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Zusammenfassung
Die vorliegende Arbeit behandelt eine Methode für nichtreflektierende Randbedingungen für das
Lattice Boltzmann Verfahren zur Simulation von Fluidströmungen. Sie basiert auf integraler
Impulserhaltung mit einem analytischen Zeitintegrationsmodel. Die daraus resultierende
Unabhängigkeit von räumlichen Gradienten und zeitlichen Ableitungen ermöglicht eine stabile
Umsetzung für beliebige Einfallsrichtungen von Druckwellen. Dabei weist sie eine Genauigkeit
bezüglich der Restreflektion für alle Richtungen auf, die bei charakteristikenbasierten Ansätzen
nur im Fall eines senkrechten Einfalls erreicht wird. In der Arbeit wird eine Methode erläutert,
die eine Randwertanpassung erlaubt (Druck, Geschwindigkeit) unter Berücksichtigung eines
vorgegebenen maximalen Restreflektionsgrads. Darüber hinaus wird die Anwendung bei einem
Flachwassergleichungsmodel gezeigt.

Abstract
This thesis presents an approach for non-reflecting boundary conditions for the Lattice Boltz-
mann Method for the simulation of fluid flows. It is based on integral momentum conservation
with an analytical time integration model. The resulting independence of spatial gradients and
time derivatives provides a stable implementation for arbitrary directions of incidence of the
pressure waves. The residual reflection is for any direction of the same order as achieved by
characteristic based approaches only in case of a normal incidence. In this work, a method is
described which allows for a boundary state adaption (pressure, velocity) based on a predeter-
mined maximum residual reflection rate. Additionally, its applicability is shown for a nonlinear
shallow water equation model.
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Chapter 1

Introduction

The Lattice Boltzmann Method
The Lattice Boltzmann Method (LBM) emerged in the early nineties from research on Lattice
Gas Cellular Automata (LGCA). It was a breakthrough in terms of efficiency, compared to
the predecessor method, and made it competitive with classical Navier-Stokes approaches (cf.
Krafczyk [35]). Since then, the method evolved and is already well established in industry (cf.
Exa Corp. [1]).
There are fundamental advantages of the LBM compared to classical Navier-Stokes approaches.

The simplicity of the underlying explicit evolution scheme allows a very efficient implementation.
Basically the core of the algorithm is a plain shift operation, involving directly neighboring
grid points, and a strictly local collision operation. Due to this property, the method is readily
implemented on parallel computers, even if a fine-grained parallelism is required. The commonly
used equidistant square lattices allow for a most efficient grid generation (cf. Wenisch et al.
[61]), excellent memory efficiency and permit to implement algorithms for complex or even
moving geometries in a way that the computational cost is effectively reduced to a minimum
(cf. Kollmannsberger et al. [34], Geller [18]).
Another field of application where the LBM proves to be applicable in a favorable manner is

the field of multiphase flow. Demonstrating the efficiency of the LB method, Tölke et al. solved
a multiphase flow problem of industrial relevance [58]. The article additionally describes the
potential of implementing LBM on conventional graphics hardware (Graphic Processing Units,
GPUs). As shown already by Tölke and Krafczyk ([57], [59]), this architecture is particularly
well suited for the LBM and seems to have revolutionized its application: It is easily possible
to utilize about 60% of a GPU’s peak performance. This opens up whole new perspectives to
real-time steering applications (cf. Linxweiler et al. [40]).
Of course there are also inherent restrictions to the LBM. First, there is the restriction to

low Mach number flow (Ma . 0.3). Current research is conducted in order to overcome this
problem (cf. Nie et al. [49]). Second, the LBM covers only isothermal flow, although coupled
schemes with the Boussinesq approximation can be used (cf. Guo et al. [21]). An extension to
thermal multispeed models seems to lack stability (cf. McNamara et al. [42]).
Furthermore, the time integration is limited to first order. Dellar presents progress towards

ways to obtain second order accurate schemes [11]. Moreover, turbulence modeling has not
yet reached the level of maturity that characterizes implementations of classical Navier-Stokes
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based methods.

LBM and Aeroacoustics
As will be shown in chapter 3, the so-called incompressible LBM unifies the advantages of a
weakly compressible continuity and Navier-Stokes equation paired with a pressure scale relative
to an ambient pressure instead of an absolute one. This has an important implication for the
field of aeroacoustics. Classically, such problems are tackled either by using incompressible
Navier-Stokes equations with a coupled transport equation for the acoustic field or by using
fully compressible Navier-Stokes equations. Both demand a huge computational effort, the
latter also covers only the absolute pressure. An acoustical phenomenon in the range of 10−5

Pa added to an ambient pressure of 105 Pa would cause a significant loss of accuracy for
numerical computation. The IEEE 754 single precision floating point number format would
not even be adequate to cover that range.
The incompressible LBM is not affected by both problems, which makes it especially useful for

aeroacoustics (cf. Wilde [62], Neuhierl [48]). The recent development of commercial products
(e.g. Exa PowerACOUSTICS [1]) reflects this fact. Prof. Peter Zeller, Director of Acoustics
and Vibration at BMW AG, wrote about the Lattice Boltzmann Method in 2009: "It can be
predicted that for numerical aeroacoustics a similar wide range of application opens similar as
it emerged ten years ago in the field of aerodynamics." (translated from German [63]).

Non-reflecting Boundary Conditions
For aeroacoustics, an important problem are spurious pressure waves reflected from the
boundary of the domain. Even for conventional flow problems, the LBM is known to suffer
from spurious pressure waves, usually caused by poor initialization. Both require the use of
non-reflecting boundary conditions.
In general one has to clarify what part of the flow should not be reflected, i.e. what part of

the flow should not interact with the domain. Naturally this would be the interaction which is
not influencing the flow itself, but is superimposed and distracts the significant signals. The
part of the flow which is not interacting with the flow itself are reflected sound pressure waves,
provided it is in the regime of linear acoustics. On the other hand, also pressure changes
propagate with speed of sound. Prohibiting reflection of sound in general will result possibly
in a wrong boundary state. The remedy is to allow a certain rate of reflection.
The next issue is to clarify what sound actually means under the condition that it is not

influencing the flow. Although this might seem trivial, this is not unambiguous at all. In
acoustics, sound is usually defined by a frequency range of a pressure fluctuation, which then
can be isolated and treated separately. This could be done with a high-pass filter, as described
in section 5.1. An alternative definition is that sound is a pressure change propagating with
speed of sound, provided that the flow itself is of low Mach numbers. This includes also
infrasound. For a general fluid flow, a pressure change will in general not be propagating with
speed of sound, e.g. in the case of transported vortices.
The key issue is how to "remove" the unwanted sound component on the boundary. If the

sound pressure respectively sound density can be separated, a first approach would be to



Introduction 3

simply remove it by low-pass filtering. Unfortunately sound does not only appear in pressure
or density, but particle velocity and even temperature as well. To retain the velocity results
inevitably in a wrong momentum and a reflection in consequence. In fact, both have to be
adapted, according to the well known physical concept of their proper ratio, the impedance.
A requirement for a boundary which even exceeds non-reflection is to create one which

appears to be not existing, as if a free field would continue. A free field boundary condition
of course has to fulfill much more than simply not to reflect sound pressure waves, it has
to recover the correct fluid state of a free field. As the system is under-determined on the
boundary (information is virtually cut away), simulation of a proper free field is theoretically
impossible. Consequently, certain assumptions have to be made to close the problem.
There exist numerous approaches which re-determine the state on the boundary, so that a

non-reflecting boundary condition can be installed. A survey is e.g. provided by Kam et al.
[31]. As there will always be an assumption having contradicting conditions and consequently
resulting in an error, it is simply not possible to have a perfectly non-reflecting boundary
condition. The challenge is to chose the one with the least deficiencies for the problem of
interest.
An approach implemented for the LBM by Kim et. al. [33] and by Izquierdo and Fueyo [28],

based on the work of Thompson [56] respectively Poinsot and Lele [51], is the characteristics-
based boundary condition, which solves the Euler equations in normal direction to the boundary.
While the assumption of zero viscosity might not cause a significant error (an extension covering
viscous interaction is offered), the perpendicular approximation, involving finite differences
in space, does: For transversely incoming sound pressure waves, there will be a significant
reflection.
The crucial assumption of the boundary condition presented in chapter 6 is different. The

prerequisite is that every pressure change propagates with speed of sound. For an inflow
boundary condition this might be without consequences, because emerging turbulence will not
reach the inflow boundary. On an outflow boundary, convected vortices will contradict the
assumption. This will result in a slight over-adaption of pressure and velocity.
As a second prerequisite in chapter 6, a viscous pressure loss is not considered. Actually this

is not a necessary condition: With a proper velocity gradient information on the boundary
node, it might be possible to include also viscid flow. Anyhow, a viscous extension like the one
offered by Poinsot and Lele [51] for proper boundary state adaption (velocity or pressure) is
included, although in a different way.

Overview
To clarify the terminology and introduce important derivations used throughout the thesis,
chapter 2 will sketch the governing equations in fluid mechanics from a classical, macroscopic
point of view. Chapter 3 will then illustrate the Lattice Boltzmann Method and its analysis, i.e.
the formal link to the macroscopic equations of chapter 2. Chapter 4 follows with a discussion
of different approaches for boundary conditions used in the subsequent sections. Chapter 5
introduces both already mentioned approaches to non-reflecting boundary conditions. The
first part of the chapter is about low-pass filtering, probably the most intuitive approach, and
includes the theory of discrete low-pass filter design from scratch, with application to LBM
as well as its implementation. The second part discusses in detail the involved Navier-Stokes
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characteristic boundary conditions, which are widely used. It will be illustrated that this
approach is closely related to the boundary conditions of the subsequent chapter 6, which, as
the core of this thesis, describes an integral approach with isotropic behavior and increasing
stability, compared to schemes which rely on explicit numerical time integration. Chapter 7
then shows an extension that allows to set a specific pressure or velocity on the boundary while
using the free field boundary conditions of chapter 6. Chapter 7 also includes an extensive
benchmark simulation of the boundary condition introduced in chapter 6 and 7. In chapter
8, their application is demonstrated for a specific LBM shallow water equation model. The
conclusion and outlook in chapter 9 sums up the essential results of the work and addresses
some issues which could be interesting in continuation of the described matter. In appendix A,
various code examples of the discussed non-reflecting boundary conditions are given in 1D and
2D, as implemented for the simulation of the test cases.
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Chapter 2

Governing Equations in Fluid
Mechanics

2.1 Conservation Properties
For a system invariant under Galilean transformations, certain quantities are conserved. For a
thermodynamic system in fluid mechanics, this implies the conservation of mass, momentum
and energy. The governing equations in fluid mechanics are derived from these conservation
laws. The illustration throughout this chapter is based on the description by Hirsch [26].

2.1.1 Scalar Conservation Law
Let U be a scalar quantity per unit volume in an arbitrary control volume Ω with surface
S. The change of the total amount of U in the control volume is according to the Reynolds’
Transport Theorem

D

Dt

∫
Ω

U dΩ =
∫
Ω

∂

∂t
U dΩ +

∮
S

F · ds (2.1)

with the flux vector F of U per unit surface and unit time. On the other hand, the change
itself is caused by sources Qv in the volume and Qs on the surface of the volume

D

Dt

∫
Ω

U dΩ =
∫
Ω

Qv dΩ +
∮
S

Qs · ds. (2.2)

In the integral formulation, the scalar conservation law therefore results in

∫
Ω

∂

∂t
U dΩ =

∫
Ω

Qv dΩ +
∮
S

Qs · ds −
∮
S

F · ds. (2.3)
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According to the divergence theorem, the surface integrals can be transformed to volume
integrals under the condition that F and Qs are C1-continuous. Equation 2.3 then turns into
the differential form

∂

∂t
U + ∇ · (F − Qs) = Qv (2.4)

The flux F can be split into

F = Fc + Fd, (2.5)

with the convective flux of the center of gravity’s velocity v

Fc = U · v (2.6)

and Fd describing the movement relative to the center of gravity, according to Fick’s laws of
diffusion

Fd = −κ % ∇u with U = % · u, (2.7)

with mass density % and the diffusion coefficient κ. u marks the scalar value per unit mass.
Using this, equation 2.4 turns it into the convection-diffusion equation

∂

∂t
%u + ∇ · (% v u) = ∇ · (κ % ∇u) + Qv + ∇ ·Qs (2.8)

2.1.2 Vector Conservation Law
For a vector quantity U per unit volume, the Reynolds’ Transport Theorem holds as well, and
F turns into a flux tensor F :

D

Dt

∫
Ω

U dΩ =
∫
Ω

∂

∂t
U dΩ +

∮
S

F · ds. (2.9)

The total change in time is caused by volume and surface sources:

D

Dt

∫
Ω

U dΩ =
∫
Ω

Qv dΩ +
∮
S

Qs · ds. (2.10)

The integral formulation of the vector conservation law reads

∫
Ω

∂

∂t
U dΩ =

∫
Ω

Qu dΩ +
∮
S

Qs · ds −
∮
S

F · ds, (2.11)
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or, with the divergence theorem, in the differential form

∂

∂t
U + ∇ · (F −Qs) = Qv. (2.12)

The flux tensor again can be split into a convective and a diffusive part

F = Fc + Fd (2.13)

with

Fc = U ⊗ v (2.14)

and, according to Fick’s law

(
Fd

)
i,j

= −κ % ∂ui
∂xj

and Ui = % ui. (2.15)

This results in the vector convection-diffusion equation

∂

∂t
%u + ∇ · (% v ⊗ u) = ∇ · (κ % ∇u) + Qv + ∇ ·Qs. (2.16)

2.2 Continuity Equation
For U = %, equation 2.8 becomes

∂

∂t
% + ∇ · (% v) = Qv + ∇ ·Qs. (2.17)

The diffusive term vanishes, as overall mass diffusion is a part of transport and would
therefore result in convection. For a closed system, in absence of a source term, the continuity
equation is derived as:

∂

∂t
% + ∇ · (% v) = 0. (2.18)

The non-conservative formulation

D

Dt
% + %∇ · v = 0 (2.19)

is mathematically equivalent, although not numerically in the discretized case (cf. [38]).
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The strict definition for incompressibility refers to a constant size V of the control volume Ω:

dV

dt
=
∫
Ω

∇ · v dx dy dz ≡ 0. (2.20)

As equation 2.20 is valid for an arbitrary volume, the integrand must be zero. This results in
the incompressible continuum equation

∇ · v = 0. (2.21)

From equation 2.21 and the non-conservative continuum equation 2.19 follows for the
incompressible case:

d

dt
% = 0. (2.22)

2.3 Navier-Stokes Equation
If U is set to the momentum density %v, the volume source term becomes an external volume
force %fe and the convective flux tensor reads

Fc = %v ⊗ v. (2.23)

Momentum diffusion is expressed by the stress tensor σ, additionally including the surface
source term,

Fd +Qs = −σ = pI − τ . (2.24)

Equation 2.12 becomes

∫
Ω

∂

∂t
%v dΩ +

∮
S

%v ⊗ v · ds =
∫
Ω

%fe dΩ −
∮
S

p · ds +
∮
S

τ · ds (2.25)

or, in differential form:

∂

∂t
(%v) + ∇ · (%v ⊗ v + pI − τ) = %fe. (2.26)

With

∇ · (%v ⊗ v) ≡ v · ∇ · (%v) + %(v · ∇)v (2.27)
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and the continuum equation 2.18, the non-conservative formulation reads

%
dv

dt
= %

∂v

∂t
+ %(v · ∇)v = −∇p + ∇ · τ + %fe. (2.28)

For the derivation of the Navier-Stokes equation, a material law is introduced assuming
Newtonian fluids, i.e. stress and strain rate are linearly dependent. The viscous shear stress
tensor is hereby given as

τi,j = µ

[(
∂vj
∂xi

+ ∂vi
∂xj

)
− 2

3(∇ · v) δi,j
]

+ µ′(∇ · v) δi,j (2.29)

with the dynamic shear viscosity µ and the dynamic bulk or volume viscosity µ′. The latter is
in most practical applications negligible. However, for some widely used Lattice Boltzmann
collision schemes it becomes numerically significant (c.f. section 3.4) or is even set on purpose
to gain a damping of sound pressure waves.
Now the divergence of the material law 2.29 can be simplified for spatially constant viscosity:

(∇ · τ)i =
[
µ

(
∂2vj
∂xi∂xj

+ ∂2vi
∂x2

j

− 2
3
∂2vj
∂xi∂xj

)]
+ µ′ [∇(∇ · v)]i =

= µ

[
∆v + 1

3∇(∇ · v)
]
i

+ µ′ [∇(∇ · v)]i (2.30)

Using equation 2.28, the Navier-Stokes equation is derived:

%
∂v

∂t
+ %(v · ∇)v = −∇p + µ

[
∆v + 1

3∇(∇ · v)
]

+ µ′∇(∇ · v) + %fe. (2.31)

For incompressible flow with a divergence free velocity field, equation 2.31 turns into the
incompressible Navier-Stokes equation:

%
∂v

∂t
+ %(v · ∇)v = −∇p + µ∆v + %fe. (2.32)

For inviscid flow, it becomes the Euler equation:

%
∂v

∂t
+ %(v · ∇)v = −∇p + %fe. (2.33)
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2.4 Energy Equation
Next, the scalar quantity U = %E per unit volume is considered, with E being the energy per
unit density. E consists of the inner energy e and, regarding the movement of the center of
gravity itself, the kinetic energy v2/2:

E = e+ v2

2 . (2.34)

The convective flux is according to equation 2.6

Fc = %Ev = %v(e+ v2

2 ). (2.35)

The diffusive term can be expressed by Fourier’s law:

Fd = −κ∇T. (2.36)

The volume sources for energy are split into those by external force fe and those by general
heat sources qh, e.g. by radiation or chemical reaction:

Qv = % fe v + qh. (2.37)

For the surface sources, the work dues to stress is remaining:

Qs = σ · v = −pv + τ · v. (2.38)

Inserting all these terms into the scalar conservation equation 2.3 result in the integral form of
the energy equation:

∫
Ω

∂

∂t
(%E) dΩ +

∮
S

%Ev · ds =
∮
S

κ ·∇T · ds +
∫
Ω

(% fe v+ qh) dΩ +
∮
S

σ · v · ds. (2.39)

Applying the divergence theorem, again subject to the condition of C1-continuity, leads to
the differential formulation of the energy equation:

∂

∂t
(%E) + ∇ · (%Ev) = ∇ · (κ · ∇T ) + (% fe v + qh) + ∇ · (σ · v). (2.40)
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Chapter 3

Lattice Boltzmann Method

3.1 Boltzmann Equation

By using the classical Navier-Stokes equations for a flow problem, the inquired state variables
are themselves directly part of the constitutive equations, defined on a time and space domain,
as it has been seen in the previous chapter.
The Lattice Boltzmann Method (LBM) is a different approach. The domain is extended

virtually with a molecular propagation speed. Now, as the degree of freedom of the domain
is increasing, fluid flow can be described by a single quantity, namely the so-called density
distribution function f . This implies that the evolution of a fluid can be broken down to a
single evolution equation. The inquired state variables are computed indirectly by moments of
the distribution function.
With the density distribution function, the LBM uses an average of the molecular state and

becomes therefore basically a statistical method. The analogies to statistical concepts are
immanent and will be pointed out below.
The benefit of the LBM is described by the fact that the underlying evolution equation

becomes compact in a way that allows for an efficient implementation. This comes for the price
of an involved theoretical analysis of the scheme. The following description of the fundamentals
of the LBM is based on the work by Hänel [23], Krafczyk [35] and Succi [54].

3.1.1 Density Distribution Function

The physical domain of the LBM, the so-called phase-space, consists of position x and propa-
gation speed c. The distribution function of a fluid at a certain point in time t specifies the
mass density in phase-space

f(t, x, c) = dm(t, x, c)
dx dy dz dcx dcy dcz

. (3.1)

Descriptively, f consists of the distinctive part of molecules in a control volume at a certain
spot x propagating all with a velocity within an interval [c, c+ dc].



12 3. Lattice Boltzmann Method

3.1.2 Moments of the Density Distribution Function
The moments of the density distribution function are defined as in stochastics, based on the
domain of propagation speed c. A moment therefore represents an average state within a
control volume. In order to have physical significance, the number of molecules in that volume
has to be sufficient, i.e. the average state must not be influenced by statistical noise of specific
molecules. This is equivalent with the prerequisite of continuum.
Raw moments are defined as

Mxlymzn =
∫
c

clx c
m
y cnz f dc, (3.2)

central moments relative to the bulk velocity v

Kxlymzn =
∫
c

(cx − vx)l (cy − vy)m (cz − vz)n f dc. (3.3)

The sum of l +m+ n designates the order of the moment. Common moments are:

% =
∫
c

f dc mass density (3.4)

%v =
∫
c

c f dc momentum density (3.5)

%vαvβ + pδαβ − ταβ =
∫
c

cαcβ f dc momentum flux tensor (3.6)

pδαβ − ταβ =
∫
c

(cα − vα) (cβ − vβ) f dc stress tensor (3.7)

The derivation of equation 3.6 and 3.7 is shown in detail in section 3.4 for the discrete lattice
Boltzmann equation.

3.1.3 Boltzmann Equation
In a moving reference system, changes of the density distribution of a fluid can physically only
be caused by collision of molecules. Let Ω(f(t, x, c)) be a general expression of a change of f
by collision. A simplified form of the Boltzmann equation reads accordingly:

Df

Dt
= ∂f

∂t
+ ∂xi

∂t
· ∂f
∂xi

+ ∂ci
∂t
· ∂f
∂ci

= Ω(f). (3.8)
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The third term of partial derivatives represents the influence of external forces F on the
mass m in the control volume. An equivalent formulation with all source terms on the right
hand side is

∂f

∂t
+ c · ∇x f = Ω(f)− F

m
· ∇c f. (3.9)

The collision term Ω(f) consists of a complex integral functional of the distribution function
itself, involving differential cross sections and a specific atomar model (cf. Hänel [23], Chapman
and Cowling [9]). For the LBM, a linear approximation will be used, which is described later
on in section 3.2.3.

3.1.4 From Boltzmann Equation to Continuity Equation
The zeroth moment of the Boltzmann equation 3.9 for a physical system without an external
source term results in

∫
c

[
∂f

∂t
+ c · Ox f

]
dc =

∫
c

Ω(f) dc (3.10)

=⇒ ∂

∂t

∫
c

f dc+
∫
c

Ox · (c · f) dc =
∫
c

Ω(f) dc. (3.11)

Collision does not change the total mass of the fluid in a certain moving reference volume:

∂

∂t

∫
c

f dc + O ·
∫
c

c · f dc = 0 (3.12)

Provided the collision of gas molecules was fully elastic, the collision term would change
the total momentum neither. The continuity equation 2.18 results directly from the zeroth
moment of the Boltzmann equation:

∂

∂t
% + O · (%v) = 0 (3.13)

The Navier-Stokes equation 2.31 can be derived by the first moment of equation 3.9. However,
this analysis will be more involved due to the consideration of non-equilibrium terms being not
conserved during collision. The appropriate method will be discussed in chapter 3.4.
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3.2 Solution of the Boltzmann Equation

3.2.1 General Solution of Simplified Boltzmann Equation
The Boltzmann equation 3.9 is now further examined without the force term:

∂f

∂t
+ c · ∇x f = Ω(f). (3.14)

Details on implementing external forcing with LBM can be found e.g. in Guo et al. [22].
Suppose the collision term of equation 3.14 was simplified so that it depends only on the initial
condition. Equation 3.14 then turns into an inhomogeneous linear transport equation with
constant coefficients. Its unique solution is obtained by (cf. Evans [15]):

f(t, x, c) = f(0, x− ct, c) +
t∫

s=0

Ω (f(s, x− c · (t− s))) ds (3.15)

The integral on the right hand side of equation 3.15 is the sum of all collision events along the
trajectory of the moving volume. Eventually, equation 3.15 shows already the two distinctive
algorithmic steps of the LBM: First, the propagation of the distribution function along its
characteristic, i.e. the solution of the homogeneous transport equation,

f(t, x, c) = f(0, x− ct, c), (3.16)

second, the change of the distribution function by collision,

∆fcollision =
t∫

s=0

Ω (f(s, x− c · (t− s))) ds. (3.17)

For a discrete time stepping, the collision integral over time reduces to a single collision
event. In that case, the sequence of the solution steps can be turned around: First the impact
of collision, leading to a post-collision state f ∗:

f ∗(t, x, c) = f(t, x, c) + ∆fcollision(t, x, c), (3.18)

second, the streaming step:

f(t+ ∆t, x+ ∆t · c, c) = f ∗(t, x, c). (3.19)
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3.2.2 Equilibrium Distribution Function
A control volume with a constant density distribution function over time represents an equilib-
rium state. The mathematical formulation is accordingly

Df

Dt
= Ω(f) ≡ 0. (3.20)

For this case, the analytical equilibrium solution of the collision integral in an ideal gas is
given by the Maxwell distribution (cf. Hänel [23]):

f(%, c, v)eq = %

(2πRT )3/2 exp
(
−(c− v)2

2RT

)
. (3.21)

R denotes the universal gas constant, T the temperature. The square root of their product
is proportional to the mean thermal molecular speed c0 (cf. Hänel [23]):

c0 =
√

3RT (3.22)

Equation 3.21 represents a scaled three dimensional normal distribution with arithmetic
mean v and speed of sound as standard deviation cs =

√
RT . In the same way the normal

distribution in stochastics emerges from random variables of independent events, a prerequisite
for the Maxwell distribution is as well that the single collisions are independent, i.e. binary.

3.2.3 Collision Modeling
The evaluation of the collision term of the Boltzmann equation 3.8 for the LBM requires a
numerical approximation of the rather complex integral function. The term is simplified by
its effective impact of conditioning the control volume towards an equilibrium state. This
simplification gives rise to the solution of equation 3.15. Ω(f) is linearized to a function
subtracting the non-equilibrium of the density distribution f (neq) by a certain rate ω per unit
time, namely the collision frequency, e.g. with the frequently used Bhatnagar-Gross-Krook
(BGK) model [5]:

Ω(f) = −ω · (f − f (eq)) =: −ω · f (neq) (3.23)

The advanced collision transformation into moment space is described later in section 3.5.2.
The modeling of collision by non-equilibrium relaxation is valid only for the collision dominated
case, i.e. the mean free path length of the molecules is small compared to the macroscopic
length scale of the problem (corresponding to a small Knudsen number, cf. section 3.2.4).
The collision frequency ω is the reverse of the mean collision time τ , also known as relaxation

time. The relaxation time equals the mean time between two molecular collisions. With the
mean free path length lf between two collisions, equation 3.23 can be expressed as

Ω(f) = −c0

lf
· (f − f (eq)) (3.24)
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However, as shown later, the collision frequency for the LBM is computed from the analysis
regarding the viscous properties of the fluid and does not resemble a physical one. The distance
between two collisions in an actual implementation is a property of the grid, and not a physical
mean free path.

3.2.4 Nondimensionalization of the BGK Boltzmann Equation
Applying the BGK scheme 3.24 to the Boltzmann equation 3.14 without external forces results
in

∂f

∂t
+ c · ∇ f = −c0

lf
· (f − f (eq)). (3.25)

For further examination, equation 3.25 is transformed according to the Buckingham Π
theorem to a characteristic, non-dimensional equation (cf. Buckingham [8]). Including the
variables of equation 3.21 and a characteristic macroscopic length L, there is a set of 9 relevant
variables, t, x, lf , L, c0, v, c, % and f . A specific set of repeating variables L, c0 and % will lead
to the following Π groups:

π1 = t · c0

L
=: t̂ (3.26)

π2 = x

L
=: x̂ (3.27)

π3 = lf
L

=: Kn (Knudsen number) (3.28)

π4 = v

c0
=: Ma (local Mach number) (3.29)

π5 = c

c0
=: ξ (3.30)

π6 = f · c3
0

%3 =: f̂ (3.31)

This results in the non-dimensional formulation of the BGK Boltzmann equation

∂f̂

∂t̂
+ ξ · ∇x̂ f̂ = − 1

Kn · (f̂ − f̂
(eq)) = Ω(f̂). (3.32)

The hat on top of non-dimensional quantities will be omitted below in case that it is obviously
the non-dimensional formulation, e.g. if ξ appears to be the propagation speed.
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3.2.5 Lattice Unit Set
For computation, the time and grid scale is further reduced by units of time and grid spacing,
marked by double hats. The magnitude of the propagation speed ξ changes appropriately to 1.

ˆ̂t = t̂

∆t̂
, ˆ̂x = x̂

∆x̂ (3.33)

ˆ̂ξ = ∆ˆ̂x
∆ˆ̂t
≡ 1 (3.34)

This has the important implication that some of the raw moments 3.2 are no longer indepen-
dent due to an aliasing effect (cf. section 3.3).
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3.3 Lattice Boltzmann Equation

For the numerical treatment of the Boltzmann equation, a finite difference discretization
is applied in time and phase space. The discretization in phase space is performed on an
equidistant square lattice with uniform grid spacing ∆x = ∆y = ∆z. Position and propagation
speed are discretized on the same grid.
Figure 3.1 shows the finite discrete velocity models (FDVMs) commonly used with the LBM.

Its labeling follows the notation D<dim>Q<num>, where <dim> indicates the dimension of
the model and <num> the number of discrete velocities. The zero velocity is also member of
the set, indexed by 0.
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Figure 3.1: FDVM schemes

The continuous propagation speed ξ in equation 3.30 turns into a set of discrete velocities
ξ
i
. The arbitrary numbering of the directions used in figure 3.1 is often replaced by the index

lx,my, nz ∈ [−1, 0, 1], [−1, 0, 1], [−1, 0, 1]. Commonly and also throughout this thesis, the 1D
and 2D models are specified as follows, for D1Q3:

ξ
i

=


0 for i = 0
1 · c0 for i = 1
−1 · c0 for i = 2,

(3.35)
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and D2Q9:

ξ
i

=


(0, 0) for i = 0(
cos
[
π
2 (i− 1)

]
, sin

[
π
2 (i− 1)

])
· c0 for i ∈ 1− 4(

cos
[
π
4 (2i− 9)

]
, sin

[
π
4 (2i− 9)

])
·
√

2 · c0 for i ∈ 5− 9.
(3.36)

The continuous distribution function f(t, x, ξ) turns into a vector

f(t, x, ξ
i
) = f̃i(t, x). (3.37)

A constant time step ∆t, first order finite differences and a forward time stepping applied on
equation 3.32 results in

f̃i(t+ ∆t, x)− f̃i(t, x)
∆t + c0

f̃i(t+ ∆t, x+ ξ
i
∆t)− f̃i(t+ ∆t, ~x)
∆x = Ω. (3.38)

With the propagation speed c0 = ∆x/∆t, this becomes the so-called Lattice Boltzmann
Equation (LBE)

f̃i(t+ ∆t, x+ ξ
i
∆t) = f̃i(t, x) + ∆t · Ω. (3.39)

According to equation 3.22, this entails that the LBM as shown does only cover isothermal
flow. For the calculation of moments, the integral of equation 3.2 has to be treated numerically:

Mxlymzn =
∫
ξ

ξlx ξ
m
y ξnz f(t, x, ξ) dξ =

∑
i

γi · ξli,x ξmi,y ξni,z f̃i(t, x), (3.40)

with specific integration weights γi, which are merged with f̃i to a discrete distribution function
fi:

fi(t, x) := γi · f̃i(t, x). (3.41)

In the lattice unit set, all even powers of the components of the vector ξ become one
respectively zero, so some of the higher moments become linear dependent on lower ones:

ˆ̂Mxlymzn =
∑
i

ˆ̂ξli,x ˆ̂ξmi,y ˆ̂ξni,z fi(ˆ̂t, ˆ̂x) =

=
∑
i

ˆ̂ξ(l+2jl)
i,x

ˆ̂ξ(m+2jm)
i,y

ˆ̂ξ(n+2jn)
i,z fi(ˆ̂t, ˆ̂x) =

= ˆ̂Mx(l+2jl)y(m+2jm)z(n+2jn) ∀l,m, n ∈ N and ∀jl, jm, jn ∈ N0 (3.42)
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This aliasing effect is important for the selection of a proper basis for transformation from
distribution into moment space, as seen later in section 3.4.2.
The equilibrium distribution 3.21, as part of the linear model of the collision operator, has

to be discretized, too. For numerical integration the exponential function 3.21 is approximated
by a polynomial. This is done by a Taylor series expansion for the Mach number truncated
after the second order term:

f̃ eq = % · 1
(2πc2

s)3/2 · exp
(
−1

2
ξ2

c2
s

)
︸ ︷︷ ︸

:=ti/γi

·
(

1 +
ξ · v
c2
s

− 1
2

(
v2

c2
s

−
(ξ · v)2

c4
s

))
+O(Ma3). (3.43)

Due to the resulting error of O(Ma3), the application of LBM is restricted to low mach
number flow. Two sampling points per space dimension would be enough to integrate the
second order polynomial 3.43 accurately, if the reference points could be chosen arbitrarily (cf.
Karniadakis [32]). However, the grid stencil has to be space filling, symmetric and able to offer
the possibility to recover shear forces (cf. section 3.4.2). The smallest suitable model has to
have seven velocities (including the zero velocity), the smallest on a Cartesian grid would be a
nine velocity model. The coefficients have to be determined by additional requirements.
Let f eqi be defined as:

f eqi := f̃ eq(ξ
i
) · γi. (3.44)

The symmetry of the FDVM arrangement results in

∑
i

ti
∏
k

ξ2nα+1
i,α ≡ 0 ∀ nα ∈ N0 and α ∈ x, y, z. (3.45)

The moments 3.4, 3.5 and 3.6 applied on f eqi together with 3.45 result in (cf. Hänel [23]):

% =
∑
i

f eqi = %
∑
i

ti + %vαvβ
2 c2

s

(
1
c2
s

∑
i

tiξi,αξi,β − δαβ
∑
i

ti

)
(3.46)

%vα =
∑
i

ξi,αf
eq
i = %vα

c2
s

∑
i

tiξi,αξi,βδαβ (3.47)

%vαvβ + pδαβ =
∑
i

ξi,αξi,βf
eq
i = %

∑
i

tiξi,αξi,β

+ %vαvβ
2 c2

s

(
1
c2
s

∑
i

tiξi,αξi,βξi,γξi,δ − δαβ
∑
i

tiξi,γξi,δ

)
(3.48)

The shear stress tensor, being derived in the next section, has to vanishes in equation 3.48
for equilibrium. From those equations, insertion of a zero velocity and subsequent variation of
indices lead to:
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∑
i

ti = 1∑
i

tiξi,αξi,β = c2
sδαβ∑

i

tiξi,αξi,βξi,γξi,δ = c4
s(δαβδγδ + δαγδβδ + δαδδβγ)

Together with the equations 3.45, this leads to a total hierarchy:

∑
i

ti = 1 (3.49)∑
i

tiξi,α = 0 (3.50)∑
i

tiξi,αξi,β = c2
sδαβ (3.51)∑

i

tiξi,αξi,βξi,γ = 0 (3.52)∑
i

tiξi,αξi,βξi,γξi,δ = c4
s(δαβδγδ + δαγδβδ + δαδδβγ) (3.53)

By variation of α, β and the other indices of the Kronecker symbols indices, the tis can be
calculated for every FDVM (cf. Hänel [23]). The weighting factors are listed in table 3.1 with

p(i) = ξ2
i (3.54)

for the models of figure 3.1 and the one dimensional D1Q3 discretization.

Model p = ξ2
i tp≡0 tp≡1 tp≡2 tp≡3

D1Q3 0, 1 2/3 1/6 - -
D2Q9 0, 1, 2 4/9 1/9 1/36 -
D3Q15 0, 1, 3 2/9 1/9 - 1/72
D3Q19 0, 1, 2 1/3 1/18 1/36 -
D3Q27 0, 1, 2, 3 8/27 2/27 1/54 1/216

Table 3.1: Weighting factors for FDVM equilibrium distribution

It can be seen directly from equation 3.51 with α = β that for all the discretized models
there is a constant speed of sound with

cs ≡
√

1/3 · c0. (3.55)
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The discretized Maxwell equilibrium distribution is accordingly given by:

f
(eq)
i (%, v) = ti%

[
1 +

ξ
i
· v
c2
s

+ 1
2

((
ξ
i
· v
c2
s

)2

− v2

c2
s

)]
(3.56)

or, by substituting equation 3.55:

f
(eq)
i (%, v) = ti%

[
1 + 3

ξ
i
· v
c2

0
+ 9

2

(
ξ
i
· v
c2

0

)2

− 3
2
v2

c2
0

]
(3.57)

The Lattice Boltzmann equation 3.39 with the BGK collision model from equation 3.24 is
referred to as the Lattice BGK (LBGK) equation:

fi(t+ ∆t, x+ ∆t · ξ
i
) = fi(t, x)−∆t · ω · (fi(t, x)− f (eq)

i (%, v)). (3.58)
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3.4 Analysis of the LBGK Equation
The Boltzmann equation, as described in section 3.1, emerges from kinetic theory, and it is
primarily unclear how it is related to the macroscopic equations of chapter 2. Although the
link to the macroscopic quantities by computation of moments of the distribution function is
provided, it is not yet shown whether the moments are solving the Navier-Stokes equations.
In this section an analytical method is described showing the relation of the LBM to the
Navier-Stokes equations. The analysis is done for the LBGK equation, which is the relevant
equation for the implementation.
From equation 3.32, it can be seen that the LBE constitutes of a perturbative partial

differential equation, where a well known analytical solution is disturbed by a nonlinear term
with a leading smallness parameter, in that case the Knudsen number Kn. In equation 3.58,
this perturbation parameter is τ = 1/ω, and the partial differential equation is obtained from
a Taylor series expansion of the left-hand side of equation 3.58. A general approach for solving
those problems is to expand the solution in this parameter. However, other parameters might
depend on even multiple scales of it, and an approximate solution might diverge. The remedy
is to introduce multiple time scales (cf. Bender and Orszag [2]).
For the LBE, two time scales are relevant with regard to the macroscopic behavior of the

fluid: While the first one determines fast, acoustic effects, the second one governs the slow,
diffusive scale (cf. Junk et al. [30]). To cover both effects at the same time, it is necessary to
resolve also the time scale as a perturbation expansion, leading to a multiple-scale analysis.
The Chapman-Enskog procedure does this for the LBE. The sketch of its principle in section
3.4.1 is based on Hou et al. [27].
Practically, only one of the two time scales can be used. Therefore it is reasonable to consider

both scalings separately. This is essentially done by the asymptotic analysis, which is not
covered here. Details can be found e.g. in the article by Junk et al. [30].

3.4.1 Chapman-Enskog Analysis
For the Chapman-Enskog expansion, τ , respectively the Knudsen number, cannot simply be
used as a perturbation parameter in the LBGK equation 3.58, because a scaling of τ would
have to be applied also on other time scales. Therefore τ and all other times variables are
scaled by a formal perturbation parameter ε:

fi(t+ ε∆t, x+ ε∆t · ξ
i
) = fi(t, x)− ε∆t · 1

ετ
· (fi(t, x)− f (eq)

i (%, v)). (3.59)

∆x is scaled as ∆t by ε, resulting in a constant speed of sound cs = 1/
√

3 ·∆x/∆t. The
propagation speed ξ therefore also stays constant, which is referred to as the acoustic scaling
(cf. Junk et al. [30], for diffusive scaling ∆x ∼ ε2).
The left hand side of equation 3.59 can now be Taylor series expanded in ε:

fi(t+ ε∆t, x+ ε∆t · ξ
i
) =

∞∑
n=0

εn

n! (∆t
∂

∂t
+ ∆tξi,α

∂

∂xα
)nfi(t, x). (3.60)
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This, substituted into equation 3.59, results in:

ε(∆t ∂
∂t

+∆tξi,α
∂

∂xα
)fi(t, x)+ ε2

2 (∆t ∂
∂t

+∆tξi,α
∂

∂xα
)2fi(t, x)+∆t

τ
(fi−f (eq)

i )+O(ε3) = 0. (3.61)

As already motivated, f is subsequently expanded as power series of the formal perturbation
parameter ε:

fi(t, x) =
∞∑
n=0

εnf
(n)
i . (3.62)

In order to separate the time scales and thus gain a convergent approximate solution, those
time scales are established in orders of ε:

tn := εn · t. (3.63)

If t is substituted by a summation of all different time scales,

t→
∞∑
n=0

tn, (3.64)

the derivative with respect to t changes to

∂

∂t
→

∞∑
n=0

∂tn
∂t

∂

∂tn
=
∞∑
n=0

εn
∂

∂tn
. (3.65)

Equations 3.62 and 3.65 are finally substituted into equation 3.61 and sorted by orders of ε.
All terms of different orders have to be zero for any ε ≥ 0:

For O(ε0):

f
(0)
i = f

(eq)
i (3.66)

From equation 3.66 and the perturbative approach of equation 3.62, a power series around
an equilibrium solution, can be concluded:

∑
i

f
(n)
i =

{
% if n = 0
0 if n 6= 0

(3.67)

∑
i

ξ
i
f

(n)
i =

{
%v if n = 0
0 if n 6= 0

(3.68)
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For O(ε1):

∂

∂t0
f

(0)
i + ξi,α

∂

∂xα
f

(0)
i + 1

τ
f

(1)
i = 0 (3.69)

The zeroth moment of equation 3.69 together with equation 3.67 is used to derive the
continuum equation 2.18 for order O(ε):

∂

∂t0
% + ∇ · (% v) = 0. (3.70)

Let Π be the momentum flux tensor

Π(n)
α,β =

∑
i

ξi,αξi,βf
(n)
i (3.71)

The first moment of equation 3.69 together with equation 3.68 results in:

∂

∂t0
% v + ∇ · Π(0) = 0. (3.72)

According to equation 3.66, the momentum flux tensor of the zeroth order equals that of the
equilibrium distribution 3.56. Using equations 3.51 to 3.53, this results in:

Π(0)
α,β = %c2

sδαβ + %vαvβ (3.73)

Equation 3.72 resembles therefore the Euler equation 2.33 for order one of ε:

∂

∂t0
%vα + ∂

∂xβ
(%c2

sδαβ + %vαvβ) = 0, (3.74)

Applying equations 2.27, 3.70 and the ideal gas law γ · p = %c2
s with specific heat ratio γ ≡ 1

for the LBM, one obtains:

%
∂v

∂t0
+ %(v · ∇)v = −∇p. (3.75)

For O(ε2):

∂

∂t1
f

(0)
i +

(
∂

∂t0
+ ξi,α

∂

∂xα

)
f

(1)
i + ∆t

2

(
∂

∂t0
+ ξi,α

∂

∂xα

)2

f
(0)
i + 1

τ
f

(2)
i = 0 (3.76)

Using equation 3.69 yields:

∂

∂t1
f

(0)
i +

(
1− ∆t

2τ

)(
∂

∂t0
+ ξi,α

∂

∂xα

)
f

(1)
i + 1

τ
f

(2)
i = 0 (3.77)
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The zeroth moment results in:

∂

∂t1
% = 0. (3.78)

According to equation 3.70 and 3.65, this provides the total continuum equation from the
first and second order of ε:

∂

∂t
% + ∇ · (% v) +O(ε2) = 0. (3.79)

With the first moment of equation 3.77 one obtains:

∂

∂t1
% v +

(
1− ∆t

2τ

)
∇ · Π(1) = 0. (3.80)

The momentum flux tensor of order 1 can be expressed by 3.69 as:

Π(1)
α,β =

∑
i

ξi,αξi,βf
(1)
i = −τ

∑
i

ξi,αξi,β

(
∂

∂t0
+ ξi,γ

∂

∂xγ

)
f

(0)
i =

= −τ

[
∂

∂t0
Π(0)
α,β + ∂

∂xγ

∑
i

ξi,αξi,βξi,γf
(eq)
i

]
(3.53)=

= −τ
[
∂

∂t0
(%c2

sδαβ + %vαvβ) + ∂

∂xγ
%c2

svδ(δαβδγδ + δαγδβδ + δαδδβγ)
]

=

= −τ

c2
sδαβ

(
∂

∂t0
% + ∇ · (% v)

)
︸ ︷︷ ︸

=0

+ ∂

∂t0
(%vαvβ) + c2

s

(
vβ

∂%

∂xα
+ vα

∂%

∂xβ

)

+ %c2
s

(
∂vβ
∂xα

+ ∂vα
∂xβ

)]
(3.81)

Hou et al. prove [27]:

∂

∂t0
(%vαvβ) + c2

s

(
vβ

∂%

∂xα
+ vα

∂%

∂xβ

)
= O(Ma3) (3.82)

The error reflects the approximation of the equilibrium distribution 3.43. This leads to:

Π(1)
α,β = −τ%c2

s

(
∂vβ
∂xα

+ ∂vα
∂xβ

)
+O(Ma3) (3.83)
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Equation 3.80 and 3.83 result in:

∂

∂t1
%vα −

∂

∂xβ
%c2

s

(
τ − ∆t

2

)(
∂vβ
∂xα

+ ∂vα
∂xβ

)
+O(Ma3) = 0. (3.84)

The total first moment for the first and second order of ε is finally derived with equation
3.74, 3.65 and 3.84:

∂

∂t
%vα + ∂

∂xβ
(%vαvβ) = − ∂p

∂xα
+ ∂

∂xβ
ε%c2

s

(
τ − ∆t

2

)(
∂vβ
∂xα

+ ∂vα
∂xβ

)
+O(Ma3)+O(ε2) (3.85)

With equations 2.27, 3.79 and 2.30, this can be reformulated to (omitting the error term):

%
∂v

∂t
+ %(v · ∇)v = −∇p +

[
ε%c2

s

(
τ − ∆t

2

)][(
∆v + 1

3∇(∇ · v)
)

+ 2
3∇(∇ · v)

]
(3.86)

The comparison with equation 2.31 shows that the appropriate moments of the solution
of the LBGK equation provide a solution (within the specified error) to the compressible
Navier-Stokes equation with a shear viscosity of

µ =
[
ε%c2

s

(
τ − ∆t

2

)]
(3.87)

and a bulk viscosity of µ′ = 2
3 · µ. Equation 3.87 shows that the shear viscosity depends

on the scaling parameter ε. Inferring from equations 3.79 and 3.85, the error with acoustic
scaling is of the order O(∆t2) +O(∆x2) per time step, with an additional error O(Ma3) in the
Navier-Stokes equation. For n = (tend − t0)/∆t time steps, the total error in time increases
consequently to O(∆t).
However, this is only valid for isothermal compressible systems. The given errors reflect

neither a fully compressible system nor the error by the persistent divergence terms if used as
approximation for incompressible flow.
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3.4.2 Moment Basis
For the LBM, it is in some cases more adequate to use the representation of the problem in
moment space. This refers especially to collision modeling (cf. section 3.5.2) or analysis of
boundary conditions (cf. Bennet [3]). Basically every set of linear independent moments can
be used. Due to the aliasing effect (cf. equation 3.42), some of the higher order moments loose
their independence in lattice unit representation. For D2Q9, the only possible moment basis
representation, apart from linear combined moments, would be:

B := {M0,Mx,My,Mx2 ,Mxy,My2 ,Mx2y,Mxy2 ,Mx2y2} (3.88)

The solution of the corresponding linear system of equations results in:

f0 = M0 −Mx2 −My2 −Mx2y2

f1 = 1
2 (Mx +Mx2 −Mxy2−Mx2y2)

f2 = 1
2 (My +My2 −Mx2y−Mx2y2)

f3 = 1
2 (−Mx +Mx2 +Mxy2−Mx2y2)

f4 = 1
2 (−My +My2 +Mx2y−Mx2y2) (3.89)

f5 = 1
4 (Mxy+Mx2y+Mxy2+Mx2y2)

f6 = 1
4 (−Mxy+Mx2y−Mxy2+Mx2y2)

f7 = 1
4 (Mxy−Mx2y−Mxy2+Mx2y2)

f8 = 1
4 (−Mxy−Mx2y+Mxy2+Mx2y2)

Trivially one could see e.g. that shear forces could not be recovered with an orthogonal
velocity model. In section 4.3.1, the moment decomposition will be used for the derivation of
the accuracy of the Zou and He boundary conditions.
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3.5 Incompressible LBM

3.5.1 SRT
As seen in section 3.4.1, the equilibrium equation 3.56 recovers the compressible continuity and
Navier-Stokes equations. He and Luo [24] propose an alternative formulation for the single
relaxation time (SRT) scheme of equation 3.59 to recover the incompressible Navier-Stokes
equation with a constant hydrostatic density %0:

f
(eq)
i (%, v) = ti

[
%+ %0

(
ξ
i
· v
c2
s

+ 1
2

[(
ξ
i
· v
c2
s

)2

− v2

c2
s

])]
(3.90)

From equations 3.49 to 3.53, it can easily be derived:

% =
∑
i

f
(eq)
i (3.91)

v%0 =
∑
i

ξ
i
f

(eq)
i (3.92)

In the Chapman-Enskog derivation of section 3.4.1 with acoustic scaling, the zeroth moment
of equation 3.69 results in:

∂

∂t0
% + ∇ · (%0 v) = 0. (3.93)

With the zeroth moment of equation 3.77, one obtains:

∂

∂t1
% = 0. (3.94)

Both combined yield:

∇ · v + 1
%0

∂

∂t
%+O(ε2) = 0. (3.95)

With equations 3.49 to 3.53, the first moment of equation 3.69 equals:

%0
∂

∂t0
vα + ∂

∂xβ
(%c2

sδαβ + %0vαvβ) = 0, (3.96)

A derivation similar to equation 3.81 for the first moment of equation 3.77 leads to:

%0
∂

∂t1
vα −

∂

∂xβ
%0c

2
s

(
τ − ∆t

2

)(
∂vβ
∂xα

+ ∂vα
∂xβ

)
+O(Ma3) = 0. (3.97)
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Combining equation 3.96 and 3.97 results in:

%0
∂

∂t
vα + %0

∂

∂xβ
(vαvβ) =

= −c2
s

∂%

∂xα
+ ∂

∂xβ
ε%0c

2
s

(
τ − ∆t

2

)(
∂vβ
∂xα

+ ∂vα
∂xβ

)
+O(Ma3) +O(ε2), (3.98)

alternatively with p = % · c2
s:

%0
∂v

∂t
+ %0(v · ∇)v + %0v ∇ · v =

− ∇p +
[
ε%0c

2
s

(
τ − ∆t

2

)][(
∆v + 1

3∇(∇ · v)
)

+ 2
3∇(∇ · v)

]
+

+ O(Ma3) +O(ε2) (3.99)

Equation 3.95 and 3.99 form a weakly compressible counterpart to the compressible continuity
and Navier-Stokes equation, with a dominating constant base density and an additional error
term in equation 3.99. For the stationary case

∂

∂t
% ≡ 0, (3.100)

equation 3.95 turns into the incompressible continuity equation 2.21

∇ · v +O(ε2) = 0 (3.101)

and equation 3.99 into the incompressible Navier-Stokes equation 2.32:

%0
∂v

∂t
+ %0(v · ∇)v = −∇p + µ∆v +O(Ma3) +O(ε2) (3.102)

with a shear viscosity same as in section 3.4.1:

µ =
[
ε%0c

2
s

(
τ − ∆t

2

)]
. (3.103)

The overall error once again is of the order O(∆t), O(∆x2) and O(Ma3) with acoustic scaling
(cf. section 3.4.1).
He and Luo illustrate with a nondimensionalization of equation 3.95 that in the transient

case, the non-vanishing divergence term is negligible if T � L/cs with T as the time for a
macroscopic change and L the range of distance of it.
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3.5.2 MRT

Instead of relaxing all distributions fi with a single relaxation time, a full set of multiple
relaxation times (MRT) could be used, equaling the number of finite discrete velocities. This
full parameter space provides means to tune additional physical properties and numerical
stability. In contrary to the BGK collision, the relaxation is advantageously conducted in
moment space (cf. section 3.4.2): The requirements of a collision operator are primarily on the
moments, e.g. conservation or vanishing of certain moments, rather than on the distribution
function. With the mutual spaces, MRT offers the possibility to have specific representations for
propagation and collision control. Moreover, the equilibria can be tuned as well (cf. Lallemand
and Luo [37]).
The evolution equation 3.58 turns for MRT into:

fi(t+ ∆t, x+ ∆t · ξ
i
) = fi(t, x)−∆t · [M−1 · S · (ρ(t, x)− ρ(eq))]i. (3.104)

M defines the transformation matrix from distribution to moment space and S = diag(s) a
diagonal matrix of relaxation frequencies sj for the specific moments ρj. ρ(eq)

j is the associated
equilibrium of the js moment.
For the D2Q9 model, Lallemand and Luo [37] take the following basic setup of moments:



%
e
ε
jx
qx
jy
qy
pxx
pxy


=



mass density
kinetic energy
energy square
x-momentum
x-energy flux
y-momentum
y-energy flux
normal stresses

tangential stresses


=



1 1 1 1 1 1 1 1 1
0 1 1 1 1 2 2 2 2
0 1 1 1 1 4 4 4 4
0 1 0 −1 0 1 −1 −1 1
0 1 0 −1 0 2 −2 −2 2
0 0 1 0 −1 1 1 −1 −1
0 0 1 0 −1 2 2 −2 −2
0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 −1 1 −1


· f =

=: M ′ · f (3.105)

This is equivalent to a linear combination of the moment base referred to in chapter 3.4.2:

M · f = [M0, Mx2 +My2 , Mx2 +My2 +Mx2y2 , Mx, Mx +Mxy2 ,

My, My +Mx2y, Mxx, Mxy] (3.106)

Obviously the transformation is not orthogonal. For linear independent moments, a Gram-
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Schmidt procedure is applied on M ′, resulting in:

M :=



1 1 1 1 1 1 1 1 1
−4 −1 −1 −1 −1 2 2 2 2

4 −2 −2 −2 −2 1 1 1 1
0 1 0 −1 0 1 −1 −1 1
0 −2 0 2 0 1 −1 −1 1
0 0 1 0 −1 1 1 −1 −1
0 0 −2 0 2 1 1 −1 −1
0 1 −1 1 −1 1 1 1 1
0 0 0 0 0 1 −1 1 −1


(3.107)

The relaxation frequencies for mass density and both momenta can be arbitrarily set to
zero due to conservation, s1 = s4 = s6 ≡ 0. The equilibria of the other moments and their
relaxation frequencies used below are taken from the involved derivation by Lallemand and
Luo [37]:

e(eq) := −2%+ 3(j2
x + j2

y) (3.108)
ε(eq) := %− 3(j2

x + j2
y) (3.109)

q(eq)
x := −jx (3.110)
q(eq)
y := −jy (3.111)
p(eq)
xx := j2

x − j2
y (3.112)

p(eq)
xy := jx · jy (3.113)

The quantities are given in lattice unit description. Their respective relaxation frequencies
are:

s2 := 1/(2µ′ + 0.5) (3.114)
s3 := s2 (3.115)
s5 := 8(2− s8)/(8− s8) (3.116)
s7 := s5 (3.117)
s8 := 1/(2µ+ 0.5) (3.118)
s9 := s8 (3.119)

The given equilibria recover the incompressible formulation of equation 3.90 (cf. Lallemand
and Luo [37]). However, also the compressible formulation could be derived by defining
appropriate equilibria. Contrary to the SRT scheme, the bulk viscosity µ′ can now be set
separately. Frequencies s5 and s7 are set according to the "magic" collision number described
by d’Humières and Ginzburg [12], reducing the slip velocity error for bounce-back boundary
conditions.
A D3Q19 implementation of the MRT scheme is described by d’Humières et al. [13].
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Chapter 4

Boundary Conditions for LBM

4.1 General Classification
Problems in fluid mechanics are initial-boundary value problems. They depend in a natural
way not only on the governing equations, but also on the modeling of the initial state, and on
the boundary conditions. Latter can be classified into four categories [26]:

1. Dirchlet boundary conditions

2. Neumann boundary conditions

3. Cauchy (Robin) boundary conditions

4. Periodic boundary conditions

Dirichlet boundary conditions set the flow quantity U on a specific boundary location xBC to
a fixed value a:

U (xBC) = a. (4.1)

A specific case is the No-Slip boundary condition, modeling a fixed border with zero velocity
v(xBC) ≡ 0. The Neumann type, however, sets the derivative of U to a value b,

∂U (xBC)
∂xi

= b, (4.2)

usually by using difference equations, involving certain stability conditions. The Cauchy or
Robin type is a mixture of both Dirichlet and Neumann boundary conditions. An example
for a Cauchy type is the Free Slip boundary condition, which models a fixed boundary, where
the velocity normal to the wall equals zero, v⊥ ≡ 0, but for the tangential components v‖ the
gradient is set to zero:

∂v‖ (xBC)
∂x‖

≡ 0. (4.3)
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The forth type, periodic boundary conditions, repeat the flow quantity from one boundary
on the opposing side. This is usually used for modeling an entity out of a bigger, homogenous
or periodic problem.
A special feature of the LBM is that boundary values at a node do not to be determined

entirely. After the streaming step, those distributions are already known that have been
streamed from the domain onto the boundary node. Defining the boundary condition can
therefore be done in a manner which considers the knowledge about the known distributions.
Information can be derived, such as the estimate of the tangential velocity, which is e.g.
essential for the isotropic boundary conditions in section 6.3. Furthermore, other calculations
are possible, such as the estimation of the direction of an incident sound pressure wave from
the first moment of the low-pass filtered, known distributions. The assumption is justified that
a pressure wave affects only those distributions at all.
In this chapter, all boundary conditions used throughout this work will shortly be introduced.

A particular emphasis is put on the analysis of the error of the non-equilibrium bounce-back
relation, which is used among others by the boundary condition of Zou and He [65], but is also
applied several times in this work.

4.2 Bounce-Back Boundary Conditions
As an advantage of the LBM, fixed No-Slip boundaries along the Cartesian directions of the
grid can be implemented in a simple and efficient manner with the same accuracy as the LBM
itself. The simplest type of implementation, the so-called bounce-back method, is possible
if the boundary lies exactly between the grid nodes. It is used e.g. in chapter 7 and shall
therefore be shortly introduced.
The principle is illustrated in figure 4.1(a) and can be motivated by a particle point of view:

If an adjacent grid node was located already within the solid boundary, i.e. xF + ∆t · ξ
i,b

= xB,n
for directions ξ

i,b
towards the boundary, a propagating particle would virtually "bounce back" to

its origin. For a rough surface, the particle would even be reflected in the transverse direction,
i.e. directing to a transverse node xB,tr.

x
F

x
B,tr

x
B,n

(a) No-Slip

x
F

x
F,t

x
B,n

(b) Free Slip

Figure 4.1: Bounce-back boundary conditions

This motivates the bounce-back rule for no-slip boundaries, where fi,b is the opposite
distribution to fi,b and the superscript ∗ marks the post-collision state:

fi,b(t+ ∆t, xF ) = f ∗i,b(t, xF ). (4.4)



4.3. Zou-He Boundary Conditions 35

A free slip boundary is motivated by a perfectly reflecting wall, illustrated in figure 4.1(b).
Transverse directions towards a boundary are set differently and affect the adjacent fluid node
xF,t in tangential direction:

fi,b(t+ ∆t, xF,t) = f ∗i,b(t, xF ). (4.5)

Quite often, a "2 time step" scheme is implemented, where distributions are shifted towards
the boundary node, turned around and shifted back without collision in the next time step.
However, unlike the original bounce-back scheme, this approach is not mass conservative.

As shown by Ginzburg and Adler, bounce-back is second order accurate in space [19]. Bennet
points out that the simple bounce-back scheme includes a slight error in the slip velocity
[3]. d’Humières and Ginzburg offer a remedy to this issue by introducing a scheme which
removes the non-equilibrium error during the collision cycle [12] (so-called "magic" collision
number for MRT collision, also used with the incompressible LBM simulations in this work).
The boundary conditions by Bouzidi et al. [6] are a generalization of bounce-back boundary
conditions, allowing among others to place the boundary not only half way, but in an arbitrary
distance between two grid layers.

4.3 Zou-He Boundary Conditions

For the boundary conditions in Chapter 6, the relationship between density and velocity has
been calculated in the same way as by Zou and He for their boundary conditions [65]. Also the
non-equilibrium bounce-back relation is used in this work. Moreover, the boundary conditions
of Zou and He are used in the reference implementations in section 7.4. Therefore those
boundary conditions are briefly described below.

The basic idea of the boundary conditions by Zou and He is to calculate the unknown
state basically from mass and momentum conservation. However, as the resulting number of
equations is not sufficient to determine the state of the boundary node, the boundary conditions
use the additional assumption that in the normal direction of the boundary, i.e. for the link
f1−f3 for a boundary normal to the ex direction, the non-equilibrium part of both distributions
is symmetric (cf. equation 4.9). This assumption includes an error of O(∆t), as it will be
derived in section 4.3.1. The error becomes not significant, as the relation does not reuse one
of the involved distributions, but rather includes the streamed-in post-collision state of the
neighboring node. By this approach, the error does not sum up and stays in the corresponding
limit of the LB method itself. The boundary conditions of section 6 use the same relation, but
there the error becomes indeed significant. Section 6.5 shows a possible remedy for this issue.
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Figure 4.2: Unknown pre-collision distributions on a right boundary

The boundary conditions are without loss of generality described for a left boundary normal
to the direction ex. For a grid node, mass and momentum conservation hold as well as the
non-equilibrium bounce-back rule as discussed in detail in section 4.3.1:

% =
∑
i

fi, (4.6)

vx · % =
∑
i

fiξi,x, (4.7)

vy · % =
∑
i

fiξi,y, (4.8)

f1 = f3 + 2
3%vx. (4.9)

For a velocity boundary condition, Zou and He prescribe both velocities vx and vy. For a
pressure boundary condition, they set the tangential velocity vy ≡ 0 and prescribe the density.
Equation 4.6 and 4.7 result in

% = f0 + f2 + f4 + 2 (f3 + f6 + f7)
1− vx

(4.10)

for the velocity boundary condition and

vx = 1− f0 + f2 + f4 + 2 (f3 + f6 + f7)
%

(4.11)

for the pressure boundary condition. It has to be stated that even the macroscopic state is
not completely predetermined, but follows eventually from equation 4.10 or 4.11. This kind of
boundary condition can therefore not be strictly classified as a Dirichlet boundary condition in
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the sense it has for a classical Navier-Stokes approach, although it is refereed to be a Dirichlet
type in the subsequent chapters.
The unknown distributions are set by solving equation 4.7, 4.8 and 4.9:

f1 = f3 + 2
3%vx, (4.12)

f5 = f7 + 1
2(f4 − f2) + 1

6%vx + 1
2%vy, (4.13)

f8 = f6 −
1
2(f4 − f2) + 1

6%vx −
1
2%vy. (4.14)

The derivation for the incompressible LBM model is similarly done by replacing equation 4.6
to 4.9 by

% =
∑
i

fi, (4.15)

vx · %0 =
∑
i

fiξi,x, (4.16)

vy · %0 =
∑
i

fiξi,y, (4.17)

f1 = f3 + 2
3%0vx. (4.18)

% specifies in this case the density deviation relative to %0.

4.3.1 Error of the Non-Equilibrium Bounce-Back Relation
Below, the error of the non-equilibrium bounce-back relation is derived for the compressible
D2Q9 model with BGK collision. The derivation for incompressible LBM can be carried out in
the same way and is not done separately. The procedure below follows the recommendations
by Geier [17], emerging from his procedure for the asymptotic error analysis.
The error of the assumption that the non-equilibrium of a distribution equals to that of the

corresponding opposite will be shown for a perpendicular and a transverse FDVM link, without
loss of generality for the direction along f1 and f5:

f1 − f (eq)
1 = f3 − f (eq)

3 ⇐⇒ f1 − f3 = f
(eq)
1 − f (eq)

3 ≡ 2
3%vx (4.19)

f5 − f (eq)
5 = f7 − f (eq)

7 ⇐⇒ f5 − f7 = f
(eq)
5 − f (eq)

7 ≡ 1
2% (vx + vy) (4.20)

The difference of the equilibria follow from their definition by equation 3.57. On the other
hand, the moment decomposition of section 3.4.2 shows:

f1 − f (eq)
1 = Mx −Mxy2 (4.21)

f5 − f (eq)
5 = 1

2 (Mx2y +Mxy2) (4.22)
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The error of equation 4.19 and 4.20 can be derived from equation 4.21 and 4.22. This is
equivalent to an error analysis of the moments Mx and, without loss of generality, Mxy2 , which
is done below with the Chapman-Enskog procedure, as described in section 3.4.1. The left
hand side of equation 3.59 is Taylor expanded by equation 3.60, which leads to:

fi(t, x) = f
(eq)
i (t, x)− ε τ ( ∂

∂t
+ ξi,α

∂

∂xα
)fi(t, x) +O(ε2) (4.23)

Now fi is expanded as a power series of ε, and multiple time scales are introduced:

fi(t, x) =
∞∑
n=0

εnf
(n)
i , tn := εn · t, t→

∞∑
n=0

tn. (4.24)

Next, the analysis of equation 4.23 can be conducted for the different orders of ε:

For O(ε0):
The zeroth order of equation 4.23 reduces to:

fi(t, x)(0) = f
(eq)
i (t, x). (4.25)

Calculating the moments Mx and Mxy2 of equation 4.25 by using the equilibrium distribution
from equation 3.57 gains:

M (0)
x =

∑
i

ξi,x f
(eq)
i = %vx, (4.26)

M
(0)
xy2 =

∑
i

ξi,x ξ
2
i,y f

(eq)
i = 1

3%vx. (4.27)

For O(ε1):
The first order of equation 4.23 reads:

fi(t, x)(1) = −τ ( ∂
∂t0

+ ξi,α
∂

∂xα
)f (0)
i . (4.28)

The moment Mx of equation 4.28 results in

M (1)
x = −τ

∑
i

ξi,x ( ∂
∂t0

+ ξi,α
∂

∂xα
)f (0)
i = −τ

(
∂

∂t0
% v + ∇ · Π(0)

)
= 0, (4.29)

which is proven by equation 3.72. On the other hand, the moment Mxy2 of equation 4.28,

M
(1)
xy2 = −τ

∑
i

ξi,x ξ
2
i,y ( ∂

∂t0
+ ξi,α

∂

∂xα
)f (0)
i , (4.30)
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will not generally vanish. Reassembling the different orders gains in total:

Mx = %vx +O(ε2), (4.31)

Mxy2 = 1
3%vx +O(ε). (4.32)

This is equivalent to an error of O(ε) ≡ O(∆t) and O(ε2) ≡ O(∆t2), respectively (cf. section
3.4.1, valid for both acoustic and diffusive scaling). Consequently, equation 4.21 and 4.22
indicate a first order error in time for the non-equilibrium bounce-back relation:

f1 − f (eq)
1 = Mx −Mxy2 = 2

3%vx +O(∆t), (4.33)

f5 − f (eq)
5 = 1

2 (Mx2y +Mxy2) = 1
2% (vx + vy) +O(∆t). (4.34)
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Chapter 5

Non-reflecting Boundary Conditions

As a boundary condition is supposed to install a desired state, e.g. a specific velocity or
pressure, it usually has to reflect, respectively interact with the fluid. Also a boundary which
is not processing the incoming fluid, e.g. by setting a constant equilibrium distribution, would
indeed lead to a certain reflection of an incoming pressure wave, although the pressure change
itself would never be processed (chapter 6 will show that a dynamic reaction is mandatory).
This means that a reflection is intentional and has to react in a way that cancels spurious
signals. It is rather a matter of what has to be reacted on. A non-reflecting boundary condition
should set a desired state for the fluid and at the same time intercept undesired reflection
effects. It will be clearly shown in section 5.2.1 and in chapter 6 that it is not possible to fulfill
both requirements in a strict manner at the same time.
These undesired effects are e.g. for acoustic applications the reflection of sound pressure

waves inside a certain frequency bandwidth. For other applications, this might not be sufficient:
For instance an absolute drag or lift force on an object might be significantly distracted even
by low-frequent spurious pressure waves in the context of an LBM simulation. To consider
the whole frequency range, a proper way would be to solve the constitutive equations on
the boundary. However, this is not possible, as on a boundary node the system of equations
naturally will always be under-determined. Certain assumptions then have to be made to
remedy the lack of information on a boundary node. It will be seen that all non-reflecting
boundary conditions rely on various assumptions.
This chapter covers as an introduction to the topic two approaches for the implementation

of non-reflecting boundary conditions. The first approach is a low-pass filtering method, which
will turn out not to produce results of acceptable quality. The second approach is based on
the method of the characteristics, gains excellent results and is widely used in the context of
computational fluid dynamics.

5.1 Filtering Methods
The most obvious approach for non-reflecting boundary conditions is applying a low-pass
filter to the density distribution function on the boundary. A corner frequency ωc defines
hereby a relevant frequency range for the distribution function. However, this range can be
defined completely arbitrarily and is depending probably in most cases on the range of human
perception. The next section will give a short introduction to the field of continuous low-pass
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filtering, followed by the transition to discrete filters in a brief "how-to" approach. Finally, an
implementation for the LBM will show its practical use.

5.1.1 Continuous Low-pass Filter
For a continuous complex frequency s, the general transfer function of a low-pass filter of order
n is given by (cf. Kugelstadt [36])

H(s) = H0
n∏
i=1

(1 + αis)
=: H0∏

i

(1 + ais+ bis2)
. (5.1)

The structure as a product of broken second order complex polynomials represents the
combination of basic electronic filter circuits and is maintained for practical reasons. There
are three ranges defined for the transfer function: A pass-band from the lowest to a frequency
with an attenuation down to −3 dB, a transition band from −3 dB to −80 dB (depending
on application) and the stop-band below that interval. The order of the filter will determine
the steepness within the transition band (known as roll-off). The magnitude of the transfer
function H(s) with a complex frequency s = iω is illustrated in figure 5.1 for different orders,
all for a corner frequency of 1 Hz. The corner frequency specifies hereby a drop of −3 dB
respectively 50% in amplitude. The coefficients ai, bi for stable filter design are practically
taken from tables, see Kugelstadt [36].
There are three main filter characteristics used for low-pass filters: Butterworth, Tschebyscheff

and Bessel (cf. Kugelstadt [36]). Their difference is illustrated in figures 5.2, 5.3 and 5.4.
The Butterworth type provides the best possible flatness in the pass-band (cf. figure 5.2),
Tschebyscheff filters are designed to provide the best possible roll-off from pass-band to
transition band. However, both suffer from a non-linear group delay, resulting in undesirable
dispersion (cf. figure 5.4). The group delay is hereby given by the derivative of the phase shift
(figure 5.3) with respect to time (cf. Maheshwari and Anand [41]):

τgr = −dφ
dω
. (5.2)

The total time delay of a filter is then computed by a convolution of the signal with the
group delay. The focus for the choice of a low-pass filter in this work was set on a minimum
dispersion, therefore the Bessel type was chosen.

5.1.2 Discrete Low-pass Filter
The continuous signal f(t) can be represented by a series of Dirac’s delta functions, with
fk = f(k · Ts) and a sampling rate of 1/Ts:

f(t) =
∞∑
k=0

fk · (δ(t− k · Ts) . (5.3)
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The Laplace transformation

L(f(t)) :=
∞∫

t=0

f(t)e−stdt =
∞∫

t=0

[
∞∑
k=0

fk · (δ(t− k · Ts)
]
e−stdt (5.4)

from time to frequency domain accordingly results in the z-transformation Z(fk) (cf. Müller
[45])

L(f(t)) =
∞∑
k=0

fke
s·Ts−k =:

∞∑
k=0

fkz
−k =: Z(fk). (5.5)

It can be seen from equation 5.5 that a multiplication in the z-space with z−k equals a time
shift of the signal by k · Ts . For designing a discrete filter from a continuous one, the bilinear
transformation

s = 2
Ts

(
z − 1
z + 1

)
(5.6)

can be used to map the s-space to the z-space. For a stable filter, that means with complex
poles in the left half of the s-space (as provided by appropriate tables), stability will be
maintained by the bilinear transformation due to the mapping of the poles inside the unit
circle (cf. Shenoi [53]). The ordinate of the s-space, describing the undamped frequency space,
is mapped consistently onto the unit circle (s = iω is transformed to z = eiωTs). The approach
for designing a discrete low-pass filter is therefore:

1. Choose filter type and order

2. Pick filter coefficients from table (e.g. by Kugelstadt [36]) for ωc = 1 Hz

3. Transform filter to new corner frequency s→ p/ωc

4. Apply bilinear transformation to the continuous transfer function p = 2
Ts

(
z−1
z+1

)
5. Write the filter convolution as flpf(z) = H(z) ∗ f(z)

6. Reformulate as polynomial of z−1

According to the remark below equation 5.5, the polynomial can be directly used to implement
the filter (addition and time shift).
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5.1.3 Low-pass Filter Boundary Condition for LBM
A simple low-pass filter boundary condition for LBM can be set up by applying the filter
on the incoming density distributions fi previous to further processing with conventional
boundary conditions. All filters are applied in time rather than in space to gain a full local
data consistency and a corresponding isotropy. A second order low-pass filter with

H(s) = 1
1 + ais+ bis2 (5.7)

and with a normalized time step ∆t := 1 results according to section 5.1.2 in a discrete
low-pass filter

fi,lpf = C1 ·
[
fi + 2 (fi + (C3 − 1) fi,lpf) z−1 + (fi + (C2 − C3 − 1) fi,lpf) z−2] . (5.8)

Let the superscript (n) mark the corresponding time step n ·∆t. The filter function in time
can be read directely from the z-polynomial of equation 5.8:

Second order Bessel filter:

f
(n)
lpf = C1 ·

[
f (n) + 2

(
f (n−1) + (C3 − 1) f (n−1)

lpf

)
+
(
f (n−2) + (C2 − C3 − 1) f (n−2)

lpf

)]
(5.9)

with

C1 := 1
1 + C2 + C3

, C2 := 2a1

ωc
, C3 := 4b1

ω2
c

,

a1 := 1.3617, b1 := 0.6180

Correspondingly, f and the filtered flpf have to be recorded for the two last time steps. The
filter coefficients a1 and b1 were selected from Kugelstadt [36] and form a stable second order
Bessel filter. The corner frequency could be practically tuned to the latest possible reflection,
e.g. at the outflow boundary. For an inflow boundary condition, ωc has accordingly to be
tuned to a propagation over twice the domain length:

ωc := 1
2 · L · c−1

s

= 1
2 · L ·

√
3
. (5.10)

With the same procedure as above, all other Bessel filters up to 4th order can be set up:

First order low-pass filter:

f
(n)
lpf = C1 ·

[
f (n) + f (n−1) + (C2 − 1) · f (n−1)

lpf

]
(5.11)

with
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C1 := 1
1 + C2

, C2 := 2
ωc
.

Third order Bessel filter:

f
(n)
lpf = C1 ·

[
f (n)

+
(

3f (n−1) + (C3 − C2 + C4 − 3) f (n−1)
lpf

)
+
(

3f (n−2) + (C2 + C3 − C4 − 3) f (n−2)
lpf

)
+
(
f (n−3) + (C2 − C3 + C4 − 1) f (n−3)

lpf

)]
(5.12)

with

C1 := 1
1 + C2 + C3 + C4

, C2 := 2(a1 + a2)
ωc

,

C3 := 4(a1a2 + b2)
ω2
c

, C4 := 8a1b2

ω3
c

,

a1 := 0.7560, a2 := 0.9996, b2 := 0.4772

Forth order Bessel filter:

f
(n)
lpf = C1 ·

[
f (n)

+ 2
(

2f (n−1) + (C4 − C2 + 2C5 − 2) f (n−1)
lpf

)
+ 2

(
3f (n−2) + (C3 − 3C5 − 3) f (n−2)

lpf

)
+ 2

(
2f (n−3) + (C2 − C4 + 2C5 − 2) f (n−3)

lpf

)
+

(
f (n−4) + (C2 − C3 + C4 − C5 − 1) f (n−4)

lpf

)]
(5.13)

with

C1 := 1
1 + C2 + C3 + C4 + C5

, C2 := 2(a1 + a2)
ωc

, C3 := 4(a1a2 + b1 + b2)
ω2
c

,

C4 := 8(a1b2 + a2b1)
ω3
c

, C5 := 16b1b2

ω4
c

, a1 := 1.3397,

a2 := 0.7743, b1 := 0.4889, b2 := 0.3890
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5.1.4 1D Pressure Wave Test Case
For the discussion of the implemented LBM filtering boundary condition, the D1Q3 compressible
LBM model of section 3.1 is set up on a domain of L = 1000 grid nodes. On the left-hand side,
a Dirichlet velocity boundary condition with v0 = 0.1 is installed, correspondingly on the right
hand side a Dirichlet pressure boundary condition with p0 = c2

s · %0 and %0 ≡ 1. The Dirichlet
boundary conditions can be simply computed by solving mass and momentum conservation on
the boundary, which gains

f1 = 1
1− v0

· (f2 + v0 · (f0 + f2)) (5.14)

for the velocity boundary and

f2 = %0 − f0 − f1 (5.15)

for the pressure boundary. It is stressed that for the velocity boundary condition, the pressure
is not fixed, but is a function of the conservation properties. The same is valid vice versa for
the pressure boundary condition.
Initially, a constant velocity of v0 ≡ 0.1 was set over the whole domain. For the density, a

Gauss peak with a maximum value of %p = 2 and σ = 50 was placed at position xc = 100 ·∆x:

%(x) = %0 + (%p − %0) · e−
1
2( (x−xc)·σ

L )2

. (5.16)

Figure 5.5 shows how the density in the domain evolves over time. The Reynolds number
was set to Re = v0·L

ν
= 100.

Figure 5.6 and 5.7 show density and velocity for a free field simulation, where the domain
size was increased by ∆L = 1000 on the left hand side. The extended domain is cut off for
the plots to show how a perfectly non-reflecting free field boundary would have to respond.
The peak displayed at x ≈ 500 ·∆x is the one splitting from the initial pressure peak and
being convected to the right hand side (cf. 5.5). Being geometrically damped (i.e. in this
case by viscous loss), it will be used below as reference for the reflection level of the boundary
conditions. The left partial peak (cf. 5.5) propagated out of the left bound.
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Figure 5.5: Initial pressure peak evolving over time, Dirichlet velocity BC at left inlet
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Figure 5.6: Free field density after 500 time steps
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Figure 5.7: Free field velocity after 500 time steps
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5.1.5 Discussion of 1D Pressure Wave Test Case
For the filtering boundary conditions, the filter was applied prior to the use of the Dirichlet
velocity boundary condition on the known part of the distribution function:

f0
n-th order low−−−−−−−−→

pass filter
f0,lpf, f2

n-th order low−−−−−−−−→
pass filter

f2,lpf,

f1 = 1
1− v0

· (f2,lpf + v0 · (f0,lpf + f2,lpf)) ,

f0 = f0,lpf, f2 = f2,lpf.

Its extension to the 2D and 3D case is straight forward and shall not be discussed. The
implications can be seen on figures 5.8 to 5.11, which is summarized:

1. A significant reduction of the reflected sound pressure wave can be achieved.

2. Due to the local application of the filter, a major jump is observable both in density and
velocity.

3. This jump causes a wrongly set inflow velocity.

4. The group delay of the filter can clearly be noticed.

To 1: With a Dirichlet velocity boundary condition, the reflected density accounts for 109 %
of the geometrically damped wave at x ≈ 500. The reflection with the filter boundary condition
ranges from 24 % for the first order filter to 22 % for third and forth order (cf. figure 5.8).

To 2 and 3: A filter applied locally to node 1 causes a jump regarding node 2. This manifests
itself in a jump of density (cf. figure 5.9) and, for a fixed velocity even more severe, a jump in
velocity (cf. figure 5.11). The boundary velocity will therefore be slightly wrong (cf. figure
5.11: 5 % at the specific time step). Depending on the corner frequency, this offset will be
equalized over time, as the low-pass property damps the adaption correspondingly. In the
specific case, the adaption in density for the first order filter will be in the range of 0.002 per
1000 timesteps. A velocity of 0.1 at node 2 will therefore be reached approximately at timestep
t = 6000 ·∆t, if no other disturbances are encountered.

To 4: In figure 5.8, a group delay of the reflected pressure peak of approximately 30 nodes
can be observed. This equals an equivalent shift of the inflow boundary towards outside.

In consequence, the filtering boundary condition as discussed does not gain sufficiently
accurate results. A simple approach to "remove" the sound pressure wave is not possible.
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Figure 5.8: Reflection of pressure peak for density, group delay can clearly be seen.
(2nd order masked by 3rd order, cf. figure 5.9)

1 5 10 15 20 25 30 35 40 45 50
0.998

1

1.002

1.004

1.006

1.008

1.01

1.012

1.014

1.016

x in ∆ x

ρ(
t =

 5
00

 ⋅ 
∆ 

t)

 

 
Dirichlet BC
1st order filter
2nd order filter
3rd order filter
4th order filter

Figure 5.9: Density on first 50 grid nodes. Jump can clearly be seen.
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Figure 5.10: Reflection of pressure peak on left hand side for velocity
(2nd order masked by 3rd order, cf. figure 5.11)
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Figure 5.11: Velocity on first 50 grid nodes. Jump can clearly be seen.
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5.2 Characteristic Based Methods
The basic idea of characteristic based boundary condition for hyperbolic systems of equations
dates back to at least the 1970s (cf. Chen [10], Lindman [39], Engquist and Majda [14],
Hedstrom [25], Thompson [56]) and is probably the most widely used non-reflecting type. An
implementation for the LBM was introduced by Kim et. al. [33] and Izquierdo and Fueyo [28].
In contrast to the filtering method of the previous section, the approach of characteristic based

methods is to actually solve a set of simplified constitutive equations on the boundary, combined
with an assumption for the adjacent region outside the domain. More specific, the amplitude
of acoustic waves propagating into the domain is deliberately set to zero. The boundary
node is hereby basically modeled by a system of inviscid conservation equations, namely the
continuity equation 2.18, the Euler equation 2.33 and the energy equation 2.40 without viscous
shear stress term. The derivatives normal to the boundary are then neglected, which leads
to the LODI (Linear One Dimensional Inviscid) system of equations. The restriction to the
normal direction of incoming pressure waves represents the most important one to this type of
boundary conditions. The resulting hyperbolic system of equations can be transformed into its
characteristic form, describing the propagation of partial waves. Acoustic waves propagating
into the domain can then be set to zero. The components referring to waves directing towards
the boundary from the inside of the domain are computed by use of finite difference stencils
and a forward Euler scheme.
Although this procedure is designed only for inviscid flow, it can be adapted for the Navier-

Stokes equations, as they also include wave propagation. By adding viscous effects to the
boundary condition, it is able to interact with the fluid and set a desired boundary state.
The boundary conditions by Poinsot and Lele [51] split diffusive effects and include viscous
conditions separately, leading to a small pressure wave propagation towards the fluid. This
indicates on the other hand that a perfectly non-reflecting boundary condition for viscous flow
is contradicting physical reasoning.

5.2.1 Principle of the LODI Method
The principle of the LODI method introduced by Poinsot and Lele [51] is sketched roughly for
the two-dimensional case, as it is extensively described in the referred article or by Izquierdo
and Fueyo [28]. The aforementioned system of inviscid constitutive equations 2.18, 2.33 and
2.40 without viscous term, heat diffusion and external sources is cut down by setting derivatives
parallel to the specific boundary to zero. For a boundary with normal ex on the left hand side
of a domain with length L, i.e. at position xb = 0 with 0 ≤ x ≤ L, all derivatives parallel to
the boundary are canceled for an arbitrary variable of state Φ:

∂Φ
∂y
≡ 0. (5.17)

The equations can be cast to a four-dimensional system of equations

∂

∂t
U + A · ∂

∂x
U = 0 (5.18)
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with a state vector

U := [%, vx, vy, E]T (5.19)

and

A :=


vx % 0 0
c2
s/% vx 0 0
0 0 vx 0

csvx/% c2
s 0 vx

 . (5.20)

It is assumed consistently to the LBM that speed of sound is constant and the heat capacity
ratio equals one. Now A can be decomposed into A = S−1ΛS, which bases on an eigenvector
decomposition given by the row vectors of Ve:

Ve :=


−cs/% 1 0 0

0 0 1 0
−c2

s/% −vx 0 1
cs/% 1 0 0

 (5.21)

Ve is now multiplied by D := diag(−%cs, 1,−%, %cs)

S := D · Ve =


c2
s −%cs 0 0
0 0 1 0
c2
s %vx 0 −%
c2
s %cs 0 0

 , (5.22)

S−1 =


1/(2c2

s) 0 0 1/(2c2
s)

−1/(2%cs) 0 0 1/(2%cs)
0 1 0 0

−(vx − cs)/(2%cs) 0 −1/% −(vx + cs)/(2%cs)

 , (5.23)

and Λ is the diagonal matrix of eigenvalues, namely the characteristic velocities λi:

Λ = diag(vx − cs, vx, vx, vx + cs) =: diag(λ1, λ2, λ3, λ4). (5.24)

The corresponding wave amplitudes are given by

L = Λ · S · ∂
∂x
U =


λ1
(
∂p
∂x
− %cs ∂vx∂x

)
λ2

∂vy
∂x

λ3
(
c2
s
∂%
∂x

+ vx%
∂vx
∂x
− %∂E

∂x

)
λ4
(
∂p
∂x

+ %cs
∂vx
∂x

)

 . (5.25)



56 5. Non-reflecting Boundary Conditions

Izquierdo and Fueyo use implicitly an relation for an infinitesimal change in total Energy [28],
corresponding to the total work on the control volume, without dwelling on this relationship:

d (% · E) = d

(
1
2%v

2
x

)
+ dp ≡ dJ

dA dt
. (5.26)

Assuming constant density % during an infinitesimal time step, the following relations can be
derived:

∂E

∂t
= vx ·

∂vx
∂t

+ 1
%

∂p

∂t
, (5.27)

∂E

∂x
= vx ·

∂vx
∂x

+ 1
%

∂p

∂x
, (5.28)

and with equation 5.28, the total Energy can be eliminated from L3:

L3 = λ3

(
c2
s

∂%

∂x
− ∂p

∂x

)
. (5.29)

With the LBM, the relation p = c2
s% holds and cs is constant, resulting in L3 ≡ 0.

In section 6.1, a linearized acoustic model is used leading to the same assumptions 5.27 and
5.28, also discussing the resulting error and a justification for assuming constant density.
Apparently, setting the wave amplitude L4 for λ4 = vx + cs to zero results in a perfectly non-

reflecting left boundary condition for inviscid flow and normal incoming pressure waves. This
leads, except of a numerical error, to a perfect free field boundary condition for a perpendicular
incoming sound pressure wave, as shown in section 5.2.2. For specifying proper boundary
conditions, equations 5.18 can be rewritten for the primitive variables

∂

∂t
U + S−1 · L = 0. (5.30)

Equation 5.27 and the wave amplitudes 5.25 lead to:

∂%

∂t
+ 1

2c2
s

(L4 + L1) = 0 (5.31)

∂p

∂t
+ 1

2(L4 + L1) = 0 (5.32)
∂vx
∂t

+ 1
2%cs

(L4 − L1) = 0 (5.33)

∂vy
∂t

+ L2 = 0 (5.34)

This leads to the condition for a Dirichlet velocity boundary condition L4 − L1 ≡ 0 or the
condition L4 + L1 ≡ 0 for a Dirichlet pressure boundary condition. However, a perfectly non-
reflecting boundary condition e.g. for a left boundary normal to ex requires generally L4 = 0
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and L1 6= 0, which contradicts both of the Dirichlet conditions. This implies that a perfectly
non-reflecting Dirichlet velocity or pressure boundary condition is generally not possible. On
the contrary, the feedback of the boundary condition via pressure waves is necessary to install
a desired state. The remedy by Poinsot and Lele [51] is to allow a distinct rate of reflection.
This is modeled by a linear relaxation model, proposed by Rudy and Strikwerda [52]. Suppose
Li would be the wave amplitude of the incoming sound pressure wave. Then a penalty term is
installed for the wave amplitude of the pressure wave directed into the domain,

Li = K(φ− φb), φ = [vx ∨ p] (5.35)

for a Dirichlet velocity respectively pressure boundary condition with boundary state φb.
The constant K was derived by Rudy and Strikwerda [52] in an involved Fourier analysis and
results for most rapid decay in

K := σ(1−Ma2)cs
L

, (5.36)

where L marks the size of the domain and σ is a constant which has to be calculated iteratively
by the non-analytical product log function W (x) = W (x)eW (x) (cf. Rudy and Strikwerda [52])

σ = W (e−1) ≈ 0.2784645428. (5.37)

All other wave amplitudes have to be calculated, if possible, by a stable upstream finite
difference, otherwise by exploiting equations 5.31 to 5.34 for the respective time derivative of
the Dirichlet boundary value set to zero. Poinsot and Veynannte recommend σ ≡ 0.58 for the
relaxation factor, based on field studies [50]. However, the penalty approach does in general
not provide means to restrict the reflection to a predefined sound pressure level.
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5.2.2 LODI Boundary Conditions for LBM in 1D
In this section, a LODI velocity inflow boundary condition is derived and applied to the test
case of section 5.1.4. For one dimension holds ∂vy

∂t
≡ 0, resulting in L2 ≡ 0. Due to the missing

viscous shear force in 1D, there is no steady state pressure decay over the domain. Therefore
the feedback of the boundary condition via the mentioned relaxation scheme is not necessary
and the wave amplitude for sound pressure waves directing into the domain can be set directly
to L4 ≡ 0:

L1 = (vx − cs)
(
c2
s

∂%

∂x
− %cs

∂vx
∂x

)
(5.38)

L2 = L4 ≡ 0 (5.39)

This is equivalent to a LODI free field boundary condition. The spatial derivatives for L1
can be modeled by one-sided upstream finite difference approximations of the same order as
the LBM itself:

∂%

∂x
= 1

2∆x(−3%(xb) + 4%(xb + ∆x)− %(xb + 2∆x)) +O(∆x2) (5.40)
∂vx
∂x

= 1
2∆x(−3vx(xb) + 4vx(xb + ∆x)− vx(xb + 2∆x)) +O(∆x2) (5.41)

The boundary state is finally computed with equations 5.31 and 5.33 and in compliance to
the error of the LBM by a forward Euler scheme:

%(n) = %(n−1) + ∆t
2c2
s

(L4 + L1) +O(∆t2) (5.42)

v(n)
x = v(n−1)

x + ∆t
2%cs

(L4 − L1) +O(∆t2) (5.43)

The unknown distribution function on the boundary is set by solving for the first moment,

f1 = f2 + %vx. (5.44)

As f1 is overdetermined in the 1D case by the zeroth moment, equation 5.16 will result in an
incorrect density. However, all distributions can be corrected by a new distribution function f ′:

f ′k = fk +
%−

∑
i

fi

3 . (5.45)

It can be easily derived that the zeroth and first moment of f ′ comply with the desired
boundary state of equations 5.42 and 5.43.
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5.2.2.1 Discussion of the 1D Test Case

The derived boundary condition was applied to the 1D pressure wave test case of section 5.1.4.
The Reynolds number was set to Re = 100 respectively. In the following, the results of the
simulation, shown throughout figures 5.12 to 5.16, will be discussed. An example code is
printed in appendix A.1.
Figures 5.12 and 5.13 display density and velocity on the domain for the specific time step

t = 500 ·∆t, as shown in figures 5.8 and 5.10 for the filtering boundary conditions. The density
deviates from the free field simulation in the region of the reflection x ∈ [1, 300] ·∆x by 0.3 %
of the geometrically damped wave amplitude near x = 500. The corresponding deviation of
velocity amounts to 1.0 %.
In figures 5.14 to 5.16 the state of the boundary node set by the LODI condition is compared

at xb = 0 with the corresponding free field over time. The free field data was recorded in the
same distance from the pressure peak, but in a ten time bigger domain, where no reflection
from the boundary was interfering with the data. However, the initialization was identical.
Figure 5.14 and 5.15 illustrate that the LODI free field boundary condition is in agreement

with the free field simulation. Figure 5.16 shows the relative error of the relevant unknown,
the distribution function f1, which is up to a 2.5% maximum for the specific case.
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Figure 5.12: Reflection of pressure wave on left hand side, LODI boundary condition, for density
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Figure 5.13: Reflection of pressure wave on left hand side, LODI boundary condition, for velocity
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Figure 5.14: Density over time for left inflow LODI boundary with passing pressure wave
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Figure 5.15: Velocity over time for left inflow LODI boundary with passing pressure wave

1 100 200 300 400 500 600 700 800 900 1.000
−0.025

−0.02

−0.015

−0.01

−0.005

0

0.005

t in ∆ t

(f
1,

re
f −

 f 1) 
 / 

 f 1,
re

f

Figure 5.16: Relative error of f1 for LODI boundary condition with passing pressure wave
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5.2.3 LODI Boundary Conditions for LBM in 2D
5.2.3.1 Compressible LBM LODI Boundary Conditions

In this section, a LODI boundary condition for the two-dimensional LBM is set up for
a left-hand side inflow boundary, normal direction ex. Other than the implementation of
Izquierdo and Fueyo [28], the final state of the boundary is set directly on the grid node
by non-equilibrium bounce-back, which Zou and He were already using in the derivation of
their boundary conditions (cf. section 4.3). Therefore also the finite difference stencil is not
conforming with the one used by Izquierdo and Fueyo. Apart from that, the boundary condition
is designed to gain minimal reflection, hence to recover a free field. A pressure or velocity
adaption will be not discussed in this context.
The requirement for the inflow is according to section 5.2.1 a vanishing wave amplitude L4,

resulting in the following setup of equations:

L1 = (vx − cs)
(
c2
s

∂%

∂x
− %cs

∂vx
∂x

)
(5.46)

L2 = vx
∂vy
∂x

(5.47)

L4 ≡ 0 (5.48)

The three derivatives are each approximated by a finite difference stencil with an error of
O(∆x2):

∂%

∂x
= 1

2∆x (−3%(xb) + 4%(xb + ∆x)− %(xb + 2∆x)) (5.49)
∂vx
∂x

= 1
2∆x (−3vx(xb) + 4vx(xb + ∆x)− vx(xb + 2∆x)) (5.50)

∂vy
∂x

= 1
2∆x (−3vy(xb) + 4vy(xb + ∆x)− vy(xb + 2∆x)) (5.51)

The state of the boundary is computed by first order forward time integration applied on
equations 5.31, 5.33 and 5.34:

%(n) = %(n−1) − ∆t
2c2
s

(L(n−1)
4 + L

(n−1)
1 ) (5.52)

v(n)
x = v(n−1)

x − ∆t
2%cs

(L(n−1)
4 − L(n−1)

1 ) (5.53)

v(n)
y = v(n−1)

y −∆t · L(n−1)
2 (5.54)

Finally, the three unknown distributions are set, as mentioned, by non-equilibrium bounce-
back. This is basically equivalent by setting the unknown distribution by their equilibrium
and copying the non-equilibrium from the opposite distribution:
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f1 = f3 + 2
3%vx (5.55)

f5 = f7 + 1
6%(vx + vy) (5.56)

f8 = f6 + 1
6%(vx − %vy) (5.57)

An example for the implementation can be found in appendix A.2.

5.2.3.2 Incompressible LBM LODI Boundary Conditions

For the incompressible LBM, the system of equations 5.18 has to be adapted according to the
Chapman-Enskog derivation of mass and momentum conservation, as derived in equations 3.95
and 3.99. The energy equation is maintained, although for the pressure gradient the dynamic
density is used. As a result, only the matrix A (cf. equation 5.20) has to be changed and turns
into

A :=


0 %0 0 0

c2
s/%0 2vx 0 0
0 0 vx 0

csvx/%0 c2
s 0 vx

 (5.58)

The eigendecomposition of A, as shown in section 5.2.1, leads to the following characteristic
velocities λi:

λ1 = vx −
√
v2
x + 4c2

s, (5.59)
λ2 = vx, (5.60)
λ3 = vx, (5.61)
λ4 = vx +

√
v2
x + 4c2

s. (5.62)

Due to this fact, the formulation of the conservation of mass from the Chapman-Enskog
procedure, equation 3.95, cannot be used. Rather an additional term is added, gaining a
substitute for the equation 3.95,

∇ · v + 1
%0

∂

∂t
%+ v

%0
∇%︸ ︷︷ ︸

added

= 0,

which results in an entry A1,1 = vx. The divergence term on the left hand side of equation
3.99 is additionally neglected, so A2,2 = 2vx becomes A2,2 = vx. This leads to the same
characteristic velocities of equation 5.24. The characteristic amplitudes for the same free field
formulation as in section 5.2.3.1 are:
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L1 = (vx − cs)
(
c2
s

∂%

∂x
− %0cs

∂vx
∂x

)
(5.63)

L2 = vx
∂vy
∂x

(5.64)

L4 ≡ 0 (5.65)

The three derivatives are approximated by the finite difference stencils of equations 5.49,
5.50 and 5.51. The forward time integration of equations 5.31, 5.33 and 5.34 leads to:

%(n) = %(n−1) − ∆t
2c2
s

(L(n−1)
4 + L

(n−1)
1 ) (5.66)

v(n)
x = v(n−1)

x − ∆t
2%0cs

(L(n−1)
4 − L(n−1)

1 ) (5.67)

v(n)
y = v(n−1)

y −∆t · L(n−1)
2 (5.68)

The three variables are set by non-equilibrium bounce-back of the incompressible LBM:

f1 = f3 + 2
3%0vx (5.69)

f5 = f7 + 1
6%0(vx + vy) (5.70)

f8 = f6 + 1
6%0(vx − vy) (5.71)

The corresponding implementation is demonstrated in section A.3.
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5.2.4 2D Pressure Wave Test Case
For testing the two-dimensional non-reflecting boundary conditions, a pressure peak formed as
2D Gaussian bell curve is placed near the left boundary. The setup is sketched in figure 5.17:
The simulation domain is square with an edge length of lx = ly = 800 ·∆x (801 grid nodes).
The pressure peak is placed at a distance of px = 200 ·∆x from the left boundary and centered
between the bottom and top at py = 400 ·∆x. With this setup, the simulation covers a varying
impact angle of the pressure wave in a range of 0◦ to 60◦ relative to the normal vector of the
left boundary.

ly

lx

p
y

p
x

Figure 5.17: Setup, 2D pressure wave test case

On the left-hand side, marked in red, the boundary nodes implement the boundary condition
to be tested. The right, marked in green, is realized by a Zou-He pressure boundary condition
(cf. section 4.3) with a fixed density of %0 = 1. The top and bottom boundary nodes are
bounce-back nodes (cf. section 4.2), so that there is a no-slip boundary half way between the
bottom respectively top row and the next following inner row. This reduces the physical flow
domain to

ly,p = ly −∆y (5.72)

The density is initialized by setting the Gauss peak to:

%(t = 0, x, y) = %0 −

%max − %0 exp

−(x− px)2 + (y − py)2

2 ·
(
ly
50

)2


 (5.73)

%0 = 1 (5.74)
%max = 2 (5.75)
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Initially, the velocity in ey-direction is set to zero, vy = 0. For the vx velocity, two different
initial conditions are used:

Setup (a): vx(t = 0, x, y) = 0 (5.76)
Setup (b): vx(t = 0, x, y) = 4vmax

l2y,p
· (y −∆y/2) · (ly,p − (y −∆y/2)) (5.77)

The second one represents a parabolic duct flow covering the steady state while using the
top/bottom no-slip boundary conditions with parabolic inflow velocity profile. This velocity
setup is used, besides having a convective flow induced, to involve a shear force on the boundary.
The distribution functions are initialized by the corresponding equilibrium distribution.
The viscosity of the simulation is in both cases such that the Reynolds number Re =

(L · vref · %0)/ν = 100 with a characteristic length L = 195 ·∆x, which resembles the object
size of the simulation of section 7.4. For case (a), a maximum speed vref = 0.1 · c0 is set to
maintain comparability with the subsequent simulations. For test case (b) the speed is set to
vref := vmax.
For comparing the simulation with non-reflecting boundary conditions to the corresponding

free field, a reference simulation was set up with the same properties as above, but three times
the domain length, as illustrated in figure 5.18. Only the data of the middle of the three
sections, marked gray in figure 5.18, is evaluated. Reflections on the left and right boundary
do not happen during the evaluated simulation time. The inflow is set statically to the velocity
profile of equation 5.76 or 5.77 with a Zou-He velocity boundary condition, the outflow to the
constant density %0 = 1 with the Zou-He pressure boundary condition (cf. section 4.3). The
initial conditions are set consistently with the test setup according to equations 5.76 and 5.77.

ly

lx

p
y

p
x

lxlx

Figure 5.18: Free field reference for pressure wave test case

Figure 5.19 shows test case (a) and the reflection of the pressure peak at a Zou-He velocity
boundary condition imposed on the left boundary for the compressible LBM. The colormap is
scaled to the actual minimum and maximum density of each time step.
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Figure 5.20 and 5.21 show the corresponding free field, for density and absolute velocity at
time step t = 700 ·∆t.

density at t = 0 density at t = 200 ·∆t

density at t = 300 ·∆t density at t = 400 ·∆t

density at t = 500 ·∆t density at t = 600 ·∆t

Figure 5.19: Pressure peak evolving over time
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Figure 5.20: Free field of setup (a), density at t = 700 ·∆t

Figure 5.21: Free field of setup (a), absolute velocity at t = 700 ·∆t
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5.2.5 2D Pressure Wave Test Case for LODI BCs
In this section, the results of the 2D pressure wave test case of section 5.2.4 are discussed
for the LODI boundary condition of section 5.2.3. It will be shown that the LODI boundary
condition has a reflection rate in dependence of the incident angle, and each test case includes
a corresponding plot of the relative error in density, compared to the free field. The dashed
line plotted in figure 5.22 marks the positions of sample points for this graph. As it represents
the evolving pressure wave of the mirror source (px,mirror, py,mirror) with the radius r at the
current time step, the reflection angle can be recovered at the position (xs, ys):

xs = r ∗ Re
(
e(iφ))+ px,mirror (5.78)

ys = r ∗ Im
(
e(iφ))+ py,mirror (5.79)

The sample points were taken in a range of 0◦ to 60◦ in steps of ∆φ = 1◦. Intermediate grid
values were computed by cubic interpolation.

5.2.5.1 Compressible LBM, Resting Fluid

First, the LODI free field boundary condition was tested for a resting initial fluid, as described
in case (a) of section 5.2.4. The pressure peak evolves as in figure 5.19, except the reflection
is suppressed on the left hand-side boundary. Figure 5.22 and 5.23 show the density and
absolute velocity after 700 time steps. Figure 5.24 and 5.25 show the error compared to the
corresponding free field simulation.

Figure 5.22: LODI free field BC, setup (a), density at t = 700 ·∆t. Line plotted
along sample points as described in section 5.2.5
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Figure 5.23: LODI free field BC, setup (a), absolute velocity at t = 700 ·∆t

Figure 5.24: LODI free field BC, setup (a), relative density error in % at t = 700 ·∆t
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Figure 5.25: LODI free field BC, setup (a), absolute error of velocity error at t = 700 ·∆t
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Figure 5.26: Reflection over incident angle
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The characteristic angular dependence of the reflection for density can be seen in figure 5.26.
The relative error ranges from 0% to 1.4%.

5.2.5.2 Compressible LBM, Parabolic Velocity Inflow Profile

Next, setup (b) of the test case of section 5.2.4 was simulated with the 2D LODI free field
boundary condition on the left inflow boundary. The maximum inflow velocity was reduced to
vmax = 0.03 due to stability problems with the present implementation of the LODI boundary
condition. The instability might be caused by the explicit forward time integration and occurred
for a variety of ways to set the LODI state, including the use of the equilibrium distribution.
Figures 5.27 to 5.31 illustrate the results of the simulation, like in the previous section for

time step t = 700 · ∆t. The maximum relative error in density is in the same range as for
the hydrostatic case (a) of the previous section. The maximum error in absolute velocity, not
considering the effects in the direct vicinity of the inflow boundary, equals 0.003, which is 10%
of the maximum inflow velocity. The relative error in density in dependence on the incident
angle, as described at the beginning of section 5.2.5, can be seen in figure 5.31. It ranges from
0% to 1.6%.

Figure 5.27: LODI free field BC, setup (b), density at t = 700 ·∆t
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Figure 5.28: LODI free field BC, setup (b), absolute velocity at t = 700 ·∆t

Figure 5.29: LODI free field BC, setup (b), relative density error in % at t = 700 ·∆t
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Figure 5.30: LODI free field BC, setup (b), absolute error of velocity error at t = 700 ·∆t
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Figure 5.31: Reflection over incident angle, setup (b)
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5.2.5.3 Incompressible LBM, Resting Fluid

For the incompressible LBM, the MRT model described in section 3.5.2 was used. The bulk
viscosity was set to µ′ = 2

3 · µ. Figure 5.32 shows the density at time step t = 700 ·∆t, Figure
5.33 the corresponding velocity field. The relative error in density and the absolute velocity
error, compared to the free field simulation, are shown in figure 5.34 and 5.35.
The significant relation of relative error in density over the incident angle (cf. introduction

of section 5.2.5) can be found in figure 5.36. It can be seen that the error lies in a range of 0%
to 1.4%, just as in the compressible case of section 5.2.5.1.

Figure 5.32: LODI free field BC, setup (a), density at t = 700 ·∆t
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Figure 5.33: LODI free field BC, setup (a), absolute velocity at t = 700 ·∆t

Figure 5.34: LODI free field BC, setup (a), relative density error in % at t = 700 ·∆t
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Figure 5.35: LODI free field BC, setup (a), absolute error of velocity error at t = 700 ·∆t
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Figure 5.36: Reflection over incident angle
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5.2.5.4 Incompressible LBM, Parabolic Velocity Inflow Profile

Finally, setup (b) was simulated with the incompressible LBM. The state of the flow field
is shown in figure 5.37 and 5.38, the corresponding relative respectively absolute error in
figure 5.39 and 5.40. The relative error in density, plotted over the expanding spherical wave
maximum of the mirror source, ranges from 0% to 1.6%, just like in the compressible case in
section 5.2.5.2.
In summary can be stated that the implemented LODI boundary condition shows in all

cases tested a similar behavior. It is characterized by a distinct relation of the dependence of
reflectance and angle of incidence, as seen in figure 5.24, 5.29, 5.34 and 5.39, respecitvely in
figure 5.26, 5.31, 5.36 and 5.41. The reflected wave shows in relation to the free field simulation
a maximum relative error between 1.4% and 1.6% for an incident angle of 60◦, depending on
the test case.

Figure 5.37: LODI free field BC, setup (b), density at t = 700 ·∆t
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Figure 5.38: LODI free field BC, setup (b), absolute velocity at t = 700 ·∆t

Figure 5.39: LODI free field BC, setup (b), relative density error in % at t = 700 ·∆t
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Figure 5.40: LODI free field BC, setup (b), absolute error of velocity error at t = 700 ·∆t
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Figure 5.41: Reflection over incident angle
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Chapter 6

Impedance Boundary Conditions

The intention of the boundary conditions presented in this chapter is to avoid reflections by
adapting a specific impedance. There are several approaches with a similar intention. For
example, this is subject to the widely known method of Perfectly Matched Layers (PML),
introduced by Berenger in the context of the Maxwell equations [4]. This method was
numerously adapted and also implemented in the field of classical Navier-Stokes methods
(i.e. by Freund [16]). Tekitek et al. [55] introduce an implementation of PML for the Lattice
Boltzmann Method. Although the basic objective is supposed to be the same, the boundary
conditions derived below are entirely different.

6.1 Impedance Condition 1D
Instead of using conservation properties in differential form, as with the characteristic based
LODI method in section 5.2, this can also be done in an integral formulation. As an advantage,
the spatial derivatives, emerging in the differential formulation from Gauss’s theorem, will
vanish. This helps to overcome the most important disadvantage of the LODI boundary
conditions and maintain strict locality. As a secondary effect, appropriate means will cancel
the forward Euler time integration, resulting in an increase of numerical stability.
All considerations are based on the assumption that every change in pressure respectively

density propagates with the speed of sound. An alternative approach would be to use high pass
filtering (cf. chapter 5.1) at a boundary node on the density distributions facing outwards and
sum the result to gain the overall sound density. As the unknown distributions all directing
towards the inside of the domain (cf. page 36) should not be influenced by sound pressure
waves, this consideration is valid. However, the infrasound part of the density change is not
covered then. It is stressed that the restriction to a filter band has purely reasons of human
perception.
The prerequisite of the distinct propagation speed leads to a slightly miscalculated pressure

adaption in case of convected pressure changes, e.g. with turbulent outflow. However, this
error seems to be negligible, as shown in chapter 7. A fixed pressure boundary condition on
the other hand would always lead to a wrong pressure adaption in that case.
In this section, the basic principle of the impedance boundary condition is derived. It will be

shown later that in a 2D or 3D case, the very same principle can be applied and merely has
to be transformed to the appropriate direction of incidence of the sound pressure wave. The
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LBM is especially well suited for the required transformation.

6.1.1 Impedance Condition for Compressible LBM
Suppose a pressure change enters a fixed control volume dV on the boundary. Its additional
momentum at time step t(n) = ∆t · n inside the control volume with respect to the preceding
time step equals:

dJ
(n)
CV = v(n)%(n)dV ′ − v(n−1)%(n−1)dV ′ − v(n−1)d%(n)dV ′ =

= v(n)%(n)dV ′ − v(n−1)%(n)dV ′. (6.1)

The term of equation 6.1 referring to the change in density d%(n) = %(n) − %(n−1) is related to
pure convection of d%(n) with the base velocity v(n−1). It is not part of the momentum flux of
the pressure wave itself and therefore has to be subtracted.
Only a fraction dV ′ of the control volume dV is affected by the pressure wave. Considering

the relative speed of sound cs±v(n−1) for a pressure wave directing towards positive respectively
negative ex-direction, it is given by (Müller, [46]):

dV ′ = (cs ± v(n−1)) · dt · dA. (6.2)

With dv(n) = v(n) − v(n−1), the rate of momentum change per unit area therefore equals:

∂J
(n)
CV

∂A ∂t
= dv(n) · %(n) · (cs ± v(n−1)). (6.3)

On the other hand, the momentum flux of an incoming sound pressure wave towards the
control volume can be equally derived. As the change in density d%(n) is supposed to be small
compared to %(n−1), the approximation for the wave front of a punctual source in distance r
can be used (cf. Müller [47]):

dp(n) = %(n−1)

4πr
∂Q(tn − r/cs)

∂t
. (6.4)

In case of a sufficient distance r from the source, the volume flow Q can be set to:

dQ(t) = dv(t) dA. (6.5)

For small time steps, the change in flow velocity can be approximated linearly in time:

dv(t) = v(n) − v(n−1)

∆t ·
(
t− t(n−1))+O(∆t) ∀t ∈

[
t(n−1), t(n)] . (6.6)
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The error estimate is based on the assumption that the velocity increases or decreases
monotonously. Equations 6.4, 6.5 and 6.6 justify that the pressure can be assumed to be
constant during the same time step, as the time derivative of equation 6.6 is constant:

dp(n) = const. (6.7)

With the isothermal ideal gas law in case of the LBM,

d%(n) = c2
s

dp(n) = const., (6.8)

the density can also be assumed to be constant during one time step. The non-isotropic part
of the momentum flux of a pressure change therefore results in

∂J
(n)
c

∂A ∂t
=

v(n)∫
v(n−1)

n · %(n) · v dv = 1
2%

(n) [(v(n))2 − (v(n−1))2] · n, (6.9)

with the incoming face orientation of the control volume n = ∓1. Together with the pressure
term according to equation 2.25 as isotropic part of the momentum flux, this results in a total
momentum flux of the sound pressure wave of

∂J
(n)
flx

∂A ∂t
= n

(
d%(n)c2

s + 1
2%

(n) [(v(n))2 − (v(n−1))2]) . (6.10)

This relation is equivalent to the assumption of Izquierdo and Fueyo in equation 5.26 and is
the main reason for the almost identical level of error of both approaches.
To prevent reflection of the pressure wave, the rate of momentum change in the control

volume and the incoming momentum flux have to balance to zero:

∂J
(n)
CV

∂A ∂t
+ ∂J

(n)
flx

∂A ∂t
= ∓d%(n)c2

s ∓
1
2%

(n)(dv(n))2 + dv(n)%(n)cs = 0 (6.11)

The physically reasonable solution of equation 6.11 with v(n) = v(n−1) for %(n) = %(n−1) yields:

v(n) = v(n−1) ∓ cs ·

√2 · %
(n−1)

%(n) − 1− 1

 . (6.12)

The condition for non-reflection from equation 6.11 is therefore equivalent to setting the
acoustic impedance z of the medium to

z(n) = dp(n)

dv(n) = c2
s · d%(n)

v(n) − v(n−1) = ∓ cs · d%(n)√
2%(n)−d%(n)

%(n) − 1− 1
= ∓ cs · d%(n)√

1− 2d%(n)

%(n) − 1
. (6.13)
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In section 6.2 and 6.3, a second relation between density and velocity will be derived for the
LBM. This allows for solving for both quantities. Finally, an arbitrary boundary condition
can be used to fulfill the non-reflective condition of equation 6.11 by setting the flow velocity
according to equation 6.12 in dependence of the incoming pressure change proportional to
d%(n).
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6.1.2 Impedance Condition for Incompressible LBM
For the incompressible LBM model of section 3.5, the derivation of the principle of the
impedance condition remains the same with adaptions regarding the altered first moment and
equilibrium distribution. As the first moment recovers a constant density, %(n) and %(n−1) have
to be set to %0 in equation 6.1. This results in a total momentum change, similar to equation
6.3, of

∂J
(n)
CV, inc.

∂A ∂t
= dv(n) · %0 · (cs ± v(n−1)). (6.14)

For the same reason, the momentum flux of equation 6.9 has to refer to a constant density:

∂J
(n)
c, inc.

∂A ∂t
= 1

2%0
[
(v(n))2 − (v(n−1))2] · n. (6.15)

The pressure term of equation 6.10 however remains unchanged. Finally, the impedance
condition of equation 6.11 changes to:

∓d%(n)c2
s ∓

1
2%0(dv(n))2 + dv(n)%0cs = 0. (6.16)

The physically reasonable solution of this equation results in:

v(n) = v(n−1) ∓ cs ·

√1− 2 · d%
(n)

%0
− 1

 (6.17)

The acoustic impedance is set by the very same relation as shown in equation 6.13:

z(n) = dp(n)

dv(n) = ∓ cs · d%(n)√
1− 2d%(n)

%0
− 1

. (6.18)

6.1.3 Adaption Relative to Fixed Reference Level
In this section an error is deducted for an adaption of the impedance relative to a fixed initial
reference level v0 := v(0) and %0 := %(0) instead of v(n−1) and %(n−1) of the last time step while
using equation 6.11. Let k be the index of an arbitrary time-step 0 < k < n and

d%′ :=
n∑

i=k+1

d%(i),

dv′ :=
n∑

i=k+1

dv(i).
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Suppose equation 6.11 was fulfilled for d%′ and dv′:

∓d%′c2
s ∓

1
2%

(n)dv′2 + dv′%(n)cs = 0 (6.19)

Then the error of changing the reference level from %(k), v(k) to %(k−1), v(k−1),

∓(d%′ + d%(k))c2
s ∓ 1

2%
(n)(dv′ + dv(k))2 + (dv′ + dv(k))%(n)cs =

dv(k) (∓ (1
2d%

′dv(k) + (%(k) + d%′)dv′
)

+ d%′cs
)

=: err, (6.20)

results from equation 6.11. According to the linear dependence of dv on t assumed in section
6.1,

dv(n) =
(
∂

∂t
v(n) − 1

2∆t ∂
2

∂t2
v(n) +O(∆t2)

)
∆t, (6.21)

can be deduced: dv(k) = O(∆t). Suppose the multiplicand of equation 6.20 results in an
error of at most

∓
(

1
2d%

′dv(k) + (%(k) + d%′)dv′
)

+ d%′cs = O(∆t2). (6.22)

Under this assumption, a backward induction with equation 6.19 being true for k = n− 1
and k → k − 1 results in:

(%(n) − %0)c2
s + 1

2%
(n)(v(n) − v0))2 + (v(n) − v0))%(n)cs +O(∆t2) = 0. (6.23)

This shows that solving equation 6.23 on the boundary results in an error of O(∆t2) and a
total error of the simulation of O(∆t) by addition of the partial errors. The numerical results
of the simulations in section 6.2.2 and the appendix back this hypothesis as long as a formal
prove of equation 6.22 is not available.
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6.2 Impedance Boundary Conditions for LBM in 1D

6.2.1 Adaption Relative to Last Time Step
Below, an impedance boundary condition is derived for a left boundary and is applied to the
1D test case of section 5.1.4. With mass and momentum conservation for the compressible 1D
LBM in lattice units,

% = f0 + f1 + f2, (6.24)
%v(n) = f1 − f2, (6.25)

density % can be expressed in terms of the unknown velocity v,

% = −f0 + 2f2

v − 1 , (6.26)

which, inserted into equation 6.11, leads to the solution

v(n) = v(n−1) −
(
c2
s

%(n−1)

%z
+ cs

)

+

√(
c2
s

%(n−1)

%z
+ cs

)2

− 2c2
s

(
%(n−1)

%z
(v(n−1) − 1) + 1

)
. (6.27)

%z is hereby defined as

%z := f0 + 2f2. (6.28)

The missing distribution function f1 can easily be derived from equation 6.24 and 6.25:

f1 = −f0v
(n) + f2(1 + v(n))

1− v(n) . (6.29)

Equations 6.27, 6.28 and 6.29 can be implemented in a quite compact way (cf. appendix
A.4). The results of the test case from section 5.1.4 are displayed below in figure 6.1 to 6.5,
comparable to the free field simulation of figure 5.6 and 5.7 and the LODI implementation of
figure 5.12 to 5.16.
In the test case, an initial pressure peak at x = 100 ·∆x spreads to both sides. The left

part is processed by the boundary condition of this section. The amount of reflection can
be seen in figures 6.1 and 6.2 in the range x ∈ [1, 300] ·∆x at time step t = 500 ·∆t. The
density deviates from the free field simulation by 0.3 % of the geometrically damped wave
amplitude near x = 500 ·∆x, the corresponding deviation of velocity is 0.9 %. This resembles
almost exactly the 1D results of the LODI boundary condition (cf. section 5.2.2), although the
underlying numerical scheme is different.
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Figure 6.1: Reflection of pressure wave on left hand side boundary for density
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Figure 6.2: Reflection of pressure wave on left hand side boundary for velocity
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Figure 6.3: Density over time for left inflow impedance boundary with passing pressure wave
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Figure 6.4: Velocity over time for left inflow impedance boundary with passing pressure wave
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Figure 6.5: Relative error of f1 compared to free field

Figure 6.3 and 6.4 compare the evolution of density and velocity at the location of the
boundary condition over time with the corresponding free field, while the pressure peak passes
by. The relative error for the essential density distribution f1 is shown in figure 6.5. The
maximum relative error in f1 amounts to 2.4 %, once again in the range of the LODI boundary
condition. In equation 6.6, a linear evolution of the particle velocity was assumed. Figure 6.5
illustrates that the error depends significantly on the curvature of the velocity profile. An
extended approach taking into account the curvature could be an interesting subject to further
research.

6.2.2 Adaption Relative to Fixed Reference Level
Next, the results of the test case of section 5.1.4 are discussed for an adaption of the impedance
relative to a fixed reference level %0 and v0, as derived in section 6.1.3. The only difference in
derivation (cf. section 6.2.1) and implementation is a swap of %(n−1) with %0 and v(n−1) with
v0. A code example can be found in the appendix A.5. The simulation recovers almost the
same results as without fixed reference level. Therefore only the relative error of f1 and the
reflected amount of density will be compared.
In the plot of figure 6.6, it can be seen that the reflection level even reduces coincidentally

for the specific case, evaluated as absolute deviation from the free field. The plot shows the
corresponding density in the range 0 ≤ x ≤ 300 ·∆x, the first third of the domain, where the
reflection can be observed at time step t = 500 ·∆t. Figure 6.7 shows the error of f1 relative to
the free field simulation. Once again it lies with a maximum error of 2.2 % in the same range
as the impedance boundary condition with adaption to the previous time step or the LODI
boundary condition.
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Figure 6.6: Reflection of pressure wave on left hand side for density
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Figure 6.7: Relative error of f1 during the pass of the pressure wave
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6.2.3 Highly Viscous Flow
Eventually, the same simulation as in section 6.2.1 was conducted for a Reynolds number of
Re = 10, so viscosity was increased by a factor of 10. As seen in the derivation of section 6.1,
neither shear nor volume viscosity was considered. In the one-dimensional case, the impact
should come from the volume viscosity, which is significantly hight for the LBM (ν ′ = 2/3 · ν,
cf. section 3.4).
Figure 6.8 shows the density over the domain at time step t = 800 ·∆t, comparing a Dirichlet

velocity boundary condition as described in section 5.1.4, the LODI free field boundary condition
of section 5.2.2 and the impedance free field boundary condition of section 6.2.1. The maximum
deviation of the density at the specific time step equals both for the LODI and impedance
boundary condition 0.4 % of the free field density. However, as shown in figure 6.9, the relative
error of the f1 distribution lies with 8 % 3.6 times significantly higher than in the simulation
with Re = 100 (cf. figure 6.7).
At last, figure 6.10 shows the comparison of f1 of the same simulation for a Reynolds number

of Re = 1, so viscosity was once more increased by one order of magnitude. With a relative
error of 15.5 % for the impedance boundary condition, the error almost doubles, compared to
the previous simulation with Re = 10.
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Figure 6.8: Reflection of pressure wave on left hand side for density, Re = 10
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Figure 6.9: Relative error of f1 during the pass of the pressure wave, Re = 10
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Figure 6.10: Relative error of f1 during the pass of the pressure wave, Re = 1
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6.3 Impedance Boundary Conditions for LBM in 2D

6.3.1 Adaption in Normal Direction for Compressible LBM
Similar as the 2D LODI boundary conditions of section 5.2.3, the assumption of a sound
pressure wave incoming only in normal direction to the boundary can be made, resulting in
a rather efficient implementation of the principle of section 6.1. This will be discussed in
this section for the compressible Lattice Boltzmann method and, consistently to the previous
chapter, for a left boundary.
Under the restrictive assumption of perpendicular incoming sound pressure waves, the

condition for non-reflection of equation 6.11 can be directly adopted, choosing a plus sign for a
left boundary:

(
%(n) − %(n−1)) c2

s + 1
2%

(n) (v(n)
x − v(n−1)

x

)2 +
(
v(n)
x − v(n−1)

x

)
%(n)cs = 0 (6.30)

The density of the current time step %(n) can be computed as a function of v(n)
x from mass

and momentum conservation (the same approach being used by Zou and He [65]),

% =
∑
i

fi, (6.31)

vx · % =
∑
i

fiξi,x, (6.32)

resulting in

%(n) =
[
f0 + f2 + f4 + 2 (f3 + f6 + f7)

1− vx

](n)

. (6.33)

Let %z be defined as:

%z := f0 + f2 + f4 + 2 (f3 + f6 + f7) . (6.34)

Inserting equation 6.33 in equation 6.30 and solving for v(n)
x leads to an adapted velocity of

v(n)
x = v(n−1)

x −
(
c2
s

%(n−1)

%z
+ cs

)

+

√(
c2
s

%(n−1)

%z
+ cs

)2

− 2c2
s

(
%(n−1)

%z

(
v

(n−1)
x − 1

)
+ 1
)
. (6.35)

Once again, the physically reasonable solution with v(n)
x = v

(n−1)
x for %(n) = %(n−1) was chosen.

Instead of setting a zero v(n)
y velocity, this component is computed from the non-equilibrium

bounce-back in vertical direction:

v(n)
y = 3

2
f2 − f4

%(n) (6.36)
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The unknown distributions can now be set by an appropriate boundary condition, in the
present case by using the compressible non-equilibrium bounce-back (cf. section 4.3.1):

f1 = f3 + 2
3%vx (6.37)

f5 = f7 + 1
6%(vx + vy) (6.38)

f8 = f6 + 1
6%(vx − vy) (6.39)

An example of code where the boundary condition has been implemented can be found in
appendix A.6.

6.3.2 Adaption in Normal Direction, Compressible LBM, Fixed
Reference Level

For adapting the impedance relative to a fixed reference level, e.g. vx,0 and %0, rather than to
the last time step, the corresponding velocity v(n−1)

x and density %(n−1) have to be substituted
by the fixed quantities, just like it is done in the 1D case of section 6.2.1. Equation 6.30 turns
accordingly into

(
%(n) − %0

)
c2
s + 1

2%
(n) (v(n)

x − vx,0
)2 +

(
v(n)
x − vx,0

)
%(n)cs = 0. (6.40)

The solution for the adapted velocity v(n)
x results therefore in:

v(n)
x = vx,0 −

(
c2
s

%0

%z
+ cs

)
+

√(
c2
s

%0

%z
+ cs

)2

− 2c2
s

(
%0

%z
(vx,0 − 1) + 1

)
. (6.41)

The respective density can still be computed by equation 6.33, the velocity in y-direction by
equation 6.36. Finally, the unknown distribution functions are set by equations 6.37 to 6.39.
An example for an implementation can be found in appendix A.7.

6.3.3 Isotropic Adaption for Compressible LBM
For a boundary condition adapting the impedance for an arbitrary direction of the incoming
sound pressure wave, the 1D equation 6.11 can still be used, but dv has to be projected onto
the corresponding direction of incidence. dv can be expressed by its absolute value and its
corresponding sign:

‖dv‖ =
√
dv2

x + dv2
y =

√(
v

(n)
x − v(n−1)

x

)2
+
(
v

(n)
y − v(n−1)

y

)2
(6.42)
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and

dv = sign(dv)‖dv‖. (6.43)

Equation 6.11 adequately turns into

∓
(
%(n) − %(n−1)) c2

s ∓ 1
2%

(n)
[(
v

(n)
x − v(n−1)

x

)2
+
(
v

(n)
y − v(n−1)

y

)2
]

+

+ sign(dv) ·
√(

v
(n)
x − v(n−1)

x

)2
+
(
v

(n)
y − v(n−1)

y

)2
%(n)cs = 0. (6.44)

The problem of deciding the sign of dv can be reduced by consideration of symmetry. It will
be shown that the sign(dv) can be determined by sign(dvx).
Figure 6.11 shows without loss of generality for a left boundary, that a switch in sign for a

tangential velocity dvy does not change the orientation of dv. In the specific illustration can be
seen that the orientation of the adaption dv is in any case contrary to the propagation of the
sound pressure wave, which is always towards the boundary.

e
x

e
y

dv
x

+|dv
y
|

-|dv
y
|

1

2

Figure 6.11: Symmetry of impedance condition for tangential propagation speed

However, as shown in figure 6.12, the orientation of a perpendicular velocity dvx does affect
the orientation of dv. Moreover, the orientation is exactly the same: sign(dv) = sign(dvx).
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Figure 6.12: Antisymmetry of impedance condition for normal propagation speed

Consequently, the problem of equation 6.44 reduces to

Ic := ∓
(
%(n) − %(n−1)) c2

s ∓ 1
2%

(n)
[(
v

(n)
x − v(n−1)

x

)2
+
(
v

(n)
y − v(n−1)

y

)2
]

+

+ sign(dvx) ·
√(

v
(n)
x − v(n−1)

x

)2
+
(
v

(n)
y − v(n−1)

y

)2
%(n)cs = 0. (6.45)

%(n) is given by equation 6.33 (cf. section 6.3.1):

%(n) =
[

%z

1− v(n)
x

](n)

(6.46)

with

%z := f0 + f2 + f4 + 2 (f3 + f6 + f7) , (6.47)

v
(n)
y is given by equation 6.36:

v(n)
y = 3

2
f2 − f4

%(n) (6.48)

It is stressed that the tangential velocities, in the specific case vy, are depending explicitly
on the density and therefore on vx.
Theoretically, the methods of Cardano or Ferrari (cf. Bronstein and Semendjajew [7]) could

be used to solve the quartic equation 6.45, excluding specific decision paths of the methods
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by physical reasoning. However, for the complexity of the given problem, the solution even
disregarding the dependency %(n) = %(n)(v(n)

x ) leads to several hundreds of partially very costly
mathematical operations. The derivation of an analytical solution including equation 6.46 is
even more complex. Therefore a compact iterative solution of the implicit problem was chosen,
the Newton-Raphson algorithm:

vx,k+1 = vx,k −
Ic(vx,k)
∂Ic
∂vx

(vx,k)
(6.49)

The sign(dvx) can be computed with equation 6.35: As the 1D approximation solves the
problem for a perpendicular projection, the sign is the same as for the isotropic problem. The
solution of the 1D problem is also used as start value for Newton’s algorithm.
Finally % is set according to equation 6.33, vy according to equation 6.36 and the unknown

distribution via non-equilibrium bounce-back, equations 6.37 to 6.39. An example for an
implementation can be found in appendix A.8. The implementation for an adaption relative
to a fixed reference level is shown in appendix A.9 and emerges from a mere substitution of
v

(n−1)
x , v(n−1)

y and %(n−1) by vx,0, vy,0 and %0 in equations 6.45 and 6.48.

6.3.4 Adaption in Normal Direction for Incompressible LBM
For the incompressible LBM model of section 3.5, the incompressible condition 6.16 has to be
implemented, i.e. for a left boundary:

(
%(n) − %(n−1)) c2

s + 1
2%

(n)
0
(
v(n)
x − v(n−1)

x

)2 +
(
v(n)
x − v(n−1)

x

)
%

(n)
0 cs = 0 (6.50)

Mass and momentum conservation result in:

% =
∑
i

fi, (6.51)

vx · %0 =
∑
i

fiξi,x, (6.52)

It is stressed that % depicts the density deviation relative to a hydrostatic density and does
not resemble the total density of the compressible model of section 6.1.1.
Equations 6.51 and 6.52 allow for expressing %(n) as:

%(n) = [%z + vx%0](n) (6.53)

with

%z := f0 + f2 + f4 + 2 (f3 + f6 + f7) . (6.54)
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The solution of equations 6.50 and 6.53 results in:

v(n)
x = v(n−1)

x −
(
c2
s + cs

)
+

√
(c2
s + cs)2 + 2c2

s

(
%(n−1)

%0
− v(n−1)

x − %z
%0

)
. (6.55)

Now vy and the unknown density distributions can once again be set by using non-equilibrium
bounce-back of the incompressible LBM:

v(n)
y = 3

2
f2 − f4

%0
(6.56)

f1 = f3 + 2
3%0vx (6.57)

f5 = f7 + 1
6%0(vx + vy) (6.58)

f8 = f6 + 1
6%0(vx − vy) (6.59)

An example of an implementation can be found in appendix A.11.

6.3.5 Adaption in Normal Direction, Incompressible LBM, Fixed
Reference Level

The adaption relative to a fixed reference level changes the implementation of the boundary
conditions in the same way as for the compressible case in section 6.3.2. It merely covers the
substitution of %(n−1) by %0 and v(n−1)

x by vx,0. Equation 6.55 simplifies to:

v(n)
x = vx,0 −

(
c2
s + cs

)
+

√
(c2
s + cs)2 + 2c2

s

(
1− vx,0 −

%z
%0

)
. (6.60)

Equations 6.56 to 6.59 remain unchanged. The corresponding code can be found in appendix
A.12.

6.3.6 Isotropic Adaption for Incompressible LBM
The isotropic impedance boundary condition for the incompressible LBM of section 3.5 is
derived in the same way as for the compressible model in section 6.3.3. The velocity along the
direction of incidence of the sound pressure wave is again modeled by the absolute value and
its sign, calculated from the perpendicular adaption:

dv = sign(dv)‖dv‖ = sign(dvx)
√(

v
(n)
x − v(n−1)

x

)2
+
(
v

(n)
y − v(n−1)

y

)2
. (6.61)

For a left boundary, the equation to solve results in (cf. equation 6.45):
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Ii :=
(
%(n) − %(n−1)) c2

s + 1
2%0

[(
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x − v(n−1)

x
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+
(
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(n)
y − v(n−1)
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]

+

+ sign(dvx) ·
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(n)
x − v(n−1)

x

)2
+
(
v

(n)
y − v(n−1)
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)2
%0cs = 0. (6.62)

A severe simplification arises from the fact that the tangential velocities, i.e. vy in the specific
case, do no longer depend on the density deviation %, but only on the hydrostatic density. vy is
therefore not varying during the Newton-Raphson cycle and can simply be precomputed. With

%(n) = [%z + vx%0](n) (6.63)

and

%z := f0 + f2 + f4 + 2 (f3 + f6 + f7) , (6.64)

equation 6.62 can be solved iteratively for v(n)
x with Newton’s method:

vx,k+1 = vx,k −
Ii(vx,k)
∂Ii
∂vx

(vx,k)
. (6.65)

The initial value vx,k=0 can be set by equation 6.55. After the iterative method as converged,
%(n) has to be set by equation 6.53 and the unknown distribution by equations 6.57 to 6.59.
An example of an implementation is shown in appendix A.13, the corresponding example for a
fixed reference level in appendix A.14.
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6.4 2D Pressure Wave Test Case for Impedance BCs
For the evaluation of the impedance boundary condition, each of the boundary conditions of
section 6.3 was applied on the 2D pressure wave test case of section 5.2.4. The corresponding
implementation can be found in appendix A.6 to A.14. All boundary conditions were tested
for setups (a) (resting fluid) and (b) (parabolic velocity profile, cf. section 5.2.4).
For each setup and variation of the boundary condition, the following results were included:

• Density field at time step t = 700 ·∆t

• Absolute velocity field at time step t = 700 ·∆t

• Relative density error in % at time step t = 700 ·∆t

• Absolute velocity error at time step t = 700 ·∆t

• Reflection over incident angle, worst case at time step t = 700 ·∆t
or t = 770 ·∆t (cf. section 5.2.5)

As the main source of error is located for the isotropic boundary condition in the wake of
the reflected wave, the reflection over the incident angle was plotted for those simulations 70
time steps later than for the perpendicular adapting boundary conditions. At this time step,
the wake of the reflection progressed to the same position as described in section 5.2.5.
Due to the large amount of simulation results, the corresponding illustrations were shifted to

the appendix B. In summary of the results shown there, the following conclusions can be made:

1. The impedance boundary conditions with perpendicular adaption show the same level
of error as the LODI boundary conditions. This is exemplarily shown in figure 6.13, which
compares the reflection over the incident angle of both implementations for compressible LBM
and setup (a). The impedance boundary condition uses a fixed reference level.

2. Comparing the density and velocity field, figures 6.16 and 6.15 respectively figures 5.27
and 5.28 for LODI, it can be seen that the impedance boundary conditions do not suffer from
instabilities at the inflow. As a key difference, the LODI implementation of section 5.2.3 relies
on numerical time integration.

3. For the isotropic impedance boundary condition, the density and velocity field is exemplar-
ily shown in figure 6.18 and 6.17 for the compressible LBM and the parabolic velocity profile
of setup (b). Figure 6.14 and 6.19 compare the LODI boundary conditions of section 5.2.3
with the corresponding isotropic impedance boundary conditions with fixed reference level for
setup (a). The data were taken from time step t = 700 ·∆t and from the positions described
in section 5.2.5. For the compressible as well as the incompressible LBM, an angle-dependent
behavior of the isotropic impedance boundary conditions is no longer visible.

4. For the compressible and the incompressible LBM, the relative error to the free field
solution lies for all simulations below 0.3% up to an incident angle of 50◦, regarding the density
field and taking also into account the error in the wake of the reflection. The increase at an
angle of 60◦ is due to an interference with the bounce-back modeled corner of the domain.
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Figure 6.13: Reflection over incident angle, LODI and perpendicular impedance BC, compressible
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Figure 6.14: Reflection over incident angle, LODI and isotropic impedance BC, compressible
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Figure 6.15: Perpendicular impedance free field BC, setup (b), absolute velocity at t = 700 ·∆t

Figure 6.16: Perpendicular impedance free field BC, setup (b), density at t = 700 ·∆t
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Figure 6.17: Isotropic impedance free field BC, setup (b), absolute velocity at t = 700 ·∆t

Figure 6.18: Isotropic impedance free field BC, setup (b), density at t = 700 ·∆t
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Figure 6.19: Reflection over incident angle, LODI and isotropic impedance BC, incompressible
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6.5 Compensation of Non-Equilibrium
Bounce-Back Error

As a matter of fact, calculating the tangential velocity by using equation 6.36 or 6.56 for
non-equilibrium bounce-back results in an error of ∆t per time step (cf. section 4.3.1). This
error is not visible in all simulations described in appendix B due to the limited simulation
time. Figure 6.20 shows the vy velocity field for the compressible LBM simulation of the
isotropic impedance free field boundary conditions, described in section 6.3.3. No irregularity
can be observed at the inflow (parabolic velocity profile). Anyhow, the used scheme allows for
resolving all pressure changes in the sufficient order of error.

Figure 6.20: Isotropic impedance free field BC, setup (b), vy velocity at t = 700 ·∆t

However, the situation changes when the error sums up over large simulation times and then
emerges to be not negligible. This will be discussed in detail in section 7.4.2.1. The remedy
chosen in this work is to relax the tangential velocity towards its initialization:

v(n+1)
y = vy,0 · (1− α) + v(n)

y · α. (6.66)

For the 2D pressure wave test case of section 6.4, a relaxation towards vy,0 = 0 is applied,
which results in a mere multiplication of vy with α ≡ 0.99, reducing the specific tangential
velocity by 1 % in each time step. Figure 6.21 shows the corresponding relative error in density
of the simulation with setup (b), isotropic inflow boundary condition and relaxation scheme on
the left hand side, compared with the anisotropic version. Although not fully isotropic, the
error reduces by a factor of 4 compared to the perpendicular adaption in worst case, i.e. an
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angle of 60◦. Figure 6.22 shows a comparison with the unrelaxed isotropic boundary condition
concerning the wake of the reflection. As it can clearly be seen, the error of the simulation
with relaxation of the tangential velocity lies in the same range as in the unrelaxed case (not
considering the boundary effect beyond an angel of 56◦).
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Figure 6.21: Reflection over incident angle at t = 700 ·∆t
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Figure 6.22: Isotropic BCs, reflection over incident angle at t = 770 ·∆t
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Chapter 7

Boundary State Adaption for
Impedance Boundary Conditions

In the preceding chapters, only non-reflecting boundary conditions representing a free field
solution were discussed. The core of such a perfectly (not considering the numerical error)
non-reflecting boundary condition is that the velocity will always depend on the incoming
pressure change, respectively vice versa, for the differential as well as for the integral view on
conservation properties for sound pressure waves (cf. the derivations of section 5.2 and 6.1). A
non-reflecting boundary simply has to accommodate itself to the pressure wave, just as the
values of a lattice point in the interior of the simulation domain would behave if a pressure
wave was passing. If a certain value was fixed at a point in the middle of the domain, an error
with the result of an emerging pressure wave would naturally occur. In conclusion, also on the
boundary a non-reflecting condition is in contradiction to a fixed boundary state. Therefore a
non-reflecting pressure or velocity boundary condition cannot be realized in a strict sense.
On the other hand, the state of the boundaries is usually to be specifically set over time,

and it is essential to offer the option of tuning it towards desired values. The remedy is to
allow the adaption with a certain rate: The extension by Poinsot and Lele [51] was a penalty
factor (cf. section 5.2.1), setting a certain rate of reflection on purpose and so allowing for a
gradually transition to the desired target state. However, the criterion for tuning this penalty
factor is quantitatively hard to manage.
The approach used below for the boundary state adaption of the impedance boundary

conditions allows to limit the level of reflection by a distinct pressure level value. The idea is to
change the reference level to which the impedance is adapted. This is equivalent to increasing
or decreasing the flux on the boundary to compensate the change of the state caused by the
impedance adaption. The increase or decrease itself corresponds to a pressure wave feedback.
The deviation to the desired boundary state is not known in advance to the adaption of the

impedance, as the free field state has first to be determined by the solution of the impedance
condition, equation 6.11. After computing this intermediate state, it can be compared to the
desired one. A maximum allowed boundary state adaption can be derived and then be applied.
As this changes the reference level for the impedance adaption, the impedance condition has
to be solved respectively again, however then with the simpler macroscopic relation. Finally, a
fixed reference level has to be changed by the corresponding change in flux. As this will in
most cases require additional memory, the adaption relative to the last time step might be
most preferable.
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In this chapter, both a velocity and a pressure boundary condition are derived for compressible
and incompressible LBM, as an extension to the impedance boundary conditions of chapter 6.
This is done for perpendicular adaption of the acoustic impedance. In the end, a benchmark
problem is discussed to show the practical application.

7.1 Velocity Adaption

7.1.1 Compressible LBM
The velocity adaption can be applied, as already explained in the introduction to this chapter,
after the velocity was computed from the solution of the impedance condition, i.e. equation
6.35 for perpendicular adaption. Let vx,imp be the result of the impedance adaption. For the
compressible LBM and a left boundary, the relation between density and velocity on the
boundary is given by equation 6.33:

%imp =
[

%z
1− vx,imp

]
(7.1)

with

%z := f0 + f2 + f4 + 2 (f3 + f6 + f7) . (7.2)

This means that a change of the velocity vx,imp to a new velocity vx,new causes a change in
density d% of:

d% = %new − %imp =
= %z

1− vx,new
− %imp. (7.3)

If the change in density was limited to

|d%| ≤ d%max, (7.4)

margins of a maximum and minimum permitted range [vx,min, vx,max] can be derived for the
velocity adaption vx,new from equation 7.3:

vx,min = 1− %z
%imp − d%max

, (7.5)

vx,max = 1− %z
%imp + d%max

. (7.6)
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Subsequently, vx,new can be set either to the target value, if in range, or to the nearest value
to the interval. As the reference level has changed, the impedance condition 6.11 has to be
solved again, this time for the new density and with a known perpendicular velocity:

%new = c2
s · %(n−1)

c2
s +

(
vx,new − v(n−1)

x

)(
1
2

(
vx,new − v(n−1)

x

)
+ cs

) , (7.7)

respectively for the fixed reference level:

%new = c2
s · %0

c2
s + (vx,new − vx,0)

(1
2 (vx,new − vx,0) + cs

) . (7.8)

In the present approach, the error resulting from the re-adaption will be corrected during
the next time step. If using the fixed reference level, it has consequently to be changed as well:

%n+1
0 = %n0 + %new − %nimp, (7.9)
vn+1
x,0 = vnx,0 + vx,new − vnx,imp. (7.10)

vy and the unknown distributions have to be set just like described in section 6.3.1, using
the non-equilibrium bounce-back relation, equations 6.36 to 6.39. It is stressed that the use
of this relation is not correct in a strict sense: The available known distributions correspond
to the flux of the non-adapted state. However, the approach in this work is to let the error
automatically be corrected during the subsequent time steps. A more advanced approach is
subject to further research.
As an example, the velocity adaption was added to the impedance boundary condition of

section 6.3.1. The implementation is appended in section A.16.

7.1.2 Incompressible LBM
For the incompressible model, equation 7.1 turns into:

%imp = %z + %0vx,imp. (7.11)

With a limit

|d%| ≤ d%max, (7.12)

the range [vx,min, vx,max] for maximum velocity adaption of vx,new results in:

vx,min = vx,imp −
d%max

%0
, vx,max = vx,imp + d%max

%0
. (7.13)
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After adapting vx,new within this interval, %new has to be set according to the solution of
equation 6.50,

%new = %(n−1) −
%0(vx,new − v(n−1)

x )
(

1
2

(
vx,new − v(n−1)

x

)
+ cs

)
c2
s

, (7.14)

respectively for the fixed reference level vx,0 and %0:

%new = %0 −
%0(vx,new − vx,0)

(1
2 (vx,new − vx,0) + cs

)
c2
s

. (7.15)

A fixed reference level has to be redefined by equation 7.9 and 7.10, vy and the distributions
f1, f5 and f8 are set by the non-equilibrium bounce-back equations.

7.2 Pressure Adaption

7.2.1 Compressible LBM
The pressure adaption works in the same way as the velocity adaption, merely the liming
criteria can be applied immediately, as already formulated for the target value. Below, the
adaption is performed for density rather than pressure, as both are linearly dependent by the
isothermal ideal gas law p = c2

s · %. The description below refers to a right boundary with
normal vector −ex.
After calculating the free field solution, the deviation of the resulting density %imp to its

target value %BC is given by:

d% = %imp − %BC. (7.16)

For a maximum permitted change in density,

|d%| ≤ d%max, (7.17)

the pressure adapted density %new will be either one of the maximum interval bounds
%imp ± d%max or directly the target density %BC, if it is within the interval. At last, the
corresponding velocity vx,new has to be recalculated, referring to the new reference density (cf.
equation 6.12):

vx,new = v(n−1)
x − cs ·

√2 · %
(n−1)

%new
− 1− 1

 , (7.18)

respectively for the fixed reference level:

vx,new = vx,0 − cs ·
(√

2 · %0

%new
− 1− 1

)
. (7.19)
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The velocity in y-direction and the unknown density distributions are set with the non-
equilibrium bounce-back equations. The fixed reference level has to be changed according to
equation 7.9 and 7.10, if used as reference for the adaption.

7.2.2 Incompressible LBM
For the incompressible LBM, the derivation is almost identical to the previous section, merely
the recalculation of vx,new, equations 7.18 and 7.19, turn into:

vx,new = v(n−1)
x + cs −

√
c2
s + 2c2

s (%(n−1) − %new)
%0

(7.20)

and

vx,new = vx,0 + cs −

√
c2
s + 2c2

s

(
1− %new

%0

)
. (7.21)

7.3 Sound Pressure Level as Adaption Criteria
For aeroacoustic simulations, an appropriate measure might be a maximum reflected sound
pressure level, which can easily be calculated on basis of the ideal gas law as (cf. Müller [47]):

∆Lmax = 20 · lg ∆p
pref

= 20 · lg ∆%
%ref

. (7.22)

pref = 2 · 10−5 Pa is the smallest perceivable pressure change for humans on basis of a
hydrostatic pressure of p0 = 105 Pa. Table 7.1 shows maximum sound pressure level changes
with their corresponding maximum density changes for a hydrostatic density of %0 = 1, i.e. the
non-dimensional case of an LBM simulation.

∆Lmax ∆%max
1 dB 2.2 · 10−10

3 dB 2.8 · 10−10

10 dB 6.2 · 10−10

20 dB 2.0 · 10−9

40 dB 2.0 · 10−8

60 dB 2.0 · 10−7

80 dB 2.0 · 10−6

100 dB 2.0 · 10−5

120 dB 2.0 · 10−4

Table 7.1: Relation sound pressure level and density changes for %0 = 1
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A density adaption of ∆% = 0.1 will consequently need about 4.5 ·108 time steps in simulation
time if the reflection was limited to 1 dB. Even for a maximum reflection of 120 dB, the human
threshold of pain, a simulation time of 500 ·∆t is needed.
In consequence, it is essential to strike a balance between level of reflection and convergence.

For certain applications, it might even be better to re-model the problem for an acoustical free
field, without boundary state adaption. The essence however is strictly of physical nature: It
is theoretically not possible to have a non-reflecting boundary and a specific boundary state at
the same time.

7.4 Benchmark: Flow around Cylinder
For evaluating a combination of free field and state adapted impedance boundary conditions,
the laminar 2D-1 (steady) and 2D-2 (unsteady) benchmark defined by Schäfer and Turek
[60] were used. The setup is displayed in figure 7.1. It models the flow around a cylinder in
a rectangular domain. On the left hand-side, marked in red, a parabolic velocity profile is
prescribed with an inlet velocity of

vx(0, y, t) = 4vmaxy(ly − y)
l2y

, (7.23)

vy(0, y, t) = 0. (7.24)

ly

lx

p
y

p
x

D x

y

(0,0)

(0,ly) (lx,ly)

(lx,0)

Figure 7.1: Setup of 2D benchmark

The bottom and top boundaries (in blue) are defined to have a zero velocity vx = vy ≡ 0.
The outflow condition on the right hand side, marked in green, can be according to Schäfer and
Turek "chosen by the user" [60]. For the steady benchmark, the Reynolds number is defined as
Re := 20, for the unsteady benchmark, Re := 100. The Reynolds number with the kinematic
viscosity ν,

Re = vD

ν
, (7.25)
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is hereby set by the average velocity v,

v = 2
3vmax. (7.26)

The diameter of the cylinder D represents the reference length of the simulation. The length
of the domain equals lx = 22 · D, the height respectively ly = 4.1 · D. The position of the
cylinder (obstacle with circular cross-section) is defined to be px = py = 2 ·D, with an origin
of the coordinates at the lower left corner of the domain. This indicates a slight offset of the
vertical position relative to the center of the domain.
In the benchmark simulations referred to below, the cylinder was generally modeled by first

order simple bounce-back. The drag and lift forces FD and FL were computed by the first
order momentum-exchange method, as described e.g. by Mei et al. [44]. For evaluation, the
drag and lift coefficients cD and cL of the obstacle were computed by

cD := 2FD
% v2D

, cL := 2FL
% v2D

. (7.27)

For the unsteady benchmark, additionally the Strouhal number St was evaluated, which is
defined as

St := D

v T
, (7.28)

with the period of separation T . For the simulations, three successively coarsened mesh
levels were implemented with a number of grid nodes in x and y direction nx and ny, as listed
in table 7.2. In the associated refinement strategy, attention was paid that the ratio of the
diameter D and the domain height ly corresponds as closely as possible to the proportions of
the given benchmark geometry. For the time step, a diffusive scaling was conducted.

Level nx ny D vmax
h3 420 79 19 0.0310
h2 860 161 39 0.0151
h1 1299 243 59 0.01

Table 7.2: Grid levels h1, h2 and h3

The values marked below to be "reference" refer to the evaluation of the benchmark by
Schäfer and Turek [60] "as suggested by the authors on the basis of the obtained solutions".
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7.4.1 Results of Steady Benchmark

For the steady benchmark, the top and bottom no-slip boundaries were set by a velocity adapted
impedance boundary condition with vx = vy ≡ 0 and a maximum reflection of d%max = 10−6.
The inflow was set by a velocity adapted impedance boundary condition with velocities as
defined by equation 7.23 and 7.24. The maximum reflection for the inflow boundary was set to
d%max = 10−4 in order to get sufficient convergence for the velocity adaption. The outflow was
modeled by a free field impedance boundary condition without boundary state adaption. All
boundary conditions were using the perpendicular adaption of impedance, relative to the
preceding time step. The tangential velocities on the boundaries were explicitly set to
zero and not derived by the non-equilibrium bounce-back relation. This agrees consistently
with the problem-specific situation.
The flow field was initialized with a uniform density of %0(x, y, t = 0) ≡ 1 and the velocity

vx(x, y, t = 0) = 4vmaxy(ly − y)
l2y

, (7.29)

vy(x, y, t = 0) = 0. (7.30)

The mesoscopic density distributions were set by the corresponding equilibrium distribution.
Large initial velocity gradients in the vicinity of the obstacle result in significant pressure
waves. This effect was intended, and a solution of the Poisson equation for the pressure field,
like proposed by Mei et al. [43], was not done on purpose. Table 7.3 shows the results of the
simulations. The prefix ∆mid(hi) marks the relative deviation of the specific value for grid
level hi to the midpoint of the reference range in relation to half of the reference range. For a
general value Φ with a reference range from Φmin, ref to Φmax, ref and a mean value of

Φref = Φmin, ref. + Φmax, ref.

2 , (7.31)

∆mid equals to

∆mid(hi)(Φ) = |Φ(hi)− Φref|
Φmax, ref. − Φref

. (7.32)

For a value of ∆mid ≤ 1 this would mean that the simulated result lies within the reference
range given by Schäfer and Turek. It is stressed that Schäfer and Turek designate all reference
ranges to be intervals for the particular "exact" solution [60], so the deviations are not equivalent
to error levels.
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Compressible LBM Incompressible LBM
cD cL cD cL

Mid. Reference 5.5800 0.0107 5.5800 0.0107
Reference 5.5700 - 0.0104 - 5.5700 - 0.0104 -

range 5.5900 0.0110 5.5900 0.0110
h3 5.4780 0.0064 5.3157 0.0074

∆mid(h3) 10.2 14.3 26.4 11.0
h2 5.4976 0.0086 5.4399 0.0088

∆mid(h2) 8.2 7.0 14.0 6.3
h1 5.5078 0.0101 5.4725 0.0099

∆mid(h1) 7.2 2.0 10.8 2.7

Table 7.3: Results of the 2D-1 benchmark, Re = 20

Also a comparison was conducted with a conventional setup, implementing Zou-He velocity
and pressure boundaries at the inflow respectively outflow and simple bounce-back boundary
conditions at the top and bottom. For the Zou-He pressure boundary condition at the outflow,
the density was uniformly set to %0 ≡ 1. Figure 7.2 shows the evolution of the density field over
time, figure 7.3 the corresponding simulation with impedance boundary conditions, all for grid
level h1 and the compressible LBM model. The color scaling of each time step refers in both
figures to the same range. The extinction of the spurious pressure waves on all boundaries can
clearly be observed. Additionally, figure 7.4 and 7.5 illustrate the evolution of the drag and lift
coefficients. For the specific case, the conventional approach takes 10.0 time steps longer to
gain the steady state drag force within a relative error of 10 % and 4.9 time steps longer to
gain it within a relative error of 1 %.
It is noted that a specific source of error emerges when implementing no-slip boundary

conditions with a low maximum reflection level. It might happen that the normal boundary
velocity then becomes significant as the boundary state adaption reacts too slowly, and a
mass loss occurs on the boundary. Hence it is advisable to check the velocity and increase
the reflectivity, if necessary: All incoming density changes smaller than d%max will not cause a
change of the boundary velocity.
It is once again stressed that a strictly fixed no-slip boundary is physically not possible, as

described in chapter 5 and 6: When a reflection is absorbed, the boundary will always cause a
slight mass loss.
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t = 150 ·∆t

t = 300 ·∆t

t = 500 ·∆t

t = 1000 ·∆t

t = 2000 ·∆t

t = 3000 ·∆t

Figure 7.2: 2D-1 benchmark with conventional boundary conditions, density
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t = 150 ·∆t

t = 300 ·∆t

t = 500 ·∆t

t = 1000 ·∆t

t = 2000 ·∆t

t = 3000 ·∆t

Figure 7.3: 2D-1 benchmark with impedance boundary conditions, density
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Figure 7.4: Drag coefficient during first 20, 000 time steps
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Figure 7.5: Lift coefficient during first 20, 000 time steps
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7.4.2 Results of Unsteady Benchmark
For the unsteady benchmark with Re = 100, basically the same boundary conditions were
used as in section 7.4.1, but instead of the perpendicular adaption for the outflow, an isotropic
free field impedance boundary condition was used (cf. appendix A.10 and A.15, but with
relaxation factor for tangential velocity set to rlx ≡ 1). Again the flow field was initialized
with %0(x, y, t = 0) ≡ 1 and velocities according to equation 7.29 and 7.30.
Table 7.4 shows the results of the simulation, both for the compressible and incompressible

LBM model. The simulation time was set to 3 · 105 time-steps for grid levels h3 and h2. For
level h1, it was set to 6 · 105 time-steps in order to recover the settled state. The maximum for
the drag and lift coefficients was taken from the last 3 periods, the Strouhal Number St was
averaged over the last 7 periods. The prefix ∆mid(hi) marks the deviation of the specific value
for grid level hi to the midpoint of the reference range as defined by equation 7.32.

Compressible LBM Incompressible LBM
cD,max cL,max St cD,max cL,max St

Mid. Reference 3.2300 1.0000 0.3000 3.2300 1.0000 0.3000
Reference 3.2200 - 0.9900 - 0.2950 - 3.2200 - 0.9900 - 0.2950 -

range 3.2400 1.0100 0.3050 3.2400 1.0100 0.3050
h3 3.4607 1.2249 0.3005 3.2164 1.0002 0.3046

∆mid(h3) 23.0 22.5 0.10 1.4 0.02 0.92
h2 3.2917 1.0361 0.3028 3.2182 0.9851 0.3043

∆mid(h2) 6.2 3.6 0.56 1.2 1.5 0.86
h1 3.2689 0.9819 0.3033 3.2346 0.9684 0.3042

∆mid(h1) 3.9 1.8 0.66 0.46 3.2 0.84

Table 7.4: Results of the 2D-2 benchmark, Re = 100

Once again a comparison with a conventional approach is shown, with the same setup as
in section 7.4.1: Zou-He velocity and pressure boundaries at the inflow respectively outflow
and simple bounce-back boundary conditions at the top and bottom. Figure 7.6 displays the
density of the flow field for the conventional simulation for six different time steps, figure 7.7
the same data for the setup with impedance boundary conditions. Both simulations were done
using the compressible LBM model. The selected plots refer to the same color scale.
The superposed spurious pressure waves from the initialization inhibit observing any evolution

of vortices behind the cylinder in the conventional simulation. The non-reflecting impedance
boundary conditions on all boundaries suppress interfering pressure waves, so the evolution
can indeed be fully observed. Figure 7.8 shows a plot of the lift coefficients over time for
the incompressible LBM model, which additionally illustrates the difference between both
approaches.
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t = 100 ·∆t

t = 700 ·∆t

t = 2000 ·∆t

t = 4600 ·∆t

t = 5400 ·∆t

t = 9000 ·∆t

Figure 7.6: 2D-2 benchmark with conventional boundary conditions, density
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t = 100 ·∆t

t = 700 ·∆t

t = 2000 ·∆t

t = 4600 ·∆t

t = 5400 ·∆t

t = 9000 ·∆t

Figure 7.7: 2D-2 benchmark with impedance boundary conditions, density
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Figure 7.8: Lift coefficient over time for incompressible LBM simulations
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7.4.2.1 Compensation of Non-Equilibrium Bounce-Back Error

As already addressed in section 6.5, the calculation of the tangential boundary velocity by
utilizing the non-equilibrium bounce-back relation along a FDVM link is an approximation,
which reads in case of D2Q9 and a boundary normal to ex for the compressible LBM (cf.
section 4.3.1)

vy = 3
2
f2 − f4

%
+O(∆t) (7.33)

and for the incompressible LBM

vy = 3
2
f2 − f4

%0
+O(∆t) (7.34)

The transformation to a moment basis according to equations 3.89 (cf. section 3.4.2) shows
that the distributions f2 and f4 directly depend on the velocity vy, hence an error in vy has a
respective impact on both. Illustrated in figure 7.9 for the compressible LBM, the error sums
up over time, until in the specific case it reaches a final level at time step t = 20, 000 · ∆t,
which amounts to the same order as the normal velocity.
The remedy chosen in this work is to exploit the knowledge about the average state of the

tangential velocity, which is in the present case a tangential velocity of vy ≡ 0. Accordingly, in
each time step the tangential velocity is relaxed towards its average state. The implementation
for the simulation evaluated below is listed in appendix A.10 and decreases the velocity vy by
a factor of 0.01 each time step. By this means the impact of an approaching pressure wave is
estimated with an additional error of only 1 %, but the diverging of the tangential velocity is
effectively suppressed, as shown in figure 7.10 for the velocity after 20, 000 time steps. The
error of this procedure is also discussed in section 6.5.
Table 7.5 shows the results of the 2D-2 benchmark for compressible LBM and both the

relaxed and unrelaxed version for the finest grid resolution. The results improve significantly.

Compressible LBM
cD,max cL,max St

Mid. Reference 3.2300 1.0000 0.3000
Reference 3.2200 - 0.9900 - 0.2950 -

range 3.2400 1.0100 0.3050
h1 unrelaxed 3.2689 0.9819 0.3033

∆mid(h1) unrelaxed 3.9 1.8 0.66
h1 relaxed 3.2295 1.0017 0.3033

∆mid(h1) relaxed 0.05 0.17 0.66

Table 7.5: Results of the 2D-2 benchmark with relaxation of vy on the outflow

The implementation for incompressible LBM, as noted in appendix A.15, unfortunately
suffers from wiggles, which form the origin of spurious pressure peaks deranging the pressure
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field. Although the simulation can be carried out, it leads to erroneous results. The issue could
not yet be treated sufficiently.
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Figure 7.9: Evolution of tangential velocity on outflow boundary
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Figure 7.10: Tangential velocity on outflow boundary for relaxing scheme
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Chapter 8

Impedance Boundary Conditions for
LBM Shallow Water Model

In this chapter, the impedance boundary conditions of chapter 6 with the pressure adaption
shown in chapter 7 are applied to a lattice Boltzmann shallow water model. Although the
physical background is no longer strictly the same as in chapter 6, the equivalence of the
underlying scheme allows for a transfer of the principle to the new application.
First, the shallow water model is introduced, followed by a description of the related state

adapting impedance boundary condition. At last, the simulation of an open ended wave tank
will illustrate the application.
The work below emerged from a collaboration with Christian Janßen, Hamburg University of

Technology. The boundary conditions were implemented and simulated in the Efficient Lattice
Boltzmann Environment (Elbe) for General Purpose Graphical Processing Unit (GPGPU)
compute server [29].

8.1 Shallow Water Model for the LBM
As seen in chapter 3.4, the macroscopic behavior of the lattice Boltzmann scheme crucially
depends on the choice of the equilibrium distribution. Zhou proposed a D2Q9 model [64],
which recovers the Nonlinear Shallow Water (NSW) equations by setting a specific equilibrium
distribution. The zeroth moment is interpreted as fluid height h:

h =
∑
i

fi, (8.1)

hv =
∑
i

cfi. (8.2)

The equilibrium is defined as

f
(eq)
i (h, v) =


h− 5

6
gh2

c2 − 2
3
hv2

c2 ∀i = 0
1
6
gh2

c2 + 1
3
h(v·ξi)
c2 + 1

2
h(v·ξi)

2

c4 − 1
6
hv2

c2 ∀i ∈ {1− 4}
1
4

[
1
6
gh2

c2 + 1
3
h(v·ξi)
c2 + 1

2
h(v·ξi)

2

c4 − 1
6
hv2

c2

]
∀i ∈ {5− 8}

. (8.3)
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As a difference to the classical LBM, speed of sound is no longer constant, but depending on
the waterline height:

cs =
√
hg. (8.4)

A specific characteristic of the model of Zhou is that it does not use non-dimensional
quantities, but variables in specific SI units. This implies that not the unit propagation speed
ξ is used, but the non-dimensional propagation speed c (cf. section 3.2.4), which varies with
the scaling. The boundary conditions of chapter 6 have to be adapted accordingly.
Collision is done in the same way as for classical LBM, as seen from equation 3.23 and 3.87.

The relaxation time is set by

ν = c2 ∆t
6 (2τ − 1) (8.5)

with the kinematic viscosity ν = µ/%. The Chapman-Enskog procedure finally leads to the
macroscopic Nonlinear Shallow Water (NSW) equations (cf. Zhou [64]):

∂

∂t
h + ∇ · (hv) = 0, (8.6)

∂

∂t
(hv) + ∇ · (hv ⊗ v) = −∇

(
1
2gh

2
)

+ µ

%
∆(hv) (8.7)

with gravity acceleration g. External forces except gravity were not considered.
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8.2 Impedance Boundary Condition
Below, the impedance boundary condition of section 6.3.1 with the boundary state adaption of
chapter 7 is derived for the NSW model of Zhou. In equivalence to the compressible LBM, the
impedance condition for the outflow in direction of ex reads (cf. section 6.3):

−
(
h(n) − h(n−1)) c2

s −
1
2h

(n) (v(n)
x − v(n−1)

x

)2 +
(
v(n)
x − v(n−1)

x

)
h(n)cs = 0. (8.8)

The solution results in:

v(n)
x = v(n−1)

x − cs ·

(√
2 · h

(n−1)

h(n) − 1− 1
)
. (8.9)

Now equation 8.1 and equation 8.2 can be solved for h(n):

h(n) = jz

c+ v
(n)
x

(8.10)

with

jz := [c · (f0 + f2 + f4 + 2 · (f1 + f5 + f8))](n) . (8.11)

Equation 8.10 inserted into equation 8.8 and solved for v(n)
x gains:

v(n)
x = v(n−1)

x +
(
c2
s

h(n−1)

jz
+ cs

)

−

√(
c2
s

h(n−1)

jz
+ cs

)2

+ 2c2
s

(
h(n−1)

jz

(
v

(n−1)
x + c

)
− 1
)
. (8.12)

Now the height can be computed according to equation 8.10. For the height adaption to
a specific boundary value hBC, the deviation dh = h(n) − hBC can be directly compared to a
maximum adaption value dhmax. After the adaption, vx has to be reset according to equation
8.9. vy can be set by the non-equilibrium bounce-back in tangential direction:

vy = 3
2
c (f2 − f4)

h
(8.13)

The unknown distributions are also set by using the non-equilibrium bounce-back rule:

f3 = f1 −
2h
3c vx (8.14)

f7 = f5 −
h

6c(vx + vy) (8.15)

f6 = f8 −
h

6c(vx − vy) (8.16)

An example code for the described boundary condition can be seen in appendix A.18.
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8.3 Simulation and Results
As a test case, a wave tank simulation was chosen. The impedance boundary condition was
applied to the outflow. The specific setup is intended to be used for simulation of periodic
one-sided wave impact on the hull structure of a ship: The wave tank itself was 50 m in
length and 12.5 m in width. The initial height of the waterline was 1 m. In the center of
the wave tank, a column with a diameter of 2.5 m was placed. The resolution in space was
set to ∆x = 0.098 m, the time step to ∆t = 0.0098 s, which results in a reference speed of
c = 10 m/s. On all solid boundaries, the two longitudinal sides, the bottom and the obstacle,
bounce-back boundary conditions were applied. The value of the kinetic viscosity ν was set to
water at a temperature of about 20◦C, νw = 10−6 m2/s.
At the beginning of the simulation, a first order piston wave maker (type KdV, cf. Guizien

and Barthélemy [20]) on the left hand side produced a wave of height hw = 0.1 m above the
initial waterline.
The evolution of the wave can be seen in figure 8.1 and 8.2. The reflection of the wave

was measured at time step t = 400 · ∆t (cf. figure 8.2) at a distance of 37.5 m from the
inflow. With a Zou and He type Dirichlet height boundary condition [65], the elevation was
h = 0.92444 m, a deviation of 7.6% from its reference level and in the same range as the
original wave. The height for the impedance boundary condition with a maximum reflection
level set to dhmax = 10−4 m amounted with h = 0.99936 m to a 0.06% deviation regarding the
reference height.
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Dirichlet height boundary condition Impedance BC with height adaption

t = 100 ·∆t

t = 150 ·∆t

t = 200 ·∆t

t = 250 ·∆t

Figure 8.1: Wave tank simulation, color scale plot shows vx velocity
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Dirichlet height boundary condition Impedance BC with height adaption

t = 300 ·∆t

t = 350 ·∆t

t = 400 ·∆t

t = 450 ·∆t

Figure 8.2: Wave tank simulation, color scale plot shows vx velocity
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Chapter 9

Conclusion and Outlook

The implementation of non-reflecting boundary conditions is always subject to a compromise.
A problem with a free-field boundary condition can most exactly be approximated with
minimal reflection, but a non-reflecting boundary condition with a constant boundary state is
a contradiction in itself. Moreover, the simulation of a free field has to model the response
of the outer area by suitable assumptions. The present work suggests to model an acoustic
free field, i.e. to assume all pressure changes are propagating with the speed of sound. If
the convection of pressure changes is of serious impact, one might better follow a different
approach. Consequently, other disadvantages have to be accepted.
The approach of this work is based on the integral conservation of the momentum of sound

pressure waves. This is equivalent to setting a specifically adapted acoustic impedance. The
boundary conditions have a residual reflectivity which lies within the same range as those of
characteristics based approaches. The key difference is that neither spatial nor time derivatives
are required for their implementation. The time integration is based on an analytical model
for the propagation of sound pressure waves, improving stability significantly compared to
approaches using numerical integration. But first of all it allows for an implementation
processing arbitrary directions of incoming pressure waves through the independence of spatial
gradients. The implementation for suppression of perpendicular incoming pressure waves is
based on an analytical solution of the underlying conditional equation. For the treatment of
an arbitrary direction, an iterative method has been used.
Various aspects of the implementation have been elaborated, especially an extension for

proper boundary state adaption. As a theoretical implication, this adaption results in a specific
amount of reflection. Nevertheless, adverse effects can be limited based on a trade-off between
convergence rate and reflectivity. A practical approach was shown to adjust the boundary
conditions correspondingly.
All theoretical findings are supported by the results of several simulations. The boundary

conditions were applied to an LBM model of the nonlinear shallow water equations, resulting
in a significantly reduced amount of wave reflection.
However, there are a view open issues. Among the most important ones is the correct

treatment of corners, respectively in three dimensions both for corners and edges. Up to
now, this has been done by setting the additionally unknown distributions by an upstream
interpolation of the state of neighboring nodes. This problem would be greatly simplified if a
way was found to set the boundary condition not on a nodal basis, as it is done in this thesis,
but in a link-wise manner, i.e. on basis of two opposing distribution directions. This would
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also greatly simplify the programming complexity, since a single implementation could be used
for various geometries. Another issue, not discussed at all in this thesis, is the implementation
of inclined boundaries.
Further investigation concerning the linear approximation of the evolution of sound pressure

in equation 6.6 on page 82 could be interesting. As it can be concluded from the simulation
results, the linear model seems to have the main impact on the residual error of the approach.
For the characteristic based method of section 5.2.1, a refined, e.g. quadratic model could also
be an interesting approach: As seen from equation 5.26, the examined LBM implementation
relies on the same relation.
As seen in section 6.3.3, an analytical solution of the underlying problem of the isotropic

impedance boundary condition would result in a rather complex code. However, it is quite
conceivable that the analysis of the significance of various terms of the conditional equation
could result in an analytical approximation, which lies within the same range of error as the
numerical method itself.
The boundary conditions were implemented in the context of the Lattice Boltzmann Method,

but the basic physical principle is not restricted to the LBM. Eventually, an implementation of
the approach could be attractive for classical Navier-Stokes based methods.
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Appendix A

Code Examples

A.1 LODI Boundary Condition, 1D
The following code example is for a left hand side LODI boundary condition, as described in
section 5.2.2.

1 csSq = c_s∗c_s ; // Constant : Speed o f sound squared
2

3 drhodx = −0.5 ∗ (3∗ lastRho [ 0 ] − 4 .∗ lastRho [ 1 ] + lastRho [ 2 ] ) ;
4 dvxdx = −0.5 ∗ (3∗ lastV [ 0 ] − 4 .∗ lastV [ 1 ] + lastV [ 2 ] ) ;
5

6 L1 = ( lastV [ 0 ] − cs ) ∗( csSq∗drhodx − lastRho [ 0 ] ∗ cs∗dvxdx ) ;
7

8 rho [ 0 ] = lastRho [ 0 ] − L1 /(2∗ csSq ) ;
9 v [ 0 ] = lastV [ 0 ] + L1 /(2∗ cs∗lastRho [ 0 ] ) ;

10

11 f_1 [ 0 ] = f_2 [ 0 ] + rho [ 0 ] ∗ v [ 0 ] ;
12

13 // Correct mass d e f e c t :
14 mD = f_0 [ 0 ] + f_1 [ 0 ] + f_2 [ 0 ] − rho [ 0 ] ;
15 f_0 [ 0 ] −= mD /3 ;
16 f_1 [ 0 ] −= mD /3 ;
17 f_2 [ 0 ] −= mD /3 ;
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A.2 LODI Boundary Condition, 2D, Compressible LBM
The following code example is for a left hand side LODI free field boundary condition (face
normal ex), as described in section 5.2.3.1. The implementation is for the compressible LB
method.

1 // Constants :
2 c1o6 = 1/6 ;
3 c2o3 = 2/3 ;
4 cs = 1/sqrt (3 ) ;
5 csSq = 1/3 ;
6 c1oCsSq2 = 1 . 5 ;
7 c1o2cs = 0.5∗ sqrt (3 ) ;
8

9 // Pos i t i on at l e f t boundary :
10 x = 0 ;
11

12 for_each node y {
13 // Compute d e r i v a t i v e s :
14 drhodx = −0.5 ∗ (3∗ lastRho [ x ] [ y ] − 4∗lastRho [ x+1] [y ]
15 + lastRho [ x+2] [y ] ) ;
16 dvdx = −0.5 ∗ (3∗ lastV_x [ x ] [ y ] − 4∗lastV_x [ x+1] [y ]
17 + lastV_x [ x+2] [y ] ) ;
18 dvdx = −0.5 ∗ (3∗ lastV_y [ x ] [ y ] − 4∗lastV_y [ x+1] [y ]
19 + lastV_y [ x+2] [y ] ) ;
20

21 // Compute wave ampl itudes :
22 L1 = ( lastV_x [ x ] [ y ] − cs ) ∗ ( csSq∗drhodx − lastRho [ x ] [ y ]∗ cs∗dvxdx ) ;
23 L2 = lastV_x [ x ] [ y ]∗ dvydx ;
24

25 // Compute s o l u t i o n o f LODI equat ions :
26 rho [ y ] = lastRho [ x ] [ y ] − c1oCsSq2∗L1 ;
27 vx [ y ] = lastV_x [ x ] [ y ] + c1o2cs∗L1/lastRho [ x ] [ y ] ;
28 vy [ y ] = lastV_y [ x ] [ y ] − L2 ;
29

30 // Set unknown d i s t r i b u t i o n s by non−equ i l i b r i um bounce−back :
31 f_1 [ y ] = f_3 [ y ] + c2o3∗rho [ y ]∗ vx [ y ] ;
32 f_5 [ y ] = f_7 [ y ] + c1o6∗rho [ y ] ∗ ( vx [ y ] + vy [ y ] ) ;
33 f_8 [ y ] = f_6 [ y ] + c1o6∗rho [ y ] ∗ ( vx [ y ] − vy [ y ] ) ;
34 }
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A.3 LODI Boundary Condition, 2D, Incompressible LBM
The following code example is for the incompressible LBM and a left hand side LODI free field
boundary condition (face normal ex), as described in section 5.2.3.2. It is assumed that %0 ≡ 1.

1 // Constants :
2 c1o6 = 1/6 ;
3 c2o3 = 2/3 ;
4 cs = 1/sqrt (3 ) ;
5 csSq = 1/3 ;
6 c1oCsSq2 = 1 . 5 ;
7 c1o2csrho0 = 0.5∗ sqrt (3 ) ;
8

9 // Pos i t i on at l e f t boundary :
10 x = 0 ;
11

12 for_each node y {
13 // Compute d e r i v a t i v e s :
14 drhodx = −0.5 ∗ (3∗ lastRho [ x ] [ y ] − 4∗lastRho [ x+1] [y ]
15 + lastRho [ x+2] [y ] ) ;
16 dvxdx = −0.5 ∗ (3∗ lastV_x [ x ] [ y ] − 4∗lastV_x [ x+1] [y ]
17 + lastV_x [ x+2] [y ] ) ;
18 dvydx = −0.5 ∗ (3∗ lastV_y [ x ] [ y ] − 4∗lastV_y [ x+1] [y ]
19 + lastV_y [ x+2] [y ] ) ;
20

21 // Compute wave ampl itudes :
22 L1 = ( lastV_x [ x ] [ y ] − cs ) ∗ ( csSq∗drhodx − cs∗dvxdx ) ;
23 L2 = lastV_x [ x ] [ y ]∗ dvydx ;
24

25 // Compute s o l u t i o n o f LODI equat ions :
26 rho [ y ] = lastRho [ x ] [ y ] − c1oCsSq2∗L1 ;
27 vx [ y ] = lastV_x [ x ] [ y ] + c1o2csrho0∗L1 ;
28 vy [ y ] = lastV_y [ x ] [ y ] − L2 ;
29

30 // Set unknown d i s t r i b u t i o n s by non−equ i l i b r i um bounce−back :
31 f_1 [ y ] = f_3 [ y ] + c2o3∗vx [ y ] ;
32 f_5 [ y ] = f_7 [ y ] + c1o6 ∗(vx [ y ] + vy [ y ] ) ;
33 f_8 [ y ] = f_6 [ y ] + c1o6 ∗(vx [ y ] − vy [ y ] ) ;
34 }
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A.4 Impedance Boundary Condition, 1D
The following code example is for a left hand side impedance boundary condition, as described
in section 6.2.

1 csSq = c_s∗c_s ; // Constant : Speed o f sound squared
2

3 rhoZ = f_0 [ 0 ] + 2∗f_2 [ 0 ] ;
4 rOrz = rho [ 0 ] / rhoZ ;
5 tmp = csSq∗rOrz + c_s ;
6

7 v [ 0 ] = v [ 0 ] − tmp + sqrt ( tmp∗tmp − 2∗csSq ∗( rOrz ∗(v [ 0 ] − 1) + 1) ) ;
8

9 f_1 [ 0 ] = (v [ 0 ] ∗ f_0 [ 0 ] + (1 + v [ 0 ] ) ∗f_2 [ 0 ] ) / (1 − v [ 0 ] ) ;
10 rho = f_0 [ 0 ] + f_1 [ 0 ] + f_2 [ 0 ] ;

A.5 Impedance BC, Fixed Reference Level, 1D
The following code example is for a left hand side impedance boundary condition, as described
in section 6.2, for a fixed reference level %0 and v0 from initialization.

1 csSq = c_s∗c_s ; // Constant : Speed o f sound squared
2

3 rhoZ = f_0 [ 0 ] + 2∗f_2 [ 0 ] ;
4 rOrz = rho_0/rhoZ ;
5 tmp = csSq∗rOrz + c_s ;
6

7 v [ 0 ] = v_0 − tmp + sqrt ( tmp∗tmp − 2∗csSq ∗( rOrz ∗( v_0 − 1) + 1) ) ;
8

9 f_1 [ 0 ] = (v [ 0 ] ∗ f_0 [ 0 ] + (1 + v [ 0 ] ) ∗f_2 [ 0 ] ) / (1 − v [ 0 ] ) ;
10 rho = f_0 [ 0 ] + f_1 [ 0 ] + f_2 [ 0 ] ;
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A.6 Impedance BC, 2D, Compressible, Adaption in Nor-
mal Direction

This code example implements a left hand side impedance free field boundary condition (face
normal ex) for the compressible LBM, as described in section 6.3.1.

1 // Constants :
2 c1o6 = 1/6 ;
3 c2o3 = 2/3 ;
4 cs = 1/sqrt (3 ) ;
5 csSq = 1/3 ;
6

7 // Pos i t i on at l e f t boundary :
8 for_each node {
9 // Compute s o l u t i o n o f impedance cond i t i on :

10 rhoZ = f_0 + f_2 + f_4 + 2∗( f_3 + f_6 + f_7 ) ;
11 rhoOrhoZ = lastRho/rhoZ ;
12 temp = cs + csSq∗rhoOrhoZ ;
13

14 vx = lastV_x − temp
15 + sqrt ( temp∗temp − 2∗csSq ∗( rhoOrhoZ ∗( lastV_x − 1) + 1) ) ;
16 rho = rhoZ /(1 − vx ) ;
17

18 // Set y−v e l o c i t y with non−equ i l i b r i um bounce−back :
19 vy = 1 .5∗ ( f_2 − f_4 ) /rho ;
20

21 // Set unknown d i s t r i b u t i o n s by non−equ i l i b r i um bounce−back :
22 f_1 = f_3 + c2o3∗rho∗vx ;
23 f_5 = f_7 + c1o6∗rho ∗(vx + vy ) ;
24 f_8 = f_6 + c1o6∗rho ∗(vx − vy ) ;
25 }
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A.7 Impedance BC, 2D, Compressible, Adaption in Nor-
mal Direction, Fixed Reference Level

The code example is for a left hand side impedance free field boundary condition (face normal
ex) with fixed reference level vx,0 and %0, as described in section 6.3.2. %0 is supposed to be
normalized to 1.

1 // Constants :
2 c1o6 = 1/6 ;
3 c2o3 = 2/3 ;
4 cs = 1/sqrt (3 ) ;
5 csSq = 1/3 ;
6

7 // Pos i t i on at l e f t boundary :
8 for_each node y {
9 // vx_0 [ y ] and rho_0 are supposed to be

10 // p r e s e t over whole s imu la t i on !
11

12 // Compute s o l u t i o n o f impedance cond i t i on :
13 rhoZ = f_0 [ y ] + f_2 [ y ] + f_4 [ y ] + 2∗( f_3 [ y ] + f_6 [ y ] + f_7 [ y ] ) ;
14 rho0OrhoZ = 1/rhoZ ;
15 temp = cs + csSq∗rhoOrhoZ ;
16

17 vx [ y ] = vx_0 [ y ] − temp
18 + sqrt ( temp∗temp − 2∗csSq ∗( rhoOrhoZ ∗( vx_0 [ y ] − 1) + 1) ) ;
19 rho [ y ] = rhoZ /(1 − vx [ y ] ) ;
20

21 // Set y−v e l o c i t y with non−equ i l i b r i um bounce−back :
22 vy [ y ] = 1 . 5∗ ( f_2 [ y ] − f_4 [ y ] ) /rho [ y ] ;
23

24 // Set unknown d i s t r i b u t i o n s by non−equ i l i b r i um bounce−back :
25 f_1 [ y ] = f_3 [ y ] + c2o3∗rho [ y ]∗ vx [ y ] ;
26 f_5 [ y ] = f_7 [ y ] + c1o6∗rho [ y ] ∗ ( vx [ y ] + vy [ y ] ) ;
27 f_8 [ y ] = f_6 [ y ] + c1o6∗rho [ y ] ∗ ( vx [ y ] − vy [ y ] ) ;
28 }
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A.8 Impedance BC, 2D, Compressible, Full Adaption

The following code example implements the isotropic impedance free field boundary condition
of section 6.3.3 for the compressible LBM and a left hand side boundary.

1 // Constants :
2 c1o6 = 1/6 ;
3 c2o3 = 2/3 ;
4 cs = 1/sqrt (3 ) ;
5 csSq = 1/3 ;
6

7 // Maximum number o f i t e r a t i o n s f o r Newton ' s method :
8 maxIter = 50 ;
9

10 // Pos i t i on at l e f t boundary :
11 for_each node {
12 // Compute s o l u t i o n o f 1D impedance cond i t i on :
13 rhoZ = f_0 + f_2 + f_4 + 2∗( f_3 + f_6 + f_7 ) ;
14 rhoZSq = rhoZ∗rhoZ ;
15 rhoOrhoZ = lastRho/rhoZ ;
16 temp = cs + csSq∗rhoOrhoZ ;
17

18 vx = lastV_x − temp
19 + sqrt ( temp∗temp − 2∗csSq ∗( rhoOrhoZ ∗( lastV_x − 1) + 1) ) ;
20

21 // Fu l l adaption o f impedance . . .
22 temp = 1 .5∗ ( f_2 − f_4 ) ;
23 vyOldSq = lastV_y∗lastV_y ;
24 lVxM1 = lastV_x − 1 ;
25

26 // . . . with Newton ' s method :
27 for ( iter = 0 ; iter < maxIter ; iter++) {
28 vxM1 = vx − 1 ;
29

30 // Compute vy :
31 vy = −temp/rhoZ∗vxM1 ;
32 dvx = vx − lastV_x ;
33 dvy = vy − lastV_y ;
34

35 signdVx = sign ( dvx ) ; // Ei ther +1 or −1
36 dv_abs = sqrt ( dvx∗dvx + dvy∗dvy ) ;
37

38 c1 = rhoZSq ∗( ( csSq + 0 .5∗ ( lVxM1∗lVxM1 − vxM1∗vxM1 + vyOldSq
39 − vy∗vy ) ) ∗dv_abs
40 − ( dvx∗lVxM1 + lastV_y∗dvy ) ∗cs∗signdVx ) ;
41

42 if ( abs (c1 ) < eps ) break ;
43

44 c2 = vxM1∗dv_abs ∗( vxM1 ∗( temp ∗ (0 . 5∗ vxM1∗temp + lastV_y∗rhoZ )
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45 + csSq∗lastRho∗rhoZ )
46 + ( csSq + 0 .5∗ ( dvx∗dvx + vyOldSq )
47 + signdVx∗dv_abs∗cs ) ∗rhoZSq ) ;
48

49 dvx = c2/c1 ;
50 vx += dvx ;
51

52 if ( fabs ( dvx ) < eps ) break ;
53 }
54

55 rho = rhoZ /(1 − vx ) ;
56

57 // Set y−v e l o c i t y with non−equ i l i b r i um bounce−back :
58 vy = temp/rho ;
59

60 // Set unknown d i s t r i b u t i o n s by non−equ i l i b r i um bounce−back :
61 f_1 = f_3 + c2o3∗rho∗vx ;
62 f_5 = f_7 + c1o6∗rho ∗(vx + vy ) ;
63 f_8 = f_6 + c1o6∗rho ∗(vx − vy ) ;
64 }

A.9 Impedance BC, 2D, Compressible, Full Adaption,
Fixed Reference Level

This code example implements the same boundary condition like in the previous section, but
for a fixed reference level %0 and vx,0, with %0 ≡ 1.

1 // Constants :
2 c1o6 = 1/6 ;
3 c2o3 = 2/3 ;
4 cs = 1/sqrt (3 ) ;
5 csSq = 1/3 ;
6

7 // Maximum number o f i t e r a t i o n s f o r Newton ' s method :
8 maxIter = 50 ;
9

10 // Pos i t i on at l e f t boundary :
11 for_each node y {
12 // Compute s o l u t i o n o f 1D impedance cond i t i on :
13 rhoZ = f_0 [ y ] + f_2 [ y ] + f_4 [ y ] + 2∗( f_3 [ y ] + f_6 [ y ] + f_7 [ y ] ) ;
14 rhoZSq = rhoZ∗rhoZ ;
15 rhoOrhoZ = 1/rhoZ ;
16 temp = cs + csSq∗rhoOrhoZ ;
17

18 vx [ y ] = vx_0 [ y ] − temp
19 + sqrt ( temp∗temp − 2∗csSq ∗( rhoOrhoZ ∗( vx_0 [ y ] − 1) + 1) ) ;
20
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21 // Fu l l adaption o f impedance . . .
22 temp = 1 .5∗ ( f_2 [ y ] − f_4 [ y ] ) ;
23 vy0Sq = vy_0 [ y ]∗ vy_0 [ y ] ;
24 lVxM1 = vx_0 [ y ] − 1 ;
25

26 // . . . with Newton ' s method :
27 for ( iter = 0 ; iter < maxIter ; iter++) {
28 vxM1 = vx [ y ] − 1 ;
29

30 // Compute vy :
31 vy [ y ] = −temp/rhoZ∗vxM1 ;
32 dvx = vx [ y ] − vx_0 [ y ] ;
33 dvy = vy [ y ] − vy_0 [ y ] ;
34

35 signdVx = sign ( dvx ) ; // Ei ther +1 or −1
36 dv_abs = sqrt ( dvx∗dvx + dvy∗dvy ) ;
37

38 c1 = rhoZSq ∗( ( csSq + 0 .5∗ ( lVxM1∗lVxM1 − vxM1∗vxM1 + vy0Sq
39 − vy [ y ]∗ vy [ y ] ) ) ∗dv_abs
40 − ( dvx∗lVxM1 + vy_0 [ y ]∗ dvy ) ∗cs∗signdVx ) ;
41

42 if ( abs (c1 ) < eps ) break ;
43

44 c2 = vxM1∗dv_abs ∗( vxM1 ∗( temp ∗ (0 . 5∗ vxM1∗temp + vy_0 [ y ]∗ rhoZ )
45 + csSq∗rhoZ )
46 + ( csSq + 0 .5∗ ( dvx∗dvx + vy0Sq )
47 + signdVx∗dv_abs∗cs ) ∗rhoZSq ) ;
48

49 dvx = c2/c1 ;
50 vx [ y ] += dvx ;
51

52 if ( fabs ( dvx ) < eps ) break ;
53 }
54

55 rho [ y ] = rhoZ /(1 − vx [ y ] ) ;
56

57 // Set y−v e l o c i t y with non−equ i l i b r i um bounce−back :
58 vy [ y ] = temp/rho [ y ] ;
59

60 // Set unknown d i s t r i b u t i o n s by non−equ i l i b r i um bounce−back :
61 f_1 [ y ] = f_3 [ y ] + c2o3∗rho [ y ]∗ vx [ y ] ;
62 f_5 [ y ] = f_7 [ y ] + c1o6∗rho [ y ] ∗ ( vx [ y ] + vy [ y ] ) ;
63 f_8 [ y ] = f_6 [ y ] + c1o6∗rho [ y ] ∗ ( vx [ y ] − vy [ y ] ) ;
64 }
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A.10 Impedance BC, 2D, Compressible, Full Adaption
with Relaxation, Right Hand Side

The following code example implements the isotropic impedance free field boundary condition
of section 6.3.3 for the compressible LBM and a right hand side boundary. The tangential
velocity is relaxed by the factor "rlx" towards zero.

1 // Constants :
2 c1o6 = 1/6 ;
3 c2o3 = 2/3 ;
4 cs = 1/sqrt (3 ) ;
5 csSq = 1/3 ;
6

7 // Maximum number o f i t e r a t i o n s f o r Newton ' s method :
8 maxIter = 50 ;
9

10 // Relaxat ion f a c t o r f o r t ang en t i a l v e l o c i t y (1 \%) :
11 rlx = 0 . 9 9 ;
12

13 // Pos i t i on at l e f t boundary :
14 for_each node {
15 // Compute s o l u t i o n o f 1D impedance cond i t i on :
16 rhoZ = f_0 + f_2 + f_4 + 2∗( f_1 + f_5 + f_8 ) ;
17 rhoZSq = rhoZ∗rhoZ ;
18 rhoOrhoZ = lastRho/rhoZ ;
19 temp = cs + csSq∗rhoOrhoZ ;
20

21 vx = lastV_x + temp
22 − sqrt ( temp∗temp + 2∗csSq ∗( rhoOrhoZ ∗( lastV_x + 1) − 1) ) ;
23

24 // Fu l l adaption o f impedance . . .
25 temp = 1 .5∗ ( f_2 − f_4 ) ;
26 vyOldSq = lastV_y∗lastV_y ;
27 lVxP1 = lastV_x + 1 ;
28

29 // . . . with Newton ' s method :
30 for ( iter = 0 ; iter < maxIter ; iter++) {
31 vxP1 = vx + 1 ;
32

33 // Compute vy :
34 vy = temp/rhoZ∗vxP1 ;
35 dvx = vx − lastV_x ;
36 dvy = vy − lastV_y ;
37

38 signdVx = sign ( dvx ) ; // Ei ther +1 or −1
39 dv_abs = sqrt ( dvx∗dvx + dvy∗dvy ) ;
40

41 c1 = rhoZSq ∗( ( csSq + 0 .5∗ ( lVxP1∗lVxP1 − vxP1∗vxP1 + vyOldSq
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42 − vy∗vy ) ) ∗dv_abs
43 − ( dvx∗lVxP1 + lastV_y∗dvy ) ∗cs∗signdVx ) ;
44

45 if ( abs (c1 ) < eps ) break ;
46

47 c2 = vxP1∗dv_abs ∗( vxP1 ∗( temp ∗ (0 . 5∗ vxP1∗temp − lastV_y∗rhoZ )
48 − csSq∗lastRho∗rhoZ )
49 + ( csSq + 0 .5∗ ( dvx∗dvx + vyOldSq )
50 − signdVx∗dv_abs∗cs ) ∗rhoZSq ) ;
51

52 dvx = c2/c1 ;
53 vx += dvx ;
54

55 if ( fabs ( dvx ) < eps ) break ;
56 }
57 rho = rhoZ /(1 + vx ) ;
58

59

60 // Set y−v e l o c i t y with non−equ i l i b r i um bounce−back and r e l ax e r r o r :
61 vy = rlx∗temp/rho ;
62

63 // Set unknown d i s t r i b u t i o n s by non−equ i l i b r i um bounce−back :
64 f_3 = f_1 − c2o3∗rho∗vx ;
65 f_7 = f_5 − c1o6∗rho ∗(vx + vy ) ;
66 f_6 = f_8 − c1o6∗rho ∗(vx − vy ) ;
67 }
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A.11 Impedance BC, 2D, Incompressible, Adaption in
Normal Direction

This code example implements a left hand side impedance free field boundary condition (face
normal ex) for the incompressible LBM, as described in section 6.3.4. It is assumed that %0 ≡ 1.

1 // Constants :
2 c1o6 = 1/6 ;
3 c2o3 = 2/3 ;
4 cs = 1/sqrt (3 ) ;
5 csSq = 1/3 ;
6

7 // Pos i t i on at l e f t boundary :
8 for_each node {
9 // Compute s o l u t i o n o f impedance cond i t i on :

10 rhoZ = f_0 + f_2 + f_4 + 2∗( f_3 + f_6 + f_7 ) ;
11 temp = csSq + cs ;
12

13 vx = lastV_x − temp
14 + sqrt ( temp∗temp + 2∗csSq ∗( lastRho − lastV_x − rhoZ ) ) ;
15 rho = rhoZ + vx ;
16

17 // Set y−v e l o c i t y with non−equ i l i b r i um bounce−back :
18 vy = 1 .5∗ ( f_2 − f_4 ) ;
19

20 // Set unknown d i s t r i b u t i o n s by non−equ i l i b r i um bounce−back :
21 f_1 = f_3 + c2o3∗vx ;
22 f_5 = f_7 + c1o6 ∗(vx + vy ) ;
23 f_8 = f_6 + c1o6 ∗(vx − vy ) ;
24 }



A.12. Impedance BC, 2D, Incompressible, Adaption in Normal Direction, Fixed Reference Level147

A.12 Impedance BC, 2D, Incompressible, Adaption in
Normal Direction, Fixed Reference Level

The code example below is for a left hand side impedance free field boundary condition (face
normal ex) with fixed reference level vx,0 and %0, for the incompressible LBM, as described in
section 6.3.5. It is assumed that %0 ≡ 1.

1 // Constants :
2 c1o6 = 1/6 ;
3 c2o3 = 2/3 ;
4 cs = 1/sqrt (3 ) ;
5 csSq = 1/3 ;
6

7 // Pos i t i on at l e f t boundary :
8 for_each node {
9 // vx_0 [ y ] and rho_0 = 1 are supposed to be

10 // p r e s e t over whole s imu la t i on !
11

12 // Compute s o l u t i o n o f impedance cond i t i on :
13 rhoZ = f_0 [ y ] + f_2 [ y ] + f_4 [ y ] + 2∗( f_3 [ y ] + f_6 [ y ] + f_7 [ y ] ) ;
14 temp = csSq + cs ;
15

16 vx [ y ] = vx_0 [ y ] − temp
17 + sqrt ( temp∗temp + 2∗csSq ∗(1 − vx_0 [ y ] − rhoZ ) ) ;
18 rho [ y ] = rhoZ + vx [ y ] ;
19

20 // Set y−v e l o c i t y with non−equ i l i b r i um bounce−back :
21 vy [ y ] = 1 . 5∗ ( f_2 [ y ] − f_4 [ y ] ) ;
22

23 // Set unknown d i s t r i b u t i o n s by non−equ i l i b r i um bounce−back :
24 f_1 [ y ] = f_3 [ y ] + c2o3∗vx [ y ] ;
25 f_5 [ y ] = f_7 [ y ] + c1o6 ∗(vx [ y ] + vy [ y ] ) ;
26 f_8 [ y ] = f_6 [ y ] + c1o6 ∗(vx [ y ] − vy [ y ] ) ;
27 }
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A.13 Impedance BC, 2D, Incompressible, Full Adap-
tion

The following code example implements the isotropic impedance free field boundary condition
of section 6.3.6 for the incompressible LBM and a left hand side boundary. %0 is assumed to
be %0 ≡ 1.

1 // Constants :
2 c1o6 = 1/6 ;
3 c2o3 = 2/3 ;
4 cs = 1/sqrt (3 ) ;
5 csSq = 1/3 ;
6

7 // Maximum number o f i t e r a t i o n s f o r Newton ' s method :
8 maxIter = 50 ;
9

10 // Pos i t i on at l e f t boundary :
11 for_each node {
12

13 // Compute s o l u t i o n o f 1D impedance cond i t i on :
14 rhoZ = f_0 + f_2 + f_4 + 2∗( f_3 + f_6 + f_7 ) ;
15 temp = csSq + cs ;
16

17 vx = lastV_x − temp
18 + sqrt ( temp∗temp + 2∗csSq ∗( lastRho − lastV_x − rhoZ ) ) ;
19

20 // Set y−v e l o c i t y with non−equ i l i b r i um bounce−back :
21 vy = 1 .5∗ ( f_2 − f_4 ) ;
22

23 // Fu l l adaption o f impedance . . .
24 dvy = vy − lastV_y ;
25 dvySq = dvy∗dvy ;
26

27 // . . . with Newton ' s method :
28 if ( abs ( dvy ) > eps ) {
29 for ( iter = 0 ; iter < maxIter ; iter++) {
30 dvx = vx − lastV_x ;
31 dv_abs = sqrt ( dvx∗dvx + dvySq ) ;
32 signdVx = sign ( dvx ) ; // Ei ther +1 or −1
33

34 c1 = −((dv_abs + signdVx∗cs ) ∗dvx + csSq∗dv_abs ) ;
35

36 if ( fabs (c1 ) < eps ) break ;
37

38 c2 = ( csSq ∗( rhoZ + vx − lastRho )
39 + dv_abs ∗( signdVx∗cs + 0.5∗ dv_abs ) ) ∗dv_abs ;
40

41 dvx = c2/c1 ;
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42 vx += dvx ;
43

44 if ( fabs ( dvx ) < eps ) break ;
45 }
46 }
47

48 rho = rhoZ + vx ;
49

50 // Set unknown d i s t r i b u t i o n s by non−equ i l i b r i um bounce−back :
51 f_1 = f_3 + c2o3∗vx ;
52 f_5 = f_7 + c1o6 ∗(vx + vy ) ;
53 f_8 = f_6 + c1o6 ∗(vx − vy ) ;
54 }

A.14 Impedance BC, 2D, Incompressible, Full Adap-
tion, Fixed Reference Level

This code example implements the same boundary condition like in the previous section A.13,
but for a fixed reference level %0 and vx,0, with %0 ≡ 1, according to section 6.3.6.

1 // Constants :
2 c1o6 = 1/6 ;
3 c2o3 = 2/3 ;
4 cs = 1/sqrt (3 ) ;
5 csSq = 1/3 ;
6

7 // Maximum number o f i t e r a t i o n s f o r Newton ' s method :
8 maxIter = 50 ;
9

10 // Pos i t i on at l e f t boundary :
11 for_each node y {
12

13 // Compute s o l u t i o n o f impedance cond i t i on :
14 rhoZ = f_0 [ y ] + f_2 [ y ] + f_4 [ y ] + 2∗( f_3 [ y ] + f_6 [ y ] + f_7 [ y ] ) ;
15 temp = csSq + cs ;
16

17 vx [ y ] = vx_0 [ y ] − temp
18 + sqrt ( temp∗temp + 2∗csSq ∗(1 − vx_0 [ y ] − rhoZ ) ) ;
19

20 // Set y−v e l o c i t y with non−equ i l i b r i um bounce−back :
21 vy [ y ] = 1 . 5∗ ( f_2 [ y ] − f_4 [ y ] ) ;
22

23 // Fu l l adaption o f impedance . . .
24 dvy = vy [ y ] − vy_0 [ y ] ;
25 dvySq = dvy∗dvy ;
26

27 // . . . with Newton ' s method :
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28 if ( abs ( dvy ) > eps ) {
29 for ( iter = 0 ; iter < maxIter ; iter++) {
30 dvx = vx [ y ] − vx_0 [ y ] ;
31 dv_abs = sqrt ( dvx∗dvx + dvySq ) ;
32 signdVx = sign ( dvx ) ; // Ei ther +1 or −1
33

34 c1 = −((dv_abs + signdVx∗cs ) ∗dvx + csSq∗dv_abs ) ;
35

36 if ( fabs (c1 ) < eps ) break ;
37

38 c2 = ( csSq ∗( rhoZ + vx [ y ] − drho0 [ y ] )
39 + dv_abs ∗( signdVx∗cs + 0.5∗ dv_abs ) ) ∗dv_abs ;
40

41 dvx = c2/c1 ;
42 vx [ y ] += dvx ;
43

44 if ( fabs ( dvx ) < eps ) break ;
45 }
46 }
47

48 rho [ y ] = rhoZ + vx [ y ] ;
49

50 // Set unknown d i s t r i b u t i o n s by non−equ i l i b r i um bounce−back :
51 f_1 [ y ] = f_3 [ y ] + c2o3∗vx [ y ] ;
52 f_5 [ y ] = f_7 [ y ] + c1o6 ∗(vx [ y ] + vy [ y ] ) ;
53 f_8 [ y ] = f_6 [ y ] + c1o6 ∗(vx [ y ] − vy [ y ] ) ;
54 }

A.15 Impedance BC, 2D, Incompressible, Full Adap-
tion with Relaxation, Right Hand Side

The following code example implements the isotropic impedance free field boundary condition
of section 6.3.6 for the incompressible LBM and a right hand side boundary. The tangential
velocity is relaxed by the factor "rlx" towards zero. %0 is assumed to be %0 ≡ 1.

1 // Constants :
2 c1o6 = 1/6 ;
3 c2o3 = 2/3 ;
4 cs = 1/sqrt (3 ) ;
5 csSq = 1/3 ;
6

7 // Maximum number o f i t e r a t i o n s f o r Newton ' s method :
8 maxIter = 50 ;
9

10 // Relaxat ion f a c t o r f o r t ang en t i a l v e l o c i t y (1 \%) :
11 rlx = 0 . 9 9 ;
12
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13 // Pos i t i on at l e f t boundary :
14 for_each node {
15

16 // Compute s o l u t i o n o f 1D impedance cond i t i on :
17 rhoZ = f_0 + f_2 + f_4 + 2∗( f_1 + f_5 + f_8 ) ;
18 temp = csSq + cs ;
19

20 vx = lastV_x + temp
21 − sqrt ( temp∗temp + 2∗csSq ∗( lastRho + lastV_x − rhoZ ) ) ;
22

23 // Set y−v e l o c i t y with non−equ i l i b r i um bounce−back :
24 vy = 1 .5∗ ( f_2 − f_4 ) ;
25

26 // Fu l l adaption o f impedance . . .
27 dvy = vy − lastV_y ;
28 dvySq = dvy∗dvy ;
29

30 // . . . with Newton ' s method :
31 if ( abs ( dvy ) > eps ) {
32 for ( iter = 0 ; iter < maxIter ; iter++) {
33 dvx = vx − lastV_x ;
34 dv_abs = sqrt ( dvx∗dvx + dvySq ) ;
35 signdVx = sign ( dvx ) ; // Ei ther +1 or −1
36

37 c1 = −((dv_abs − signdVx∗cs ) ∗dvx − csSq∗dv_abs ) ;
38

39 if ( fabs (c1 ) < eps ) break ;
40

41 c2 = ( csSq ∗( rhoZ − vx − lastRho )
42 + dv_abs ∗ (0 . 5∗ dv_abs − signdVx∗cs ) ) ∗dv_abs ;
43

44 dvx = c2/c1 ;
45 vx += dvx ;
46

47 if ( fabs ( dvx ) < eps ) break ;
48 }
49 }
50

51 rho = rhoZ − vx ;
52

53 // Relax e r r o r o f vy−v e l o c i t y :
54 vy ∗= rlx ;
55

56 // Set unknown d i s t r i b u t i o n s by non−equ i l i b r i um bounce−back :
57 f_3 = f_1 − c2o3∗vx ;
58 f_7 = f_5 − c1o6 ∗(vx + vy ) ;
59 f_6 = f_8 − c1o6 ∗(vx − vy ) ;
60 }
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A.16 Impedance Velocity BC, 2D, Compressible
The code example is for a left hand side impedance velocity boundary condition (face normal
ex) with fixed reference level vx,0 and %0, as described in section 6.3.1 and 7.1.1. %0 is supposed
to be normalized to 1.

1 // Constants :
2 c1o6 = 1/6 ;
3 c2o3 = 2/3 ;
4 cs = 1/sqrt (3 ) ;
5 csSq = 1/3 ;
6

7 // Maximum r e f l e c t e d de s i t y :
8 dRhoMax = 1e−4;
9

10 // Pos i t i on at l e f t boundary :
11 for_each node y {
12 // vx_0 [ y ] and rho_0 are to be p r e s e t over whole s imu la t i on !
13

14 // Compute s o l u t i o n o f impedance cond i t i on :
15 rhoZ = f_0 [ y ] + f_2 [ y ] + f_4 [ y ] + 2∗( f_3 [ y ] + f_6 [ y ] + f_7 [ y ] ) ;
16 rho0OrhoZ = 1/rhoZ ;
17 temp = cs + csSq∗rhoOrhoZ ;
18

19 vx [ y ] = vx_0 [ y ] − temp
20 + sqrt ( temp∗temp − 2∗csSq ∗( rhoOrhoZ ∗( vx_0 [ y ] − 1) + 1) ) ;
21 rho = rhoZ /(1 − vx [ y ] ) ;
22

23 // Maximum speed adaption :
24 vLowerLimit = 1 − rhoZ /( rho − dRhoMax ) ;
25 vUpperLimit = 1 − rhoZ /( rho + dRhoMax ) ;
26

27 // Adapt speed :
28 if ( vx_0 [ y ] > vUpperLimit ) vx [ y ] = vUpperLimit ;
29 else if ( vx_0 [ y ] < vLowerLimit ) vx [ y ] = vLowerLimit ;
30 else vx [ y ] = vx_0 [ y ] ;
31

32 // Solve impedance cond i t i on f o r new r e f e r e n c e l e v e l :
33 temp = vx [ y ] − vx_0 [ y ] ;
34 rho [ y ] = csSq /( csSq + temp ∗ (0 . 5∗ temp + cs ) ) ;
35

36 // Set y−v e l o c i t y with non−equ i l i b r i um bounce−back :
37 vy [ y ] = 1 . 5∗ ( f_2 [ y ] − f_4 [ y ] ) /rho [ y ] ;
38

39 // Set unknown d i s t r i b u t i o n s by non−equ i l i b r i um bounce−back :
40 f_1 [ y ] = f_3 [ y ] + c2o3∗rho [ y ]∗ vx [ y ] ;
41 f_5 [ y ] = f_7 [ y ] + c1o6∗rho [ y ] ∗ ( vx [ y ] + vy [ y ] ) ;
42 f_8 [ y ] = f_6 [ y ] + c1o6∗rho [ y ] ∗ ( vx [ y ] − vy [ y ] ) ;
43 }
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A.17 Impedance Pressure BC, 2D, Compressible
The code example is for a right hand side impedance pressure boundary condition (face
normal −ex) with fixed reference level vx,0 and %BC, as described in section 6.3.1 and 7.2.1.

1 // Constants :
2 c1o6 = 1/6 ;
3 c2o3 = 2/3 ;
4 cs = 1/sqrt (3 ) ;
5 csSq = 1/3 ;
6

7 // Maximum r e f l e c t e d de s i t y :
8 dRhoMax = 1e−4;
9

10 // Pos i t i on at l e f t boundary :
11 for_each node y {
12 // vx_0 [ y ] and rho_BC are to be p r e s e t over whole s imu la t i on !
13

14 // Compute s o l u t i o n o f impedance cond i t i on :
15 rhoZ = f_0 [ y ] + f_2 [ y ] + f_4 [ y ] + 2∗( f_1 [ y ] + f_5 [ y ] + f_8 [ y ] ) ;
16 rhoBCoRhoZ = rho_BC/rhoZ ;
17 temp = cs + csSq∗rhoBCoRhoZ ;
18

19 vx [ y ] = vx_0 [ y ] + temp
20 − sqrt ( temp∗temp + 2∗csSq ∗( rhoBCoRhoZ ∗( vx_0 [ y ] + 1) − 1) ) ;
21

22 // Compute f r e e f i e l d dens i ty :
23 rho [ y ] = rhoZ /(1 + vx [ y ] ) ;
24

25 // Adapt dens i ty ( resp . p r e s su r e ) :
26 dRho = rho [ y ] − rho_BC ;
27 if ( dRho > dRhoMax ) rho [ y ] −= dRhoMax ;
28 else if ( dRho < −dRhoMax ) rho [ y ] += dRhoMax ;
29 else rho [ y ] = rho_BC ;
30

31 // Solve impedance cond i t i on f o r new r e f e r e n c e l e v e l :
32 temp = 1/rho [ y ] ;
33 vx [ y ] = vx_0 [ y ] − cs ∗( sqrt (2∗ rho0∗temp − 1) − 1) ;
34

35 // Set y−v e l o c i t y with non−equ i l i b r i um bounce−back :
36 vy [ y ] = 1 . 5∗ ( f_2 [ y ] − f_4 [ y ] ) ∗temp ;
37

38 // Set unknown d i s t r i b u t i o n s by non−equ i l i b r i um bounce−back :
39 f_3 [ y ] = f_1 [ y ] − c2o3∗rho [ y ]∗ vx [ y ] ;
40 f_7 [ y ] = f_5 [ y ] − c1o6∗rho [ y ] ∗ ( vx [ y ] + vy [ y ] ) ;
41 f_6 [ y ] = f_8 [ y ] − c1o6∗rho [ y ] ∗ ( vx [ y ] − vy [ y ] ) ;
42 }
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A.18 Impedance BC for Nonlinear Shallow Water LBM
Below, the impedance boundary condition was implemented for the Nonlinear Shallow Water
model as described in section 8.2. h_0 specifies the desired target waterline height value.

1 // Propagation v e l o c i t y :
2 c = e ;
3

4 // Constants :
5 c1o6c = 1/(6∗c ) ;
6 c2o3c = 2/(3∗c ) ;
7

8 // Speed o f sound f o r abs (dh/h_0) << 1 :
9 cs = sqrt ( h_0 ∗ g ) ;

10 csSq = cs∗cs ;
11

12 // Maximum r e f l e c t e d wave he ight :
13 dhMax = 1e−4;
14

15 // Pos i t i on at r i g h t boundary :
16 for_each node {
17 // Compute s o l u t i o n o f impedance cond i t i on :
18 j_z = c ∗( f_0 + f_2 + f_4 + 2∗( f_1 + f_5 + f_8 ) ) ;
19 hOj_z = h/j_z ;
20

21 temp = cs + csSq∗hOj_z ;
22 vx += temp − sqrt ( temp∗temp + 2∗csSq ∗ ( ( vx + c ) ∗hOj_z − 1) ) ;
23

24 // Compute f r e e f i e l d he ight :
25 h = j_z /(c + vx ) ;
26

27 // Height adaption :
28 temp = h ;
29 dh = h − h_0 ;
30 if ( dh > dhMax ) h −= dhMax ;
31 else if ( dh < −dhMax ) h += dhMax ;
32 else h = h_0 ;
33

34 // Adapt v e l o c i t y to new he ight :
35 vx −= cs ∗( sqrt (2∗ temp/h − 1) − 1) ;
36

37 // Compute y−v e l o c i t y ( s e t to zero to avoid long−term e r r o r ) :
38 vy = 1 .5∗ ( f_2 − f_4 ) ∗c/h ;
39

40 // Set unknown d i s t r i b u t i o n s by non−equ i l i b r i um bounce−back :
41 f_3 = f_1 − c2o3c∗h∗vx ;
42 f_7 = f_5 − c1o6c∗h ∗(vx + vy ) ;
43 f_6 = f_8 − c1o6c∗h ∗(vx − vy ) ;
44 }
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Appendix B

Results 2D Pressure Wave Test Case,
Impedance BCs

B.1 Compressible LBM, Resting Fluid

Figure B.1: Impedance free field BC, setup (a), density at t = 700 ·∆t
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Figure B.2: Impedance free field BC, setup (a), absolute velocity at t = 700 ·∆t

Figure B.3: Impedance free field BC, setup (a), relative density error in % at t = 700 ·∆t
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Figure B.4: Impedance free field BC, setup (a), absolute error of velocity error at t = 700 ·∆t
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Figure B.5: Reflection over incident angle at t = 700 ·∆t
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B.2 Compressible LBM, Parabolic Velocity Profile

Figure B.6: Impedance free field BC, setup (b), density at t = 700 ·∆t

Figure B.7: Impedance free field BC, setup (b), absolute velocity at t = 700 ·∆t



B.2. Compressible LBM, Parabolic Velocity Profile 159

Figure B.8: Impedance free field BC, setup (b), relative density error in % at t = 700 ·∆t

Figure B.9: Impedance free field BC, setup (b), absolute error of velocity error at t = 700 ·∆t
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Figure B.10: Reflection over incident angle at t = 700 ·∆t
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B.3 Compressible LBM, Fixed Reference Level,
Resting Fluid

Figure B.11: Imp. fixed free field BC, setup (a), density at t = 700 ·∆t

Figure B.12: Imp. fixed free field BC, setup (a), absolute velocity at t = 700 ·∆t
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Figure B.13: Imp. fixed free field BC, setup (a), relative density error in % at t = 700 ·∆t

Figure B.14: Imp. fixed free field BC, setup (a), absolute error of velocity error at t = 700 ·∆t
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Figure B.15: Reflection over incident angle at t = 700 ·∆t
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B.4 Compressible LBM, Fixed Reference Level,
Parabolic Velocity Profile

Figure B.16: Imp. fixed free field BC, setup (b), density at t = 700 ·∆t

Figure B.17: Imp. fixed free field BC, setup (b), absolute velocity at t = 700 ·∆t



B.4. Compressible LBM, Fixed Reference Level, Parabolic Velocity Profile 165

Figure B.18: Imp. fixed free field BC, setup (b), relative density error in % at t = 700 ·∆t

Figure B.19: Imp. fixed free field BC, setup (b), absolute error of velocity error at t = 700 ·∆t
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Figure B.20: Reflection over incident angle at t = 700 ·∆t

B.5 Incompressible LBM, Resting Fluid

Figure B.21: Impedance free field BC, setup (a), density at t = 700 ·∆t
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Figure B.22: Impedance free field BC, setup (a), absolute velocity at t = 700 ·∆t

Figure B.23: Impedance free field BC, setup (a), relative density error in % at t = 700 ·∆t
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Figure B.24: Impedance free field BC, setup (a), absolute error of velocity error at t = 700 ·∆t
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Figure B.25: Reflection over incident angle at t = 700 ·∆t
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B.6 Incompressible LBM, Parabolic Velocity Profile

Figure B.26: Impedance free field BC, setup (b), density at t = 700 ·∆t

Figure B.27: Impedance free field BC, setup (b), absolute velocity at t = 700 ·∆t
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Figure B.28: Impedance free field BC, setup (b), relative density error in % at t = 700 ·∆t

Figure B.29: Impedance free field BC, setup (b), absolute error of velocity error at t = 700 ·∆t
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Figure B.30: Reflection over incident angle at t = 700 ·∆t
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B.7 Incompressible LBM, Fixed Reference Level,
Resting Fluid

Figure B.31: Imp. fixed free field BC, setup (a), density at t = 700 ·∆t

Figure B.32: Imp. fixed free field BC, setup (a), absolute velocity at t = 700 ·∆t
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Figure B.33: Imp. fixed free field BC, setup (a), relative density error in % at t = 700 ·∆t

Figure B.34: Imp. fixed free field BC, setup (a), absolute error of velocity error at t = 700 ·∆t
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Figure B.35: Reflection over incident angle at t = 700 ·∆tv



B.8. Incompressible LBM, Fixed Reference Level, Parabolic Velocity Profile 175

B.8 Incompressible LBM, Fixed Reference Level,
Parabolic Velocity Profile

Figure B.36: Imp. fixed free field BC, setup (b), density at t = 700 ·∆t

Figure B.37: Imp. fixed free field BC, setup (b), absolute velocity at t = 700 ·∆t
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Figure B.38: Imp. fixed free field BC, setup (b), relative density error in % at t = 700 ·∆t

Figure B.39: Imp. fixed free field BC, setup (b), absolute error of velocity error at t = 700 ·∆t
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Figure B.40: Reflection over incident angle at t = 700 ·∆t

B.9 Compressible LBM, Full Adaption, Resting Fluid

Figure B.41: Isotropic impedance free field BC, setup (a), density at t = 700 ·∆t
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Figure B.42: Isotropic impedance free field BC, setup (a), absolute velocity at t = 700 ·∆t

Figure B.43: Isotropic impedance free field BC, setup (a), relative density error in % at t = 700 ·∆t
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Figure B.44: Isotropic impedance free field BC, setup (a), absolute error of velocity error at t = 700·∆t
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Figure B.45: Reflection over incident angle at t = 770 ·∆t
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B.10 Compressible LBM, Full Adaption,
Parabolic Velocity Profile

Figure B.46: Isotropic impedance free field BC, setup (b), density at t = 700 ·∆t

Figure B.47: Isotropic impedance free field BC, setup (b), absolute velocity at t = 700 ·∆t
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Figure B.48: Isotropic impedance free field BC, setup (b), relative density error in % at t = 700 ·∆t

Figure B.49: Isotropic impedance free field BC, setup (b), absolute error of velocity error at t = 700·∆t
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Figure B.50: Reflection over incident angle at t = 770 ·∆t
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B.11 Compressible LBM, Full Adaption,
Fixed Reference Level, Resting Fluid

Figure B.51: Isotropic impedance free field BC, setup (a), density at t = 700 ·∆t

Figure B.52: Isotropic impedance free field BC, setup (a), absolute velocity at t = 700 ·∆t
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Figure B.53: Isotropic impedance free field BC, setup (a), relative density error in % at t = 700 ·∆t

Figure B.54: Isotropic impedance free field BC, setup (a), absolute error of velocity error at t = 700·∆t
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Figure B.55: Reflection over incident angle at t = 770 ·∆t
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B.12 Compressible LBM, Full Adaption,
Fixed Reference Level, Parabolic Velocity Profile

Figure B.56: Isotropic impedance free field BC, setup (b), density at t = 700 ·∆t

Figure B.57: Isotropic impedance free field BC, setup (b), absolute velocity at t = 700 ·∆t
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Figure B.58: Isotropic impedance free field BC, setup (b), relative density error in % at t = 700 ·∆t

Figure B.59: Isotropic impedance free field BC, setup (b), absolute error of velocity error at t = 700·∆t
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Figure B.60: Reflection over incident angle at t = 770 ·∆t

B.13 Incompressible LBM, Full Adaption, Resting Fluid

Figure B.61: Isotropic impedance free field BC, setup (a), density at t = 700 ·∆t
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Figure B.62: Isotropic impedance free field BC, setup (a), absolute velocity at t = 700 ·∆t

Figure B.63: Isotropic impedance free field BC, setup (a), relative density error in % at t = 700 ·∆t
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Figure B.64: Isotropic impedance free field BC, setup (a), absolute error of velocity error at t = 700·∆t
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Figure B.65: Reflection over incident angle at t = 770 ·∆t
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B.14 Incompressible LBM, Full Adaption,
Parabolic Velocity Profile

Figure B.66: Isotropic impedance free field BC, setup (b), density at t = 700 ·∆t

Figure B.67: Isotropic impedance free field BC, setup (b), absolute velocity at t = 700 ·∆t
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Figure B.68: Isotropic impedance free field BC, setup (b), relative density error in % at t = 700 ·∆t

Figure B.69: Isotropic impedance free field BC, setup (b), absolute error of velocity error at t = 700·∆t
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Figure B.70: Reflection over incident angle at t = 770 ·∆t
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B.15 Incompressible LBM, Full Adaption,
Fixed Reference Level, Resting Fluid

Figure B.71: Isotropic impedance free field BC, setup (a), density at t = 700 ·∆t

Figure B.72: Isotropic impedance free field BC, setup (a), absolute velocity at t = 700 ·∆t
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Figure B.73: Isotropic impedance free field BC, setup (a), relative density error in % at t = 700 ·∆t

Figure B.74: Isotropic impedance free field BC, setup (a), absolute error of velocity error at t = 700·∆t
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Figure B.75: Reflection over incident angle at t = 770 ·∆t
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B.16 Incompressible LBM, Full Adaption,
Fixed Reference Level, Parabolic Velocity Profile

Figure B.76: Isotropic impedance free field BC, setup (b), density at t = 700 ·∆t

Figure B.77: Isotropic impedance free field BC, setup (b), absolute velocity at t = 700 ·∆t
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Figure B.78: Isotropic impedance free field BC, setup (b), relative density error in % at t = 700 ·∆t

Figure B.79: Isotropic impedance free field BC, setup (b), absolute error of velocity error at t = 700·∆t
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Figure B.80: Reflection over incident angle at t = 770 ·∆t
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