework. In particular, if the resolveConflict()

method is called, the state of the referenceConformTargetObject is replaced by the
state of the referenceConformSourceObject. The respective ObjectMapping is used
to propagate the new state of the referenceConformTargetObject to the Discipline-
SpecificSourceObject. If the disciplineName and disciplineContainer are set and
the importCandidate() is called, the targetModelTransformation creates a new Ob-

jectMapping taking a copy of referenceConformSourceObject as referenceConform-
TargetObject. The targetModelTransformation creates the appropriate discipline-
SpecificTargetObject using the disciplineName and disciplineContainer.

Evolution Subsystem

The Evolution subsystem supports the Co-Evolve Integration Artifacts use case by addi-
tional KnowledgeSources. The inputs of these KnowledgeSources are coupled artifacts
which have become inconsistent due to modifications which have not been propagated to
all other artifacts. In an Oida-facilitated model integration process most of the artifacts

85

6. The Oida Framework Design

Merging subsystem

*

MergingControl

trafoControl : TransformationControl
metamodelGenerator : MetamodelGenerator
sourceTrafo : ModelTransformation
targetTrafo : ModelTransformation

– initiateModelComparator()
– setUpModelTramsformations()
+ transformModelsToReference()
+ carryOutUserReview()

ModelComparator

+ compareModels(sRoot : Object, tRoot : Object)

<<interface>>
ObjectComparator

+ isEqual(o1 : Object, o2 : Object)

SemanticMatch

reviewedBy : URI
comment : String
sourceMapping : ObjectMapping
targetMapping : ObjectMapping

+ confirm()
+ report()

ImportCandidate

disciplineName : String
disciplineContainer : Object

+ importCandidate()

ConflictCandidate

+ resolveConflict()

Figure 6.9.: Class diagram of the Merging Subsystem

86

6.6. Application Layer

are generated. Only the equivalence statements need to be created interactively. There-
fore, the KnowledgeSources of the Evolution subsystem are focused on the migration
of previously approved equivalence statements.

The Evolution subsystem supports two scenarios. In the first scenario the modi-
fications on the artifacts are recorded. An algorithm evaluates the modifications and
performs appropriate modifications on the coupled artifacts to re-establish consistency.
In the second scenario the modifications which led to an inconsistency are unknown. In
this case, the inconsistencies must be detected and resolved by a heuristic which does
not guarantee results, or that any results will be unambiguous.

In both cases the previous version of the disciplineOntology and the reference-

Ontology can be loaded into the OntologyModel of the OntologyProvider held by the
Blackboard. Furthermore, it is assumed that available modifications on artifacts are
expressed as statements in the OntologyModel.

As illustrated in Figure 6.10, the Evolution subsystem provides an Evolution-

Control and the two KnowledgeResources: EvolutionAlgorithm and Evolution-

Heuristic. EvolutionControl manages the availability of previous equivalence state-
ments and known modifications as basic input of the Blackboard. Figure 6.11 illustrates
the KnowledgeSources implementing the EvolutionAlgorithm and the Evolution-

Heuristic interface. The EvolutionAlgorithm evaluates known modifications and re-
vises equivalence statements accordingly. The algorithmic character of this Knowledge-
Source implies its results are unambiguous. Therefore, an EvolutionAlgorithm gener-
ates automatically approved EquivalenceHypotheses. An EvolutionHeuristic, how-
ever, evaluates both existing disciplineConcepts and referenceConcepts as well
as previous equivalenceMappings and applies a heuristic in order to adjust them to
the new version. Depending on the result of the heuristic an implementation of the
EvolutionHeuristic can produce approved or unapproved EquivalenceHypotheses.

6.6. Application Layer

The Application Layer provides user interfaces for the Model Matching and Partial
Model Merge capabilities. Like the other components of the Oida framework, the user

interface components are integrated into the modeling environment and exhibit a
familiar look-and-feel for the aircraft modeler in order to ensure that the user experiences
the use cases of ontology-based model integration as extensions of his aircraft design
environment rather than as a separate application.

MatchingApp Application

The MatchingApp application enables the Model Owner to match a given discipline-

Model to a referenceOntology by declaring equivalence relationships between disci-
pline and reference concepts employing the services of the Matching subsystem. Fig-
ure 6.13 illustrates how the MatchingApp initializes the Blackboard in the Matching

subsystem setting up the TransformationControl and the KnowledgeSources. The

87

6. The Oida Framework Design

Evolution Subsystem

Matching Subsystem

EvolutionControl

matchingBlackboard : Blackboard

+ loadPreviousEquivalenceStatements()

<<interface>>
EvolutionAlgorithm

+ getModifications()

<<interface>>
EvolutionHeuristic

+ isAmbiguous() : Boolean

<<interface>>
KnowledgeSource

– updateBlackboard()
+ executeAction()
+ executeCondition()

Figure 6.10.: Class diagram of the Evolution subsystem

88

6.6. Application Layer

Equivalence Statements

Reviewed Equivalence Hypotheses

Proposed Equivalence Hypotheses

Discipline and Reference Concepts

EvolutionAlgorithm

EvolutionHeuristic

Figure 6.11.: Different levels of inputs and outputs of KnowledgeSources provided by
the Evolution subsystem. Both EvolutionAlgorithm and Evolution-

Heuristic process Discipline and Reference Concepts as well as exist-
ing Equivalence Statements and create Reviewed EquivalenceHypothe-

ses. EvolutionHeuristic also proposes EquivalenceHypotheses for
reconsideration.

89

6. The Oida Framework Design

TransformationControl is required to generate the input for the Matching subsys-
tem, i.e. disciplineOntology derived from a given disciplineModel. Additionally, it
adds interactive KnowledgeSources such as the ManualEquivalenceGenerator and the
EquivalenceReviewForm. The ManualEquivalenceValidator provides a user interface
which displays EquivalenceHypotheses on the Blackboard and can receive and carry
out the manual review of these EquivalenceHypotheses by the Model Owner.

The MatchingApp also provides the BlackboardControlForm for the control of the
Blackboard. It allows the user to adjust the behavior of the nextSource() method
by the manual activation and deactivation of particular KnowledgeSources. Further-
more, it also provides a report on the progress of the Match Models process. Af-
ter the initialization, MatchingApp triggers the generation of the disciplineOntology

and calls the loop() method of the BlackboardControl to start the interactive semi-
automated matching process. It also saves the results when the user determines that the
disciplineOntology is sufficiently well matched with the referenceOntology.

Figure 6.12 illustrates how these KnowledgeSources contribute to the different so-
lution levels held by the Blackboard. The ManualEquivalenceGenerator provides a
user interface which allows the Model Owner to navigate the derivedOntology and the
referenceOntology and select pairs of OntologyResources in order to create Equiva-

lenceHypotheses manually. If the Model Owner cannot find an adequate reference con-
cept, the ManualEquivalenceGenerator provides a ReferenceCreatorDialog which
the Model Owner can use to add new referenceResources to the referenceOntology.

The ManualEquivalenceReviewer provides a user interface displaying the available
EquivalenceHypotheses to the Model Owner. The Model Owner reviews the hypothe-
ses by either approving, declining, or discarding them. As a user interface equipped
KnowledgeSource, the ManualEquivalenceReviewer contributes with these user deci-
sions to the Blackboard of the Matching subsystem.

MergingApp Application

The MergingApp application enables the Model Owner to review the SemanticMatches,
ConflictCandidates, and ImportCandidates. Figure 6.14 shows the classes provided
by the MergingApp subsystem. The MergingApp uses the SemanticMatchReview both
for reviewing SemanticMatchings and ConflictCandidates. The ImportCandidate-

CompletionForm is a specialization of the SemanticMatchReview which allows the Model
Owner to complete the information required for importing the object by choosing a
discipline-specific name and container object for the ImportCandidate object. For the
selection of the container, the ContainerNavigatorForm, a specialized ModelNaviga-

torForm of the ModelingClientPlatform is used that only displays container objects
of the targetDisciplineModel. During the Merge Models Partially use case the user
interface displays a report on the progress of the review. As the ModelProvider subsys-
tem works directly on the targetDisciplineModel the conflict resolution and import
decisions are carried out instantly. However, when the user closes the MergingApp,
review comments and newly imported equivalence statements are stored in the target-

DisciplineOntology.

90

6.7. Oida Knowledge Sources: Overview

Reviewed Equivalence Hypotheses

Proposed Equivalence Hypotheses

Discipline and Reference Concepts

ManualEquivalenceReviewer

ManualEquivalenceGenerator

Figure 6.12.: Different levels of inputs and outputs of automated and interactive
KnowledgeSources employed by the subsystem. Unlike the Matching sub-
system the KnowledgeSources of the MatchingApp do not create equiva-
lence statements.

6.7. Oida Knowledge Sources: Overview

The Matching of the Oida framework is designed to facilitate the matching of a dis-

ciplineOntology derived from a disciplineModel to a referenceOntology by using
a Blackboard pattern. The Blackboard architecture allows not only the Matching

subsystem but also other subsystems like Evolution, MatchingApp to contribute to the
semi-automated Match Models use case. Figure 6.15 gives an overview on Knowledge-

Sources described in this chapter.
In order to give the Model Owner control over the Match Models process, Equivalence-

Hypotheses can only be approved by interactive components. An exception is the
EvolutionAlgorithm which automatically adjusts previously created equivalence state-
ments based on known modifications, such as Rename refactorings.

91

6. The Oida Framework Design

MatchingApp Subsystem

Matching Subsystem

referenceOntologyNavigator

disciplineOntologyNavigator

MatchingApp

currentUser : URI
disciplineSpecificRootObject : Object
blackboardControl : BlackboardControl

– createBlackboardControl()
– initializeKnowledgeSources()
– saveResults()

BlackboardControlForm

+ activateKS(ks : KnowledgeSource)
+ deactivateKS(ks : KnowledgeSource)
– updateProgressReport()

ReferenceConceptCreatorForm

+ createReference(uri : URI, conceptKind : Class)

EquivalenceReviewForm

– displayBlackboard()
+ updateBlackboard()
+ validateHypothesis()
+ executeCondition()

OntologyNavigatorForm

+ selectConcept() : OntologyResource
+ findConcept(uri : URI) : OntologyResource

ManualEquivalenceCreator

– generateEquivalenceHypothesis()
– updateBlackboard()
+ executeCondition()
+ executeAction()

<<interface>>
HypothesisReviewer

– reviewHypothesis()

<<interface>>
HypothesisGenerator

– generateHypothesis()

Figure 6.13.: Class diagram of the MatchingApp appliaction

92

6.7. Oida Knowledge Sources: Overview

MergingApp Subsystem

Merging Subsystem

matchesReview

conflictReview

MergingApp

currentUser : URI
sourceModelRootObject : Object
targetModelRootObject : Object

– updateProgressReport()

SemanticMatchReviewForm

+ confirmEntry()
+ reportEntry()
+ commentEntry()
+ commitReview()

ImportCandidateReviewForm

+ setDisciplineSPecificName(name : String)
+ setDisciplineSpecificContainer(o : Object)

ContainerNavigatorForm

+ selectObject() : Object
+ findObject()

<<interface>>
MergingControl

+ transformModelsToReference()
+ initiateModelComparator()
+ carryOutUserReview()
+ initiateModelTransformations()

Figure 6.14.: Class diagram of the MergingApp application

93

6. The Oida Framework Design

KnowledgeSource Description

Matching subsystem

NameEquivalenceFinder Creates unapproved EquivalenceHypotheses

based on equal names of discipline and refer-
ence concepts considering existing equivalence
statements.

StructuralEquivalenceFinder Creates unapproved EquivalenceHypotheses

based on existing equivalence statements on
structural features.

SemanticValidator Validates approved EquivalenceHypotheses by
using an InferenceModel of the discipline-

Ontology. Depending on the Validation Report
of the Reasoner it creates equivalence statements
or re-proposes EquivalenceHypotheses for recon-
sideration.

Evolution subsystem

EvolutionAlgorithm Redirects previously stated equivalences from
newly generated disciplineOntology to new re-

ferenceOntology based on known modifications
on integration relevant artifacts by creating ap-
proved EquivalenceHypotheses.

EquivalenceHypothesis Redirects previously stated equivalences from a
newly generated disciplineOntology to new re-

ferenceOntology based on a heuristic by creating
approved or unapproved EquivalenceHypothe-

ses, depending on the ambiguity of the heuristic.

MatchingApp subsystem

ManualEquivalenceGenerator Provides a user interface which allows the Model
Owner to create unapproved EquivalenceHy-

potheses.

ManualEquivalenceReviewer Provides a user interface which allows the Model
Owner to review EquivalenceHypotheses.

Table 6.1.: Definitions of Oida KnowledgeSources

94

6.7. Oida Knowledge Sources: Overview

E
q
u

iv
al

en
ce

S
ta

te
m

en
ts

A
p

p
ro

ve
d

E
q
u
iv

al
en

ce
H

y
p

o
th

es
es

U
n

ap
p

ro
ve

d
E

q
u
iv

al
en

ce
H

y
p

ot
h

es
es

D
is

ci
p

li
n

e
a
n

d
R

ef
er

en
ce

C
on

ce
p

ts

S
t
r
u
c
t
u
r
a
l
-

E
q
u
i
v
a
-

l
e
n
c
e
F
i
n
d
e
r

S
e
m
a
n
t
i
c
-

V
a
l
i
d
a
t
o
r

N
a
m
e
-

E
q
u
i
v
a
l
e
n
c
e
-

F
i
n
d
e
r

M
a
n
u
a
l
-

E
q
u
i
v
a
l
e
n
c
e
-

R
e
v
i
e
w
e
r

M
a
n
u
a
l
-

E
q
u
i
v
a
l
e
n
c
e
-

G
e
n
e
r
a
t
o
r

E
v
o
l
u
t
i
o
n
-

A
l
g
o
r
i
t
h
m

E
v
o
l
u
t
i
o
n
-

H
e
u
r
i
s
t
i
c

F
ig

u
re

6
.1

5.
:

D
ep

ic
ti

o
n

o
f

so
lu

ti
on

la
ye

rs
an

d
K
n
o
w
l
e
d
g
e
S
o
u
r
c
e
s

p
ro

v
id

ed
b
y

th
e
M
a
t
c
h
i
n
g

an
d

th
e
E
v
o
l
u
t
i
o
n

su
b

sy
st

em
s

as
w

el
l

as
b
y

th
e
M
a
t
c
h
i
n
g
A
p
p

ap
p

li
ca

ti
on

95

7. Evaluation

The objective of this evaluation is to analyze the Oida framework in typical scenarios
of ontology-based model integration regarding effectiveness, efficiency, and plausibility
of results from the perspective of typical users. In particular, the Oida framework is
evaluated with regard to to the following criteria which are derived from the requirements
stated in Section 3.2:

• As the solution transfers the problem of model integration from the modeling
technological space to the ontology technological space, the mapping from model
to ontology must be injective in order to guarantee that no relevant information is
lost in the transformation. In particular, the unambiguity of the RenamerStrategy
of the transformation TMO must be validated.

• The Oida framework must demonstrate its capability to identify conflicts between
the discipline-specific sample models APD, APA, and Simcad. Furthermore,
the Oida framework must demonstrate its capability to resolve conflicts using
the Simcad sample model as Chief Engineering Model which overrides the other
sample models.

• The Model Owners must perceive the Oida-facilitated interactive process of onto-
logy-based model integration as efficient. From their point of view the results of
the integration process must be plausible.

• The Oida framework must demonstrate its co-evolution capabilities, i.e. small
modifications in artifacts such as source models, the reference ontology, or the Oida
implementation, which have become coupled by performing ontology-based model
integration, must require only small effort by the Model Owners to reestablish
consistency between these artifacts.

7.1. Evaluation Design

The evaluation is structured into four parts. In the first part, the effectiveness of the
model-to-ontology transformation as a critical capability of the Oida framework is eval-
uated. The next three parts evaluate the Model Matching, Partial Model Merge, and
Co-Evolution capabilities of the Oida framework.

The Oida framework explicitly addresses the domain context of aircraft conceptual
design and the importance of efficiency and plausibility of results as perceived by the
Model Owner. Therefore, the evaluation requires empirical evaluation strategies appro-
priate for this domain context. Wohlin et al. [Woh+00] describe survey, case study, and
experiment as basic empirical strategies:

97

7. Evaluation

A survey draws a representative sample from a population. Quantitative and qualita-
tive data are collected by questionnaires and interviews. The data are analyzed in order
to generalize the conclusion to the entire population. In empirical software engineering,
surveys are typically used to gather data about the state, the opinion, or performance
of a population before or after a new software engineering method or tool is introduced.
In contrast to a case study, a survey puts more emphasis on the population than on the
specific sample.

In a case study , a typical situation or project is analyzed in which a solution or
method of interest is used. In a case study, measurements and analysis emphasize the
peculiarities of the particular case. However, the conclusions from case studies cannot be
generalized. In most case studies, comparative analysis is the most important method
to strengthen the validity of conclusions. In particular, comparative case studies are
important to filter co-founding factors. For instance, the benefit of a new tool can be
evaluated by a case study in which two groups have to perform the same task. The first
group uses the new tool exclusively while the second group uses a conventional tool. If
the performance of the first group is considerably better, the new tool is most likely the
relevant factor for the success.

The objective of an experiment is to achieve statistically significant conclusions by
systematic and quantitative measurements and by treatments employing techniques like
randomization, balancing, and blocking. Randomization means that a sample is taken
randomly from a population in order to minimize bias. Balancing means that treatments
have the same characteristics and reduce variations in the treatment setup to emphasize
an effect of interest. Therefore, the number of variables is low compared to survey and
case study. Randomization also requires a larger population than a case study. Blocking
means that factors which can lead to an effect which is not of interest are deliberately
shut out during a treatment. Blocking and a high level of measurement control imply
that the analysis of an experiment accumulates measurements over multiple treatments.
Thereby, peculiar observations during a single treatment can be lost. Especially, if
randomization is impractical, a quasi-experiment evaluation strategy can be applied. In
particular, in a quasi-experiment the evaluation objects are not randomly assigned to
evaluation subjects. Therefore, the results of a quasi-experiment have less statistical
significance than real experiments.

The context of the domain-specific ontology-based model integration poses constraints
for the selection of an evaluation strategy. The population of domain experts in con-
ceptual aircraft design is small compared with other expert groups in aircraft design.
The APA model, which was used as a sample model during the development and the
evaluation, was developed and operated by one person. The case that the population of
Model Owners consists of only one person for a particular model is common in the con-
text of conceptual aircraft design. Furthermore, as mentioned in Chapter 1, the design
freedom and the number and range of characteristic variables of Integrate Models in this
context is high. For instance, each sample model has a different decomposition strategy.
Furthermore, the APA and APD sample models have considerably more model objects
than the Simcad sample model. If these sample models were used in experiments, both
kinds of differences would threaten the comparability of the results. Considering the

98

7.2. Empirical Studies

small population of adequate subjects, an evaluation strategy which requires a large
number of subjects is not viable. Accordingly, with respect to the variety of character-
istic parameters of the domain context, only typical situations can be evaluated which
does not allow for the generalization of the results to the overall field of conceptual air-
craft design. Furthermore, the evaluation of the Oida framework is rather focused on
the demonstration of the viability of the solution rather than the generalization of the
Oida framework.

These constraints led to an evaluation design shown in Table 7.1. As the transforma-
tion algorithm does not require user interaction, it was evaluated by an automated unit
test which gave full control over the testing procedure. As the limited number of sample
models did not allow strict randomization of input data, a quasi-experiment evaluation
strategy was applied. The Match Models and Merge Models Partially use cases were
evaluated in case studies with typical Model Owners such as Model User, Model De-
veloper, and Model Adopter as evaluation subjects. The Ontology Owner was enacted
by the observer. The essential components facilitating the Co-Evolution capability do
not require user interaction. Therefore, the capability was evaluated by automated unit
tests. As the evaluation aimed at the demonstration of a typical yet very small num-
ber of Co-Evolve Integration Artifacts use cases, randomization of cases of co-evolution
was impractical. Therefore, quasi-experiments were chosen as an adequate evaluation
strategy which promised to deliver the desired evidence with sufficient confidence.

For the quasi-experiments as well as in the case studies the APD, APA, and Sim-
cad sample models were used as DisciplineSpecificModels for model integration.
These models are described in Section 3.1. For all quasi-experiments and case studies a
prepared ReferenceOntology OR was used, except for quasi-experiment QE 2.2 which
evaluates the handling of a modified ReferenceOntology to OR

′.

The evaluation required a prototypical implementation of the Oida framework. It
was decided to implement it in a layered open plug-in architecture based on EMF and
the Jena framework. These implementation decisions allowed the integration of the
prototype as an extension of the existing OpenCDT application. Basically, the imple-
mentation reflects the framework design described in Chapter 6. However, the testing
of KnowledgeSources revealed that the NameEquivalenceFinder and the Semantic-

Validator were ineffective for the given sample models. Therefore, it was decided to
implement the Matching, MatchingApp, and Evolution plug-in without a Blackboard
pattern as it was not considered to be essential for the evaluation. Appendix A describes
the overall implementation of the prototype in detail. The following section addresses
only evaluation-specific aspects of the implementation.

7.2. Empirical Studies

In the following, the quasi-experiments and case studies shown in Table 7.1, which are
performed to evaluate the Oida, are described in detail.

Section 7.2.1 describes the quasi-experiments QE 1.1, QE 1.2, and QE 1.3 evaluating
the transformation TMO that generates an ontology from a given model.

99

7. Evaluation

Capability
Evaluation Evaluation Empirical Evaluation
Strategy Subject Study Objects

Transformation
TMO

Quasi-
Experiment

Transformation
subsystem

QE 1.1 APD

QE 1.2 APA

QE 1.3 Simcad

Model Matching Case Study

Model User CS 1.1 APD, OR

Model Developer CS 1.2 APA, OR

Model Adopter CS 1.3 Simcad, OR

Partial Model
Merge

Case Study

Model User CS 2.1 APD, OR

Model Developer CS 2.2 APA, OR

Model Adopter CS 2.3 Simcad, OR

QE 2.1
APD, APA,

Co-Evolution
Quasi-
Experiment

Evolution
subsystem

Simcad, OR

QE 2.2
APD, APA,
Simcad, OR

′

Table 7.1.: Evaluation of the capabilities provided by the Oida framework to facilitate
ontology-based model integration

Section 7.2.2 describes the case studies CS 1.1, CS 1.2, and CS 1.3 evaluating the
Model Matching capability of Oida.

The next Section 7.2.2 describes the case studies CS 2.1, CS 2.2, and CS 2.3 evaluating
the Partial Model Merge capability of Oida.

The evaluations of the Co-Evolution capability in the quasi experiments QE 2.1 and
QE 2.2 are described in Section 7.2.4.

The threats to validity of these empirical studies are stated in Section 7.2.5.

7.2.1. Evaluation of the Transformation TMO

The transformation TMO : M → O translates a given MOF compliant model to an
OWL ontology. The Transformation subsystem provides this service to generate an
ontology from a discipline-specific model in order to provide the model matching ca-
pability. The objectives of the quasi-experiments QE 1.1, QE 1.2 and QE 1.3 are to
analyze the transformation of three discipline-specific sample models to ontologies in
order to decide whether the transformation is a structure-preserving mapping (homo-
morphism). Thereby, the analysis of the transformation disregards model and ontology
features which are not within the scope of the Oida framework. These quasi-experiments
use the following metrics:

100

7.2. Empirical Studies

Integrity This measure is the basis for all further measurements. The integrity of
artifacts on both ends of the transformation TMO indicates whether the transformation
maintains intrinsic integrity which is defined by the validity of models and the consistency
of ontologies. The validity of the model as well as the consistency of the ontology can
be tested by algorithms which analyze the respective artifact based on the grammar of
the modeling language and the ontology language. Model validation is mostly a syntax
validation whereas an ontology validation is done by testing the consistency of logical
statements using automated reasoning.

Instance Entities The number of model objects at the instance level is compared to the
number of individuals in the ontology. Equal numbers of individuals and model objects
indicate that the transformation is injective at the instance concept level.

Meta Entities The number of model classes ie compared to the number of ontology
classes. Equal numbers of ontology classes and model classes indicate that the transfor-
mation is injective at the meta concept level.

Meta Concept Links The number of model associations is compared to the number of
ontology object properties. Equal numbers of object properties and associations indicate
that the transformation is injective at the meta concept level regarding the mapping of
concept links.

Meta Attributes The number of model class attributes is compared to the number of
datatype properties in the ontology. Instances of attributes, such as object attributes
are not considered. Equal numbers of datatype properties and attributes indicate that
the transformation is injective at the metaconcept level regarding the mapping of meta
attributes.

Taxonomy Depth The maximal depth of the model inheritance forest1 is compared to
the maximal depth of the inheritance forest of the ontology. The taxonomy of the model
and the ontology can have a forest structure as the classes instantiated in the model do
not have to be explicitly derived from a single class in the metamodel. Taxonomy depth
is an important structural concept of both metamodels and ontologies. Equal taxonomy
depths of model and ontology indicate that the transformation preserves the structure
of inheritance relations.

Containment Depth The maximal depth of the model containment forest is compared
to the maximal depth of an equivalent forest in the ontology. EMF defines Containment
as a language construct. As OWL does not specify Containment, the partOf directly

object property was defined in the mereology.owl upper ontology and was considered
to be equivalent to Containment in EMF. The same upper ontology is used in the

1In this context a forest is a set of trees. A tree is a set of data organized in a tree structure.

101

7. Evaluation

OntologyGenerator implementation of TMO. The Containment references of the model
as well as in the ontology can form a forest structure as the instances do not have to be
explicitly derived from a single instance object. Although all test models have a single
root object, the containment depth measure does not determine whether the structure
is a tree or a forest. Ontologies can express other kinds of containments. However, the
partOf directly is the most important containment concept from the Model Owner’s
perspective. Equal containment depth indicates that the transformation preserves the
Containment structure.

Evaluation-specific Implementation

The algorithms measuring the disciplineModel have been realized by methods of the
ModelMetrics Helper Class. Element counters like countInstanceObjects(), count-
Classes(), countAttributes(), and countReferences() are based on the respective
ModelElementFilters. Accordingly, the countClasses() method only counts classes
which are, at least indirectly, used by the measured disciplineModel.

The getContainmentDepth() and getTaxonomyDepth() methods use the reflection
capability of EMF.

In an analog manner, the algorithms measuring the disciplineOntology have been
realized by methods of the OntologyMetrics Helper Class. Element counters like
countIndividuals(), countOntologyClasses(), countDatatypeProperties(), and
countObjectProperties() are based on the respective OntologyFilters. The get-

ContainmentDepth(), getTaxonomyDepth() use the ontology reflection capabilities of
the Jena framework. The quasi-experiment is implemented as a test program using the
JUnit framework [GB99].

Results and Analysis

Table 7.2 shows the measurements collected by the quasi-experiments over all three
sample models. Most of the model concepts are translated to the ontology. However,
there are discrepancies among all the sample models regarding the number of instances,
and between the APD model and its derived ontology regarding the number of meta
attributes.

The difference in the number of instances indicates that the renaming schema used in
the transformation leads to ambiguous URIs. This finding was supported by warning
messages emitted by the unit tests of the OntologyGenerator with the sample models.
The RenamerStrategy used for the transformation was the ContainerName.ObjectName
schema described in Section A.4. The selection of this RenamerStrategy was based on
the assumption that a valid URI can be generated from the container and the concept
name. If the renaming creates the same identifier for two semantically different objects,
the underlying assumption is invalid.

The limited number of ambiguous renamed objects allowed an object-by-object anal-
ysis which revealed different reasons for ambiguity for each source model. In the APD
model the objects were ambiguously renamed in the context of the landing gear and the

102

7.2. Empirical Studies

Quasi-
Experiment

Measure Model Ontology

QE 1.1

Integrity Valid Consistent

Instances 484 EObjects 458 Individuals

Meta Concepts 7 EClasses 7 Classes

Meta Concept Links 1 EReference 1(4) ObjectProperties

Meta Attributes 3 EAttributes 3 DatatypeProperties

Taxonomy Depth 6 6

Containment Depth 7 7

QE 1.2

Integrity Valid Consistent

Instances 466 EObjects 433 Individuals

Meta Concepts 7 EClasses 7 Classes

Meta Concept Links 1 EReference 1(4) ObjectProperties

Meta Attributes 3 EAttributes 2 DatatypeProperties

Taxonomy Depth 5 5

Containment Depth 3 3

QE 1.3

Integrity Valid Consistent

Instances 241 EObjects 222 Individuals

Meta Concepts 7 EClasses 7 Classes

Meta Concept Links 1 EReference 1(4) ObjectProperties

Meta Attributes 3 EAttributes 3 DatatypeProperties

Taxonomy Depth 6 6

Containment Depth 5 5

Table 7.2.: Measurements of transformations from the APD, APA, and Simcad source
models to ontologies. EObject, EClass, EAttribute, and EReference are im-
plementations of the respective UML concepts in EMF. The transformation
imports the merelology.owl upper ontology to represent containment rela-
tionships. The number of imported object properties is given in brackets.

103

7. Evaluation

tank group of the main wing tank and the horizontal stabilizer. The reason is a reuse
of the landing gear and tank group composite structure in several places in the model.
The APD Model Owner considered a model modification that would solve the problem
to be too complex.

An analysis of the ambiguously renamed objects of the APA model revealed a deep
copy of the containment tree under the geometry container node in the configuration

container node. The Model Owner of APA confirmed this observation. Tests with
a ContainerContainerName.ContainerName.ObjectName RenamerStrategy showed no
falsely dropped objects for the given sample models. The renaming schema also dropped
one of two attributes called value attribute. In fact, the given metamodel stipulates
a value attribute in both the IntegerValue and the FloatPointValue class. The
chosen RenamerStrategy using simply the StructuralFeatureName for attributes and
associations dropped one of these attributes. Tests with the given sample models using
a modification of the RenamerStrategy to ContainingClassName.attributeName showed
no false dropping of attributes.

A closer analysis of the Simcad model revealed two reasons for ambiguous mappings,
namely a bug in the OpenCDT tool connector, and a design principle of the Simcad
model. Due to a bug in the OpenCDT tool connector the algorithm mistakenly creates
two mass container objects. The original Simcad data model file does not contain
these doublets. Similar to APD, Simcad uses structural copies of the model tree to
represent different parts of the aircraft mission by the same parameters. Both cases
of ambiguity in Simcad are not examined further in this evaluation as their origins
are beyond the scope of the Oida framework. However, the ambiguities in the APA
and the APD sample models were considered problematic and chosen for an exemplary
use case of co-evolution due to modifications of the model integration framework and
the reference ontology modification. In order to create a base line, the case studies
evaluating the Model Matching and Partial Model Merge capabilities were conducted
without modification to the renaming algorithm and the reference ontology.

7.2.2. Evaluation of the Model Matching Capability

The objective of evaluating the Model Matching capability of Oida is to analyze the
performance and the oral feedback of Model Owners during the matching process of his
aircraft model in order to determine the perceived efficiency of the Match Models use
case. The Model Matching capability was evaluated using the following measures:

Duration of Mapping This measure is the time span it takes the Model Owner to
map the elements of his discipline-specific model to the reference ontology. The time
necessary to get used to the user interface is not counted.

Mapped Model Objects During the case study the Model Owner maps objects from
his discipline-specific model to the referenceOntology by equivalence statements. This
measure is given together with the total number of mappable model elements.

104

7.2. Empirical Studies

Perceived Efficiency After the treatment, the Model Owner is asked by the observer
to rate the efficiency of the mapping task. The observer defines efficiency as the cost
of time spent for model matching versus the benefit of model integration. The rating
scores are defined using an ordinal qualitative scale as shown in Table 7.3. On this scale
a score greater than 4 indicates that the task efficiency was unacceptable for the Model
Owner.

← Acceptable Unacceptable →

1 2 3 4 5 6

Very good Good Satisfactory Sufficient Insufficient Fail

Table 7.3.: The ordinal scale of the task efficiency perceived by the Model Owner

Evaluation Objects

A separate sample model was used for each case study. Therefore, the ToolConnectors

of OpenCDT were modified to disregard non-scalar values. The reference ontology
which is described in detail in Appendix B was also prepared in advance in Protegé.
This reference ontology was used without modifications for all cases studies.

Evaluation Subjects

The evaluation subjects were selected according to the following criteria:

• They are experts in conceptual aircraft design and have already conducted several
conceptual aircraft design projects.

• Before the case studies they were not familiar with the Oida framework.

• They are familiar with aircraft modeling due to their experience as users or devel-
opers of conceptual aircraft design tools.

Case Study Design

Each case study is structured as a sequence of the four phases, introduction, user interface
familiarization, concept mapping, and debriefing.

During the introduction the observer instructs the Model Owner with respect to the
objective of the study. Furthermore, the observer states that model elements representing
behavioral aspects of the system and tool-specific concepts are intentionally excluded
from the reference ontology as they are not within the scope of the case study. Before
the actual mapping phase, the Model Owner is asked to identify the given sample model
by the ModelNavigator. Then the observer, enacting the Ontology Owner, begins the
user interface familiarization by demonstrating the mapping of metamodel concepts to
the referenceOntology. The Model Owner is informed that the actual mapping process

105

7. Evaluation

is limited to about 30 min and encourages him to provide feedback during the task about
annoyances or ideas for improving the user interface. Then the actual concept mapping
starts. After about 30 min the observer can either abort or continue the mapping process
for further 15 min. In the debriefing phase which is performed directly after the mapping
process, the collected feedback is summarized by the observer for clarification purposes.
The observer then categorizes the feedback into accidental issues and substantial issues.
Accidental issues are related to the current state of the implementation or the content
of the reference ontology which can be addressed by evolutionary refinements to the
Oida framework. Substantial issues address basic assumptions, design decisions, and
implementation of the Oida framework. Only substantial issues are considered further.

Evaluation-specific Implementation

The user interface of the MatchingApp application prototype was implemented specifi-
cally to facilitate the evaluation of the Model Matching capability.

The MatchingEditor depicted in Figure 7.1 supports the user to match a given disci-

plineModel to concepts in the reference ontology by declaring equivalence relationships.
It is based on the ExtendingMatchingEditor which allows the Model Owner and Ontol-
ogy Owner to choose a disciplineInstanceObject or disciplineMetamodelElement

and the semantically equivalent referenceOntologyResource. However, the actual ver-
sion of the Editor used in all case studies is deprived of the capability to extend the
referenceOntology.

The left hand side of the editor shows the Individuals and MetaConcepts such as
OntologyClasses and Properties of the ontology derived from the current disci-

plineModel. The right hand side shows possible Individuals and MetaConcepts from
the reference ontology for a selected element of the disciplineOntology. The UI fil-
ters the candidate reference concepts based on declared equivalences and existing object
properties in the ontologies. With this filter, the Model Owner can find an appropriate
reference concept more quickly and inconsistent equivalence mappings are prohibited.
The current implementation only takes the OWL-defined Properties instanceOf and
subClassOf into account. For instance, if the user wants to map nPax he can first clas-
sify it as CounterOfPersons. This user action triggers filtering all Individuals to eight
candidates which are instances of CounterOfPersons. The user clicks on the “Confirm”
button to trigger the creation of the equivalence relationship. If an equivalence is con-
firmed, the status of the ontology is reevaluated and the button changes to “Revoke”.
This allows the user to undo equivalence mappings. As the InferenceModel was not
integrated, its delaying effect of the Reasoner was simulated by a user interface delay of
about 3 s. The result of the status evaluation is shown in a progress report. The current
implementation displays the number of unmapped concepts. A mock widget mimics the
Reasoner status when the InferenceModel is fully integrated.

106

7.2. Empirical Studies

Figure 7.1.: A screen shot of the Matching Editor during the matching process of the
APD aircraft model

107

7. Evaluation

Case Study Execution

CS 1.1 Model User The evaluation subject in this case study is an aeronautics engineer
who is experienced in conceptual aircraft design in general and in using the APD tool in
particular. He was, however, not engaged in developing the APD tool, which qualifies
him as a Tool User.

The introduction and GUI familiarization took 10 min. During the user interface
familiarization the Tool User confirmed that the model was an APD model.

During the process he commented on substantial issues addressing the integration of
the reasoner and the interactive modification of the reference ontology. The interaction
delay after each mapping which simulated the reasoner was perceived as very annoying.
He proposed performing the check not after each mapping but on the user’s demand.

After 33 min the observer decided to stop the mapping process. At this point, the
Model User had been able to map 45 of 458 possible model elements. During the de-
briefing the Model User rated the task efficiency as “satisfactory”.

CS 1.2 Model Developer In the second case study, the evaluation subject was the
Model Developer of APA who also frequently uses APA as a tool. Furthermore, the
same initial version of the referenceOntology was used as in CS 1.1.

The introduction took 9 min. Before the familiarization process, the Model Developer
had to delete parts of the model which were not within the scope of this case study, e.g.,
simulation logs or non-scalar data structures. However, the Model Developer confirmed
that the integrity of the APD model regarding structural aspects of the aircraft were still
intact. In the next part of the case study, the observer demonstrated the user interface
by mapping the metamodel. In this case only two attributes could be mapped. All other
entities had no equivalent concept. During the next 34 min, the Model Developer was
able to map 13 concepts. Thereby, the observer noted that about 80 % of the concepts
of the APA model did not exist in the reference ontology.

During the concept mapping phase, the Model Developer commented on issues ad-
dressing the interaction design of the mapping task. The dynamic type casting of Mat-
lab, where the APA sample model originates, can disturb the identity of model objects
within the context of the MatchingApp application. In Matlab, the object identity
does not change due to dynamic type casting. However, if a dynamically changed data
type is propagated to a Java runtime environment, the object identity changes com-
pletely. Furthermore, assumptions about the semantics of data types can be misleading,
for example, an item was casted as Integer but does not represent a counter. He also
suggested that the software could take the order of magnitudes of attribute values in into
account to recommend matching individuals. Furthermore, he missed a feature which
would allow the actors to add concepts to the referenceOntology. This feature was
deliberately disabled during all case studies. He considered the presence of the Ontology
Owner to be helpful for avoiding false equivalence statements or for finding appropriate
reference concepts more quickly. The Model Owner did not perceive the delay by the
simulated Reasoner as an annoyance and rated the perceived task efficiency “satisfac-
tory” to “sufficient”.

108

7.2. Empirical Studies

CS 1.1 CS 1.2 CS 1.3

Evaluation Subject Model User
Model

Developer
Model Adopter

Evaluation Object APD, OR APA, OR Simcad, OR

Duration of Mapping 33 min 34 min 37 min

Mapped Model Concepts 45 of 458 13 of 433 66 of 222

Perceived Efficiencya 3 3 – 4 2
a See scale on Table 7.3

Table 7.4.: Summary of the case studies evaluating the Model Matching capability of
the Oida framework

CS 1.3 Model Adopter This case study addressed the situation when a Model Owner
was not familiar with a given discipline-specific model which he wanted to adopt, but
could use his expert knowledge to map this model to the reference ontology. In this
case, the evaluation subject had the role of a Model Adopter. The chosen person was
familiar with aircraft design tool development in general and with APD in particular,
but not with Simcad which was the object of this case study. As the Model Adopter
was not familiar with the source model, he could not confirm the authenticity of the
source model but recognized it as a conceptual aircraft model.

After the short introduction to the user interface by the observer lasting about 10 min
the Model Adopter was able to map 66 entities in 37 min. Thereby, he used not only
the object names but also the attribute values of the objects to guess their meaning.
The Model Adopter could also use the names of the composite objects to determine the
context of the leaf objects containing aircraft attributes.

During the process, the Model Owner addressed the following substantial issues: The
potential benefits of a consistency check by the Reasoner after every transaction and
recommendation generation was considered beneficial. Accordingly, the simulated delay
by the Reasoner was not perceived as an annoyance. Units of measures and orders of
magnitude of numeric attribute values could be used for equivalence recommendations.
The Model Owner rated the task efficiency as “good”.

Analysis

The data collected from the case studies and presented in Table 7.4 show that all subjects
comprehended the concept of semantic mapping and were able to perform their tasks.
All evaluation subjects required only a short introduction and assistance by the Ontology
Owner enacted by the observer.

The mapping efficiency seems to depend strongly on the overlap between the concepts
of the respective discipline-specific models and the concepts in the reference ontology.
If a considerable number of concepts of one discipline-specific model are not contained
in the reference ontology which has been derived from another discipline-specific model,

109

7. Evaluation

both models are either on different levels of detail or have a small semantic overlap.
Therefore, it is important to provide a reference Ontology which covers most of the
concepts contained in the discipline-specific models.

Especially the third case study indicated that for the performance the Match Models
use case the Model Owner does not necessarily have to be familiar with the discipline-
specific model in order to perform the mapping. All evaluation subjects suggested ex-
ploiting the attribute values for equivalence recommendations. Especially the unit at-
tribute was identified as an effective indicator for equivalence.

The results of the first and the third case study are very similar, though the scale of the
models and the relationship of the Model Owners to their respective discipline-specific
model are different. Both the APD and Simcad models cover the overall aircraft system
without focusing on a specific system, whereas the APA model is focused on propulsion
system architectures. As the Model Developer of APA could map considerably fewer
concepts to the reference ontology, the case studies could not show that the current
implementation can bridge between models having a different focus.

7.2.3. Evaluation of the Partial Models Merge Capability

During the evaluation of the Partial Model Merge capability, the Model Owners are
presented with conflicts and import candidates. Both have been determined by matching
the discipline-specific model which they are responsible for with the Chief Engineering
Model. Both models have been previously mapped to the reference ontology. The Model
Owner will not gain the full benefit of the Oida framework before this Merge Models
Partially use case. Comparing conflicting values allows them to assess the effectiveness
of the integration framework.

The objective of the case studies evaluating the Partial Model Merge capability is
to analyze the feedback of the Model Owner regarding the perceived plausibility of
results. In these case studies, the following measures were used which correspond to the
terminology of the Oida design described in Chapter 6:

Semantic Matches The number of object pairs from the discipline-specific source and
target model which could be matched by Oida.

Conflict Candidates The number of semantically matching object pairs which have
conflicting states detected by Oida.

Confirmed Conflicts The number of conflict candidates which have been confirmed by
the Model Owner.

Reported Conflicts The number of conflict candidates which have been reported by
the Model Owner due to suspected false matchings.

Import Candidates The number of objects from the discipline-specific source model
which Oida could not match with an object in the discipline-specific target model.

110

7.2. Empirical Studies

Confirmed Import Candidates The number of import candidates selected by the Model
Owner for import into his discipline-specific target model.

Reported Import Candidates The number of import candidates which have been re-
ported by the Model Owner due to suspected false matchings.

Perceived Overall Efficiency The efficiency of the Match Models and Merge Models
Partially use cases from the Model Owner’s perspective.

Result Plausibility The plausibility of the proposed conflict and import candidates with
respect to the method applied by the Oida framework and conveyed by the observer.

Evaluation Subjects

The evaluation subjects of these case studies were the same as in the previous case
studies. This implies that they were already informed about the overall procedure and
context of the integration process. As with the previous case study, the observer enacted
the role of the Ontology Owner.

Evaluation Objects

In these case studies, the same APD and APA sample models were used as in the
previous case studies. The Simcad model was declared both the Chief Engineering
Model, which overrides the APD and APA model in the case of conflict, and the source
model of Migrate Model Parts. Furthermore, the ontologies containing the equivalence
statements created in the first phase of the case studies were used.

Case Study Design

The case studies addressing the Partial Model Merge capability evaluated the plausibility
of the matching results perceived by the evaluation subjects. Furthermore, at the end
of the Merge Models Partially use case, the conflict resolutions are propagated to the
discipline-specific target model and the ontologies are checked for consistency with this
changed target model. The case studies consist of the following phases: introduction,
conflict resolution, partial model import, and debriefing.

In the introduction phase of the case study, the Ontology Owner explains the task to
the Model Owner. The Model Owner is instructed that he will not be able to override
incoming changes but has to assess whether the incoming values make sense. It is further
agreed that Model Owner and Ontology Owner can talk freely about the user interface
and presented conflict and import candidates. The Model Owner is also informed that
the time until completion of the task is recorded.

During conflict resolution, the Model Owner is presented with a list of conflicting
objects. He sees both object names from the target model and the reference ontology
but is not provided with the object name from the source model. The only way he

111

7. Evaluation

can assess the plausibility is the order of magnitude of numerical attribute values and,
if available, the unit attribute. The Model Owner confirms the plausibility of each
conflict or explicitly declines it. The Model Owner completes the conflict resolution,
which triggers the transformation of the result to the discipline-specific target model.
Subsequently, the Model Owner has to confirm that the conflict resolution has preserved
the nomenclature and structure of the discipline-specific target model.

At the beginning of partial model import , the user interface provides a list of model
objects of the incoming model which could not be matched with the target model. The
Model Owner can decide which objects he wants to import and chooses an object name
and a container appropriate to his own naming convention and model decomposition
strategy.

In the debriefing phase, the Ontology Owner wraps up the feedback which was col-
lected during the session. The Model Owner is further asked whether he considers the
matching result plausible and whether the preceding phases of the case study were per-
ceived to be useful in the retrospective on the scale shown in Table 7.3

Case Study Execution

Based on the results of the evaluation described in Section 7.2.2 the following case
studies are executed when Model Owners want to check whether their respective model
has conflicts with the ChiefEngineeringModel, and to select objects for import from
that model.

CS 2.1 Model User

This case study was performed with the same evaluation objects and subjects as in
CS 1.1. First, the Model User confirmed that the model represented an APD model.

It required about 5 min of introduction by the observer before the Model Owner could
begin with the conflict resolution using the ImportCandidateReviewForm. The Model
User confirmed 14 conflicts and reported 4 of 18 conflicts, because the incoming values
appeared to be undefined. Then the Ontology Owner proceeded to the MigrateDia-

log. After a short introduction by the observer, the Model User confirmed no import
candidate and reported 28 of 47 import candidates. The Model User explained that
the Simcad model appeared to provide more details on aircraft cabin design than the
APD model. In its own work flow, the cabin interior was designed in a separate CAD
application. He also stated that importing data on demand was effective to manage the
complexity. He was sure that all incoming values he reported were already in the APD
model but were not mapped to the reference ontology in CS 1.1. Another Match Models
session would be required to completely map the APD model to the reference ontology.
The conflict resolution and migration parts were concluded after 17 min. In the debrief-
ing, the Model User gave the matching process an efficiency rating of “good”, given
that the Oida framework provides the Co-evolution capability. He also mentioned, that
the mapping procedure could be an error-prone task. Therefore, the number of map-
pings should be reduced as much as possible. Generally, he considered the results of the

112

7.2. Empirical Studies

matching process plausible. The reported conflicts and Simcad data elements seemed
to him more the result of mapping error by another Model Owner than an error by the
system.

CS 2.2 Model Developer The introduction phase took 5 min. At the end of the in-
troduction, the Model Developer recognized the APA sample model as his model. Dur-
ing the conflict resolution phase the Model Developer criticized that the user interface
presents the model elements without their context which makes it difficult to compre-
hend the meaning of the elements. For instance, the thrust of an engine has almost no
meaning without setting it in the context of the velocity, pressure and temperature of
the currently surrounding atmosphere. The Model Developer commented on the char-
acter of the values coming from the Chief Engineering Model. For instance, he assessed
the empennage as an aggressive design. The Model Developer confirmed all presented
conflicts. The conflict resolution phase ended after 8 min. During the model migration
phase he noted that the units of the incoming system attributes seemed to match his
implicit convention for units of attributes in the APD model. However, further im-
plementations should provide automated unit conversion or a generic conversion factor.
He was sure that most of the import candidates were already in his model but were
not mapped during CS 1.1. Accordingly, he reported most of the import candidates
as errors. However, he imported two model elements into his structure using the user
interface to create the appropriate container model element in his model. The migration
phase ended after 10 min. In retrospect, he perceived the efficiency of the process as
better than in the first case study C 1.2 and rated it “good” to “satisfactory”. He also
considered the result plausible.

CS 2.3 Model Adopter In this case study the model owner enacted the role of a
user who wants to import a model from Simcad to APD. During the introduction he
identified the APD sample model using the ModelNavigator. The introduction took
about 5 min. The Model Adopter had not mapped the APD model himself. Therefore,
he had to trust another Model Adopter to have performed the mapping correctly. The
user interface did not help him to achieve an overview of the model structure as the
conflicts are provided as a list. He only reported one value which, in his opinion, was
obviously mapped wrongly by the APD Model Owner. The conflict resolution phase
ended after 15 min. The Model Adopter started the migrate dialog. He imported 7
of 47 import candidates which he considered relevant for the scope of APD and used
the user interface to declare a suitable container for the new elements and to assign
suitable names. Thereby, he commented that it would improve the efficiency if the
nomenclature from the reference ontology could be taken over automatically. In some
cases, the Model Owner chose to confirm model elements whose attribute values were
not set. He expected the values to be set in future iterations, and wanted to “subscribe”
to these model elements. He reported 8 of 47 proposed import candidates because he was
sure that they were already in the discipline-specific target model but not mapped by its
Model Owner during CS 1.1. In his opinion, the user should be able to map a proposed

113

7. Evaluation

item to the existing model elements instantaneously. The migration phase ended after
20 min. In retrospect, the Model Adopter confirmed his original rating of a “good”
overall efficiency. In his opinion, the system generated plausible results. Furthermore,
he considered the migration of model elements on demand very helpful and requested
that future versions of the user interface should provide a more differentiated means of
reporting.

Analysis

During the second group of case studies several general observations could be made. One
part of the observations refers to the validation of the Partial Model Merge capability
which was evaluated with these case studies. The other part of these observations refers
to the overall process associated with ontology-based model integration. All case studies
in the second group supported the observation that all Model Owners could operate the
prototype with very little assistance from the Ontology Owner. Regarding the overall
process, the second group of case studies made the subjects change the rating of their
perceived efficiency for the better or maintain an already positive rating. Furthermore,
all Model Owners considered the results as plausible. The reported problems were seen
as mistakes of mappings by a Model Owner but not as a dysfunction of the Oida
implementation. The man-in-the-loop strategy of the Model Matching and Partial Model
Merge capability of Oida was also perceived to be very useful. Especially the APA
model revealed the importance of a sufficient minimal content of the referenceOntolo-

gy. Consequently, the APA Model Owner regarded the implemented prototype as not
fully applicable to the class of problems he was dealing with.

7.2.4. Evaluation of the Co-Evolution Capability

In Chapter 4.3, typical use cases are described which require co-evolution of coupled
artifacts. The objective of the evaluation is to test the Co-Evolution capabilities of Oida
in different use cases of Co-Evolve Integration Artifacts. The Co-Evolution capability
of the Oida framework to support the Evolve due to Model Integration use case could
be verified after the case studies described in Section 7.2.3 by manual inspection in
OpenCDT and Protégé, respectively.

The evaluation was conducted as two quasi-experiments using automated unit tests
each covering two model evolution scenarios. The evaluation of Co-Evolution is based
on the results of the previous case studies, evaluating the Model Matching and Partial
Merge capabilities. Thereby, the following measures were obtained:

Obsolete Mappings An existing equivalence statement which cannot be redirected au-
tomatically by the co-evolution capabilities of the Oida framework is declared obsolete.
Obsolete mappings indicate how much previous effort by the actors involved in the Match
Models use case has been lost.

114

7.2. Empirical Studies

CS 2.1 CS 2.2 CS 2.3

Evaluation Subject Model User
Model

Developer
Model Adopter

Evaluation Object APD APA APD

Chief Engineering Model Simcad Simcad Simcad

Semantic Matches 18 6 18

Conflict Candidates 18 6 18

Confirmed Conflicts 14 6 17

Reported Conflicts 4 0 1

Import Candidates 47 59 47

Confirmed Import Candidates 0 2 7

Reported Import Candidates 28 0 8

Perceived Overall Efficiencya 2 2 – 3 2

Result Plausibility yes yes yes
a See scale in Table 7.3

Table 7.5.: Measurements from the case studies evaluating the Partial Model Merge ca-
pability of the Oida framework

115

7. Evaluation

Mappings Required by the Model Owner The number of manual actions required
by the Model Owner to make the previously mapped ontology consistent with the new
version of the model. It is only concerned with revising obsolete and creating new equiv-
alence statements from discipline-specific instance concepts to the reference ontology.
This implies that the Model Owner is usually not concerned with mapping concepts
from the metamodel. This measure can be correlated with the Obsolete Mappings mea-
sure. Obsolete mappings have to be discarded or remapped manually by the Ontology
Owner or Model Owner in order to maintain the same level of semantic coupling that
existed before the evolution. More Required Mappings by Model Owner than Obsolete
Mappings indicate that the modification created new discipline-specific instance con-
cepts.

Creation of Reference Concepts A number of reference concepts need to be created in
order to make the reference ontology consistent with the evolved models. In the current
concept of Match Models, this task is performed in a collaboration between Model Owner
and Ontology Owner. Therefore, this measure indicates the effort required from both
actors.

Mappings Required by the Ontology Owner The number of mappings which make
the evolved ontologies and models consistent at the metaconcept level. According to the
interaction design of the Oida framework, the Ontology Owner is responsible for this
task. Therefore, this measure indicates the effort required from the Ontology Owner.

Evaluation-specific Implementation

The Partial Model Merge capability of the Oida framework is realized in MergeCon-

trol of the Merge plug-in. The supporting capabilities for the other Co-Evolve Inte-
gration Artifacts use cases are implemented in the Evolution plug-in. The two classes
RenameReference and ImportPreviousMappings implement two kinds of Knowledge-

Sources.

The RenameReference addresses the Evolve due to Reference Ontology Maintenance
and implements the EvolutionAlgorithm as the implementation is based on the assump-
tion that there is exact knowledge of the modification, the artifacts, and the couplings
between them is known. In particular, this class realizes a support for a Rename refac-
toring of the referenceOntology. If an OntologyResouce in the referenceOntology

is renamed, not only the Properties pointing to that entity within the referenceOnto-
logy but also equivalence statements from disciplineOntologies have to be updated.
As the Blackboard pattern was not implemented, RenameReference was realized as
a preprocessor for the Match Models use case which could be tested separately from
the Matching plug-in. RenameReference requires an old referenceOntology and a
list of old disciplineOntologies which contain equivalence statements to the old re-

ferenceOntology. Then it performs the RenameRefactoring to Properties, Classes
and Individuals. Equivalence statements which become obsolete are discarded and

116

7.2. Empirical Studies

counted for measurement. Successfully adjusted old equivalence statements are auto-
matically created in the regenerated new versions of disciplineOntologies.

The ImportPreviousMappings class addresses all use cases of model co-evolution
except the first, based on the assumption that the exact modification to the coupled
artifacts is unknown. Accordingly, it implements the EvolutionHeuristic interface.
Equivalence statements are the most expensively created objects of the ontology-based
model integration approach with respect to the required work time of the Model Owners.
Therefore, the implementation of ImportPreviousMappings focuses on the task to im-
port as many previously made ImportPreviousMappings as possible, regardless of which
kind of modification has taken place. As the Blackboard pattern was not implemented,
ImportPreviousMappings was implemented as a preprocessor to MatchingControl and
was integrated with the user interface demonstrator ExtendingMatchingEditor. Given
a newly generated disciplineOntology and a new referenceOntology and the respec-
tive previous versions, the implemented heuristic first extracts equivalence statements
from the old versions. Only if both ends of such equivalence statements can be un-
ambiguously correlated to a new concept, they are recreated in the newly generated
disciplineOntologies, otherwise are they discarded and counted as obsolete equiva-
lence statements.

Quasi-Experiments

The quasi-experiments for the evaluation of co-evolution are realized as unit tests based
on the disciplineOntologies which have been generated from the sample models and
mapped by the original Model Owners in CS 1.1, CS 1.2, and CS 1.3. The measurements
of Obsolete Mappings are provided by ImportPreviousMappings and RenameReference.
The other measurements result from the use of matching and reference creation methods
in the respective unit test implementation.

QE 2.1: Co-Evolution due to modeling This automated test stages the situation
after an initial integration process when the Model Owner modifies his discipline-specific
model by changing the name of an object and by creating a new object. Thereby, the
performance of the Oida framework regarding the Evolve due to Aircraft Modeling use
case can be measured. The test executes the Match Models use case and automatically
performs the required actions for Co-Evolution and validates the consistency. Thereby,
the measurements relevant for the Co-Evolution capability defined above are acquired.

In particular, the automated test changes the name of the object representing the
wing span to full wing span in the appropriate nomenclature of the respective model
which represents a Rename refactoring. Then a new model element is created which
represents the maximum cabin pressure. The test run is performed with each sample
model separately.

QE 2.2: Algorithm and Reference Ontology Modification The objective of this quasi-
experiment is to determine how much effort is required for the co-evolution of all artifacts

117

7. Evaluation

due to Evolve due to Reference Ontology Maintenance and Evolve due to Integration
Software Maintenance.

The evaluation scenario addresses an issue discovered during the evaluation of the
transformation TMO described in Section 7.2.1. The analysis of the OntologyGenerator
showed that not all attributes contained in the APA metamodel were transformed to the
reference ontology. The reason for this unintended behavior was the RenamerStrategy

employed for the evaluation which generates the URI of the OWL:DatatypeProperty and
OWL:ObjectProperty using the name attribute value of EAttribute and EReference

defined by EMF. For the given metamodels, this RenamerStrategy was ambiguous. A
solution for this problem required two modifications: First, the renaming algorithm was
changed to add the value of the respective name of the ContainingClass provided by
EMF to the URI of the DatatypeProperty and ObjectProperty. Second, the first version
of the referenceOntology was extended by two new DatatypeProperties hasRealNum-
berValue to the XSD type BigDecimal as a subproperty to the existing hasValue and
hasIntegerNumberValue to the XSD type BigInteger as subproperty of the hasRe-

alNumberValue. The range of the existing hasValue was removed. This modification
of the referenceOntology was conducted in Protégé as it required specification of
domain, range, and super-property, which is not yet supported by the ExtendingMatch-
ingDialog of the Oida framework. These modifications represent a maintenance of
both the reference ontology and the Oida implementation.

The implemented unit test starts the Match Models use case with the new modified
transformation algorithms and the modified referenceOntology and imports the old
mappings from the status before the modification. Then the automated unit test per-
forms the required actions of co-evolution automatically and validates the consistency.
Thereby, the measurements relevant for co-evolution defined above are acquired. The
unit test is performed with each sample model separately.

Analysis

The quasi-experiment QE 2.1 shows that the Oida implementation creates consistent
artifacts after the integration process. Furthermore, most of the previously created
equivalence statements can be adjusted automatically.

In particular, the results of QE 2.1 given in Table 7.6 show that the Co-Evolution
capability is supported by the Oida framework. In this use case, small modifications
require only a small number of actions by the Model Owner. Due to the Rename
Refactoring, the identifier changed which led to one obsolete mapping which had to
be remapped by an action typical for the Model Owner. The new element required the
addition of new Individuals to the reference ontology which required the attention of
both the Ontology Owner and the Model Owner. No particular mapping action was
required from the Ontology Owner.

The results of experiment QE 2.2 in Table 7.7 show that the modifications of the ref-
erence ontology and the renaming algorithm require only a small number of actions by
Model Owner and Ontology Owner to maintain the same level of mapping between the
source models and the reference ontology as the Model Owner achieved in the previous

118

7.2. Empirical Studies

APD APA Simcad

C
h

a
n

ge
s New model elements 1 1 1

Modified model elements 1 1 1

New reference concepts 0 0 0

A
ct

io
n

s

Obsolete mappings 1 1 1

Mappings by Model Owner 2 2 2

Creation of reference concepts 1 1 1

Mappings by Ontology Owner 0 0 0

Table 7.6.: The modifications versus the required actions by the Ontology Owner and
Model Owner observed in the automated test QE 2.1

APD APA Simcad

C
h

an
ge

s New individuals 26 33 18

New classes 0 0 0

Creation of reference concepts 2 2 2

A
ct

io
n

s

Obsolete mappings 0 4 0

Mappings by Model Owner 0 6 0

Creation of reference concepts 0 0 0

Mappings by Ontology Owner 0 2 1

Table 7.7.: The modifications versus the required actions by the Ontology Owner and
Model Owner observed in the automated test QE 2.2

119

7. Evaluation

Match Models use case. Almost all equivalence statements could be imported automati-
cally. Only the mapping of the hasValue property was declared obsolete as the source of
the object property did not exist anymore in the newly derived ontology. The Ontology
Owner only had to map the new object properties IntegerValue:value and Double-

Value:value to hasIntegerNumberValue and hasRealNumberValue, respectively. No
new concepts had to be added to the reference ontology. Subsequent tests showed that
the Merging plug-in can handle the situation in which Counters like nPax which had
been mapped to NumberOfPassengers had a value attribute as Double data type in
the source model but an Integer attribute in the reference representation of the model.

7.2.5. Threats to Validity

Due to the following threats, the validation obtained from this evaluation provides only
anecdotal evidence. The small sample size of the evaluation is too small to generalize
the conclusions to other scales of model complexity and other combinations of engineer-
ing disciplines. Furthermore, the three professionals were voluntary, that is, we used
convenience sampling. Due to the very limited availability of test models and qualified
Model Owners, the subjects were also not randomly selected. For the APA model, there
is only one developer and user. Therefore, the conclusions might also be affected by
bias. There is a possibility that experimental conditions, namely the different overlap-
pings between sample models and the reference ontology, could make a difference on
how participants perceive the tool they had to use. The participants of the experiments
were aware that their work was being measured. Therefore, there is a chance that the
participants presented a modified or improved behavior. Based on the Hawthorne
effect [Ada84], qualities measured in the study could be more than those of real world.

7.3. Results

Regarding the objectives of the evaluation stated before, the following results were at-
tained:

Regarding model and metamodel features which are considered most important for the
Model Owners of the sample models, the transformation is structure-preserving (homo-
morphism). The evaluation also revealed that for some metamodel and model elements,
the transformation was ineffective in generating unique ontology resource identifiers.
This issue was addressed by an instance of an Evolve due to Integration Software Main-
tenance use case which resolved the issue for the particular sample models. However, the
issue illustrates the importance of evaluating the effectiveness of Oida transformations
for a concrete application.

The preparation of the case studies CS 1.1, CS 1.2, and CS 1.3 evaluating the in-
teractive Model Matching capability revealed the ineffectiveness of the NameEquiva-

lenceFinder and the SemanticValidator for the given sample models. Therefore, the
case studies were performed on a prototype which only provides the manual matching
capability without using a Blackboard pattern infrastructure. Due to time restric-
tions of the case studies the sample models could not be matched completely against the

120

7.3. Results

reference. However, in the case studies CS 2.1, CS 2.2, and CS 2.3 evaluating Partial
Model Merge capability, the Oida prototype detected 18 conflicts between APD and
Simcad and 6 conflicts between APA and Simcad and successfully imported all selected
unmatched model objects. Due to the incomplete matching to the reference ontology,
not all conflicts could be identified. Accordingly, all case studies showed that the in-
teraction design of the Oida framework is effective in facilitating ontology-based model
integration. In particular, the feedback from the Model Owners during the case stud-
ies indicates that the work flow of the Oida applications was understood quickly. The
Model Owners considered the work flow sufficiently efficient and the produced results
such as conflict and import candidates to be plausible.

The case studies also revealed that ReferenceOntology should contain most of the
concepts used in the DisciplineModels before the Match Models use case is started.
Furthermore, the MatchingApp application should provide the capability to extend the
ReferenceOntology. The latter was deliberately disabled during the case studies.

The quasi-experiment evaluating the Co-Evolution capability showed the effectiveness
of both heuristic and algorithmic approaches in the Oida framework for exemplary
instances of the Co-Evolve Integration Artifacts use case. In particular, in all quasi-
experiments of QE 2.1 and QE 2.2, the Oida prototype always required an equal or lower
number of actions compared to the number of changes between artifact versions. Despite
this successful proof-of-concept, the current implementation did not allow the evaluation
of Co-Evolution KnowlegeSources within the context of the envisioned Blackboard
pattern.

121

8. Conclusion and Outlook

Ontology-based model integration addresses the problem of inconsistencies between the
many aircraft models that are created in a conceptual aircraft design process, and the
inefficient migration of model elements between discipline-specific models. In this dis-
sertation, these problems have been analyzed using three typical aircraft concept models
from different provenience, scope and level of detail. Based on this analysis, the Oida
framework has been designed to provide the ontology-based model integration capability
engaging the Model Owners in an interactive process. This process and a prototype of
the Oida framework have been evaluated by quasi-experiments and case studies using
real conceptual aircraft models as sample models and the respective Model Owners as
participants. In this evaluation, the Oida prototype demonstrated conflict resolution
and migration of selected model elements between the sample models.

The analysis and the development of Oida was focused on the integration of structural
aspects of the aircraft concept models. Further research is required to investigate whether
ontology-based model integration can be applied to more aspects of an aircraft model
or even to other domains of engineering.

This dissertation shows how ex post semi-automated application of formal seman-
tics to existing conceptual aircraft models and their evaluation enables model matching
across different naming conventions and decomposition strategies, the identification of
conflicts between equivalent model elements, and the selective migration of model parts.
Presumably, an earlier integration of formal semantics in models and metamodels and a
deeper integration of semantic technologies into the design work flow will not only im-
prove the efficiency of communication between heterogeneous information systems but
also facilitate better human-machine interfaces in computer-aided design.

8.1. Contributions

The Oida framework described in this dissertation was developed and evaluated ad-
dressing the research questions stated in Chapter 1. The following contributions were
made:

Analysis of Conceptual Aircraft Models Three sample models were analyzed in order
to observe and classify differences between conceptual aircraft models which cause a
lack of efficiency and effectiveness in existing model merging techniques. The sample
models were created in tools currently used by industry and academia for conceptual
aircraft design. The sample models represented the same aircraft type but were created
with different scope and focus. The parts of the sample models representing structural

123

8. Conclusion and Outlook

aspects of the aircraft were transformed to the same metamodel using existing Tool-

Connectors provided by OpenCDT. Thereby, the transformation allowed manual and
automated inspections on a common syntactic basis. Despite the common metamodel,
the sample models revealed considerably different naming conventions stemming from
different coding styles of the developers and users of the sample models. Furthermore,
the sample models exhibited different decomposition strategies. This indicates a gap be-
tween the abstraction level of the metamodel and the application domain which prohibits
the automated identification of objects representing the same physical object by their
properties. Accordingly, a more concrete modeling standard would facilitate finding a
solution. However, especially a unification of the design-process-oriented decomposition
limits the designers in organizing their models according to their specific methodology.
Furthermore, conceptual designers explore new component layouts and system configu-
rations which are not standardized for their domain.

These insights have not only been the design driver for the Oida framework but can
also serve as a basis for alternative solutions. However, this analysis disregards parts of
the sample models which represent behavioral aspects of the aircraft system. Future work
in the context of model integration in conceptual design should examine these aspects
which are especially relevant for the design and assessment of operational capabilities of
an aircraft.

Ontology-based Model Integration Conventional model merge techniques have a num-
ber of shortcomings. To compensate for these the Oida framework was developed also
with view to transparency and user control.

In order to compensate for the shortcomings of conventional model merge techniques,
the Oida framework was developed. The Oida framework is designed towards trans-
parency and user control. Therefore, it engages the Model Owner who is the persons
responsible for a given conceptual model to declare the meaning of model and metamodel
elements by equivalence statements.

Instead of using a central all-comprising model as a reference, the solution employs
an ontology which provides reference entities. Thereby, the ontology language allows
formal definition of semantics of the reference concepts formally by logical statements.
The interactive integration process has two phases: In the first phase, each Model Owner
creates equivalence statements from his model and metamodel elements to the reference
concepts. In the second phase, these equivalence statements are evaluated automatically
in order to match model elements and identify conflicts between them. The Model
Owner then decides on conflict resolutions and selects the model elements he wants to
import from other models. In contrast to classic model merge techniques which result in
a consistent union of the integrated models, the Oida framework leaves model specific
naming convention and decomposition strategies intact and allows the Model Owners to
manage the degree of semantic overlap and thus to keep the complexity of their models
down to a practical minimum.

The Oida framework has been designed to facilitate this process. In particular, the
design realizes the interactive matching of discipline-specific models with a reference

124

8.1. Contributions

ontology by employing a Blackboard pattern, which allows a combination of both
automated and manual match finder, review, and validation capabilities. The prototyp-
ical implementation of the Oida framework is based on common modeling and ontology
frameworks and was evaluated by automated quasi-experiments and interactive case
studies with the same sample models as are used in the analysis of conceptual aircraft
models, engaging their respective Model Owners. Preliminary unit tests revealed that
some of the envisioned automated KnowledgeSources could not contribute to the match-
ing process for the given sample models. In particular, the ontology consistency check by
the reasoner took considerably more time than should have been required. Therefore, the
prototype employs only manual KnowledgeSources without implementing the Back-
board pattern. Nevertheless, the prototype could identify conflicts between equivalent
objects and was able to move selected model elements between given sample models.
After participating in the case studies, all Model Owners rated the prototypical Model
Matching and Partial Model Merge process better than sufficiently efficient and consid-
ered the results plausible.

The analysis of the evaluation suggests three steps for improving the Oida framework.
First, automated KnowledgeSources need to be integrated into the Oida implementa-
tion. For instance, the InferenceModel can contribute by automated classification of
OntologyResources and by checking the consistency of ontologies. Thereby, the in-
tegration of computationally intensive KnowledgeSources to a responsive interactive
Blackboard will be included in future research. Secondly, simple equivalence map-
pings limit the integration capability to one-to-one matchings of concepts. One-to-many
mappings would enable the integration of more heterogeneous models and enable the
designers to better adapt their tools to their respective methodology. Thirdly, the ref-
erence ontology must cover at least all domain concepts of the models involved in an
integration process. Additionally, the scope of the reference ontology should be extended
to complex data types such as vectors and to behavioral aspects of aircraft systems.

Evolution of the Integration System The case studies showed that at least the initial
effort required from the Model Owners in performing the ontology-based model inte-
gration process is considerable. However, the extent and the complexity of differences
between concurrently evolving models depends on how frequently the integration process
is performed. Therefore, how the efforts of the users for subsequent integration processes
of concurrently evolving models could be reduced was investigated. The problem was
tackled by defining four distinct use cases in which relevant artifacts evolve. Each case
was analyzed as to whether the Oida framework can control this evolution by exploit-
ing available knowledge or applying heuristics in order to limit the effort required from
Model Owners and the Ontology Owner. The Oida design was extended by algorith-
mic and heuristic KnowledgeSources which were implemented in the Oida prototype.
Automated quasi-experiments demonstrated that the Oida prototype is capable of con-
siderably diminishing the effort required from Model Owners and the Ontology Owner
in all four cases of evolution.

125

8. Conclusion and Outlook

8.2. Integrating other Dimensions of Conceptual Models

The Oida framework demonstrates a solution for collaboration in conceptual aircraft de-
sign made possible by the ex post introduction of formal semantics into existing models
by equivalence statements between model and metamodel elements to shared reference
ontology concepts. In principle, designers could assign formal semantics to every model
element at the beginning of its information life cycle and modify it if necessary. Thereby,
the Match Models and Co-Evolve Integration Artifacts use cases would be reduced to
small tasks which could be seamlessly integrated into the modeling work flow. Presum-
ably, the guaranteed availability of object semantics facilitates the extension of ontology-
based model integration between other design dimensions such as levels of detail, design
variants, or design phases.

The current concept described in this dissertation assumes that a model does not
only contain detailed system attributes but also aggregated system attributes which are
coupled with the detailed attributes. For instance, the sample models specify the mass
of subcomponents such as wing and fuselage, but also explicitly define the aggregated
mass of the overall aircraft. This redundancy can be used to check the consistency of
algorithms in a conceptual aircraft model. Furthermore, it allows for correlating different
models with different levels of detail, if the models is composed the same way. Thereby,
it will be a challenge to implement such a reference ontology in a way that it provides
a standard composition without limiting the concept designer’s flexibility regarding the
system topology.

Especially during conceptual aircraft design, not only off-design operation scenarios
but also design alternatives are explored and assessed. The latter represent products
which significantly diverge by system attributes and also system topology. An early
mapping of design alternatives to a common reference ontology could help to identify
common model elements and keep them consistent.

Not only the integration of concurrent design models but also the explicit coupling
and consistency between models of different design phases is desirable for a sustainable
product design process, especially, after the conceptual design phase model elements
basically transit to another level of abstraction. For instance, in an early stage of the
development a NewPlaneStarboardEngine is perceived as an instance object whereas,
in later design phases, it is perceived more as a class. For such a class, an appropriate
instance object would be NewPlane001StarboardEngine. The ultimate challenge for a
system integrating different levels of abstraction is the transition between virtual models
and physical systems.

126

A. Implementation of the Oida Prototype

The evaluation of the Oida capabilities described in Chapter 7 was based on an imple-
mentation of the essential features of Oida components. Beside the design goals stated
in Section 6.1, the following two goals were added for the implementation:

Evaluation Enabler The implementation should facilitate all quasi-experiments and
case studies stated in Table 7.1. The objective of all empirical studies is to evaluate the
concept of ontology-based user-engaged model integration in the context of conceptual
aircraft design, not the verification of the Oida design features. Therefore, capabilities
or architectural features of the Oida framework should only be realized if they contribute
to the evaluation.

Metamodel Independent The implementation of the Oida should not depend on the
metamodel of any specific tool. That is, the implementation should be less dependent on
a particular discipline and maintain a general applicability in the context of conceptual
aircraft design.

The following section describes the selection of components used for the prototypical
implementation in detail.

A.1. Selection of Basic Frameworks

For the development of the Oida framework, the basic design decision was to choose
MOF as meta-metamodel and OWL as ontology language. Both are currently the de
facto standard in their domain.

For the modeling framework, the Eclipse Modeling Framework (EMF) and the Eclipse
UML2 framework were considered. EMF is basically an implementation of the essential
parts of the MOF specification (eMOF). Furthermore, EMF is the basis for many mod-
eling related frameworks, for example ATL [Jou+08]. The Eclipse UML2 framework
is an implementation of the OMG UML 2 specification [OMG11], thus providing more
modeling languages constructs than eMOF. However, UML is not commonly used in
aircraft modeling. Therefore, specific UML language constructs provided by Eclipse
UML2 which are not provided by EMF could not be used. For instance, none of the
sample models uses specific language features of UML which are not covered by eMOF.
EMF, in turn, provides the capability to dynamically create models and metamodels,
which is required for the Transformation component described in Section 6.4. Although

127

A. Implementation of the Oida Prototype

Eclipse UML2 is based on EMF, this feature is not implemented for UML constructs.
Therefore, EMF was selected.

Aircraft Modeling Application

As application platform for Oida, the Protégé ontology engineering tool and OpenCDT,
which is based on EMF and the Eclipse Rich Client Platform (RCP), were considered.
On the one hand, Protégé is focused on creating, visualizing, and querying ontologies
as well as performing automated reasoning. Neither the user interface nor the underly-
ing Protégé framework provides capabilities required for conceptual aircraft modeling.
Previous versions of Protegé provided import/export services for UML models. How-
ever, this plug-in is no longer maintained. As the original sample models are not provided
in a UML format, even the previous version of Protégé would not be able to access
them. On the other hand, OpenCDT can import model files from the tools used to
create the sample models. As EMF is profoundly integrated into this platform, not
only the model editing capability but also the modeling user interface framework pro-
vides a familiar look and feel to the aircraft designer. In contrast to Protégé, ontology
editing capabilities are not included in OpenCDT. Aiming at the design goal to create
the Oida framework as an extension to existing modeling applications, OpenCDT was
chosen as Aircraft Modeling Application. However, in order to avoid dependencies
on OpenCDT-specific metamodels, the Oida framework only depends on the ECore
metamodel provided by EMF.

Ontology Framework

For the ontology framework the Jena framework and the Protégé API were consid-
ered. Both are OWL frameworks implemented in Java and released under an open
source license. Whereas the Protégé API is made for the Protégé Ontology engi-
neering tools, Jena has not obviously been developed for a specific application. Due to
its lack of modeling and simulation capabilities, Protégé was not an option as an Air-

craft Modeling Application, Therefore, Jena was chosen as the basic framework for
ontology-related capabilities of Oida. Protégé, however, was used during the imple-
mentation of Oida as an ontology engineering tool not only for preliminary experiments
and validation of Oida-generated ontologies but also for the initial implementation of
the reference ontology.

These decisions had some implications regarding the choice of Platform layer compo-
nents, the Oida programming language, the component model, and the concrete syntax
of Oida-generated files. OpenCDT as the Aircraft Modeling Client implied the
decision for the EMF Client Platform (ECP) [Ecl12a] as Modeling Client Platform

which provides an EMF specific user interface to models. In particular, aiming for user
acceptance, the ModelNavigator of ECP was reused to provide a familiar user interface.
As a primary programming language, the Oida framework adopts Java from its base
frameworks EMF and Jena. Furthermore, the Oida components are implemented as

128

A.2. ModelProvider Plug-in

Modeling Ontology

Specific framework EMF (eMOF) Jena (OWL)

Concrete syntax XMI RDF-XML

File data format XML

Aircraft Modeling Client OpenCDT

Modeling Client Platform ECP

Table A.1.: Selection of off-the-shelf components for the Platform

OSGi plug-ins [OSG12]. Thereby, Oida applications can be loaded as a client exten-
sion to the AircraftModelingApplication. By facilitating an extension to an existing
modeling framework, the second design goal is realized. Regarding the concrete syntax
of serialized artifacts, EMF uses XMI which allows XML-based file exchange with other
modeling tools. Jena supports several concrete OWL syntaxes. The OWL2 specifi-
cation [W3C09] states the RDF-XML syntax ensuring compatibility with most other
ontology engineering tools. Therefore, fulfilling the third design goal, both models and
ontologies are persisted in XML files which is a standard file format.

A.2. ModelProvider Plug-in

The ModelProvider implementation is not evaluated directly in this dissertation. How-
ever, all evaluated plug-ins require its services. Especially, the Transformation plug-in
requires an implementation of ModelElementFilters. Furthermore, the evaluation of
the OntologyGenerator required an implementation of ModelMetrics. Another prac-
tical issue which was raised during the implementation was the capability to determine
the name attribute of a Class, reflectively.

The Transformation plug-in requires lists of model and metamodel elements filtered
by their MOF-defined properties, e.g., all instance Objects or all directly or indirectly
instantiated Classes in a given model. The Oida implementation uses EMF capabilities
to extract all model and metamodel elements such as EObjects, Classes, EAttributes,
and EReferences of a given EMF model. For the implementation of the ModelElement-
Filters, two alternatives were considered: first, an implementation according to the
design in Figure 6.3, and secondly, a simple implementation in one class. In accordance
with the first implementation goal to enable the evaluation, all ModelElementFilters
were realized as simple methods of the Extractor class.

Similar to ModelElementFilter, the architecture for ModelMetric was not consid-
ered relevant for this evaluation. Therefore, it was decided to provide the capability as
methods of the ModelMetrics Helper Class. The implementation of particular metrics
is described in Section 7.2.1.

129

A. Implementation of the Oida Prototype

For the matching of disciplineConcepts with the reference ontology, Oida must
generate a meaningful object identifier. Metamodel Designers usually specify a name at-
tribute for this purpose. However, according to MOF the name attribute is not manda-
tory for Objects. The ModelProvider implements the service to determine the name

using the reflection capabilities of EMF. Thereby, assigning the name attribute by user
interface as part of the Match Models use case or implementing a heuristic was con-
sidered. The name attribute determination service is a prerequisite for the Ontology-

Generator. Therefore, the service must be available before the Matching initiates the
Match Models use case. Therefore, the name attribute determination service was im-
plemented as heuristical method in ModelProvider. The heuristic is analogous to the
method used by the EMF.Edit generator [Ste+08]. In a first cycle, the heuristic looks
for an attribute called name using the reflection capabilities of EMF. If unsuccessful, a
second search looking for an attribute whose name includes name is performed. If still
unsuccessful, the Java object ID is returned. For the given sample models, this heuristic
always returned an accurate name attribute in the first cycle.

A.3. OntologyProvider Plug-in

The OntologyProvider plug-in serves as an adapter to the OntologyFramework, thus
providing an ontology repository to higher layer plug-ins. In particular, the Transfor-

mation plug-in requires an adapter to an InferenceModel implementation. According
to the design in Figure 6.4 the OntologyProvider also provides implementations of the
OntologyFilter and OntologyMetric interfaces.

The implementation of the OntologyFrameworkAdapter classes could be made with
only minor adaptions as Jena directly provides most of the required classes and methods.
To give an example of an adaption, unlike EMF, Jena methods return multiple objects
as iterators instead of lists.

The implementation of the InferenceModelAdapter was carried out and tested with
the Jena standard reasoner on small artificial models. The design of the Oida frame-
work and, in particular, the SemanticValidator of the Matching component is based on
the assumption that an automated Reasoner requires less than 3 seconds to determine
ontology consistency and to produce a meaningful report if an inconsistency is detected.
However, a complete classification cycle with more realistic ontologies generated from
the sample models required considerably more than 3 seconds. The evaluation strategy
is focused rather on the feasibility of an interactive Match Models use case than on the
validation of particular automated KnowledgeSources. Therefore, it was decided to use
Protégé via file exchange as an external tool for ontology validation and maintenance.
Thereby, the automated integrated reasoning capability was traded with an external ap-
plication which allows validation of Oida ontologies offline, testing a variety of reasoners
like Pellet [Sir+07] or HermiT [SMH08]. The file exchange was facilitated by the im-
plementation of the OntologyFileHandler adapter which was realized as a HelperClass.
Similar to the ModelProvider plug-in, a simplified implementation of OntologyMetrics
was chosen, which is described in more detail in Section 7.2.1.

130

A.4. Transformation Plug-in

Modeling Ontology TS

UML EMF OWL

Entities
Class EClass Class

Instance EObject Individual

Characteristic Attribute EAttribute Datatype property

Links

Association EReference Object property

Composition EContainer N/A (upper ontology import)

Superclass ESuperType Superclass

Table A.2.: Mappings between modeling and ontology concepts. For the modeling con-
text both the UML and the corresponding concepts in EMF are listed. As
Composition is not specified by OWL, the concept has to be imported from
the mereology.owl upper ontology which is a part of the referenceOnto-

logy.

A.4. Transformation Plug-in

The Transformation subsystem, which a critical component of the Oida framework,
is evaluated separately in Section 7.2.1. In order to provide the ontology-based model
transformation service, OntologyGenerator, MetamodelGenerator, and ModelTrans-

formation were essentially implemented according to Figure 6.6.

The OntologyGenerator uses the ModelElementFilters for InstanceObjects, Clas-
ses, and StructuralFeatures of the ModelProvider to generate an OWL ontology
according to the model ↔ ontology mapping schema in Table A.2 and a Renamer-

Strategy. The concept mapping schema, which is in accordance with the guidelines
published by the Object Management Group [Obj09], has no direct mapping between
Composition in UML or Containment in EMF and OWL. It has to be expressed by
an upper ontology which is designed according to Rector et al. [Rec+05]. Appendix B
describes this mereology upper ontology in more detail. The transformation realized by
the OntologyGenerator is a homomorphism, as every Object is transformed into an In-

dividual. However, it is not an isomorphism as not all possible concepts of an ontology
can be transformed into a model. For instance, OWL constructs, such as Antisymmetric
Property or Anonymous Class, cannot be translated to an EMF model.

The data types specific to modeling tools for attribute values are not only used to
increase the model integrity but also to express semantics. Mapping data types between
models and ontologies preserves not only information which can be evaluated for semantic
matching but also allows the reuse of native methods for comparing and converting
attribute values. Whereas the conversion of primitive data types is already implemented
in the Jena framework, it requires the developer to register model-specific data types in
a type registry. Up to now, this capability has been evaluated with the Unit data type
used in the APD and Simcad sample models which implements SI and non-SI units

131

A. Implementation of the Oida Prototype

of measures. OWL does not offer special data types but uses the data types defined
in the XML Schema Definition (XSD). The first prototype of the OntologyGenerator

translated domain-specific values of data types not covered by the Jena framework
to a String representation. However, this implementation did not allow adoption of
discipline-specific data types to the referenceOntology. Furthermore, it hindered the
reuse of implementations of type-specific methods determining equality. For instance,
the Unit class used in the APD and Simcad sample metamodels allows conversion
between different units of measure. Therefore, the Transformations between models
and ontologies such as the OntologyGenerator and the MetamodelGenerator implement
an adapter to the capabilities of the Jena framework. Jena provides a bidirectional type
mapping registry which allows registering user-defined data types by ad hoc creation of
non-standard data types in an ontology .

One of the core features of the Oida framework is the matching of objects which rep-
resent the same physical object. This capability is realized by the OntologyGenerator

transforming EMF models to OWL ontologies. However, both EMF and OWL have
different concepts of object identity. Basically, an OWL ontology is a set of statements
about OntologyResources and their relations to each other. Thereby, every Ontology-

Resource has a Unified Resource Identifier (URI). According to the design requirement
for an injective model-to-model mapping, a renaming schema must generate a unique
URI for every Object. The URI should be readable for humans to allow low level on-
tology maintenance and plausibility checks. In that sense a URI such as http://bhl.

net/aircraft.owl#wingspan is preferable to http://bhl.net/aircraft.owl#105154.
Therefore, the implementation of a suitable RenamerStrategy was based on three as-
sumptions. First, that almost every object has a name attribute; secondly, that the
value of the name attribute of a model element indicates its meaning; and thirdly, that
the value of the name attribute of its container object indicates the context. EMF stip-
ulates that every metamodel element like EClass, EAttribute, and EReference has a
name attribute which informally indicates the semantics of the metamodel element com-
prehensible for the developer. Instances of EObject, which is the root class of ECore,
do not have a specified name attribute. Therefore, RenamerStrategy implementations
use the name attribute heuristic of the ModelProvider. Furthermore, in EMF every
EObject provides an EContainer reference which allows navigation of the containment
tree of a model. Taking Object Identity, name attribute value, and EContainer ref-
erences as sources, three alternatives for a RenamerStrategy were considered during
implementation:

ClassName:ObjectName Whereas in EMF the name of a class is unambiguous in a
certain name space, its combination with the object name is ambiguous in EMF, as the
object name is an arbitrary user-defined attribute which in a valid model can be used
more than once. Furthermore, this renaming schema abandons the context within the
model and provides no version information about the object.

132

http://bhl.net/aircraft.owl#wingspan
http://bhl.net/aircraft.owl#wingspan
http://bhl.net/aircraft.owl#105154

A.4. Transformation Plug-in

Object Identity The Object Identity is unambiguous within a runtime environment
(see Section 2.1) However, the Object Identity deliberately abandons the conceptual and
structural context. Accordingly, it does not represent the semantic identity of an object.
Furthermore, an Object Identity which is unreadable for humans makes interactive low
level ontology maintenance and engineering impossible.

ContainerName.ObjectName This renaming schema includes the context of the ob-
ject. Furthermore, after a first manual inspection of the sample models, it was considered
to be unambiguous for the given models. Therefore, this RenamerStrategy was imple-
mented in the Oida framework.

The decision for the selection of a RenamerStrategy was based on the necessity of
the development process to inspect the ontologies in order to verify the algorithms.
Therefore, the ContainerName.ObjectName strategy was considered the most adept al-
ternative. Consequently, the implementation of this RenamerStrategy was used in the
evaluation described in Section 7.2.1, Section 7.2.2, and Section 7.2.3. The evaluation of
the transformation TMO described in Section 7.2.1, however, revealed that the first con-
tainer level is sufficient to rename model EAttributes and EReferences unambiguously
but not to rename EObjects.

The MetamodelGenerator creates the referenceMetamodel from the referenceOn-

tology using the mapping schema shown in Table A.2 and the type mapping capability
as used by the OntologyGenerator, but in the opposite direction. The implementa-
tion not only employs OntologyFilters to iterate through different kinds of reference
concepts but also uses the capability of the EMF framework to dynamically generate
a metamodel. In contrast to the OntologyGenerator, MetamodelGenerator uses the
local name suffix of the URI for naming metamodel elements, as the URI is unique by
definition.

The ModelTransformation in Figure 6.6 transforms a disciplineModel with seman-
tically overlapping content to a common metamodel. Performing this transformation two
disciplineModels, conforming to different metamodels, can be compared and merged
using existing metamodel-based frameworks. The implementation of ModelTransfor-

mation is based on the assumption that the direct model-to-model transformation can be
determined indirectly by the equivalence statements between instance and metaconcepts
of disciplineOntology, derived from the disciplineModel to the referenceOntolo-

gy.

This transformation is a homomorphism regarding the model representation of EOb-

jects, EClasses, and EAttributes. The Oida framework disregards behavior and links
of entities to other entities. Accordingly, the Oida framework is neither able to detect
conflicts of these model element features nor does it support their migration from one
model to the other. During th runtime of the Transformation plug-in, the ModelTrans-
formation stores the mapping between each disciplineObject and referenceObject

in a mapping model. According to its design, the ObjectMapping also contains a map-

133

A. Implementation of the Oida Prototype

ping between disciplineClass and referenceClass and the respective Attributes.
Thereby, every discipline-specific object can be mapped to a reference classifier, inde-
pendent of the mapping its discipline-specific classifier as long as ontology consistency
is maintained. The ObjectMapping data model has been specified as an Ecore model
and generated using the EMF code generator.

The capability of the Transformation plug-in to map between data types which are
used by the OntologyGenerator and MetamodelGenerator, is basically an adapter to
existing Jena features. The implementation of the ModelTransformation extends this
capability by ontology-based type conversion which is required to merge attribute values
from different but related data types. For instance, in the Simcad sample model, the
attribute representing the number of passengers is a Double type variable, whereas in
APA the same concept is an Integer type variable. Java supports implicit type casting
from Integer to Double. The reverse operation requires the Model Owner’s declaration
that the number of passengers is always an Integer value disregarding the range of the
concrete data type in the disciplineModels. If the attribute transformation algorithm
does not find the data type of the source attribute in the target attribute, it queries
the referenceOntology for another type representing a larger number set. This would
allow implicit type casting. If this is not successful, it queries the referenceOntology

for a data type representing the next smaller number set which would allow number
conversion. If this is still not successful, the target attribute value is not set. However,
the type conversion method only implements the conversions required for the sample
models and emits a warning of potential data loss if implicit type casting is not applicable.

The mapping between the source and the target of ModelTransformation can be
deleted after the Merge Models Partially use case as they are not required during the
runtime of the Transformation plug-in. Thereby, the amount of redundant coupled
artifacts is reduced.

A.5. Matching Plug-in

The design of the Matching features a Blackboard pattern which is based on the
assumption that simple automated heuristics and algorithms can contribute to partial
solutions which are aggregated and exchanged via the Blackboard and orchestrated
by the BlackboardControl. The design stipulates three KnowledgeSources: Name-

EquivalenceFinder, StructuralEquivalenceFinder, and SemanticValidator. Due
to the previous experience with the implementation of the InferenceModel, it was
decided to first develop and evaluate each potential KnowledgeSource for the sample
models, before tackling the implementation of the Blackboard pattern.

The design NameEquivalenceFinder is based on the assumption that if objects have
the same name they most probably represent the same thing. The capability was de-
veloped and tested with artificial aircraft model data. However, tests with sample data
revealed no directly matching names between the referenceOntology and the disci-

plineOntologies. Therefore, this knowledge source was considered ineffective for the
evaluation.

134

A.6. Merging Plug-in

The StructureEquivalenceFinder is based on the assumption that semantically
equivalent objects can be identified by their structure. Accordingly, equivalence of the
attributes of two objects is a strong indication that the two objects represent the same
thing even if the object identifiers are different. The StructureEquivalenceFinder

was implemented evaluating equivalence statements between attributes. It creates an
EquivalenceHypothesis between two classes if there is a bijective equivalence mapping
between the attributes of the classes. This capability was successfully tested with sample
models: After manually mapping three attributes, the StructureEquivalenceFinder

was able to match a metamodel class.

The SemanticValidator was implemented using the InferenceModel adapter imple-
mentation of the ModelProvider plug-in and successfully tested with an artificial model.
However, the drawbacks of the off-the-shelf reasoner described in Appendix A.3 applied.
The unit test required over 20 seconds for a complete classification of a simplistic test
model.

With NameEquivalenceFinder and SemanticValidator being ineffective for the given
sample models, it was unlikely that the StructuralEquivalenceFinder alone would
improve the efficiency of the Match Models use case significantly. Therefore, it was
decided to implement only the EquivalenceHypothesis commands necessary for manual
generation and validation of matching. Thereby, the EquivalenceHypothesis data
model was specified as an ECore model and generated using the EMF code generators.

A.6. Merging Plug-in

The Merging plug-in compares two disciplineModels and determines non-conflicting
SemanticMatches, ConflictCandidates, and ImportCandidates. As shown in Fig-
ure 6.9, the Merging is based on ModelTransformation which is provided by the Trans-
formation plug-in implementation. Moreover, the EMF Compare framework [Ecl12b]
was used as a template for the data model and for validating the implementation. Ac-
cordingly, the data model, which was specified as an ECore model, stipulates a Diff-

Model which contains all instances of SemanticMatch and its subclasses.

In the Merge Models Partially use case, the Model Owner reviews the identified Seman-

ticMatches regarding their plausibility. Therefore, the user interface facilitating Match
Models requires a service which displays the attributes of the matched objects without
exposing the user to the naming convention and data types of the source model. This
service was implemented by IntegrateAttribute which can handle missing attributes
and unset values. Furthermore, the interaction design of the Merge Models Partially
use case requires the capability to measure the state of the DiffModel for progress re-
port. The MergingMetrics implements this service by analyzing the DiffModel with
respect to reported and confirmed conflicts and reported or selected import candidates.
The MergingControl implementation initiates the TransformationControls and the
generation of the DiffModel, and propagates conflict resolution and import decisions to
the targetDisciplineModel and the targetDisciplineOntology.

135

A. Implementation of the Oida Prototype

A.7. Evolution Plug-in

The Evolution plug-in facilitates the Co-Evolution capability of the Oida framework.
According to the design depicted in Figure 6.10, this capability is accomplished by two
kinds of KnowledgeSources: EvolutionAlgorithm and EvolutionHeuristic. How-
ever, due to the ineffectiveness of most automated KnowledgeSources the Black-
board pattern was not implemented. Therefore, EvolutionAlgorithm and Evolution-

Heuristic have been implemented as automated preprocessors to the manual Match
Models use case. These classes are described in detail in Section 7.2.4.

A.8. MatchingApp Plug-in

The purpose of the MatchingApp plug-in is to provide a user interface for the Match
Models process. According to the design in Figure 6.13, the plug-in implements the
ManualEquivalenceCreator and the EquivalenceReviewForm as KnowledgeSource.
As the Blackboard pattern was implemented, these classes are directly controlled
by the MatchingAppControl. The MatchingApp plug-in is started by the implementa-
tion of an ECP ModelElementOpener. When the MatchingApp plug-in is loaded to the
AircraftModelingApplication, the underlying ECP framework lets the Model Owner
select the disciplineSpecificRootObject in his model and start the MatchingApp via
a context menu.

The ExtendingMatchingEditor integrates the ManualEquivalenceCreator and the
EquivalenceReviewForm. During the initialization of the Editor the ImportPrevi-

ousMappingsDialog is shown, which allows the user to load an OWL file which contains
equivalence statements from a previous Match Models session. This dialog controls an
ImportPreviousMappings instance of the Evolution plug-in.

When the import is complete, the user interface depicted in Figure A.1 is displayed.
This Editor is implemented reusing the JFace and the SWT framework provided by
ECP. Thereby, the Model Owner experiences a look-and-feel he is familiar with from
the Aircraft Modeling Platform. If the Model Owner does not find the appropri-
ate referenceOntologyResource during the Match Models use case, he can select the
disciplineOntologyResource and click the “Add Reference” button to open a Cre-

ateReferenceResourceDialog where the appropriate name for the new referenceOn-

tologyResource can be entered. When the user confirms the dialog, the defined re-
source is created in the referenceOntology and an equivalence statement is added to
the disciplineOntologyResource. Upon returning to the ExtendingMatchingEdi-

tor, the user cannot only save the mapped disciplineOntology but also the extended
referenceOntology to an OWL XML file.

The Extending Matching Editor serves as a demonstrator for a user interface which
integrates the Oida framework capabilities which supports the Match Models and Co-
Evolve Integration Artifacts use cases. For the evaluation of the Match Models use case
a special implementation of the MatchingEditor was used which does not allow the

136

A.9. MergingApp Plug-in

Figure A.1.: A screen shot of the ExtendingMatchingEditor

extension of the referenceOntology. This reduced user interface is described in detail
in Section 7.2.2.

A.9. MergingApp Plug-in

The MergingApp provides a user interface which enables the Model Owner to review
SemanticMatchings and decide on ConflictCandidates and ImportCandidates. The
MergingApp was implemented as shown in Figure 6.14. In particular, the SemanticMatchReview-
Form and the ImportCandidateReviewForm are implemented as SWT Dialogs.

Like MatchingApp, the MergingApp plug-in is started by the implementation of an
ECP ModelElementOpener interface. Consequently, the Model Owner can select the
disciplineTargetRootObject in his model and start the MergingApp via a context
menu. As the Merge Models Partially stipulates a predefined disciplineSource-

Model, a selection of a disciplineSourceRootObject is not necessary for the evalu-
ation. Accordingly, the appropriate model and ontology data are loaded automatically.
Furthermore, the mapped disciplineOntologies are loaded and the MatchingCon-

trol is initiated. When MatchingControl has finished creating the DiffModel, the
SemanticMatchReviewForm for matches and conflicts and the ImportCandidateReview-
Form are displayed consecutively. Both Dialogs are implemented based on the JFace

137

A. Implementation of the Oida Prototype

and SWT framework. In particular, the Dialogs use the IntegratedAttribute class
of the Merging plug-in to provide a consistent view of the incoming model data to
support the user in assessing the plausibility of the matching results. The Semantic-

MatchReviewForm displays the detected SemanticMatches and ConflictCandidates

and receives the user’s confirmation or report on implausible matches. Thereby, confir-
mation of a ConflictCandidate is interpreted as a user decision to resolve the conflict.
Accordingly, when the user pushes the button labeled “Next” to conclude the Dialog,
the MergingControl resolves the conflict immediately and the ImportCandidateRe-

viewForm instance is opened.

MigrateDialog

The ImportCandidateReviewForm is the user interface to MergingControl which facil-
itates the interactive process of the Migrate Model Parts use case. The Dialog depicted
in Figure A.3 displays ImportCandidates. The Model Owner can either discard a pro-
posed ImportCandidate or select it for import. In the first case, he can give an additional
review comment. In the latter case, he can define an appropriate disciplineSpeci-

ficName and disciplineSpecificContainer object for the respective model element
selected for import in order to integrate the elements in the naming convention and
decomposition strategy specific to the target model. The possible containers are shown
in a ContainerNavigatorForm which is integrated on the left side of the ImportCandi-

dates dialog. The UI also provides the current attribute values of the selected model
element, reusing IntegrateAttribute. The user concludes the dialog by pushing the
finish button and thereby triggers MergingControl to propagate the confirmed Import-

Candidates to the disciplineTargetModel and the disciplineTargetOntology.

138

A.9. MergingApp Plug-in

Figure A.2.: A screen shot of the ConflictResolutionDialog during the resolution of
an attribute conflict between a Simcad Chief Engineering Model element
and an APD model element representing the width of an aircraft fuselage

Figure A.3.: A screen shot of the MigrateDialog during the import of model elements
from the Simcad Chief Engineering Model to the APA target model

139

B. Implementation of the Reference
Ontology Prototype

The following chapter describes the development of the referenceOntology as it was
used in the evaluation of Match Models and Merge Models Partially, and its revision
during the evaluation of the Co-Evolve Integration Artifacts.

The design of the reference ontology is driven by the ontology mapping capabilities
of the Oida framework and the need to agree on a shared conceptualization between
the Model Owners. If the Oida only supports a simple one-to-one equivalence mapping
between concepts, the reference ontology must be structurally similar to the discipline-
specific models. In addition, the reference ontology must exhibit a structure and naming
convention familiar to the Model Owners in order to facilitate not only the review of
existing conceptualizations but also the agreement on additional domain concepts. Ac-
cordingly, the reference ontology has the following design goals:

Clear scope The Model Owners must agree upon the semantics of the concepts in
the reference ontology. A clear and narrow scope facilitates the agreement, e.g. basic
concepts of an aircraft like wingspan, fuselage and number of passengers. In the course
of model matching sessions, more concepts from the models are added to the reference
ontology by the respective Model Owners. Thereby, the Ontology Owner ensures that
the reference ontology does not contain concepts specific to one particular methodology
or tool. Generally, tool specific concepts are not useful for semantic model matching, as
they are unlikely to appear in other models and will therefore be difficult to agree upon.

Clear minimum content In order to serve as an effective basis for model integration,
the reference ontology contains all concepts from the discipline-specific models which
essentially describe the subject matter. In a conceptual design process a Chief Engi-
neering Model is used to coordinate the design activities. Generally, this model has no
specific focus, a limited level of detail, and can be used as a template for the minimum
content. For example, among the sample models the Simcad sample model has the
lowest level of detail in most aspects of the aircraft. Therefore, the baseline version of
the reference ontology for the evaluation in Chapter 7 was derived from the Simcad
sample model. Furthermore, the reference ontology should contain conceptualizations
of shared metamodel elements. These reference metaconcepts are essential for matching
models conformal to similar metamodels.

Focus on knowledge representation Stemming from the different purpose and intent,
ontologies follow design patterns [GP09] other than models. However, the Oida frame-

141

B. Implementation of the Reference Ontology Prototype

work supports model owners in expanding the reference ontology by transferring entities
and structures from source models to the reference ontology. The Ontology Owner
is responsible for avoiding discipline-specific modeling design patterns in the reference
ontology that are less suitable for knowledge representation and automated reasoning.

Based on standard upper ontologies The reference ontology should import fundamen-
tal concepts of the application domain from standard upper ontologies. For instance,
the domain of conceptual aircraft design is based on fundamental concepts like physical
quantities and units of measure which can be imported into the reference ontology from
existing upper ontologies, such as the “Library for Quantity Kinds and Units” [Kon+11].
This practice of modularization promotes the compatibility of the reference ontology to
other domain ontology creation efforts.

The implementation of the referenceOntology was oriented towards the implemen-
tation goals of Oida aiming at enabling the evaluation and maintaining independence
from specific conceptual design tools. The trade-off between the primary purpose and
the design goals raised three issues regarding the scope of the referenceOntology, the
minimum complexity, and which upper ontology to import.

As mentioned above in Section 1.2.4, the scope of the model integration process de-
scribed in this dissertation has to do with the structural aspects of an aircraft. The
structural description is very concrete compared to other aspects such as aircraft system
behavior. Therefore, the structural aspects are a good basis to expand the reference-

Ontology to other aspects.

The minimum level of detail mentioned in the referenceOntology design goals is
a measure for the complexity of the referenceOntology, i.e. the number of entities
and links between the entities. The demonstration of ontology-based model integration
required at least the coverage of the entities specified in the metamodels involved and
the objects of the master model. Preliminary analysis had shown that the Simcad
sample model was most adept for serving as a Chief Engineering Model. Therefore,
the first version used in the evaluation of Model Matching and Partial Model Merge
was simulated by the Ontology Owner with the Simcad sample model, starting with
an initially empty referenceOntology. Subsequently, the referenceOntology was
extended by the Ontology Owner performing the Match Models use case with the APD
sample model. The APA sample model was not included in the preparation process for
two reasons. First, the naming convention of the APA sample model was very difficult to
comprehend for an Ontology Owner unfamiliar with the APA tool. Without the Model
Owner of APA it would have been difficult to determine the meaning of the concepts
and to decide whether the particular concept was within the scope of the referenceOn-

tology. Secondly, performing the Match Models use case with the APA sample model
using a referenceOntology which was not prepared by the Ontology Owner allowed
investigation of the consequences of such an incomplete reference to the efficiency and
user acceptance of the APA Model Owner.

142

(Class:Thing)

Class:ModelElement

Class:Component

Class:Attribute

Class:Angle

Class:Area

Class:Counter

Class:CounterOfComponents

Class:CounterOfPersons

Class:Density

Class:Dimensionless

Class:Coefficient

Class:Ratio

Class:Force

Class:Thrust

Class:Length

Class:Mass

Class:MassFlow

Class:ProcessQuantity

Class:SpecificThrust

Class:Ratio

Class:StateQuantity

Class:Volume

Class:LiquidVolume

Figure B.1.: The OntologyClasses of the referenceOntology in a taxonomy represen-
tation. Especially the Parameter class is differentiated into many subclasses
in order to keep the number of individuals for each OntologyClass low.

The simulation of the Match Models use case ensured that during the case studies
the ontology matching could be established by simple equivalence statements. Conse-
quently, the referenceOntology basically adopted the distinction between instances and
metaconcepts from the sample models. However, this proceeding aligned the structure
of the referenceOntology more to the specific conventions of the sample models and
thus moved the implementation of the referenceOntology away of the goal to create a
knowledge representation independent from concrete conceptual models. Furthermore,
in contrast to most publicly available upper ontologies, the referenceOntology has a
small number of OntologyClasses and a high number of Individuals. As a conse-
quence, founding the referenceOntology on established external upper ontologies was
not attempted. Figure B.1 shows the Classes of the referenceOntology in a tax-
onomy representation. It contains a NamedClass representation for every class in the
metamodels of the sample models.

143

B. Implementation of the Reference Ontology Prototype

(TopObjectProperty)

defines

hasParameter

(hasPart)

(hasPart directly)

hasSubComponent

(isPartOf)

(isPartOf directly)

Figure B.2.: The taxonomy of ObjectProperties in the referenceOntology. The re-

ferenceOntology uses the same mereology upper ontology as the model to
ontology transformation TMO described in Section A.4.

On the other hand, using the Match Models use case for the initial creation of the
referenceOntology limited the complexity of referenceOntology to a necessary min-
imum required to demonstrate the ontology-based model integration process. Further-
more, Model Owners were more likely to familiarize with a reference similar to their
respective model, thus, being more efficient during the mapping process and more will-
ing to accept the model integration process. Additionally, the Match Models use case
stipulates a generic naming convention for newly created reference concepts. Therefore,
the process conveys a referenceOntology less dependent on a specific sample model.

The implementation of the MatchingApp only evaluates inheritance relations and
DatatypeProperties in order to limit the number of matching candidates. Therefore,
inheritance relationships were created in the referenceOntology aiming to keep the
number of direct instances of every OntologyClass under five Individuals. To express
whole-part relationships on the metaconcept level, the mereology.owl upper ontology
was implemented according to Rector et al. [Rec+05]. Figure B.2 shows the Object-

Properties of the referenceOntology in a taxonomy representation which include the
mereology.owl. As for now, no additional upper ontology was imported.

The DatatypeProperties depicted on the left side of Figure B.3 were derived from
attributes of classes of the sample models. Thereby, the goal was to provide a com-
plete coverage of all attributes, which is necessary especially for ModelTransforma-

tion which generates the input for ModelComparator. These DatatypeProperties

were used in the case studies described in Section 7.2.2 and Section 7.2.3 that evaluated
the Model Matching and Partial Model Merge capabilities. These case studies revealed
that the Z and R number sets were not adequately represented, which led to substantial
ambiguity of the RenamerStrategy employed in OntologyGenerator. Therefore, the
DatatypeProperties of the referenceOntology were extended by the hasRealNum-

berValue property and its subproperty hasIntegerNumberValue. The revised version
of the DatatypeProperty taxonomy depicted on the right side of Figure B.3 was used in
the quasi-experiments evaluating the Co-Evolution capabilities of the Oida framework,
in particular, regarding the type mapping capability described in Section A.4.

144

(TopDatatypeProperty)

hasName

hasUnit

hasValue

(TopDatatypeProperty)

hasName

hasUnit

hasRealNumberValue

hasIntegerNumberValue

Figure B.3.: The DatatypeProperties of the referenceOntology in a taxonomy rep-
resentation. The tree on the left shows the first version in the case studies
of the evaluation. The tree on the right shows the second version used in
the quasi-experiments evaluating the co-evolution capabilities of the Oida
framework.

In general, all ObjectProperties and DatatypeProperties in referenceOntology

have a verb as prefix in order to express a relation between entities.
An excerpt of the reference Individuals embedded in the taxonomy of their respec-

tive reference Classes is depicted in Figure B.4. These reference individuals were used
throughout the evaluation described in Chapter 7.

Both versions of the referenceOntology described can be expressed by the OWL-
Lite syntax.

145

B. Implementation of the Reference Ontology Prototype

Class:Thing

Class:ModelElement

Class:Component

Class:Parameter

Class:Quantity

Class:Angle

UpSweepOfFuselage

DihedralOfHorizontalTailPlane

WingSweep

DihedralOfWing

WingTwist

ZeroLiftAngleOfWing

Class:Area

WingletArea

ReferenceAreaOfHorizontalTailPlane

WettedAreaOfPortsideEngineNacelle

WettedAreaOfWing

ReferenceAreaOfVerticalTailPlane

[...]

Class:Counter

Class:CounterOfComponents

NumberOfShaftsInPortsideEngine

NumberOfShaftsInStarboardEngine

NumberOfTanksInWing

NumberOfWheelsOnMainLandingGear

[...]

Class:CounterOfPersons

NumberOfEconomyClassPassengersAbreast

NumberOfBusinessClassPassengers

NumberOfFirstClassPassengers

NumberOfCabinCrewMembers

NumberOfEconomyClassPassengers

[...]

Class:Density

FuelDensity

Class:Dimensionless

Class:Coefficient

MaximumLiftCoefficientOfWing

DesignedLiftCoefficientOfWing

[...]

[...]

[...]

Figure B.4.: An excerpt of the Individuals of the referenceOntology depicted as in-
stances of the class taxonomy

146

List of Figures

1.1. Aircraft conceptual design process . 2

1.2. Diagram of the top-level use cases . 6

1.3. Data flow relations between Oida artifacts 11

3.1. Excerpt from conceptual aircraft model 22

4.1. Model matching based on a common metamodel 31

4.2. Implicit metamodel separation . 32

4.3. Ontology-based model matching . 32

4.4. Diagram of Match Models use cases . 35

4.5. Flow of events of the Match Models use case 36

4.6. Description of the Match Models use case 37

4.6. Description of the Match Models use case (continued) 38

4.7. Diagram of the Merge Models Partially use cases 40

4.8. Flow of events of the Merge Models Partially use case 42

4.9. Description of the Merge Models Partially use case 43

4.9. Description of the Merge Models Partially use case (continued) 44

4.10. Diagram of Co-Evolve Integration Artifacts use cases 46

4.11. Diagram of the Co-Evolve Integration Artifacts use cases 49

4.12. Description of Co-Evolve Integration Artifacts use case 50

5.1. Diagram of Entity Objects of the Match Models use case 53

5.2. Diagram of Boundary Objects of Match Models use case 55

5.3. Diagram of Control Object of the Match Models 56

5.4. Diagram of Entity Objects of the ontology-based model transformation TM 57

5.5. Diagram of Control Object of the ontology-based model transformation TM 58

5.6. Diagram of Entity Objects of the Merge Models Partially use case 61

5.7. Diagram of Boundary Objects of Merge Models Partially use case 64

5.8. Diagram of Control Objects of the Merge Models Partially use case 65

5.9. Diagram of Entity Objects of the Co-Evolve Integration Artifacts use case 67

5.10. Diagram of Control Objects of the Co-Evolve Integration Artifacts 69

6.1. Component diagram of the Oida framework architecture 73

6.2. Class diagram of Platform layer . 74

6.3. Class diagram of ModelProvider subsystem 76

6.4. Class diagram of OntologyProvider subsytem 77

6.5. Class diagram OntologyResources adapter interfaces 78

147

List of Figures

6.6. Class diagram Transformation subsystem 81
6.7. Class diagram of the Matching subsystem 83
6.8. Matching knowledge sources . 84
6.9. Class diagram of the Merging subsystem 86
6.10. Class diagram of the Evolution subsystem 88
6.11. Evolution knowledge sources . 89
6.12. MatchingApp knowledge sources . 91
6.13. Class diagram of the MatchingApp application 92
6.14. Class diagram of the Merginging App application 93
6.15. Oida knowledge sources overview . 95

7.1. Screen shot of the MatchingEditor . 107

A.1. Screen shot of the ExtendingMatchingEditor 137
A.2. Screen shot of the ConflictResolutionDialog 139
A.3. Screen shot of the MigrateDialog . 139

B.1. Taxonomy of reference OntologyClasses 143
B.2. Taxonomy of reference ObjectProperties 144
B.3. Taxonomy of reference DatatypeProperties 145
B.4. Taxonomy of reference Individuals . 146

148

List of Tables

2.1. Six kinds of composition . 16

5.1. Definitions of Entity Objects of the Match Models usecase 54
5.2. Definitions of Boundary Objects of the Match Models use case 55
5.3. Definition of the Control Objects of the Match Models use case 56
5.4. Definition of Entity Objects of the ontology-based model transformation . 59
5.5. Definitions of Control Objects of the Merge Models Partially use case . . 59
5.6. Definitions of Entity Objects of the Merge Models Partially use case . . . 62
5.6. Definitions of Entity Objects of the Merge Models Partially (continued) . 63
5.7. Definitions of Boundary Objects of the Merge Models Partially use case . 63
5.8. Definition Control Object of the Merge Models Partially use case 64
5.9. Definitions of Entity Objects of the Co-Evolve Integration Artifacts . . . 68
5.10. Definitions of Control Objects of the Co-Evolve Integration Artifacts . . . 69

6.1. Definitions of Oida KnowledgeSources 94

7.1. Overview of the Oida evaluation . 100
7.2. Measurements from quasi-experiments QE 1.1, QE 1.2, and QE 1.3 103
7.3. Efficiency rating scale . 105
7.4. Measurements from case studies evaluating Model Matching 109
7.5. Measurements from case studies evaluating Partial Model Merge 115
7.6. Measurements from quasi-experiment QE 2.1 119
7.7. Measurements from quasi-experiment QE 2.2 119

A.1. Selection of off-the-shelf components for the Platform 129
A.2. Mappings between modeling and ontology metaconcepts 131

149

Bibliography

[Ada84] John G. Adair. “The Hawthorne effect: A reconsideration of the method-
ological artifact.” In: Journal of Applied Psychology 69.2 (1984), p. 334.

[AK03] Colin Atkinson and Thomas Kuhne. “Model-Driven Development: A Meta-
modeling Foundation”. In: Software, IEEE 20.5 (Sept. 2003), pp. 36 –41.

[BHS07] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern-Oriented
Software Architecture: A Pattern Language for Distributed Computing. 1st ed.
Vol. 4. John Wiley & Sons, 2007.

[BHS08] Franz Baader, Ian Horrocks, and Ulrike Sattler. “Description Logics”. In:
Handbook of Knowledge Representation. Ed. by Frank van Harmelen, Vladimir
Lifschitz, and Bruce Porter. Vol. 3. Foundations of Artificial Intelligence. El-
sevier, 2008, pp. 135 –179.

[Böh12] Daniel Böhnke. CPACS – A Common Language for Aircraft Design. Apr.
2012. url: http://software.dlr.de/p/cpacs/home/.

[Bru+06] Greg Brunet, Marsha Chechik, Steve Easterbrook, Shiva Nejati, Nan Niu,
and Mehrdad Sabetzadeh. A Manifesto for Model Merging. Shanghai, China,
2006.

[DFV07] Marcos Didonet Del Fabro and Patrick Valduriez. “Semi-automatic Model
Integration using Matching Transformations and Weaving Models”. In: Pro-
ceedings of the 2007 ACM symposium on Applied computing. SAC ’07. ACM,
2007, pp. 963–970.

[Dil88] Craig Dilworth. “Identity, Equality and Equivalence”. In: Dialectica 42.2
(1988), pp. 83–92.

[Doa+03] AnHai Doan, Jayant Madhavan, Robin Dhamankar, Pedro Domingos, and
Alon Halevy. “Learning to Match Ontologies on the Semantic Web”. In:
The VLDB Journal 12 (4 2003), pp. 303–319.

[Ecl12a] Eclipse Foundation. EMF Client Platform project home. 2012. url: http:
//eclipse.org/emfclient/.

[Ecl12b] Eclipse Foundation. EMF Compare. 2012. url: http://eclipse.org/

emfcompare/.

[Fel10] Christiane Fellbaum. “WordNet”. In: Theory and Applications of Ontology:
Computer Applications. Ed. by Roberto Poli, Michael Healy, and Achilles
Kameas. Springer Netherlands, 2010, pp. 231–243.

[Gam+94] Erich Gamma, Richard Helm, Ralph E. Johnson, and John Vlissides. Design
Patterns. 1st ed. Addison-Wesley Reading, MA, 1994.

151

http://software.dlr.de/p/cpacs/home/
http://eclipse.org/emfclient/
http://eclipse.org/emfclient/
http://eclipse.org/emfcompare/
http://eclipse.org/emfcompare/

Bibliography

[Gaš+04] Dragan Gašević, Dragan Djurić, Vladan Devedžić, and Violeta Damjanović.
“Converting UML to OWL Ontologies”. In: Proceedings of the 13th inter-
national World Wide Web conference on Alternate track papers & posters.
WWW Alt. ’04. ACM, 2004, pp. 488–489.

[GB99] Erich Gamma and Kent Beck. “JUnit: A Cook’s Tour”. In: Java Report 4.5
(1999), pp. 27–38.

[GP09] Aldo Gangemi and Valentina Presutti. “Ontology Design Patterns”. In:
Handbook on Ontologies. Ed. by Steffen Staab and Rudi Studer. Inter-
national Handbooks on Information Systems. Springer Berlin Heidelberg,
2009, pp. 221–243.

[Gro11] Object Management Group. OMG’s Meta Object Facility (MOF) – Home
Page. Dec. 2011. url: http://www.omg.org/mof/.

[Gro12] Object Management Group. OMG SysML. Apr. 2012. url: http://www.
omgsysml.org/.

[Gru09] Tom Gruber. “Ontology”. In: Encyclopedia of Database Systems. Ed. by
Ling Liu and M. Tamer Özsu. First. Springer Publishing Company, Incor-
porated, 2009.

[HBJ09] Markus Herrmannsdoerfer, Sebastian Benz, and Elmar Juergens. “Automata-
bility of Coupled Evolution of Metamodels and Models in Practice”. In:
Model Driven Engineering Languages and Systems. Ed. by Sophia Drossopoulou.
Vol. 5653. Lecture Notes in Computer Science. Springer Berlin/Heidelberg,
2009, pp. 52–76.

[Hen11] B. Henderson-Sellers. “Bridging metamodels and ontologies in software en-
gineering”. In: Journal of Systems and Software 84.2 (2011), pp. 301–313.

[HH10] Harry Halpin and Patrick. J. Hayes. “When owl:sameAs isn’t the Same: An
Analysis of Identity Links on the Semantic Web”. In: Proceedings of the
WWW2010 workshop on Linked Data on the Web, LDOW2010. 2010.

[HP08] Jon Holt and Simon Perry. SysML for Systems Engineering. Vol. 7. The
Institution of Engineering and Technology, 2008.

[HVW11] Markus Herrmannsdoerfer, Sander Vermolen, and Guido Wachsmuth. “An
Extensive Catalog of Operators for the Coupled Evolution of Metamodels
and Models”. In: Software Language Engineering. Ed. by Brian Malloy, Stef-
fen Staab, and Mark van den Brand. Vol. 6563. Lecture Notes in Computer
Science. Springer Berlin / Heidelberg, 2011, pp. 163–182.

[ISO94] ISO. Industrial Automation Systems and Integration – Product Data Repre-
sentation and Exchange – Part 1: Description Methods: Overview and Fun-
damental Principles. Tech. rep. ISO 10303-1. International Organization for
Standardization, Geneva, Switzerland., 1994.

152

http://www.omg.org/mof/
http://www.omgsysml.org/
http://www.omgsysml.org/

Bibliography

[JAS10] Ricardo Jardim-Goncalves, Carlos Agostinho, and Alfonso Steiger-Garcao.
“Sustainable Systems’ Interoperability: A reference model for seamless net-
worked business”. In: Systems Man and Cybernetics (SMC), 2010 IEEE
International Conference on. Oct. 2010, pp. 1785 –1792.

[JBR99] Ivar Jacobson, Grady Booch, and James Rumbaugh. The Unified Software
Development Process. Addison-Wesley Object Technology. Pearson Educa-
tion, Limited, 1999.

[Jou+08] Frédéric Jouault, Freddy Allilaire, Jean Bézivin, and Ivan Kurtev. “ATL: A
model transformation tool”. In: Science of Computer Programming 72.1 –
2 (2008), pp. 31 –39.

[KBA02] Ivan Kurtev, Jean Bézivin, and Mehmet Akşit. “Technological Spaces: An
Initial Appraisal”. In: International Conference on Cooperative Informa-
tion Systems (CoopIS), DOA’2002 Federated Conferences, Industrial Track,
Irvine, USA. Oct. 2002, pp. 1–6.

[KC86] Sertag N. Khoshafian and George P. Copeland. “Object Identity”. In: Con-
ference proceedings on Object-oriented programming systems, languages and
applications. OOPLSA ’86. Portland, Oregon, United States: ACM, 1986,
pp. 406–416.

[Kög11] Maximilian Kögel. “Operation-based Model Evolution”. PhD thesis. Tech-
nische Universität München, 2011.

[Kon+11] Hans Peter de Koning, Nicolas Rouquette, Roger Burkhart, Huascar Es-
pinoza, and Laurent Lefort. Library for Quantity Kinds and Units. 2011.
url: http://www.w3.org/2005/Incubator/ssn/ssnx/qu/qu.html.

[Kra+06] Gerti Kramler, G. Kappel, T. Reiter, E Kapsammer, W. Retschitzegger,
and W. Schwinger. “Towards a Semantic Infrastructure Supporting Model-
based Tool Integration”. In: Proceedings of the 2006 international workshop
on Global integrated model management. GaMMa ’06. ACM, 2006, pp. 43–
46.

[Maa10] Walid Maalej. “Intention-Based Integration of Software Engineering Tools”.
PhD thesis. Technische Universität München, 2010.

[Mel+02] Stephen Mellor, Kendall Scott, Axel Uhl, and Dirk Weise. “Model-Driven
Architecture”. In: Advances in Object-Oriented Information Systems. Ed.
by Jean-Michel Bruel and Zohra Bellahsene. Vol. 2426. Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2002, pp. 233–239.

[Noy04] Natalya F. Noy. “Semantic Integration: A Survey Of Ontology-Based Ap-
proaches”. In: SIGMOD Rec. 33.4 (2004), pp. 65–70.

[Obj09] Object Management Group. Ontology Definition Metamodel. Tech. rep. OMG,
2009. url: http://www.omg.org/spec/ODM/1.0/.

[Ode94] James J. Odell. “Six Different Kinds of Composition”. In: Journal of Object-
Oriented Programming 5.8 (1994), pp. 10–15.

153

http://www.w3.org/2005/Incubator/ssn/ssnx/qu/qu.html
http://www.omg.org/spec/ODM/1.0/

Bibliography

[OMG11] OMG. Object Management Group – UML. Dec. 2011. url: http://www.
uml.org/.

[OSG12] OSGi Alliance. OSGi Core Release 5. Tech. rep. OSGi Alliance, 2012.

[Pea+04] Russell S. Peak, Joshua Lubell, Vijay Srinivasan, and Stephen C. Water-
bury. “STEP, XML, and UML: Complementary Technologies”. In: Journal
of Computing and Information Science in Engineering 4.4 (2004), pp. 379–
390.

[Pir74] Robert M. Pirsig. Zen and the Art of Motorcycle Maintenance. New York:
William Morrow & Company, 1974.

[Ray06] Daniel P. Raymer. Aircraft Design. 4th ed. American Institute of Aeronau-
tics and Astronautics, 2006.

[Rec+05] Alan Rector, Chris Welty, Natasha Noy, and Evan Wallace. Simple part-
whole relations in OWL Ontologies. Tech. rep. W3C, Aug. 11, 2005. url:
http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/

index.html.

[Ros08] Stephan Roser. “Designing and Enacting Cross-organisational Business Pro-
cesses: A Model-driven, Ontology-based Approach”. eng. PhD thesis. Uni-
versitätsstr. 22, 86159 Augsburg: University of Augsburg, 2008.

[Ros93] Lois Rossetto, ed. Wired premiere issue. 1993.

[Sch03] James Schoening. Standard Upper Ontology Working Group (SUO WG)–
Home Page. Dec. 2003. url: suo.ieee.org.

[Sei12] Arne Seitz. “Advanced Methods for Propulsion System Integration in Air-
craft Conceptual Design”. PhD thesis. Technische Universität München,
2012.

[Sir+07] Evren Sirin, Bijan Parsia, Bernardo Cuenca Grau, Aditya Kalyanpur, and
Yarden Katz. “Pellet: A practical OWL-DL reasoner”. In: Web Semantics:
Science, Services and Agents on the World Wide Web 5.2 (2007), pp. 51
–53.

[SMH08] Rob Shearer, Boris Motik, and Ian Horrocks. “HermiT: A Highly-Efficient
OWL Reasoner”. In: Proceedings of the 5th International Workshop on
OWL: Experiences and Directions (OWLED 2008). 2008, pp. 26–27.

[Ste+08] Dave Steinberg, Frank Budinsky, Marcello Paternostro, and Ed Merks. EMF:
Eclipse Modeling Framework. 2nd ed. Addison Wesley, 2008.

[SZMA11] David Simon Zayas, Anne Monceaux, and Yamine Ait-Ameur. “Using Knowl-
edge and Expressions to Validate Inter-Model Constraints”. In: World Congress.
Vol. 18. 1. 2011, pp. 2737–2742.

[W3C09] W3C. OWL 2 Web Ontology Language Document Overview. Oct. 2009. url:
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/.

154

http://www.uml.org/
http://www.uml.org/
http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/index.html
http://www.w3.org/2001/sw/BestPractices/OEP/SimplePartWhole/index.html
suo.ieee.org
http://www.w3.org/TR/2009/REC-owl2-overview-20091027/

Bibliography

[WCH87] Morton E. Winston, Roger Chaffin, and Douglas Herrmann. “A Taxonomy
of Part-Whole Relations”. In: Cognitive Science 11.4 (1987), pp. 417 –444.

[Woh+00] Claes Wohlin, Per Runeson, Martin Höst, Magnus C. Ohlsson, Björn Reg-
nell, and Anders Wesselén. Experimentation in Software Engineering. Vol. 6.
Springer, 2000.

[ZGS11] Sven Ziemer, Martin Glas, and Gernot Stenz. “A Conceptual Design Tool for
Multi-Disciplinary Aircraft Design”. In: Aerospace Conference, 2011 IEEE.
Mar. 2011, pp. 1–13.

155

	Introduction
	Current Practice
	Ontology-based Model Integration: Overview
	Match Models Use Case
	Merge Models Partially
	Co-Evolve Integration Artifacts Use Case
	Research Questions
	Scoping

	Research Process and Outline

	Terminology
	Equivalence
	Mereology
	Technological Spaces

	Problem Definition and Related Work
	Sample Models
	Oida Requirements and Constraints
	Related Work
	Tool and Model Integration
	Ontology Generation and Matching
	Evolution of Coupled Artifacts

	The Oida Functional Model
	The Model Matching Capability
	The Partial Model Merge Capability
	The Co-Evolution Capability

	The Oida Analysis Object Model
	Analysis Objects of the Match Models Use Case
	Analysis Objects of the Ontology-based Model Transformation TM
	Analysis Objects of Merge Models Partially Use Case
	Analysis Objects of Co-Evolve Integration Artifacts Use Case

	The Oida Framework Design
	Design Goals and Architecture
	Platform Layer
	Provider Layer
	Transformation Layer
	Service Layer
	Application Layer
	Oida Knowledge Sources: Overview

	Evaluation
	Evaluation Design
	Empirical Studies
	Evaluation of the Transformation TMO
	Evaluation of the Model Matching Capability
	Evaluation of the Partial Models Merge Capability
	Evaluation of the Co-Evolution Capability
	Threats to Validity

	Results

	Conclusion and Outlook
	Contributions
	Integrating other Dimensions of Conceptual Models

	Implementation of the Oida Prototype
	Selection of Basic Frameworks
	ModelProvider Plug-in
	OntologyProvider Plug-in
	Transformation Plug-in
	Matching Plug-in
	Merging Plug-in
	Evolution Plug-in
	MatchingApp Plug-in
	MergingApp Plug-in

	Implementation of the Reference Ontology Prototype

