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Abstract

This thesis provides methods for binocular stereo matching and multi-view stereo recon-
struction. Approaches that acquire a dense reconstruction from two or more views are an
important subject of research in computer vision and are useful for a large variety of ap-
plications. Since the background of this thesis is automotive driver assistance, our work is
motivated for efficient and accurate reconstruction techniques.

In particular, we present a new algorithm for the efficient computation of dense dis-
parity maps in the context of local stereo matching. We also propose techniques to make
the matching robust to inaccurately rectified image pairs. Our method maintains a high
efficiency, even in challenging scenarios.

For accurate stereo vision, we propose a novel method that is based on simulated ran-
dom walks. We introduce several systematic measures to explicitly address challenging
problems like discontinuities, occlusions and slanted surfaces. Our proposal produces
high grade disparity maps on difficult images and compares very well to the current state
of the art.

Further, we address the accurate and, at the same time, efficient stereo reconstruction
from multiple views. For this, we present a novel probabilistic multi-view stereo approach
that fuses disparity maps of different input view pairs. Our implementation in the vehicle
achieves real-time performance on an ordinary processor and computes robust and high-
quality disparity maps.

Finally, we introduce various camera-based parking assistance functionalities including
an automatic parking slot detection, a collision detector for the pivoting ranges of the
doors, and novel image based rendering techniques for visualization. The influence of
reconstruction quality on application reliability is showcased with extensive experiments.
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Zusammenfassung

Diese Arbeit stellt Methoden für binokulares Stereo-Matching sowie für die Rekonstruk-
tion von mehreren Bildern vor. Ansätze die eine 3D-Rekonstruktion von zwei oder meh-
reren Bildern erzeugen bilden eine wichtige Forschungsrichtung im Bereich der Bildver-
arbeitung und sind darüber hinaus für unterschiedlichste Anwendungen nützlich. Da der
praktische Hintergrund dieser Doktorarbeit Fahrerassistenzsysteme sind liegt der Schwer-
punkt auf effizienten und möglichst exakt arbeitenden Methoden.

Insbesondere präsentieren wir einen neuen Algorithmus für die effiziente Berechnung
von dichten Disparitätskarten im Kontext der lokalen Stereoverarbeitung. Dabei unter-
suchen wir verschiedene Maßnahmen um die Korrespondenzbildung robust gegenüber
Beleuchtungsänderungen zu machen und stellen Verallgemeinerungen vor um die Dispa-
ritätsbestimmung bei fehlerhaft rektifizierten Bildpaaren zu ermöglichen.

Für die akkurate stereoskopische Rekonstruktion führen wir eine neue Methode ein die
auf simulierten Zufallsbewegungen basiert (random walks). Dabei stellen wir verschiede-
ne systematische Maßnahmen vor um die Korrespondenzbildung gegen schwierige Pro-
bleme robust zu machen, wie etwa Diskontinuitäten, Verdeckungen und geneigte Ober-
flächen. Unser Vorschlag generiert Disparitätskarten von sehr hoher Güte und schneidet
im Vergleich mit aktuellen Methoden sehr gut ab.

Ferner adressieren wir in dieser Arbeit die akkurate und zugleich effiziente 3D-Rekon-
struktion von mehreren Ansichten. Dazu stellen wir einen neuen probabilistischen Ansatz
vor, welcher Disparitätskarten von mehreren Eingangsbildpaaren fusioniert. Unsere Im-
plementierung im Fahrzeug erreicht Echtzeitperformance auf Standard-Prozessoren und
berechnet robuste, qualitativ hochwertige und zeitlich kohärente Disparitätskarten.

Schließlich detaillieren wir verschiedene kamerabasierte Parkassistenzfunktionen, wie
beispielsweise eine automatische Parklückenvermessung, einen Kollisionswarner für die
Schwenkbereiche der Türen, sowie innovative bildgestützte Visualisierungen. Der Einfluss
der Rekonstruktionsqualität auf die Zuverlässigkeit der automotiven Kundenfunktionen
wird mit einer Vielzahl an Experimenten dargestellt.
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1. Introduction

9, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, . . . ? LOTHAR COLLATZ

In computer vision, stereo methods reconstruct a scene from two or more images. Until
today, such approaches have been investigated for decades and it is still an active area
of research that is thereby bolstered by a huge number of works. Mainly two directions
are substantiated by different practical applications which naturally impose contradictory
objectives. While some approaches try to improve the reconstruction quality and usu-
ally have low restrictions regarding execution time, other methods are required to run in
real-time to support reactive control systems like robotic navigation, automotive driver
assistance or industrial quality inspection.

In this work both aspects are of eminent importance. On the one hand, reconstruction
quality is important to avoid an incorrect behavior of the application utilizing the depth
data. On the other hand, an online operation is only possible if the real-time constraint is
met reproducibly. In this spirit, we present various algorithms that address the efficiency,
or the accuracy, or even both efficiency and accuracy. In particular, we present an efficient
binocular stereo matching method which is robust to the decalibration of stereo rigs. We
also introduce an innovative method for accurate stereo vision based on random walks
which produces high-grade disparity maps on difficult images. Last but not least, we
formalize a novel probabilistic approach that achieves robust and high-quality disparity
maps from multiple camera positions and operates in real-time on ordinary computers.

Although this thesis was developed in an automotive context, our contributions for the
reconstruction from two or more images are very generic and can be used in many appli-
cations. Albeit real-time performance is also a matter of the current technological devel-
opment level and the amount of image data to be processed, computational efficiency is
in many cases a driving factor. But also the correctness of depth measurements, the ro-
bustness of the reconstruction algorithm with respect to environmental influences and the
precision of individual depth measurements are highly important for many applications.
In this work, we analyze the connection between reconstruction quality and application re-
liability with the implementation of several driver assistance functionalities, which leads
to our practical motivation.

1.1. Practical Motivation

Camera-based driver assistance has received a lot of attention in the past decade. Huge
efforts have been made to bring various cameras and a variety of useful customer functions
into serial production vehicles. Prominent examples are a front camera for forward looking
driver assistance (such as traffic sign recognition, lane departure warning or high beam
automation) and a rear camera for a reverse display with guide lines. Lesser known are
side looking cameras which are integrated either into the side mirrors or into the front

1



1. Introduction

bumper, and help the driver during parking maneuvers or to observe crossing traffic (see
also Fig. 1.1). Especially for parking assistance, low speed maneuvering and autonomous
driving tasks, depth information about the vehicle’s lateral space is required.

While cameras slowly but progressively conquer also cheaper serial production vehicles
at different mounting positions, there are also ultrasonic, RADAR or LIDAR sensors avail-
able. These have the advantages of actively measuring depth and of being more robust
in difficult environmental situations, but are less desirable than cameras in other aspects.
Due to mechanical and physical limitations these sensors strongly reduce details acquired
from the world to a small set of depth measurements. While LIDAR is capable of mea-
suring reflectivity, none of these alternative sensors may provide true color information.
Thus, every model derived from these sensors is coarse and less rich, and therefore the
number of possible applications is limited. Moreover, the geometric integration of these
sensors is often complicated and the cost of them is still higher than that of simple passive
cameras, which might be further reasons for the fact that only lateral ultrasonic sensors
have been commercially used yet for parking slot detection.

Even though cheap, lateral cameras were, so far, only used to improve the driver’s visual
perception by simply displaying the camera images. The complexity of image processing
algorithms and the limited hardware resources (i.e. only mobile CPUs in our case) may
have hid their potential for driver assistance systems, since real-time performance is re-
quired for most of these applications. Another reason is surely the fact that monocular
cameras do not directly deliver depth information. To estimate distances many monocular
systems rely on object detection, combined with assumptions about object size or flatness
of the ground [32]. Naturally, in complex real world situations, these assumptions are
often violated and, in turn, may impose large errors. Further, these approaches are less
generic, because the classes and orientations of detectable objects must be defined and
trained beforehand.

A more universal idea to compute depth information using monocular cameras is the
principle of motion-stereo. However, the high computational overhead of most dense multi-
view algorithms in combination with the limited processing power available on mobile
vehicular platforms contradicts with strong real-time requirements. This situation made
many researchers resort to feature-based approaches, but the availability of enough signif-
icant interest points cannot always be ensured in real world scenarios. Different to other
works, we will establish dense correspondences and will make excessive use of this prin-
ciple throughout the whole thesis.

To summarize, the main motivation for this work is to turn monocular cameras into
robust depth sensors using dense stereo and multi-view stereo techniques.

1.2. Practical Challenges

The ultimate vision of this work is a camera-based parking assistant, which is able to
densely reconstruct the environment in real-time in order to detect parking slots when
passing by at every environmental condition. We broke this vision down into individual
goals:

1. Usage of serial production cameras: Since this work tackles a practical problem, it is
important that the used hardware is in step with actual vehicle equipment to enable a

2



1.2. Practical Challenges

Side-view camera at the front bumper Top-view camera at the side mirror

Figure 1.1. Real-Time Motion-Stereo for automotive driver assistance: a camera on the vehicle ob-
serves the lateral space. If the vehicle moves, depth is inferred via motion-stereo.

later commercialization, but such cameras are often a compromise between cost and
image quality. We resort to two particular classes of currently available side looking
cameras which are illustrated in Fig. 1.1:

a) Side-View cameras: The mounting position, orientation and field of view (45-
60 degrees) are very well suited for multi-view stereo algorithms.

b) Top-View cameras: In this case, the mounting position and orientation allow
multi-view reconstruction. However, the large field of view (160-170 degrees) is
a limiting factor, because it makes the search for correspondences difficult and
it results in a larger reconstruction uncertainty.

2. Real-time performance: Our goal is that all computations are performed in real-time
on commodity hardware. The main motivation is that lower required processing re-
sources will, at least to some extent, lead to lower costs when implementing the algo-
rithms on an automotive ECU. Another reason is that components which consume
a lot of power are not realistic for vehicles. In our case, we use an ordinary mobile
CPU without a GPU whose performance ranges between 18 and 41 GFLOPS1. As
a comparison, the NVIDIA® GeForce® 8800 GTX GPU has a theoretical maximum
(ignoring the memory bandwidth limitation that occurs in most practical implemen-
tations) of around 518 GFLOPS2 and consumes much more power.

3. Dense reconstruction without models: The developed methods must produce dense
3D data of the environment to maximize the obstacle detection rate and the mea-
surement accuracy. By not relying on monocular classification-based object detec-
tion cues like the trained classifiers of Viola and Jones [148], we avoid training and
preserve genericity with respect to detectable objects.

4. Robustness of obstacle detection: We consider the detection of obstacles more im-
portant than the detection of free space. Having autonomous vehicle movements in
mind, the detection of a false free space might have much worse consequences (for

1GFLOPS: Number of floating point operations per second times one billion; GFLOPS of some of the used
CPUs (Source: Intel® Website): Core™2 Extreme Q9300 (quad core, 2.53GHz, 12MB L2, 1066MHz Bus):
40.48, Core™2 Duo E8200 (dual core, 2.66GHz, 6MB L2, 1333MHz Bus): 21.28, Core™2 Duo T7600 (dual
core, 2.33GHz, 4MB L2, 667MHz Bus): 18.64

2Computed by multiplying 1.35GHz × 128 cores × 3 FLOPS (because some arithmetic operations can run in
parallel)

3



1. Introduction

example, a collision) than the false detection of an obstacle (for example, making the
driver search longer for parking space).

5. Robustness with respect to adverse vision conditions: The determination of cor-
respondences is complicated by several impacts that happen during the process of
optical projection, ranging from weather influences to optical aberration within the
lens, and camera internal control of the imager:

a) Difficult lighting situations: Insufficient or artificial lighting is very challeng-
ing for computer vision approaches, but is common for our application. For
example, incident sunlight leads to glare light effects and, for cameras that per-
form active exposure control, frequent exposure changes. Such glaring leads to
suboptimal exposure of the imager and blooming. Furthermore, light which is
scattered within the lens results in reduced contrast and lens flare patterns such
as “starbursts” and circles. Our goal is to develop methods that work as robust
as possible in these situations.

b) Dirty lenses: In practice, the obstruction of the optical path can have a huge im-
pact on image quality resulting in smoothing, reduced contrast and even “blind
spots”.

c) Active camera control: The cameras we use operate with active control of expo-
sure and white value to ensure an optimal image quality for functionalities that
display camera images to the driver and to generally ensure optimal exposure
in any situation. However, this may have negative effects on the performance
of machine vision, especially when relating images of different time instances.

6. Robustness with respect to extrinsic calibration: Challenging are ground uneven-
nesses and inaccuracies in estimating the vehicle position using odometry. In real
world situations the ground is not perfectly flat and an accurate orientation (e.g. roll
angle) of the vehicle is not available. Moreover, sensors on the vehicle that are used
for position estimation are inaccurate (for example, odometry sensors make assump-
tions about the sizes of the wheels and their performance is even temperature de-
pendent). Therefore, the developed methods must account for uneven ground and
inaccurate camera positions provided by the vehicle, i.e. inaccurate epipolar geome-
try.

In short, we are in favour of dense real-time reconstruction methods that are able to operate
with low-cost cameras and we put a very strong emphasis on robustness. These goals will
be addressed throughout this work and will be reviewed in the end.

1.3. Contributions

In the course of this work, several algorithms for binocular and multi-view stereo as well
as new driver assistance systems have been developed. Here is a short summary of the
contributions that resulted from our continuous research on computer vision and camera-
based driver assistance.
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Efficient Reconstruction. First, we introduce a novel algorithm for binocular disparity
computation which does not rely on an a priori choice of the maximum disparity [138].
This is mainly realized by iteratively performing minimization and propagation steps at
every pixel. The proposed matching principle is more accurate and at the same time faster
than a brute-force search and helps to achieve our real-time goal in the vehicle. It is partic-
ularly well suited for an application to our motion-stereo sequences, because usually there
is a huge variation of the maximum disparity over time.

Second, we generalize our disparity computation algorithm so that inaccurately rectified
image pairs can be processed efficiently and robustly [141]. This is highly relevant to long-
term installations of stereo rigs in vehicles and to the application of stereo methods to
images from moving monocular cameras. In these cases, pairs of images must usually
be rectified very well to allow the application of dense stereo methods. The main idea is
that additional scanlines are evaluated for possible correspondences, so that in this sense
epipolar deviations are considered. In traditional matchers the required processing time
increases linearly with the maximum epipolar deviation. Our experiments show that our
proposal is much more robust than current art and that it is very efficient at the same time.
For example, at some datasets our method is faster than traditional correlation without
epipolar deviations. Moreover, we address radiometric variations of the image pairs using
robust matching cost functions. The experiments demonstrate that our stereo proposal
performs very well with difficult real world images. These generalizations particularly
improve quality of the disparity maps in challenging motion-stereo scenarios.

It can also be shown that even very large displacements can be handled and that robust
matching cost functions can be used in the disparity computation algorithm [140]. We
show this with difficult real world image sequences in adverse vision conditions. In these
cases, our correspondence algorithm performs very well, even when compared to recent
methods like TV-L1, and achieves a 90 times speed up over traditional block matching.

Accurate Reconstruction. We introduce an innovative stereo method based on random
walks for robust and accurate stereo vision. The central idea is to use simulations of
random walks as matching primitives to achieve sharp object boundaries. We make the
matching process systematically robust to challenging problems like discontinuities, occlu-
sions and slanted surfaces. This is mainly achieved by using random walks as matching
primitives because they, in some sense, perform a localized soft segmentation. Further,
we introduce a few a priori surface orientations for cost aggregation in order to handle
slanted surfaces and by using left-right random walk simulations we increase robustness
in occluded regions. We explore the space of hypotheses contributed by random walks
and build a voting space that serves to identify the most probable disparities and occluded
pixels. Finally, we perform a propagation of confident disparities into inconsistent regions
and use global optimization on a probability distribution over disparities to handle ambi-
guities. Extensive evaluations and top rankings at Middlebury show the versatility of our
method on challenging images and demonstrate that these measures lead to very reliable
and very accurate disparity maps.

Efficient and Accurate Reconstruction. We present a novel real-time multi-view recon-
struction method that probabilistically fuses disparity maps [143]. We use a given set of
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disparity maps computed between pairs of input images and project them to a reference
view pair. We estimate the reference disparity map efficiently using a probability density
function of disparities and employ projection uncertainties. Using a variety of challeng-
ing data sets we show that our proposal is able to recover very accurate disparity maps.
Notably, our method excels in areas near discontinuities and performs much better than
competing state of the art approaches. Further, if the epipolar geometry is constrained to
the motion-stereo use case, real-time operation is possible. In practice, our fusion method
is very important and addresses many of the aforementioned challenges. Namely, it works
in real-time, it significantly increases the robustness in difficult lighting conditions and it
avoids many false matches.

Applications. Throughout this thesis we developed an innovative, interactive parking
assistance system in a real vehicle that uses dense depth data computed in real-time using
our efficient stereo and fusion methods. The flexibility of our motion-stereo framework is
showcased with different customer-oriented applications [153, 142]. This includes an au-
tomatic parking slot detection that achieves a very high accuracy, reliable object detection
rates, high availability and robustness to environmental influences. Moreover, we imple-
mented a collision warning application that automatically detects objects that are located
in the pivoting ranges of the doors, such that occupants are warned before opening the
doors. We also present a novel image-based rendering technique3, called Augmented Park-
ing that visualizes the environment around the host vehicle from a bird’s eye view. The
detected parking slots, the host vehicle and surrounding obstacles are displayed over an
image of the ground plane. We provide a highly elaborate evaluation using a huge amount
of very challenging video sequences that comprises over 700 parking slots and different
environmental conditions. We compare to current state of the art parking applications and
provide many results of the customer functionalities.

1.4. Publications

In the course of this thesis, the following articles have been published:

Christian Unger, Selim Benhimane, Eric Wahl, and Nassir Navab. Efficient disparity
computation without maximum disparity for real-time stereo vision. In British Machine
Vision Conference (BMVC), London, September 2009.

Eric Wahl, Christian Unger, Armin Zeller, and Dirk Rossberg. 3D-Environment Modeling
as an Enabler for Autonomous Vehicles. ATZ Automobiltechnische Zeitschrift, Ausgabe
02/2010.

Christian Unger, Eric Wahl, and Slobodan Ilic. Efficient stereo and optical flow with ro-
bust similarity measures. In Rudolf Mester and Michael Felsberg, editors, Pattern Recog-
nition (DAGM), volume 6835 of Lecture Notes in Computer Science, pages 246–255. Springer
Berlin Heidelberg, 2011.

3Image-Based Rendering (IBR): a principle to generate virtual views of a scene, for example [139].
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Christian Unger, Eric Wahl, and Slobodan Ilic. Efficient stereo matching for moving
cameras and decalibrated rigs. In Intelligent Vehicles Symposium, pages 417–422, 2011.

Christian Unger, Eric Wahl, and Slobodan Ilic. Parking assistance using dense motion-
stereo. Machine Vision and Applications, pages 1–21, 2011.

Christian Unger, Eric Wahl, Peter Sturm, and Slobodan Ilic. Stereo fusion from multiple
viewpoints. In Pattern Recognition (DAGM), volume 7476 of Lecture Notes in Computer
Science, pages 468–477. Springer Berlin Heidelberg, 2012.

1.5. Outline

CHAPTER 2 gives a quick overview over the methodological background of this thesis,
namely the projective geometry of one, two and more views. CHAPTER 3 reviews the cur-
rent state of the art in binocular stereo, multi-view reconstruction and automotive driver
assistance. CHAPTER 4 introduces efficient stereo matching, being one important building
block of our application, and is critically analyzed with other efficient matching methods.
In CHAPTER 5 we present our novel approach for accurate stereo vision using random
walks, which is able to achieve top rankings at the famous Middlebury benchmark. In
CHAPTER 6 we develop our novel probabilistic stereo fusion approach, which is highly ef-
ficient and in many comparisons more accurate than competing techniques. In CHAPTER 7
we describe our customer oriented applications in detail and present an exhaustive exper-
imental validation using a vehicle equipped with cameras. Finally this thesis is concluded
by CHAPTER 8. Moreover, a short overview on the symbols used in this thesis is given in
appendix A.
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2. Background

Das Bild ist ein Modell der Wirklichkeit [. . . ] Die Form der Abbildung ist die Möglich-
keit, dass sich die Dinge so zu einander verhalten, wie die Elemente des Bildes [. . . ]
Nach dieser Auffassung gehört also zum Bilde auch noch die abbildende Beziehung,
die es zum Bild macht [. . . ] Die abbildende Beziehung besteht aus den Zuordnungen
der Elemente des Bildes und der Sachen. LUDWIG WITTGENSTEIN [160]

This chapter gives an overview on the theoretical background for monocular, binocular
and multiple view vision systems. Basically, in our application the scene is observed from
multiple cameras. We therefore introduce single view geometry consisting of images, pro-
jective geometry using a pinhole camera model and radial lens distortion in section 2.1.
Based on these terms, we derive an approximation of the theoretical error in monocular
object detection systems. In section 2.2 we present basics on two view geometry, including
epipolar geometry, rectification and the definition of disparity. We also perform an error
analysis for binocular object detection systems. Here, we give only a very brief insight of
well known concepts and refer to [56] for a detailed presentation.

2.1. Single View Geometry

The main goal of this section is to roughly outline the process of image formation, namely
the projection of a 3D scene onto a 2D image plane.

2.1.1. Images

In our work, an image I is a function that maps a spatial two dimensional location to a
grayscale or color value:

I : Ω2 −→ Rd (2.1)

The value d is, for example, 3 for RGB color images. In practice, when using digital cam-
eras, color values and spatial locations are discrete values, for example Ω ⊂ N0. Conse-
quently, given a pixel location x, the color value is I(x).

2.1.2. Camera Model

We use central projection cameras, following the basic pinhole model as shown in Fig. 2.1.
When using homogenous coordinates, the relationship between 3D locations X and 2D
images x can simply be written as a matrix multiplication:

x = PX (2.2)
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x

X (spatial point)

C (camera)

image plane

ray of projection

Figure 2.1. The pinhole camera model: the camera with optical center C projects the spatial point
X on the image plane at position x.

The projection matrix P is constructed using intrinsic (matrix K) and extrinsic parameters
(rotation matrix R and the optical camera center represented by the inhomogeneous vector
C):

P = KR
(
I | −C

)
(2.3)

For finite projective cameras, K is considered of the form

K =

αx s x0
αy y0

1

 (2.4)

where αx and αy is the focal length in pixels, s is a skew parameter (which is usually zero
for most normal cameras) and (x0, y0) is the principal point in pixel coordinates. For the
focal length αx (and αy accordingly), we have the following relationship:

αx = f · 1

sx
(2.5)

where sx is the metric pixel size (e.g. 6µm) and f is the metric focal length.
In practice, cameras are built by combining an imager with a lens. In these cases it is

useful to compute the focal length from the imager resolution and the field of view of the
lens:

αx =
Rx

2 tan
(
1
2Fx

) (2.6)

where Rx is the horizontal resolution and Fx is the horizontal field of view.

2.1.3. Radial Lens Distortion

Especially lenses with a wide field of view have a form of optical aberration as result
where straight lines in a scene do not remain straight in the projected image (see Fig. 2.2
for example images). For example, fisheye lenses utilize such distortions to project an
infinite scene plane onto a finite region of the image plane. For many computer vision
algorithms it is important to correct these effects. One way of doing this is by modeling it
mathematically and by computing a compensating inverse transformation [30, 23, 76, 176].
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2.1. Single View Geometry

(a) Distorted image (b) Undistorted image

Figure 2.2. Example of Lens Distortion

In the Brown-Conrady distortion model [30, 23], radial and tangential (decentering) dis-
tortion is modeled using a polynomial:

xu =xd + (xd − x0) ·
n∑
i=1

κir
2i + τ1

(
r2 + 2(xd − x0)2

)
+ 2τ2(xd − x0)(yd − y0) (2.7)

yu = yd + (yd − y0) ·
n∑
i=1

κir
2i + τ2

(
r2 + 2(yd − y0)2

)
+ 2τ1(xd − x0)(yd − y0) (2.8)

r =
√

(xd − x0)2 + (yd − y0)2 (2.9)

where (xu, yu) is the undistorted point, (xd, yd) is the distorted pixel location, (x0, y0) is the
principal point (i.e. the center of distortion), (κi)1≤i≤n are the radial distortion coefficients
and τ1, τ2 are the tangential distortion coefficients. In practice, n is often set to 2, since
many lenses can be well approximated by a quadratic barrel distortion.

2.1.4. Homographies

A homography is an invertible projective 2D transformation and can be represented using
a matrix in homogenous space: x′ = Hx. In general, a projective 2D transformation has 8
degrees of freedom and may be used to transform the image plane. For example, a camera
may be rotated virtually by H = KR′−1R−1K−1, because HP = KR′ (I |−C). In essence,
this fact is used later for rectification.

2.1.5. Monocular Range Error Analysis

In automotive development, often the question about bounds on errors is raised. In the
following, we analyze the error of a monocular vision system similar to [126, 32] that esti-
mates distances to objects using the following assumptions:

• Objects are located on the ground plane (e.g. vehicles or pedestrians) and are detected
based on the appearance (e.g. by shape).
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2. Background

• The distance is estimated by assuming a planar ground plane where the slope can be
estimated from lane markings [87, 126].

Based on the previous pinhole camera model (assuming that R = I and C = (0,−H, 0)T ),
the y-coordinate of a point X = (X, 0, Z, 1)T on the road at distanceZ in front of the vehicle
is given by y = y0 +

αyH
Z , where H is the distance of the optical center to the ground plane.

This implies that from a correctly estimated contact point (between the vehicle and the
road), the distance can be computed (without loss of generality we set y0 = 0):

Z =
fH

y
(2.10)

In other words, the distance to the object is estimated from the distance of the contact point
to the horizon line. In practice, both estimations (object detection and computation of the
horizon line) have associated a specific error ∆y = ∆s + ∆h (∆s for the estimation of the
contact point based on the segmentation of the object and ∆h for the estimation of the
horizon line). The absolute error of the distance estimation ∆Z is then given by:

∆Z = Z̃ − Z =
αyH

y ±∆y
− Z =

αyH
αyH
Z ±∆y

− Z =
∓∆y · Z2

αyH ±∆y · Z
(2.11)

=⇒ ∆Z =
(∆s+ ∆h) · Z2

αyH − (∆s+ ∆h) · Z
(2.12)

2.2. Two View Geometry

A result of the projection is the loss of the third dimension. Binocular stereo techniques aim
at recovering the 3D structure from correspondences between two images. In this section
we closely look at the geometric properties of correspondences between two views, namely
the epipolar geometry.

2.2.1. Epipolar Geometry

Correspondences across two views are constrained: given a point x in the first view, the
corresponding point x′ in the second view lies on a line which is called the epipolar line
l′. The epipolar line can be constructed geometrically by intersecting the epipolar plane (a
plane that contains both camera centers and x) with the image plane of the second camera.
In practice, this is a very important result, because the search for correspondences need
not cover the whole two dimensional image plane but can be restricted to the line l′.

Please note that lines and points are dual entities in projective space, both representing a
one-dimensional set of points: all points x that lie on a line l can be determined by solving
xT l = 0. Further, the algebraic cross product is used to compute a line joining two points
or to determine the point of intersection of two lines: l = x1 × x2 and x = l1 × l2.

In general, all possible epipolar lines l′ intersect in exactly one point, the epipole, which
is the image of the other optical center. Geometrically, an epipole may be constructed by
intersecting the baseline with the image plane (the baseline is the line that joins the two
camera centers and is exactly the line which is contained by all epipolar planes), because
all back-projected rays meet in the optical center. Please see Fig. 2.3 for an illustration on
epipolar geometry.
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X

C C'
epipole baseline

epipolar line

epipolar plane

Figure 2.3. The epipolar geometry: the connecting line between two camera centers is called the
baseline. This line is incident with the epipoles, which are the images of the other cam-
era centers. Given a scene point X the epipolar plane is spanned together with the two
camera centers C and C′. The epipolar line in the right camera is the projection of the
line joining X and C. Hence, it can be computed by intersecting the image plane of the
right camera with the epipolar plane.

2.2.2. The Fundamental Matrix

These geometric properties can be captured by the so called fundamental matrix F. It maps
from a point in the first image to the corresponding epipolar line in the second image:

F(x) : x 7→ l′ (2.13)

One intuitive way to derive a closed form of the fundamental matrix was developed by Xu
and Zhang [163]: the back-projected ray X(λ) in 3-space of point x may be obtained using
the pseudo-inverse P+ of the projection matrix P:

X(λ) = P+x + λC (2.14)

where C = X(∞) is the optical center of P. The epipolar line l′ of x is then computed by
joining the epipole e′ = P′C with an arbitrary point on that line:

l′ =
(
P′C

)
×
(
P′X(λ)

)
(2.15)

Here, it is interesting that (P′C)× (P′C) = 0, and directly leads to

=
[
e′
]
×
(
P′P+

)
x (2.16)

In this representation we use the so called skew symmetric matrix [x]× of a vector x =
(x1, x2, x3)

T and is defined as follows:

[x]× =

 0 −x3 x2
x3 0 −x1
−x2 x1 0

 (2.17)

The fundamental matrix can therefore be found as:

F =
[
e′
]
×P

′P+ (2.18)
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The epipolar constraint. The fact that the epipolar line and the corresponding point are
incident is known as the epipolar constraint and can be formulated algebraically:

x′TFx = 0 (2.19)

Retrieval of Camera Matrices. With (2.18) the fundamental matrix may be obtained from
known cameras. But also the opposite direction (i.e. the computation of camera matrices)
is useful, for example, when the motion of the camera is unknown and the fundamental
matrix has been computed from image correspondences by constructing a linear system
of equations using (2.19). In this case, we may choose without loss of generality the first
camera as P = (I |0). For the second camera P′, we need to first determine the epipole
e′ as the vector that spans the left null-space of F (this follows from 0 = (e′TF)x for all x
with e′ 6= 0). From that, there is no simple geometric intuition for the construction of P′.
However, with x = PX and x′ = P′X, it can be shown that P′ should be constructed in a
way such that XTP′TFPX = 0 holds for all X. From this observation, it is simple to verify
that the suggestion of [94] is a good choice:

P =
(
I |0

)
P′ =

(
[e′]×F | e′

)
(2.20)

2.2.3. Rectification

In general, an epipolar line may have any slope in image space which is hindering for ef-
ficient stereo implementations. From a practical point of view, the epipolar line must be
computed for every pixel location of the first image when searching for correspondences.
This involves a vector-matrix multiplication and a non-trivial iteration through discrete
pixel locations of the second image along the epipolar line. From the motivation that a
canonical epipolar geometry is most preferable, the idea is to transform both images in a
way such that epipolar lines become horizontal and are matched up between views (this
means that corresponding points have the same y-coordinate). From this follows that dis-
parities measure the displacement in x-direction. This is the case when the image planes
of both cameras are coplanar and when the baseline is parallel to the x-axes.

The basic idea behind rectification is simply to map the epipole to infinity using a ho-
mography [56]. Since this constrains only two degrees of freedom, the homographies are
usually constructed in a way such that the image distortion is as small as possible. The
standard approach is to create a homography H′ for the first image which maps the epipole
to the point at infinity (1, 0, 0)T . Then, for the second image, a matched transformation H
is computed based on H′ so that epipolar lines are matched up. Further, H may be chosen
to minimize the horizontal displacements between to two images. Another possibility is
to explicitly use points on the plane at infinity, by ensuring that these points have a zero
disparity.

After rectification the two cameras have the same orientation, same intrinsic parameters
and their optical axes are orthogonal to the baseline:

P = KR
(
I | −C

)
P′ = KR

(
I | −C′

)
(2.21)

and

R
(
C′ −C

)
× (1, 0, 0)T = 0 (2.22)
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2.2. Two View Geometry

2.2.4. Disparity

The rectified camera setup consists of a left and a right camera, and the coordinates of
corresponding image points xL ↔ xR differ only in the x-coordinate. The difference of the
two values is called the disparity and is stored per pixel in the disparity map: D(xL, yL) =
xL − xR.

B

xL xR

X

Z

fB

CL CR

Figure 2.4. The relationship between depth and disparity: a 3D point X with depth Z is observed
from a left and a right camera with baseline B, focal length f and optical centers CL

and CR. The projections of X are given by xL and xR for the left and right camera. The
height and basis of the triangle 4(XCL CR) are directly given by Z and B, they have
to be computed for4(XxL xR) as Z − f and (B + xR)− xL accordingly. The intercept
theorem together with d = xL − xR leads to Eq. (2.23).

In general, the disparity is inversely related to the depth of the point. This can be intu-
itively derived using Fig. 2.4: a 3D point X with depth Z is observed from a left and a right
camera with baseline B, focal length f and optical centers CL and CR. The projections of
X are given by xL and xR for the left and right camera. It can be immediately noticed
that the triangles 4Z = 4(XCLCR) and 4d = 4(XxL xR) are congruent. From the fact
that the baseline and the image planes are parallel, the intercept theorem may be applied:
while the height and basis of4Z are directly given by Z and B, they have to be computed
for4d as Z − f and (B + xR)− xL accordingly. So, with d = xL − xR we get:

B

Z
=
B − d
Z − f

=⇒ d =
fB

Z
(2.23)

Obviously, close scene points have a larger disparity than far ones and points on the plane
at infinity have a disparity of zero.

2.2.5. Triangulation

The approach presented in the previous section may also be used to compute 3D locations
from two view correspondences. Simple ways for the reconstruction are linear methods,
where basically the algebraic property x × (PX) = 0 is exploited to solve for the compo-
nents of X using the singular value decomposition (SVD). For uncalibrated cameras and
to rather minimize the geometric image error, minimization methods should be used [56].
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In the calibrated rectified binocular case however, the reconstruction can be obtained
more efficiently from the disparity values. We first determine calibrated depth values from
disparities using:

Z =
||KR(C′ −C)||2

d
(2.24)

Then, the inhomogeneous 3D location X̃ is given by:

X̃ = ZRTK−1

xy
1

+ C (2.25)

2.2.6. Binocular Range Error Analysis

We also perform an error analysis for the binocular position estimation. For the stereo rig
we assume R = I, C = (0,−H, 0)T and C′ = (B,−H, 0)T (which amounts to a baseline
of B). In the binocular case, the distance is computed from disparity values. In practice,
the disparity estimation has associated a specific error ∆d, which depends on the stereo
algorithm and the sub-pixel technology. So we let for the range error:

∆Z = Z̃ − Z =
fB

d±∆d
− Z =

fB
fB
Z ±∆d

− Z =
∓∆dZ2

fB ±∆dZ
(2.26)

=⇒ ∆Z =
∆dZ2

fB −∆dZ
(2.27)

2.2.7. Binocular Height Error Analysis

For specific applications, that base on a three dimensional reconstruction of the scene,
the error of the height estimation is important. For example, one might be interested in
reconstructing the ground plane in front of the vehicle using a forward looking stereo rig
to dynamically adjust the height of the suspension, or to regulate traction control. For a
moving vehicle, the range-error translates into a temporal uncertainty, but the error in Y -
direction is critical for the applications. Using the assumptions of the previous section we
get:

y =
Y

Z
fy (2.28)

So we let:

∆Y = Ỹ − Y =
yZ̃

fy
− yZ

fy
=

y

fy
∆Z =

Y

Z
· fy
fy
· Z2∆d

fxB −∆dZ
(2.29)

=⇒ ∆Y =
HZ∆d

fxB −∆dZ
≈ HZ∆d

fxB
(2.30)

Here, it is interesting to note that ∆Y ∝ H · Z (lower mounting position is beneficial and
only linearly depending on object distance).
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2.2.8. Theoretical Error Discussion

The comparison of monocular and binocular range errors (∆ZM and ∆ZB accordingly) is
quite interesting due to the more or less surprising insight that both errors are in practice
of the same magnitude. For an easier comparison, we repeat the results from (2.12) and
(2.27):

∆ZM =
(∆s+ ∆h) · Z2

fyH − (∆s+ ∆h) · Z
∆ZB =

∆dZ2

fxB −∆dZ
(2.31)

These equations already suggest a very similar structure and we will now further analyze
these two terms based on practical considerations. First of all, we can assume that fx = fy.
One major difference lies in the mounting height H and the baseline B: while both values
should be as large as possible, the value H is usually around 1.20m for passenger cars and
feasible values for B lie between 10− 20 cm (so in essence H ≈ 6B).

The errors from image processing, namely ∆s (for the contact point to the ground, which
depends on the object segmentation), ∆h (for the horizon line, which depends on pitch
angle and the flatness of the road geometry, and may be determined from lane markings)
and ∆d (for the disparity estimation, which depends on the stereo algorithm, sub-pixel
technology and also on image content), are more difficult to evaluate and are completely
estimated from practical experience. The estimation of the contact point to the ground is
often relatively imprecise (for example, weak contrast between the road and the tires of
the object, and a large overhang at the back of the object) and we assume ∆s = 5 px. Also
the estimation of the road geometry is often inaccurate, since lane markings may be hardly
visible at far distances, or may be occluded by other traffic participants, or may even be
not present. Unevennesses of the ground and sudden changes of the pitch angle intro-
duce further perturbances and we assume ∆h = 5 px. The estimation of ∆d is also not
trivial, because the stereo matching approach, the sub-pixel technology, the dissimilarity
function and also, to some extent, the image content have an impact on disparity estima-
tion. However, it is often assumed that the error of disparity estimation ranges between
1
16px < ∆d < 1 px, so we use ∆d = 1

4px.
Based on these quantities we can further simplify (2.31), because in practice fH >>

(∆s+ ∆h)Z and fB >> ∆dZ:

∆ZM ≈
∆s+ ∆h

fyH
Z2 ∆ZB ≈

∆d

fxB
Z2 (2.32)

The most interesting observation here is that the error grows for both systems quadrati-
cally with the object distance (i.e. ∆Z ∝ Z2). Further, all the assumptions made lead to the
theoretical approximation that the monocular error is about seven times larger than the
binocular – however, a good monocular system may still be better than a worse binocular.
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Stereo Vision derives from Greek stereos (στερεός; solid, firm) and from Latin vı̄siō
(seeing, sight, view) which is the noun of action form from vı̄sus (the power of sight)
which originates from Latin videō (I see, I perceive, I understand). [2]

This chapter reviews the current state of the art in binocular stereo and multi-view recon-
struction.

3.1. Matching Cost Functions

To compare two images and to establish pixelwise correspondences, cost functions are
used to express the similarity between individual pixels or groups of pixels [5]. Probably
the simplest measures are the absolute or squared intensity difference, which can be imple-
mented efficiently on many platforms. However, it is important that the intensities of the
pixels of the two images follow the same physical properties, and even small radiometric
distortions (e.g. changes in illumination or exposure time) can lead to very different val-
ues. It is well known that this behavior can be limited by convolving the input images
with the Sobel operator or by applying a mean filter to the input images [63]. Another
filter is the Laplacian of Gaussian (LoG) which is known to also improve robustness to
noise [61]. However, the mean and LoG filters operate with small window-based filter
masks and therefore increased errors in regions near discontinuities are likely [63]. The
normalized cross correlation and its variations are by nature more robust, but are also more
time consuming to compute because for every matching template the mean and variance
of image intensities must be computed. Some less demanding approximations exist, but
come also with reduced robustness. The Rank Transform and the Census Transform of Zabih
and Woodfill [169] are local non-parametric measures, which means that they only rely on
the relative positions of the pixel intensities rather than their intensity values. Therefore,
they are robust to many radiometric distortions and even to small amounts of image noise.
Very universal is mutual information [1, 37, 59, 77] and is known to be very robust [63] even
at the presence of complex and non-linear image transformations. The idea is basically
to use statistics of corresponding image intensities and to use their mutual information
to measure pixel-wise similarity. The integration is not always straight forward because
the entropy of the input image must be known beforehand. Hirschmüller [59] proposed
therefore an iterative technique which starts with a random initialization on down-scaled
images.

Many stereo methods compute only integer valued disparities. To estimate sub-pixel
values usually a function is fitted to the dissimilarity values around the minimum. It must
be noted that the combination of the cost function and fitting function should be chosen
carefully, due to the so-called pixel-locking effect, where interpolated values are often biased
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towards integers. Such estimation errors have been investigated thoroughly by Shimizu
and Okutomi [123].

3.2. Binocular Stereo Matching

In the following, we mainly categorize stereo methods using their computation principle.

Local Methods. In traditional local correlation-based methods, like in the early work of
Faugeras et al. [38], a brute force search is performed. In the spirit of a winner-takes-all
decision, at every pixel the disparity which minimizes a specific dissimilarity function is
used. The use of single pixels is in practice very sensitive to image noise and is highly
ambiguous in regions with less or without texture. For this reason, usually a support re-
gion (i.e. a window) around the pixel of interest is utilized and matching is performed on
multiple resolutions so that in uncertain regions matches from lower resolutions can be
used.

These window-based methods can be implemented very efficiently [35, 38, 44, 61, 104,
144, 161]. This is mostly due to their simple and regular structure, which allows stream-
lined implementations on various processors. Also several techniques have been intro-
duced to improve the quality of these methods [35, 61, 66, 73, 118, 146, 168] but robust ones
are time consuming [66, 168]. The basic idea behind these improvements is that basically
the size or the shape of the window is adapted to local image content (for example, adap-
tive windows of Kanade and Okutomi [73], Hirschmüller’s shiftable or multiple windows
[61], or Veksler’s variable windows [146]), or that for every pixel of the window a sup-
port weight is computed from color information (for example, Yoon and Kweon’s adaptive
support weights [168] or the geodesic support weights of Hosni et al. [66]). Very famous
is also the left-right consistency check, where two disparity maps are computed relative to
each image: one using left to right matching and another one using right to left matching.
Values which are inconsistent between the two disparity maps introduce holes which may
be filled using interpolation or median filtering [61, 66].

To this end, window-based methods may achieve a very good quality, but always have
an inherent conceptual problem in common: the use of a support region is only legitimate
at fronto-parallel surfaces and must not cover depth discontinuities. In practice, these
assumptions are often violated and result in blurred object boundaries or wrong depths
on slanted or curved surfaces. One way to directly address this flaw is by using pixels as
matching primitives which is done in global methods.

Global Methods. In global methods stereo matching is formulated as an energy mini-
mization problem, where a function is computed (i.e. the disparity map) that minimizes
a global energy functional, which usually uses pixel-wise dissimilarities. These combina-
torial problems may then be solved efficiently using Graph Cuts [21, 77, 84] or Loopy Belief
Propagation [40, 132, 159, 165]. To resolve ambiguity and spurious matches, regularization
is modeled in the energy functional:

E(D) = ED(D) + λES(D) (3.1)
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where the unary data-term ED measures how well the disparity map D matches with the
input images and ES is a smoothness term that penalizes disparity variations between
pairs of neighboring pixels. In general, such optimization problems are NP-hard in com-
putational complexity. Both methods only approximate the global optimum, either by using
the max-flow min-cut theorem (Graph Cuts), or by message passing on a Markov random
field (Belief Propagation). Graph cuts is very powerful, but is only applicable to problems
that can be reduced to the problem of finding the minimum cut in a graph [86].

Recently, the efficient fusion-move approach [90] has become popular and has only loga-
rithmic complexity in the number of labels. It is able to handle continuous labelings within
a discrete optimization framework. The basic idea is to fuse a new labeling with the current
one using binary labels. However, for that the problem to be solved must be formulated
as a binary pairwise fusion-energy and raises also the question of the generation of new
labelings.

Belief propagation iteratively passes messages within a graph and was originally for-
mulated as sum-product algorithm [88] with min-sum and max-product algorithms as
variations [135] and it is known that for trees the solution is exact. While it is still not
well understood under which conditions loopy belief propagation will converge on arbi-
trary graphs, it usually converges to a solution which is close to the optimum within a few
iterations [101].

These global optimization approaches perform very well, also in textureless regions,
but occlusions may result in wrong assignments. To improve in these situations, to enable
high quality object boundaries and to capture small image details, image segmentation
has been incorporated with excellent results [14, 16, 17, 79, 134, 166]. However, in practice,
it is difficult to identify the optimal segmentation parameter set for a broad spectrum of
image data. For stereo problems, graph cuts is in practice rather slow (several minutes)
and belief propagation is more efficient (10-20 seconds for simple functionals on recent
CPUs) but still not real-time on CPUs.

Cooperative Algorithms. Inspired by biology, these approaches [67, 97, 99, 118, 157, 177]
formalize assumptions about continuity and uniqueness of the disparity map and itera-
tively diffuse disparity values through a locally connected graph and thus, explicitly han-
dle occluded pixels. For that, they operate directly in the space of correspondences, the
matching score volume1: each element (xL, xR, y) represents a pixel with a certain dispar-
ity. The matching score volume is initialized using a local similarity measure (for example,
with local correlation). The cooperation between “support and inhibition” is implemented
using an update routine which diffuses support among neighboring values for regular-
ization by incorporating values along similar lines of sight: if a weight at (xL, xR, y) is
large, the weights at (·, xR, y) and (xL, ·, y) are “inhibited” to enforce uniqueness, and
for continuity, weights at any other, non-inhibited points in the local neighborhood of
(xL, xR, y) are excited. While [177] use a fixed window for the excitation, object bound-
aries may be blurred. This may be improved by incorporating an initial color segmentation
[67, 157, 174].

Very good results are achievable in combination with segmentation, but due to the local
update rules, the final result highly depends on a good initialization. In terms of running

1Also called the disparity-space image (DSI) [119].
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time, it was reported to be twice as fast as graph cuts [119].

Non-Global Optimization Methods. To reduce the computational effort of the optimiza-
tion problem, in Dynamic Programming [10, 12, 18, 103, 128, 145, 155] and Scanline Opti-
mization [119, 98] only individual scanlines are processed. In dynamic programming, an
optimal path through a cost-matrix (relating the scanlines of both images) is found and in
scanline optimization only energy functionals of unary functions are minimized by han-
dling occlusions explicitly. However, inter-scanline consistency is difficult to enforce and
thus, often streaking effects can be observed. Further, most formulations of dynamic pro-
gramming require an ordering constraint to be fulfilled [12] and violations may result in
gross errors (which, for example, may be the case with thin foreground objects).

In some sense, Hirschmüller’s Semi-Global Matching [59, 60] is a generalization of dy-
namic programming: global minimization is approximated by processing dynamic pro-
gramming in multiple directions across the image. In practice, this approach keeps up
with global methods, performs very well on real imagery and is also relatively efficient. In
terms of running time, these methods require between 0.5 and 10 seconds on recent CPUs.

Layered Methods. Common to plane-sweeping methods is that the presence of specific
scene planes is assumed. Collins presented in [29] an approach where a single plane par-
titioned into cells is swept through the volume of space along a line perpendicular to the
plane. At each position of the plane along the sweeping path, the number of viewing rays
that intersect each cell are tallied, and any cell with sufficient numbers of intersections is
output as the likely location of a 3D scene point. The concept was then generalized to han-
dle multiple scene planes, reflections and even translucency [46, 92, 137]. These methods
were reported to be real-time on GPU hardware [46, 100], but the restriction to a priori
scene planes is a limitation in general.

Recent works follow the principle of segmentation which allows the derivation of scene
plane segments [14, 16, 134] and from that an estimation of depth and alpha matte in-
formation. The approaches are in principle different, but they have in common that they
iteratively optimize a specific energy functional.

Phase-based Methods. Also phase-based methods have received some attention [24, 42,
43, 95, 115]. The basic idea is that a wavelet transformation is applied to the input im-
ages and then the disparity information can be determined from phase differences. These
methods have a very high sub-pixel accuracy, but object separation is a weakness and the
wavelet transformation may be expensive to compute.

Propagation-based Methods. Recently, some propagation-based methods have been pro-
posed [26, 122, 156, 158]. The idea is to first identify so called ground control points, pixels
whose disparity has been identified with high confidence, and to interpolate then into
uncertain regions. This principle was first introduced in the context of dynamic program-
ming by Bobick and Intille [18]. Not all of these formulations produce dense disparity
maps, like the region-growing method of Čech and Šára [26], and may require an initial
color segmentation for disambiguation, like in the work of Wei and Quan [158].
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Segmentation-supported Approaches. Also referred to as region-based, technically, these
methods [7, 11, 14, 16, 17, 28, 79, 134, 157, 165, 166, 174, 173] do not stand on their own.
However, the idea to support matching by image segmentation has received such great
success, that it is worth to be stated explicitly. The main idea is that first the input im-
ages are segmented and then, correspondences are estimated between regions rather than
pixels. But the way how the segmentation is actually incorporated into the minimization
framework is very specific.

GPU Implementations. Most of the presented methods can be implemented efficiently
on dedicated hardware [25, 38, 52, 114, 155] and may even reach real-time performance.
However, in our work we restrict ourselves to standard mobile CPUs and will concentrate
on approaches that can be used for real-time applications with no additional dedicated
hardware.

3.3. Multi-View Stereo Reconstruction

In the following we cover different aspects of multi-view stereo (MVS) methods.

Photo-Consistency. Also in the multi-view case, visual correspondences must be some-
how measured to select depths which are consistent with the input views and this is often
called photo-consistency. In principle, the same metrics as for binocular matching might be
used, however it is much more difficult to control the camera behavior in the multi-view
case, and therefore, traditionally a strong emphasis lies on robustness. To some extent, this
usually comes at the price of reduced discriminability. In practice, the normalized cross
correlation is quite robust and is often employed [53], but other measures may be used
like the illumination-robust proposal of Hornung and Kobbel [65] or the work of Jin et
al. which handles non-Lambertian reflectance [69]. However, Bonfort and Sturm [19] also
presented a way to handle specular surfaces using geometric assumptions.

Scene Representation. There are several ways how different methods model the entire
scene. Some methods [39, 69, 110, 111] represent the scene continuously using the so-
called level sets, which is mainly a numerical technique for shape tracking. In 3D space,
the surface of the scene is determined as a 2-dimensional implicit curve which is defined
using a helper function. The set of all the positions at which the helper function is zero
is the desired scene surface. In practice, such partial differential problems can be tackled
numerically using the calculus of finite differences.

While level sets are more or less a continuous encoding, other works represent the sur-
faces of the scene using polygonal meshes [45, 57, 171]. In this case, a set of connected geo-
metric primitives, like triangles, is used to construct a mesh of the scene. From this point
of view it is a more discrete principle using locally linear patches. It is also quite practi-
cal, because the memory footprint is usually relatively low and such meshes are usually
handled natively by graphics cards.

Very popular are voxel grids, which divide the entire 3-space into small equi-sized cells
[19, 31, 58, 149]. Each cell may be described using different properties like occupancy,
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coloring or surface normal information and it is therefore a quite simple but also very
powerful data structure. On the other hand, the memory requirement is extraordinarily
huge for large outdoor applications.

Another branch of methods focuses on representing the scene using a set of depth maps
[22, 47, 74, 75, 85, 100, 133, 173, 178] and are sometimes called multi-depth-map methods.
Usually, for a set of input camera positions a set of depth maps is computed (or given).
The positive points about this representation are that no data conversion is required and
reasoning can be performed purely in the projective 2D domain.

Optimization Strategy. First to mention are local methods, for example [19, 29, 100, 102,
106], where depth values are obtained by purely localized computations either in the voxel
grid [19], or in image space [100], or by simply fitting surfaces to triangulated image fea-
tures [102]. Opposed to this are global approaches, for example [58, 82, 149, 173], which
formulate, similar to the binocular case, the reconstruction problem as one of minimizing
a global energy functional. In the discrete setting, a solution may be found using graph
cuts [21, 84] or belief propagation [132]. The energy function may be defined on a volu-
metric MRF [58] or in 2D image space [173]. Like in binocular stereo, a smoothness prior is
modeled as a pairwise energy potential in the image domain [162]. Alternatively a contin-
uous convex relaxation scheme may be used to minimize a spatially continuous functional
[82, 83]. In such works, the implicit surface of interest is represented by a characteristic
function in voxel space. Usually non-convex energy functionals are reformulated as con-
vex ones via relaxation, which allow for global optimization using gradient descent tech-
niques. In practice, such problems are efficiently solved interatively using Gauss-Seidel,
successive over-relaxation or multi-grid methods [82].

In many methods, an iterative scheme is employed. For example, in Zhang et al. [173]
belief propagation is performed individually at every input depth map and the results are
refined by repeating the optimization a few times for every depth map. Surface based
methods start from an initial estimation and evolve the surfaces by, either numerically
minimizing partial differential equations for level sets, or by adapting a polygonal mesh
using momentums on the facets. In other works, like in Yang et al. [167], a voxel grid is
updated iteratively by even allowing the creation and removal of voxels.

Occlusion Handling. Almost all multi-view stereo algorithms reason somehow about
the visibility of individual pixels in different views. A widely incorporated idea in surface-
based methods is to use an estimate of the scene structure in order to check for intersections
of the viewing rays with the different surfaces [121]. In other works, occlusions and depths
are maintained iteratively [74, 127], or during optimization [128]. Strecha et al. [128] even
combined depth and occlusion estimation in a MRF framework to simultaneously reason
about depth and visibility. Merrell et al. [100] handle occlusions directly, by suppressing
depth values whose inter-view relationships are inconsistent.

3.4. Intelligent Vehicle Systems

In the following, we give a brief overview on state of the art vehicle sensors, driver assis-
tance and in particular parking assistance systems.

24



3.4. Intelligent Vehicle Systems

Side View

Top View

Front

Camera

Rear

Camera

Ultrasound

Night

Vision

Figure 3.1. Currently available sensors on serial production vehicles include rear-, side- and front-
looking cameras (Side-View and Top-View), ultrasonic sensors, RADAR, and night vi-
sion systems.

3.4.1. Vision Sensor Technologies

In the following we would like to introduce sensor systems that are suited for automotive
applications. Please see Fig. 3.1 for an illustration of currently available sensors and their
installation positions on serial production vehicles.

Ultrasonic Sensors emit sound waves with a high, inaudible frequency (above 20 kHz)
and sense the impulse responses. Notably, the maximum range and measurement rate is
influenced by the velocities of sound and the host vehicle and is thus a strong physical
limitation. In practice, ultrasonic sensors have a very low angular resolution and weather
conditions may have negative impacts (e.g. ice or water before the sensor, strong rain and
wind).

RADAR is an abbreviation for Radio Detection and Ranging and is a technique to mea-
sure the distance and velocity of other traffic participants. Measurements are created by
sending out modulated pulse-coded radiowave signals and by sensing incoming reflec-
tions. The distance is computed by measuring the elapsed time and the relative velocity
from the phase difference (Doppler-effect). In practice, RADAR works well with many
types of materials, reaches ranges up to several hundreds of meters and is less impacted
by darkness or weather conditions (snow is known to affect the detection quality). How-
ever, the opening angle is limited and it is difficult to vertically and laterally associate
objects with measurements. The small angular resolution makes it therefore very difficult
to reason about the exact position and size of objects. In practice, to overcome these issues
static objects are usually filtered out.

LIDAR is an abbreviation for Light Detection and Ranging and is a technique similar to
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RADAR, where modulated laser beams are used instead of radiowaves. The reflected light
of emitted laser beams (using a rotating mirror) is detected and the elapsed time is used to
calculate distances. In practice, the reliable range of these sensors goes up to 50 meters due
to limitations on the light intensity reflected back from objects with dark surfaces. These
sensors provide a high accuracy, but vehicle integration is difficult due to the size and their
performance is affected by weather conditions (e.g. rain and fog). Further, the mechanical
design with a rotating unit is also a unfavorable property.

A Time-of-Flight camera is in some sense a special type of a LIDAR which does not re-
quire a rotating scanning unit. Instead, modulated light is emitted into the whole scene
and the PMD (photonic mixing device) sensor measures the running time of the light
waves for each pixel. Thus, 3D information is relatively rich. However, imager resolu-
tion is currently restricted (up to 200x200) and even low resolution devices are still quite
expensive. Further, their usage in sun-lit scenarios is limited.

Structured Light systems use a camera to sense light patterns which were emitted using
a projector. Based on the distance between the projector and the camera, depth may be
estimated using triangulation. If infrared light is used the projections are even invisible
for the human eye. Also in this case, the maximum range is limited by the maximally
useable light intensity. In practice, the performance of these systems is deteriorated by
sunlight, but in controlled environments a very high accuracy is achievable.

As already mentioned in chapter 2, Monocular Cameras do not actively measure dis-
tances. From a single image, distance information must be estimated using an object de-
tector together with assumptions about the ground plane or the object size. The detectable
object classes must be defined beforehand. In practice, such cameras are often integrated
behind the windshield within the wiped area to solve problems arising from dirt and
weather, but very adverse weather conditions still have an impact (e.g. heavy rain and
dense fog). Further, the error of distance measurements is very large if the assumptions
are violated. In this work, we use the principle of triangulation to determine depths from
corresponding points identified in images acquired over time.

Stereo Cameras estimate distances directly by triangulation from corresponding image
points and provide very rich depth data along with image intensities. In practice, the
vehicle integration is more difficult due to a larger camera package and weather conditions
also influence the performance negatively (e.g. rain and fog).

3.4.2. Categories of Driver Assistance Systems

Advanced driver assistance systems are electronic devices in automobiles to support the
driver during the driving task. There are mainly two classes of customer functions, namely
systems that focus either on comfort or on safety. In future, it is more likely that the gap
between comfort and safety gets smaller, due to a higher functional integration and in-
creased automation. These driver assistance systems are not directly related to this thesis,
however, a short overview and some pointers to image processing may be interesting to
some readers. A comprehensive overview can be found in [36].
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Comfort Functions

These applications are designed to inform and to relieve the driver, and to support the
sensation of comfort.

Adaptive Cruise Control (ACC) automatically adapts the velocity of the host vehicle
based on the velocity of and the distance to the preceding one. To accomplish this, long-
range RADAR or laser sensors are used, but also monocular and binocular camera-based
solutions are known [126].

Using High-Beam Automation (HBA) the switching between low and high beam is per-
formed automatically. Oncoming and preceding traffic is detected using a front camera. In
the newest generation of these systems, the range to be illuminated is actively computed to
enable a smooth transition between low and high beam, or to realize an intelligent combi-
nation of both, or to adapt the light distribution in a way such that other traffic participants
are not glared.

Traffic Sign Recognition (TSR) [48] detects and classifies traffic signs (e.g. speed limits)
using a front camera and shows the current state (e.g. current speed limit) to the driver.

Top-View or Surround View systems visualize a virtual bird’s eye view containing the
close environment around the host vehicle to give visual support during low speed or
parking maneuvers. For that, up to four wide-angle cameras are required: one on the rear,
two in the external mirrors and a front looking one.

Safety Functions

Safety functions are designed to avoid collisions or other dangerous situations, either pas-
sively (by information or warning) or actively (by braking or even steering).

Night Vision systems increase the vehicle driver’s perception in darkness. While near
infrared sensors (NIR) are relatively cheap, because standard imagers can be used, far
infrared sensors (FIR) are more expensive. However, these also allow the observation of
objects far beyond the reach of the vehicle’s headlights. In practice, these sensors are used
to detect pedestrians [96].

The Side-View applications are customer functions that use two side looking cameras
integrated into the front bumper of the vehicle. These camera images are visualized to the
driver and effectively support him in situations when the line of sight is obstructed, such
as at the exit of car parks (see Fig. 7.2 for an example).

Lane Departure Warning (LDW) and Lane Keeping Assistant (LKA) detect lane mark-
ings to issue a warning when the vehicle begins to move out of its lane (LDW) [87] or to
actively keep the vehicle within its lane (LKA). It is achieved either by putting a small
momentum on the steering mechanism or by braking individual wheels. In many cases
the detection of the markings is performed using a front camera, but other cameras on the
vehicle may be used. In some situations, the usage of a laser scanner is also possible.

Lane Change Assistant (LCA) and Blind Spot Detection (BSD) use either short range
RADAR sensors or cameras to detect other vehicles located to the driver’s side and rear.
When using RADAR fast approaching vehicles entering the blind spot can be detected.

For Collision Mitigation by Braking (CMbB), Forward Collision Warning (FCW) [32]
and Preventive Pedestrian Protection (pPP), RADAR sensors, LIDAR sensors, cameras,
or a combination of them is used to estimate the time-to-collision to vehicles, vulnerable
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road users (VRUs) [50, 113] or other dangers that lie ahead on the road. The presence of a
hazardous obstacle may then result in a warning, assisted braking, automatic breaking or
even steering.

Current products on the market for Driver Drowsiness Detection (DDD) learn driver
patterns by monitoring the steering wheel, foot pedals and other control elements. This
information, and possibly motions of the human [49] measured using an interior camera,
is used to detect when the driver gets drowsy to issue a warning.

3.4.3. Parking Assistance

There are several different ways to perceive spatial information about the lateral space
of the vehicle’s environment. In the following we review some works in the context of
parking assistance. Most popular are current commercial solutions based on ultrasonic
sensors [125], but these are only passive systems with the purpose to inform the driver
about distances to nearby objects. Recent products additionally utilize laterally mounted
ultrasonic sensors to detect parallel parking slots into which the vehicle may be navigated
semi-automatically [107, 109, 112]. However, depending on the required measurement
range, these systems may not be able to detect cross parking slots and complex geometry
makes correct interpretation of sensor signals difficult. Similar is a system developed by
Schanz [117]: it uses a laterally mounted laser-scanner and, due to the relatively good mea-
surement accuracy and range, the system is able to detect both parallel and cross parking
slots. However, in practice laser-scanners are currently too expensive for mass production.
Compared to these types of sensors, another benefit of our camera-based approach is that
very rich depth information is acquired at low costs.

Systems that use cameras have also been investigated. Kämpchen et al. [72] detect park-
ing lots using a forward looking stereo vision system: a point cloud generated from sparse
stereo correspondences is analyzed to detect vehicles. Generic vehicle models are used to
estimate their poses and parking slots are detected by analyzing the free space between
two vehicles. However, due to the orientation and the limited field of view (FOV) of the
stereo system, the detection of parallel and especially cross parking slots may be difficult.

The use of PMD cameras was evaluated by Scheunert et al. [120]: from the 3D data
they build a local 2D grid where every cell is in one of four modes (unknown, ground,
obstacle low and obstacle high), depending on the height of a point. From this grid, the
curb is determined and a distance profile is computed. This information is then used to
detect free spaces. However, they do not determine the envelope of the ground plane
dynamically and since they assume the presence of the curb, they did not demonstrate the
detection of cross parking slots. Furthermore, the PMD technology is still very expensive
and thus not suitable for serial production.

It is also possible to detect parking slots using a camera and a projection of structured
light [71]. However, legal restrictions in many countries render a worldwide commercial-
ization of such solutions impossible. Other systems detect parking slots by extracting and
interpreting ground markings [70, 164]. But the applicability and thus customer value is
very limited, because the markings have to fulfill specific requirements on color, visibility
and geometric properties.

There is also a wide range of recent methods that use the principle of motion-stereo
[41, 124, 130, 131, 147, 151, 152]. However, these works address only a feature-based strat-
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egy and no one utilized dense disparity maps. The basic idea is to calculate characteristic
features in subsequent images. Over time, this relatively small number of points is tracked
and then a 3D reconstruction is analyzed to find parking slots. These approaches perform
well in friendly conditions, i.e. as long as enough strong and distinctive features can be
derived from the images. However, challenging are both lowly textured objects, which
lead to very sparse point clouds, or also complex textures like foliage, where high ambigu-
ity during feature matching introduces wrong distance measurements. Moreover, features
are not necessarily located at the boundaries of objects. Thus the size of objects and free
space might be wrongly calculated. In these situations, the accuracy and reliability of the
determination of free parking areas varied in an inacceptable way.

In this thesis, we present a powerful approach that is based on our dense motion-stereo
pipeline, where at every frame a dense disparity map is computed. This results in im-
portant advantages, namely a very high detection rate of obstacles, a high measurement
accuracy, a nearly drift free environment model and the ability to display a multitude of
different customer functions.
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4. Efficient Stereo Vision

Natura non facit saltus.1 (Latin for Nature does not make jumps)

Dense stereo matching in real-time is important for many fields of applications that require
an on-line dense three-dimensional representation of the observed scene [38, 144]. Also
the processing of large images or long image sequences needs computationally efficient
algorithms [59]. However, for automotive and other mobile applications, the hardware
requirements must be as low as possible. This usually restricts the available processing
power as well as the number of cameras.

Typical commercial implementations of such systems use one or two cameras together
with a computationally feasible algorithm to compute depth information [38, 144]. If two
cameras are used, local methods based on correlation can be implemented very efficiently
[61]. On dedicated hardware, methods such as local correlation, dynamic programming,
semi-global matching or even belief propagation can be implemented for real-time appli-
cation [25, 38, 114, 155]. However, optimized local methods are among the fastest ways in
order to perform dense matching solely on general purpose CPUs without special hard-
ware. In this case, decisions must be made upon the values of some parameters, particu-
larly for the maximum disparity.

We will later demonstrate that the choice for a fixed maximum disparity influences the
quality of the disparity map: setting it too high favors false matches and setting it too low
will result in gross errors at close objects. In some cases, the choice of the maximum dispar-
ity is complicated. Especially at motion-stereo [93], when the camera moves at a variable
velocity, a choice for a fixed maximum disparity either restricts the practical applicability
or results in an increased number of errors and an inefficient use of processing power (if
the maximum disparity is set too high).

Another highly important aspect for our work is the stereo calibration of the cameras.
In practice, an accurate rectification is of eminent importance when applying dense stereo
methods to pairs of images. The reason for this lies in practical considerations to maximize
the efficiency of stereo methods, where rectification usually transforms the epipolar geom-
etry of both images in a way such that epipolar lines are horizontal and matched up. This
means, that after rectification the y-coordinate of corresponding image pixels is always
constant and that the search-space for stereo-processing is heavily constrained. Therefore,
an inaccurate rectification directly affects stereo matching. It is known that even slight

1This rather famous principle dates back at least until ARISTOTELE and refers to the intuition that things and
processes evolve continuously in nature and not sudden. But having discontinuities of disparity maps in
mind, this axiom obviously does not hold without restrictions in the projective world. However, it may be
remedied if the scene is decomposed into individual scene surfaces and this is an important assumption
in many stereo methods and also the driving idea for this chapter; scene surfaces do not make jumps but
evolve smoothly in disparity maps.
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inaccuracies of the epipolar geometry may result in significant degradation of the stereo
matching performance.

In motion-stereo applications, the rectification of two consecutive camera frames must
be estimated from available vehicle sensors, for example, from odometry using wheels and
the levels of the dampers. However, practical experience shows that the accuracy of both
odometry and damper-levels does not suffice for an accurate rectification, due to slippery
or uneven ground.

Furthermore, in future, vehicles may be equipped with binocular front cameras, and this
would imply the use of stereo algorithms in vehicles. For long-term installations of stereo
rigs in vehicles, an adaption to decalibration issues is preferable, since there is very limited
experience with vehicular stereo rigs over very long periods of time (e.g. 10 years). In these
cases, the stability of the mounting concept (with respect to deterioration or deformation)
and thermal influences on material might have a huge impact on the accuracy of rectifi-
cation. Moreover, camera calibration is costly, time-consuming and critical for the quality
of serial production vehicles. From this point of view, methods are preferable that do not
require an exhaustive calibration procedure, but work well with rough, approximate set-
tings, that might, for example, be computed from CAD models.

In this thesis we propose a novel method for efficient dense stereo matching without the
need of the choice of the maximum disparity. We further introduce generalizations which
make the matching robust to inaccurately rectified images. Moreover, we present a fast
post-processing technique that is based on energy minimization and is suited to refine the
obtained results.

In the rest of this chapter we first give an overview on related efficient stereo methods.
After introducing the traditional way of local disparity computation in section 4.2, we for-
malize the idea of iterative region tracing for stereo in section 4.3 and introduce a novel
disparity computation algorithm in section 4.4. In section 4.5 we present efficient gener-
alizations of our ideas to address an inaccurate rectification. To increase the quality of
disparity maps from window-based stereo methods, we present an approach for disparity
refinement in section 4.6. Finally, we present an extensive evaluation in section 4.7 using
well known stereo datasets with ground truth, apply the methods to real world imagery
and discuss our proposals in section 4.8.

4.1. Related Methods

4.1.1. Efficient Stereo

Regarding highly efficient stereo matching there is a large number of works [35, 38, 46, 51,
61, 114, 144, 146, 155]. Most famous are local correlation methods whose cost functions
are usually separable, such that an incremental computation is possible [35, 61, 144, 146].
Dynamic programming [10, 12] has also received some attention due to its efficient algo-
rithmic structure, but the well known streaking effects are very impractical. The work of
Bleyer and Gelautz [12] addresses this issue, but also comes at a much higher processing
overhead. In other works dedicated hardware is used to achieve real-time performance
[38, 51, 114, 155]. For example, by using an FPGA Gehrig et al. [51] successfully ported
semi-global matching. A different principle is by making assumptions about the scene
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geometry. One example is the work of Gallup et al. [46], who use a priori scene surfaces
for fast stereo reconstruction. However, in our application we are faced with complex
3D geometry (like vehicles, bushes, poles, stones, pedestrians etc.) where arbitrary surface
orientations exist.

There is also the branch of region-based methods which extract ground control points in
the first place [26, 158] and which diffuse matches into uncertain regions. From some per-
spective, these methods may also be run without knowledge about the maximum dispar-
ity; however, [26] does not produce dense disparity maps and [158] is far from real-time.

In this chapter we focus on efficient stereo matching on a standard CPU without any
dedicated hardware or graphics unit. Different to most other works, we use complex ro-
bust matching cost functions and no a priori knowledge about the maximum disparity is
required for our method. More precisely, our contribution is a novel disparity computation
algorithm which replaces the famous winner-takes-all (WTA) approach.

4.1.2. Decalibration

Binocular stereo matching is a well explored direction, but to our knowledge, all of the
methods presented in section 3.2 require an accurate rectification of the images. However,
relaxing the epipolar constraint immediately leads to optical flow methods [4, 6, 27, 64].
While real-time GPU implementations exist [27], most of the approaches that compute
a dense flow field on the CPU are far from real-time and address a different conceptual
problem; many methods are usually designed to recover small displacements and do not
directly address the problem of “small epipolar deviations”, which happens if a pair of
images is not rectified well. The method derived in section 4.5.1 directly addresses the
problem of large horizontal and small vertical displacements. In particular, the methods
in section 4.5 are efficient formulations using block matching and are therefore different
from differential optical flow methods like [27, 64].

Multi-view reconstruction algorithms, like [3, 29, 81, 100, 121, 170, 173], also rely on
some knowledge about camera positions, and usually perform the calibration by estimat-
ing the epipolar geometry from a sparse set of feature points [55, 105, 136] using epipolar
or trilinear constraints. However, the extraction of feature points, their matching and the
projective warping of the pair of images for rectification is also relatively time-consuming
and only works well if enough correctly matched feature points are available. In other ap-
plications, the idea of online calibration of stereo rigs is applied [33]. But also in these works,
usually a set of sparse correspondences is required to determine or to refine calibration pa-
rameters. In section 4.5, we focus on determining dense correspondences directly.

4.2. Traditional Disparity Computation

In traditional correlation-based methods, to each pixel x = (x, y)T , the disparity associated
with the minimum dissimilarity is assigned:

D(x) = argmindmin≤d≤dmax
CA(x, d) (4.1)

where D is the disparity map, dmin is the minimally possible disparity value, dmax is the
maximum disparity (MD) and CA(x, d) is the dissimilarity function where lower values
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indicate higher similarity. Without loss of generality we assume for the rest of this chapter
that dmin = 0 because it will make formulas easier to read. We consider CA as aggregated
matching cost by summing pixelwise costs over a rectangular support region around the
pixel of interest:

CA(x, d) =
w∑

u=−w

w∑
v=−w

CM
(
x + (u, v)T , d

)
(4.2)

where w parameterizes the window size and CM (x, y, d) is the pixelwise matching cost
(for example the squared intensity difference or the absolute intensity difference) which
measures the dissimilarity between the left image pixel IL(x, y) and the right image pixel
IR(x − d, y). These formulations of CA are known as SAD or SSD; in many applications
robust cost functions are preferable.

4.2.1. Robust Similarity Measures

In practice, stereo matching and in particular motion-stereo becomes difficult under sud-
den exposure or illumination changes (e.g. in garages), in low-light scenarios, during dif-
ferent weather conditions (rain, snow, etc.) or due to glare light effects. We chose to use the
following robust cost functions.

Normalized Cross-Correlation (NCC).

CNCC(x, d) =

w∑
u=−w

w∑
v=−w

(
IL
(
x + (u, v)T

)
− ĪL(x)

)
·
(
IR
(
x + (u− d, v)T

)
− ĪR(x)

)
−
√
σL(x)σR(x)

(4.3)

where w parameterizes the window size, IL and IR are the left and right images and ĪL,
ĪR are mean pixel intensities in the correlation window computed using

ĪL(x) =
1

(w + 1)2

w∑
u=−w

w∑
v=−w

IL
(
x + (u, v)T

)
(4.4)

and the variance of the image intensities in the correlation window is given by

σL(x) =
1

(w + 1)2

w∑
u=−w

w∑
v=−w

(
IL
(
x + (u, v)T

)
− ĪL(x)

)2

(4.5)

The terms ĪR and σR are computed analogously. Then the aggregated NCC matching costs
are then given by CA(x, d) = CNCC(x, d).

Census Transform (Census). The Census filter computes a bit string for every image
pixel. Every bit encodes a specific pixel of the local window centered around a pixel of
interest. The bit is set to one if the pixel has a lower intensity than the pixel of interest.
Later, the pixel-wise matching cost is defined as the Hamming distance of pairwise bit
strings. In practice, we sum these Hamming distances over a small support region.
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4.3. Disparity Computation by Region Tracing

4.3. Disparity Computation by Region Tracing

The main idea is that the disparity values of adjacent pixels are often similar which hap-
pens primarily in scenarios where the scene is composed of a few smooth surfaces. Hence,
if we assume that the disparity of a small image region is known, then there must be a way
to infer the disparities of neighboring regions. For example, if we know the disparities
for a small part of a single scanline, then our goal is to infer the disparities of the adjacent
scanlines by assuming that their disparities are similar. There are three practical motiva-
tions for our approach presented here: first, we are interested in saving processing time;
second, there is no optimal choice for the maximum disparity value for the whole image;
third, in our application, the scene is composed of a few smooth surfaces.

15% 

20% 

25% 

30% 

35% 

40% 

45% 

28 30 32 34 36 38 40 42 44 46 48 50 52 54 56 58 

In
co

rr
ec

t 
E

st
im

a
te

d
 D

is
p

a
ri

ti
es

 [
%

] 

Maximum Disparity 

all nonocc textrls discnt 

Figure 4.1. Curves plotting the percentage of incorrect disparities estimated with classical methods
on the different image regions of the Teddy dataset as a function of the maximum dispar-
ity value used. The curves show that the optimal maximum disparity is not unique for
different regions in this particular example. When considering all pixels (all), the op-
timal value of the maximum disparity is equal to 43. The same value is optimal when
considering non-occluded regions (nonocc) and regions close to discontinuities (discnt).
However, this value is not optimal when considering textureless regions (textrls) where
the value 37 provides a lower percentage of wrong disparities.

Fig. 4.1 shows the relationship between the MD and matching errors for the standard
dataset Teddy. Setting the MD too high introduces false matches and setting it too low will
produce gross errors at close objects. But also a seemingly ideal MD value will not result
in the best possible result. The figure depicts that there is no optimal fixed MD setting
that minimizes all individual errors simultaneously. For example, if the value 37 is used
the errors of textureless regions are minimized but this value will cause errors in the other
regions. The optimum may be obtained if the MD is set to 37 in textureless regions and
to 43 in the rest of the image. Intuitively, image regions that contain background struc-
tures reach the optimal disparity earlier than regions with foreground structures. Hence,
investigating more disparities requires more processing time and increases the possibility
of false matches especially in regions with weak texture. To avoid these drawbacks the
MD should be variable and as close as possible to the true disparity.
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Camera Image Disparities Camera Image Disparities

Figure 4.2. Exemplary disparity maps of our application.

In general, the relationship between the MD and matching errors depends on the struc-
ture of the scene, the image texture and the chosen image partitioning. It can be assumed
that for very well and uniquely textured objects less false matches will occur at higher
disparities. Also, if the weakly textured objects reside at the foreground of the scene,
the tendency is that the number of false matches will decrease at higher disparities. It
is very difficult to formalize the dependency between false matches, scene texture and
the MD. However, the intuitive motivation remains that the likelihood of a wrong dis-
parity increases with the size of the search region, because the discriminability decreases.
Moreover, and this is depicted in Fig. 4.2, there is also the fact that some parts of the image
exhibit mostly background structures (upper regions) and other parts of image foreground
objects (middle and lower regions).

Fig. 4.2 illustrates exemplary disparity maps of our application. Obviously, the dispari-
ties are very inhomogeneous across the image and the scene is mainly composed of several
smooth scene surfaces. This has the following implications: first, a global MD will result
in waste of processing resources (the MD is large in the lower image region, but a smaller
setting suffices for the upper parts). Second, disparity values of adjacent pixels are very
likely to be similar (i.e. the difference is smaller than 1).

Our approach is to iteratively increase the MD dmax and to modify the disparity map
incrementally. After an initialization phase, we increase the MD dn+1

max = dnmax + 1 until the
disparity map needs no further modifications. In this way, we visit every disparity level
(from back- to foreground) and add new information to the disparity map. We will show
how to exploit information of one disparity level to compute the next disparity level.

Our implementation does not explicitly maintain the history of disparity maps evolving
from the iterations (i.e. D0,D1, . . .). But, for the sake of clarity, it makes sense to introduce
such notion because we want to argue about the step from Dn to Dn+1 by incremental
modifications. At this point it is also worth stating that Dn(x) ≤ dnmax, ∀x.

Critical Region Images. In every iteration, our method thresholds the current disparity
map Dn to compute a so called critical region image χn. Fig. 4.3 is an example. We define
the indicator function χn as follows:

χn(x) :=

{
1 Dn(x) = dnmax

0 otherwise
(4.6)
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Tsukuba n = 5 n = 6 n = 7 n = 8 n = 10

Camera Image n = 4 n = 6 n = 8 n = 10 n = 16

Camera Image n = 4 n = 6 n = 10 n = 16 n = 22

Figure 4.3. Critical region images superimposed with intermediate disparity maps: our approach
applied to the Tsukuba dataset (top row) and images from our application (last two
rows). The first column shows the camera image; the other columns show the critical
regions χn overlaid in red over the intermediate disparity map Dn (grayscale).

Given the threshold parameter, a thresholded disparity map χn+1 represents partial infor-
mation about the disparity map Dn+1, because

Dn+1(x) = dn+1
max ⇐⇒ χn+1(x) = 1 (4.7)

In the rest of the image, where χn+1(x) = 0, we only know that

Dn+1(x) < dn+1
max (4.8)

In these areas, we assume that Dn+1 ≡ Dn which results in the following recursive map-
ping:

Dn+1(x) :=

{
dn+1
max χn+1(x) = 1

Dn(x) otherwise
(4.9)

Hence, the final disparity map, sayDN , may be built up solely from the sequence of critical
region images (χ0, χ1, . . . χN ):

DN (x) = max
({
dkmax

∣∣1 ≤ k ≤ N, χk(x) = 1
}
∪
{
D0(x)

})
(4.10)

General Idea. We would like to determine the final disparity map using (4.10), but we
cannot use (4.6) to determine χk (with k ≥ 1, because we would have to know every Dk
in advance, including DN ). We rather start with an initial disparity map D0, compute χ0,
and use χ0 to estimate χ1, use χ1 to estimate χ2 and so forth. We stop this process at an
unknown iteration N if χN (x) = 0, ∀x. As it is not memory efficient to keep all χk’s, we
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Figure 4.4. A possible evolution of a single critical region as the maximum disparity increases. The
boxes represent eight fixed pixels with their disparity value in it. The critical region is
shaded in blue. The arrows denote corresponding region borders.

directly modify the estimate of the final disparity map using (4.7). In the following, we
focus on the main goal of determining χn+1 from χn.

Fig. 4.3 exemplifies the key observation regarding the evolution of the critical region
images as the MD increases: they do not change arbitrarily but evolve rather slowly and
smoothly, because usually the scene structure is composed of a few smooth surfaces.

Critical Regions. We process every scanline separately and denote the current scanline
by y0. We already introduced critical region images in (4.6). Now, we define:

Definition 4.1 (Critical Region). A critical region of a critical region image χn is a non-empty
interval I = [a, b] that fulfills

∀x ∈ I : χn(x, y0) = 1 (4.11)

and is maximal
χn(a− 1, y0) = 0 ∧ χn(b+ 1, y0) = 0 (4.12)

To avoid undefined conditions, we also assume χn(x, y0) = 0 if (x, y0)
T 6∈ I.

Using this definition, a scanline of a critical region image may be decomposed into sev-
eral distinct critical regions. Please note that this is different to existing region-based meth-
ods [28, 11, 7, 157], where the input images are segmented using color or intensity infor-
mation. We also do not use regions as matching primitives and we do not use them for
estimating planar surface models – in our sense, a critical region is a small region of interest
within the disparity map.

These critical regions play a key role in determining χn+1 from χn: first, χn is decom-
posed into critical regions. Then, we show how the critical regions develop, if the MD is
incremented. This development can be used to efficiently determine χn+1.

Relating Critical Regions. The observation of the evolution of critical region images led
us to the assumption that χn and χn+1 are in some sense similar. Let In = [a, b] be a critical
region of χn with the left and right boundaries a and b. We assume that there exists a
critical region In+1 = [a′, b′] in χn+1 which is “close” to In.
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Fig. 4.4 shows how the evolution of a single critical region might look. The boundaries
of the regions undergo slight translations. During the whole process, already visited pixels
may be modified several times.

We will turn to some special cases later, but for the moment, we assume that for every
In exists exactly one corresponding In+1, such that their intersection is not empty:

In ∩ In+1 6= ∅ (4.13)

If (4.13) is fulfilled, then In+1 can be determined by a simple local search. Let f(t) :=
χn+1(t, y0). We define this search routine

σ(a) :=

{
max{t|t < a, f(t) = 0}+ 1 f(a) = 1

min{t|t > a, f(t) = 1} otherwise
(4.14)

and show its validity:

Lemma 4.2. Let In = [a, b] and In+1 = [a′, b′] be two corresponding critical regions with In ∩
In+1 6= ∅. Then, using Eq. (4.14) we have σ(a) = a′.

Proof. There are only two cases. The first case is a′ ≤ a. Then we have b′ ≥ a and f(a) =
χn+1(a, y0) = 1. Using (4.14) we obtain

σ(a) = max{t|t < a, f(t) = 0}+ 1 (4.15)

= max{t|t < a, t 6∈ In+1}+ 1 (4.16)
= max{t|t < a, t < a′}+ 1 (4.17)
= a′ − 1 + 1 = a′ (4.18)

The second case is a′ > a. Then we have f(a) = χn+1(a, y0) = 0. Using (4.14) we get

σ(a) = min{t|t > a, f(t) = 1} (4.19)

= min{t|t > a, t ∈ In+1} = a′ (4.20)

Together: σ(a) = a′.

The right border b′ can be determined similarly. The only missing point is how the
function f in (4.14) is computed: in accordance to (4.6), we get

f(t) =χn+1(t, y0) (4.21)

=

{
1 CA

(
(t, y0)

T , dn+1
max

)
< CA

(
(t, y0)

T ,D(t, y0)
)

0 otherwise
(4.22)

where CA((x, y)T , d) is the dissimilarity measure.
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Summary. The idea of this method is that we process the individual disparity levels one
by one (in ascending order, so the background is processed first). We accomplish this by
stepwise increments of the MD. At every disparity level dnmax, we extract all pixels whose
disparity is maximal and call them critical (4.6). It turns out that there are mainly blocks of
such pixels. We call these blocks critical regions because the disparity of those pixels is likely
to change in the next disparity level. In addition it appears that the critical regions of two
adjacent disparity levels are likely to be similar (4.13) and that the critical regions of the
two disparity levels can be related to each other efficiently (4.14). Hence, (4.14) indirectly
relates two adjacent disparity levels. The efficiency lies in the search routine (4.14): it
allows the estimation of the next disparity level with less dissimilarity computations (only
the boundaries of the critical regions need to be found).

Regarding the evolution of critical regions, some more cases need to be discussed: if
condition (4.13) is violated, then the region might have disappeared or the boundaries
have undergone a large translation. These cases can be treated in the implementation by
limiting the search-range in (4.14), for example by requiring a′ ≤ b or |a′ − a| ≤ Θσ. We
obtained good performance if Θσ = dnmax+10. Emerging regions are possible (for example,
thin foreground objects which are not connected to the ground), but in our experiments we
discovered that the other way round is more likely: in the beginning the number of pixels
being part of a critical region is high. Then, the critical regions disappear gradually or split
up (so this number decreases more and more). Therefore, it is advisable to cover the case
if regions split up: Once In+1 has been recovered we split In+1 if necessary by ensuring
that (4.11) is fulfilled. Finally, we point out that it is not important to establish correct
correspondences between the critical regions of χn and χn+1 – we are only interested in
determining χn+1 efficiently.

Discussion. Even though the presented algorithm significantly reduces the number of
required correlations2, the performance compared to local correlation is actually lower.
We found out that this is due to the nature of caching in CPUs. Also [104] gave remarks on
effectively using caches, specifically regarding the ordering of the loops. A structure like
above is sub-optimal for cache utilization, since for every disparity value, whole scanlines
must be evaluated. Following the lines of [104], the innermost loop should run over dis-
parity values. This motivated us to formulate the minimization differently and resulted in
the method presented in section 4.4.

Concluding Remarks. The most important observation on critical regions is that they
are predominantly stationary. This has the consequence that a pixel is highly likely to be
repeatedly part of a critical region during several consecutive iterations. Suppose there are
critical regions In, In+1, . . . , In+m fulfilling (4.13):

Ik ∩ Ik+1 6= ∅ k = n, n+ 1, . . . , n+m− 1 (4.23)

2For the Teddy dataset: the number of the required correlations necessary to obtain the disparity map was
reduced from 7,621,950 (traditional method with dmax = 43) to 3,518,829.
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Then, if m is chosen appropriately we have

S :=

n+m⋂
k=n

Ik 6= ∅ (4.24)

Hence, there are pixels (s, y)T , s ∈ S which are critical during m consecutive iterations:

CA
(
(s, y)T , dnmax

)
> . . . > CA

(
(s, y)T , dn+mmax

)
(4.25)

We aim at determining the intermediate optimal disparity dn+mmax directly for the pixels (s, y)T ,
instead of requiring m iterations. For this, we minimize the dissimilarity using

D(x) 7→ min
{
d | d ∈ N0, d ≥ D(x), CA(x, d+ 1) >= CA(x, d)

}
(4.26)

This step resembles in some sense the minimization property of the region tracing. The
second ingredient is to account for the deformations of critical regions. Here, it is mainly
given by the local search routine (4.14) and our idea is to introduce a propagation-step that
reasons on neighboring disparities. Thus, the basic idea is to handle the pixels individually
and to iteratively optimize the disparity values.

4.4. Efficient Disparity Computation without Maximum Disparity

Also in this section we focus on an iterative algorithm that stops at the right disparity
value, instead of determining disparities by a brute-force search within the whole dis-
parity domain. Based on the ideas of the previous section, we perform two operations
at each pixel: a minimization followed by a propagation-step. The minimization basically
follows a line search strategy and allows us to find the “next” local minimum of the match-
ing cost function. Since matching costs usually have many local minima we introduce a
propagation-step in order to find further, better local minima using disparity values of
neighboring pixels. We embedded these steps into a hierarchical setup, which will also be
described in detail.

Minimization. For every pixel x, we determine an intermediate optimal disparity:

dn+1 = argmind∈{dn,dn+1} CA(x, d) (4.27)

We use d0 = D(x) and if dn+1 = dn the iteration is stopped and the disparity map is
updated: D(x) 7→ dn. Using this formula, we “step down the hill” and thus search for the
next optimal disparity by iteratively incrementing the current disparity.

Propagation. As the minimization-step will only return the first (and possibly not opti-
mal) minimum of the dissimilarity function (see Fig. 4.5(a)), we additionally propagate the
disparities of adjacent pixels:

D(x) 7→ argmind∈N(x) CA(x, d) (4.28)

with the neighboring disparities N(x). N(x) should at least contain the disparities of the
left and right neighbors and must fulfillD(x) ∈ N(x). Disparity values will be propagated
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d1 

(a) Iteration 1: Minimization

d2 

(b) Iteration 1: Propagation

d3 

(c) Iteration 2: Minimization

Figure 4.5. An example for a dissimilarity function (vertical axis) over disparity (horizontal axis).
(a) Only the first minimum d1 of the function is found by the first minimization. (b)
Then, the propagation selects an adjacent disparity d2, because it leads to a lower dis-
similarity. (c) The second minimization finds the optimal minimum d3.

through their local neighborhood in this step. The idea is that the global minimum of a sin-
gle dissimilarity function can be found by alternating the minimization- and propagation-
steps. The propagation jumps to a disparity value with a dissimilarity smaller than the
previous local minimum and the minimization navigates to the next local minimum which
is nearby to the propagated value. In practice, only a few iterations are required (2-4).

Hierarchical Setup. A hierarchical implementation stabilizes execution times, because
disparities can be found with an almost constant effort. However, it must be noted that
a hierarchical setup may obey the drawback of loosing thin foreground objects and that
errors at low resolutions may have severe impacts at higher resolutions. To reduce arti-
facts from false matches at low resolutions, we apply the hierarchical approach only to
the horizontal dimension. Basically, at every resolution, the depth-map is initialized with
the scaled up disparities from the previous resolution (in the beginning, the depth-map is
initialized with zeros). For our algorithm, it is important to scale up disparities properly.
Since the search direction of the minimization-step is in positive disparity orientation, it is
beneficial to underestimate the actual disparity. Let σ be the scale factor, for example σ = 2.
For scaling up, we use the following formula:

D′(σx, y) = σD(x, y)− σ + 1 (4.29)
D′(σx+ k, y) = σmin(D(x, y),D(x+ 1, y))− σ + 1 with k = 1, . . . , σ − 1 (4.30)

To summarize, the minimization- and the propagation-step is applied to every pixel of
the image/scanline. This process is repeated until the disparities reach a fixed point. Then,
the whole procedure is applied to the next resolution using the scaled up disparities.

Recommendations for an Efficient Implementation. In accordance to [104], we optimize
scanlines individually to benefit from caching in CPUs. Further, we achieved good run-
ning times by storing the maximally tested disparity for every pixel, in order to reduce
redundant computations. In this way, we discard disparities smaller than the maximally
tested disparity. A similar improvement can be applied for the minimally tested disparity
for every pixel.
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Another important optimization is the use of SIMD3 instructions (in all methods: the
traditional local correlation-based method and our proposals). However, to keep the code
maintainable, we optimized the dissimilarity measure only (in our case: sum of absolute
differences over an 8×8 window). We used so called compiler intrinsics to avoid cryptic
assembler instructions.

4.5. Generalizations to Decalibrated Stereo

To overcome problems resulting from an inaccurate stereo rectification we propose in this
section generalizations of our dense correspondence computation algorithm, which is ro-
bust and efficient at the same time.

For this, we generalize and extend the concepts of the efficient disparity computation
approach given in section 4.4, which was originally designed for highly efficient disparity
retrieval from accurately rectified image pairs. We significantly increase the correspon-
dence search range to a two dimensional area and, although based on window-based block
matching, still maintain a surprisingly high efficiency. Consequently, our approach can be
applied to decalibrated stereo image pairs and we also demonstrate the robustness by ap-
plying our method to optical flow image pairs.

4.5.1. Small Epipolar Deviations

In this section we assume that there is only a “small” decalibration with the following
constraints, that the correct disparity is found within a small corridor along the epipolar
line and that the horizontal displacement is always positive.

In the following, we generalize the approach presented in section 4.4, by modifying the
individual processing steps. For every pixel location x = (x, y)T we search for a displace-
ment vector f = (u, v)T , where u and v are the displacements in x- and y-direction. The
dissimilarity function CA(x, f) correlates a pixel x of the reference image with a pixel (x+f)
of the match image. In practice, for CA we use matching costs based on SAD CSAD, NCC
CNCC or Census transform CCensus and store two-dimensional displacements in a displace-
ment field F(x) = (u, v)T .

Optimization Procedure

Our idea was to generalize the algorithmic structure of section 4.4 in a way such that
correspondences in a small corridor along the epipolar line are considered. This means that
at every pixel, a 2D displacement vector is modified using the minimization step instead of
a 1D disparity value. Again, the minimization will stop at local, suboptimal minima and to
alleviate this problem, we also use the propagation, so that at every pixel, the displacement
vectors of adjacent pixels are evaluated.

Minimization Step. Let the current displacement vector at x be f0 = F(x) = (u0, v0)
T .

The mapping for the iteration is then given as:

fn+1 = (un+1, vn+1)
T := argminf∈M CA(x, f) (4.31)

3Single Instruction, Multiple Data
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with the modified vectors

M = MED :=

{(
un
vn

)
,

(
un + 1
vn

)
,

(
un + 1
vn + 1

)
,

(
un + 1
vn − 1

)}
(4.32)

If fn+1 = fn the iteration is stopped and the flow field is updated. In practice, we perform
the iteration at all pixels of the image.

Propagation Step. In the propagation at every pixel, the displacement vectors from sur-
rounding pixels are evaluated and the displacement field is updated:

F(x) 7→ argminf∈N(x) CA(x, f) (4.33)

with the neighboring displacement vectors N(x) (with F(x) ∈ N(x)). In this case, the
horizontal component (i.e. the disparity) is never decreased. Then, the number of vectors
to evaluate in the propagation step can also be reduced, by storing the maximally tested
disparity for every pixel: only those propagated displacements are evaluated whose dis-
parity is larger than the stored maximum. At this step, displacement vectors may be spread
through their local neighborhood. In practice, we alternate minimization and propagation
steps for a few iterations until convergence is achieved (2-3 repetitions from experience).

Hierarchical Iteration. In our original formulation, the image pyramid was created only
by scaling the horizontal dimension to reduce ambiguity in textureless regions. Also here,
the quality of disparity maps can be slightly improved, if only the horizontal dimension of
the images is scaled in the image pyramid. However, this strongly reduces the maximally
recoverable vertical displacement.

In the most generic formulation, both dimensions are scaled. So in every pyramid level,
we perform the optimization procedure, which computes an estimated displacement field.
At next resolution, the optimization uses the upscaled displacement field from the pre-
vious resolution as a starting point (in the beginning, all displacement vectors are set to
(0, 0)T ):

F (k+1)(2x+ i, 2y + j) = 2F (k)(x, y) with i, j ∈ {0, 1} (4.34)

Epipolar Geometry. From the computed correspondences, the fundamental matrix can
be estimated [136] to determine the epipolar geometry and a corrected rectification or a
reconstruction using known techniques [3, 81].

If the pair of images is rectified, the updated disparity map for the rectified images
must be derived. Let xR = xL + d be a correspondence and HL and HR be the rectifying
homographies for the left and right frame. For every entryD′(x′L) of the updated disparity
map we use the inverse mapping xL = H−1L (x′L) to compute:

D′(x′L) = HR (xL +D(xL))− x′L (4.35)

Please note that this formula uses inhomogeneous vectors, with HL and HR as projective
functions. In practice, this step and the rectification is relatively time-consuming and for
our application it is sufficient to simply ignore the small vertical displacements.
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4.5.2. Large Epipolar Deviations

In this section we make no further conceptual restrictions and we allow arbitrarily large
epipolar deviations and negative horizontal displacements. From some point of view, this
problem is related to optical flow. It helps determining the motion of moving objects and
has to face similar challenges as ordinary stereo. However, while for stereo the epipolar
geometry can be used to constrain possible matches to epipolar lines, in optical flow a
large (rectangular) search region must be considered instead.

We use the same notation as in the previous section 4.5.1.

Optimization Procedure

Also the optimization procedure is very similar to the generalization presented in sec-
tion 4.5.1.

Minimization Step. At the minimization we employ a different set M of modified dis-
placements:

M = MOF :=

{(
un + i
vn + j

) ∣∣∣∣ i, j ∈ {−1, 0, 1} , i2 + j2 ≤ 1

}
(4.36)

In this case, four possible displacements are evaluated at every pixel.

Propagation Step. The propagation needs no further modification, but no computational
improvements, like storing maximally tested displacements, are possible.

Hierarchical Iteration. To increase the efficiency, we scale both the horizontal and verti-
cal dimensions using (4.34).

4.6. Disparity Refinement using Local Energy Minimization

Local correlation-based methods produce errors in regions near depth discontinuities [61,
146] due to the assumption of constant disparity within the support region. This assump-
tion is violated at object borders. There are techniques to reduce such errors but they do not
eliminate them completely and are sometimes hindering for real-time application, in terms
of execution time. The most effective remedy is to abandon matching windows, and to
use pixelwise matching. However, to treat instabilities caused by pixelwise matching [8],
many global methods minimize an energy functional, such as E(D) = ED(D) + λES(D),
where ED measures how well the depth-map D matches with the input images and ES is
a so called smoothness term, penalizing disparity variations [119].

Based on the assumption that the depth-map of a local method is a rough estimate of
the ideal solution, we focus on enhancing a previously computed depth-map. To maximize
the efficiency, we perform a winner-take-all optimization at every pixel (which is different
to scanline optimization [119]).

The general idea is to propagate disparities through their neighborhood. This way, the
computational scheme is similar to the approach presented in section 4.4.
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(a) Tsukuba (b) Ground Truth (c) Disparity Map (d) Refined

Figure 4.6. Local energy minimization applied to the dataset Tsukuba: (a) the left image and (b) the
ground truth. (c) Shows a disparity map computed using the local method as presented
in section 4.4 with the bad pixels (bottom row), where the blurred object boundaries are
clearly visible. (d) Shows the refined result of our proposed post-processing routine.

Idea. The basic idea of this post-processing technique is motivated by the properties of
local correlation-based stereo. These methods can be tweaked such that they perform rela-
tively well in most image regions, but often many errors are made near discontinuities due
to the use of a support region. As a result, object boundaries are often blurry and inaccu-
rate. However, the discontinuity of a specific object boundary is present in most cases, but
the actual location is wrong and is shifted by a few pixels. This behavior can be observed
in Fig. 4.6 and is the motivation for the goal of our method: in the following, we aim at
aligning the previously computed discontinuities on intensity edges.

Algorithm. For every pixel x = (x, y)T , we determine the best matching disparity value:

D(x) 7→ argmind∈N(x) CP (x, d) (4.37)

with the neighboring disparities N(x) as defined in section 4.4. Our pixelwise matching
cost CP is defined as:

CP (x, d) := ϑ
(
CM (x, d)

)
+ τ(x)ρ(d−D(x− rx)) + τ(x)ρ(d−D(x− ry)) (4.38)

with a function to truncate the pixelwise costs

ϑ(x) :=

{
0 x ≤ IT
x otherwise

(4.39)

and

τ(x) :=

{
γ ∆I(x) > ΘI

1 otherwise
ρ(t) :=


0 t = 0

PL
∣∣ t ∣∣ = 1

PH otherwise

(4.40)
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CM is the (possibly truncated) absolute intensity difference or Birchfield and Tomasi’s sam-
pling invariant dissimilarity [8]. The parameters rx and ry point to the previously pro-
cessed pixel/scanline (for example, if the image scanlines are processed from bottom to
top, ry may be set to (0,−1)). In (4.38) we use only two neighbors in order to avoid that
depth discontinuities are penalized twice. The penalties PL and PH should be chosen such
that PL < PH to improve the recovery of slanted surfaces. The function τ helps to align
discontinuities to intensity edges if 0 < γ < 1 because it lowers the penalty if the intensity
gradient ∆I is high.

Through rx and ry the solution depends on the ordering in which pixels are processed.
This also affects the possibilities how object borders may be adapted. In practice, we pro-
cess every scanline in both directions, such that rx ∈ {(1, 0)T , (−1, 0)T } and ry = (0, 1)T

(to support the propagation in horizontal directions equally). Therefore, the procedure
processes every pixel a fixed number of times, depending on the number of directions.

Occlusion Detection. On top we try to improve disparities near depth discontinuities.
Generally, there are occluded pixels in the left image, if there is a positive disparity gradient
in positive x-direction. The number of occluded pixels is given by the difference of the two
disparities. We implement this efficiently in a relatively simple way using an array. At
every pixel x = (x, y) we mark the entry at index x − D(x). But, if the entry has already
been marked, the pixel is considered occluded.

4.7. Results

We evaluate our and other methods using classical Middlebury stereo images with ground
truth of Scharstein et al. [119] and present results obtained from real world stereo and
motion-stereo sequences from a moving vehicle. We ran all methods with constant param-
eters across all Middlebury image pairs and use the same evaluation criteria as in [119].
Here, we focus on the standard datasets Tsukuba, Venus, Teddy and Cones. Our comparison
comprises several methods:

1. Our region tracing method presented in section 4.3.

2. Our real-time disparity computation approach (RT) presented in section 4.4.

3. Our post-processing approach with and without occlusion detection (LEMO, LEM)
presented in section 4.6.

4. Our efficient stereo matching that compensates for small (RT-SD) and large epipolar
deviations (RT-LD) presented in section 4.5.

5. The traditional correlation (Trad.; section 4.2) using our own implementation.

6. Semi-Global Matching (SGM) [59] using our own implementation.

7. Belief Propagation (BP) [40] using our own implementation.

8. Graph Cuts (GC) [21] using an implementation from Yuri Boykov (available at [20]).
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9. Geodesic Support Weights (GSW) [66] using our own implementation.

During the evaluation, we had several goals in mind: On the one hand, we wanted to
compare our methods against efficient state of the art approaches. On the other hand,
real-time performance and applicability to real world data is also very important for our
application. These aspects will now be covered in the following sections.

4.7.1. Stereo Pairs with Ground Truth

In the following, we present quantitative results in Fig. 4.7, disparity maps of Tsukuba and
Teddy in Fig. 4.8 and Fig. 4.9, and discuss our proposals based on these measurements.

Our Real-Time Methods. Our approach based on Region Tracing is worse than the tradi-
tional correlation, because sometimes the tracing of a region fails (for example the flowers
on the right at Teddy). These errors are also more likely at complicated scenery, for exam-
ple at thin structures. However, we found that these results were already very promising,
considering that the disparity computation is completely different from the traditional ap-
proach.

Even though our efficient disparity computation scheme of section 4.4 is based on the
idea of region tracing, it performs often better than the traditional one. On the first look this
might be surprising – but our efficient routine does not explore the full range of possible
disparities but stops adaptively based on the local distribution of disparity values and
thus, avoids some errors.

Another huge benefit of our disparity computation algorithm is that it can be easily
adapted to non-linear search ranges. This is underlined by the method presented in sec-
tion 4.5 and the results of our implementation (there, the maximum range for the vertical
displacement was set to ±30 pixels). In this case the results tend to be slightly worse than
those of traditional correlation. However, the search space is in this case 61 times larger.

Local Energy Minimization. We apply our local energy minimization to local methods
(i.e. traditional correlation and our real-time method), because it was designed to elimi-
nate boundary errors that result from window-based matching. The bottom-line here is
twofold: on the one hand, very good results are possible, but in complicated scenarios
the simple occlusion detection may degrade results. On the other hand, at difficult struc-
tures a degradation is possible and also streaking effects, usually known from dynamic
programming or scanline optimization, are sometimes visible. All in all, this routine helps
to significantly improve the quality in real-time applications.

Robust Cost Measures. In our experiments with the Middlebury data set Art from [63]
we performed stereo matching using image pairs with different combinations of expo-
sures or illuminations similar to [63]. The main result depicted in the graphs of Fig. 4.10 is
that the tested cost measures are less effective for different illuminations than for exposure
changes. The matching error depends on the amount of the illumination change between
the image pair. On the contrary, the exposure change has less influence on the error varia-
tion. The Census Transform is very effective in this case and shows only slight variations
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Figure 4.7. The performance of different stereo methods: the numbers are percentages of disparities
that differ by more than 1 from the ground truth in regions near discontinuities (disc),
non-occluded image regions (nocc) and the whole image (all). Disparity maps were
computed using Traditional Correlation (Trad: section 4.2), our region tracing method
(section 4.3), our real-time proposal (RT: section 4.4), our method that compensates for
epipolar deviations (section 4.5), Semi-Global Matching (SGM: [59]), Belief Propagation
[40], Dynamic Programming [119], Graph Cuts [21, 119] and Geodesic Support Weights
(GSW) [66]. We activated the Local Energy Minimization without and with Occlusion
Detection (LEM and LEMO: section 4.6 and section 4.6) for some of the methods.
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Tsukuba True Disparities Traditional Region Tracing

Our RT Our RT + LEMO RW GSW

SGM BP GC

Figure 4.8. Disparity maps and bad pixels of the tested stereo methods for the dataset Tsukuba.
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Teddy True Disparities Traditional Region Tracing

Our RT Our RT + LEMO RW GSW

SGM BP GC

Figure 4.9. Disparity maps and bad pixels of the tested stereo methods for the dataset Teddy.
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Figure 4.10. Results on the stereo dataset Art for different exposures and illuminations. We tested
our real-time method presented in section 4.4 with different cost measures (Census
Transform, NCC and SAD combined with a XSobel) and compare to semi-global
matching [59] (SGM).

between the combinations. It is interesting that in many cases local matching can keep up
with semi-global matching and was in two cases even better.

Pre- and Post-Processing. There are well known pre- and post-processing steps. Al-
though they seem to be used by many authors on a regular basis to improve the quality
of disparity maps, it is seldomly documented in literature. One improvement is the use of
pre-processed input images. Especially applying a Sobel-filter in x-direction (XSobel) is a
widely used technique (from experience, the improvement on standard datasets is roughly
3%). More often, applying a Gaussian smoothing of images was described – but from our
experience, the effectiveness highly depends on image quality.

Some stereo methods tend to produce small “speckles” in the disparity map (single pix-
els with a wrong disparity). In these cases, post-processing disparity maps with a small
median filter can – in extreme cases – reduce more than 10% errors.

In our methods, we only apply a XSobel to input images. In practice, we do not use a
median filter due to the required processing resources, but apply it to disparity maps of
SGM and GSW.

Other Stereo Methods. In practice, GSW preserves many fine details, which results often
in high quality disparity maps, but occluded regions and slanted or curved surfaces are
problematic. SGM performs very well on many kinds of imagery, but also here wrong
assignments are likely in occluded areas. Similarly behaves BP, but with the exception that
it works inferior on real image sequences (especially at slanted surfaces). Disparity maps
of GC are usually very “clean”, but also there, weaknesses can be observed at slanted
surfaces.
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4.7.2. More Results on Real World Sequences

Left Frame 88 Right Frame 88 SGM Our RT (NCC)

Our RT (Census) Trad. (Census) Our RT (SAD) Trad. (SAD)

Left Frame 89 Right Frame 89 SGM Our RT (NCC)

Our RT (Census) Trad. (Census) Our RT (SAD) Trad. (SAD)

Figure 4.11. Results on the sequence Exposure Changes.

We performed tests on real world sequences provided by the 2011 DAGM Adverse Vi-
sion Conditions Challenge (AVCC) and on imagery from our vehicle. In particular, we
present results on the sequences Exposure Changes (see Fig. 4.11), Groundplane Violation (see
Fig. 4.12) and a motion-stereo video from our automotive application (see Fig. 4.13), be-
cause there are interesting differences noticeable. For the Motion-Stereo example we picked
a very challenging sequence with incident sunlight. In practice this leads to glare light
artifacts and frequent exposure changes. Particular to our sequences is the presence of
non-lambertian lighting, such as specular reflections and specular highlights.

In Fig. 4.11 (Exposure Changes), Fig. 4.12 (Groundplane Violation) and Fig. 4.13 (Motion-
Stereo) we show a comparison of traditional matching algorithms and our stereo method
with different similarity measures. We performed all experiments in full image resolu-
tion. As expected, Census Transform performs in overall better than the other similarity
measures, and surprisingly, SAD performs also quite well in combination with a x-Sobel
operator. The quality when using NCC is relatively bad, which might be explained by a
high sensitivity in homogeneous regions. Semi-global Matching of [59] produces relatively
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Left Frame 220 Right Frame 220 SGM Our RT (NCC)

Our RT (Census) Trad. (Census) Our RT (SAD) Trad. (SAD)

Figure 4.12. Results on the sequence Groundplane Violation.

Frame 110 SGM Frame 150 SGM

Our RT (Census) Trad. (Census) Our RT (Census) Trad. (Census)

Our RT (SAD) Trad. (SAD) Our RT (SAD) Trad. (SAD)

Figure 4.13. The robustness of different methods and similarity measures at a difficult motion-
stereo sequence.

good results, but in some difficult situations the density of the disparity maps is reduced
in homogeneous regions (see Fig. 4.11 frame 89, Fig. 4.12 and Fig. 4.13).

For the Motion-Stereo example we picked a very challenging sequence with incident sun-
light. In practice, this leads to glare light effects and, for cameras that perform active ex-
posure control, frequent exposure changes. Such glaring observably leads to inoptimal
exposure of the imager and blooming. Furthermore, light which is scattered within the

54



4.7. Results

lens results in reduced contrast and lens flare patterns such as starbursts and circles.
All these effects can be reduced (but not avoided) by using our approach in combination

with Census Transform. However, whether such artifacts result in false matches depends
highly on the strengths of the artifact (which in turn depends on the local distribution of
colors) and also the expected result. For example, if a disparity value is solely justifiable
by visual correspondence, a disparity value of zero might be correct for the lens flare – if
a disparity map should render the projected structure as close as possible, the disparity
value should depend on depth only. For our application, the most effective approach to
treat these disturbances is by using multi-view stereo fusion.

4.7.3. Experiments on Stereo with Epipolar Deviations

In this section we mainly focus on experiments where epipolar deviations are present and
compare the extensions described in sections 4.5.2 and 4.5.1 to the original formulation in
section 4.4. We show the performance of three different methods:

1. Our RT: The stereo implementation of section 4.4, which does not account for epipo-
lar deviations.

2. Our RT-SD: Our implementation including the improvements given in section 4.5.1,
which is optimized for fast running times and small epipolar deviations.

3. Our RT-LD: The implementation of section 4.5.2, which can handle large epipolar
deviations.

We evaluate using modified stereo datasets of [119] and show qualitative results on real
world sequences acquired with the vehicle. To simulate the effects of an inaccurately esti-
mated epipolar geometry, we transform the right image of every dataset of [119] with a ho-
mography which does not modify the x-coordinate of transformed points. By keeping the
left camera frame unchanged, we can still use the provided ground truth disparity maps
without modification. At every value for the epipolar deviation vmax, we transformed the
right image of every dataset with a random homography such that the epipolar deviation
v of every pixel fulfills−vmax ≤ v ≤ vmax. To determine the overall disparity-error, we ran
the algorithms and compared the estimated disparity maps to the ground truth.

Large Deviations. Fig. 4.14 shows the overall disparity-error (the percentage of dispar-
ities that differ by more than 1 from the ground truth) of the standard stereo approach
(section 4.4), our RT-LD which handles large epipolar deviations (section 4.5.2) and our
optimized variant RT-SD for small deviations (section 4.5.1) using growing values of the
maximal epipolar deviation (x-axis). It can be seen that for the stereo approach the error
grows very quickly, whereas in our generalizations, the error grows only slightly. The er-
ror of the optimized variant RT-SD also grows fast, but a slight improvement is visible at
very small deviations.

Fig. 4.16 shows disparity maps of our real-time stereo approach (RT) and our general-
ization for large displacements (RT-LD) for different values of the epipolar deviation. The
degradation of the disparity maps of the stereo approach is clearly visible from the ap-
pearance of wrongly estimated disparities. However, our generalization (RT-LD) is quali-
tatively very robust against epipolar deviations.
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Figure 4.14. The overall disparity-error (y-axis) of different methods for growing values of the
epipolar deviation (x-axis): the errors are percentages of disparities that differ by more
than 1 from the ground truth. We tested our real-time stereo approach (section 4.4),
our RT-LD which handles large epipolar deviations (section 4.5.2) and the optimized
variant RT-SD for small deviations (section 4.5.1).

Small Deviations. For small epipolar deviations (up to a few pixels), the optimized vari-
ant (RT-SD) presented in section 4.5.1 is interesting. Fig. 4.15 shows the overall error of the
methods for growing values of the maximal epipolar deviation.

The optimized variant (RT-SD) is slightly worse than the algorithm which can handle
large deviations (RT-LD). In practice however, it gives a good compromise between quality
and processing time, if the expected maximal epipolar deviation is less than three pixels.

Real Sequences with Epipolar Deviations. We selected some particular video sequences
acquired with a monocular side-looking camera on the vehicle integrated into the front-
bumper for our motion-stereo applications. In these examples, the pairwise rectification
of camera images was not accurate due to floor unevenness. In Fig. 4.17, we present an
undistorted camera image and disparity maps computed using our stereo approach and
our generalizations for small and large epipolar deviations (RT-SD and RT-LD). This figure
intuitively reflects our practical experience that the optimized variant (RT-SD) is a very
good compromise between speed and accuracy, and is sufficient in almost all situations of
our application.

4.7.4. Experiments on Optical Flow

We performed tests on the challenging real image sequences Large Displacement and Expo-
sure Changes provided by the 2011 DAGM AVCC and show results in Fig. 4.18. We used
our stereo matching method generalized for large epipolar deviations (RT-LD) and directly
used the computed displacement field as the flow map. In Large Displacement, the vehicle
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Figure 4.15. The overall error (y-axis) of different methods for small values of the epipolar devia-
tion (x-axis): the errors are percentages of disparities that differ by more than 1 from
the ground truth. We tested our real-time stereo approach (section 4.4), our RT-LD
which handles large epipolar deviations (section 4.5.2) and the optimized variant RT-
SD for small deviations (section 4.5.1).

in front (entering from the left) drives with a higher velocity than the cars in the back-
ground (which move from right to left). The sequence Exposure Changes is a video from a
forward looking camera on a forward moving vehicle, where a sudden change in exposure
takes place between frames 90 and 91. Our method with Census Transform shows again
the best overall result, but also the SAD cost measure works surprisingly well on images
that were previously filtered with a Sobel filter in x direction. The Horn and Schunck algo-
rithm [64] recovered only very localized motion. TV-L1 of [27] works relatively well, but is
highly sensitive to exposure changes. Due to this reason we use Sobel-filtered images, but
in this case the smoothness is negatively affected by image noise. At dramatic changes of
the exposure time, none of the methods succeeded.

4.7.5. Execution Times

We measured the execution times in Tab. 4.1 on an Intel E8200 with 2.67 GHz and 4 GiB
RAM using a single threaded implementation. In practice, the running time of our region
tracing method (section 4.3) depends on the image content. To some extent, this also ap-
plies to our real-time approach (section 4.4), but the localized structure and the hierarchical
setup result in more stable timings. Our local energy minimization is relatively expensive,
because at every pixel several comparisons with the surrounding values are utilized which
is costly and not parallelizable. The generalizations of our stereo method which includes
epipolar deviations preserve also a high efficiency: while the most general formulation
introduces a high overhead, the optimized variant for small deviations is quite efficient.
The huge performance gap when using different cost functions compared to the traditional
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Tsukuba: our stereo approach (top row) and our generalization RT-LD (bottom row)
Left image No Deviation Deviation: 3 Deviation: 10 Deviation: 30

Ground Truth

Venus: our stereo approach (top row) and our generalization RT-LD (bottom row)
Left image No Deviation Deviation: 3 Deviation: 10 Deviation: 30

Ground Truth

Teddy: our stereo approach (top row) and our generalization RT-LD (bottom row)
Left image No Deviation Deviation: 3 Deviation: 10 Deviation: 30

Ground Truth

Figure 4.16. Disparity Maps of our real-time stereo approach (RT) and our generalization (RT-LD)
at different epipolar deviations. In these cases, the epipolar deviation of at least one
pixel was 0, 3, 10 or 30. In each block, the top row is the result of the stereo method
(RT) and the bottom row shows the result of our generalization (RT-LD).
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Camera image Stereo (RT) Small Deviations Large Deviations

Figure 4.17. Disparity Maps of our real-time stereo approach, our variants for small (RT-SD) and
large deviations (RT-LD) at real sequences.
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Large Displacement, Frames 200–202 Exposure Changes, Frames 90, 91

Our RT-LD (SAD without XSobel)

Our RT-LD (SAD with XSobel)

Our RT-LD (NCC)

Our RT-LD (Census)

Horn and Schunk [64]

Chambolle and Pock: TV-L1 [27]

Figure 4.18. Results on the sequences Large Displacement (flow fields were com-
puted for frame pairs (200, 201), (201, 202) and (202, 203)) and Exposure
Changes (flow fields were computed for frame pairs (90, 91) and (91,
92)). The image on the right denotes the color-coding of the computed
flow vectors. Please note that this figure is best viewed in color.
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Table 4.1. The execution times of the different stereo methods in milliseconds on different datasets.
The second row denotes the image resolution and maximum disparity (WxHxD)

Method Tsukuba Teddy Art Real
384x288x12 450x375x64 463x370x84 320x240x48

Traditional (SAD) 37 154 192 80
Traditional (SAD, optimized) 32 140 189 56
Traditional (Census) 153 372 428 172
Our Region Tracing (SAD) 78 184 276 59
Our RT (SAD) 31 53 61 18
Our RT (Census) 190 311 352 204
Our LEM 23 19 44 13
Our LEMO 25 20 46 14
Our RT-SD 86 156 185 51
Our RT-LD 223 398 399 149
SGM 191 970 1250 423
Belief Propagation 500 2656 3637 1174
Dyn. Prog. 227 1264 1740 556
Graph Cuts 72 s 11 m 15 m 3 m
GSW 2 m 3 m 7 m 3 m

method results from a highly reduced number of cost function evaluations.
Optical flow methods were also tested (see Tab. 4.2) on 640x481 images and flow vectors

with displacements of at most 30 pixels in each direction (the timings of [27] are not com-
parable, because their Matlab implementation took minutes and a GPU version reported
as real-time [27] is of course not comparable to a CPU implementation). We also performed
tests with down-scaled images (third of their original size). The timings underline the high
efficiency of our proposed generalization RT-LD which demonstrates that with small im-
ages it is possible to compute dense optical flow with large displacements in real-time on
commodity hardware, even with robust cost measures. On higher resolutions, the perfor-
mance gap to traditional block matching is extremely big: our proposal is up to 90 times
faster due to our efficient search algorithm and the hierarchical setup.

4.8. Discussion

In this chapter we introduced several novel concepts: we presented a new idea that per-
forms region tracing to compute a disparity for every pixel. This is achieved by identify-
ing a critical set of pixels for which the disparity values are updated iteratively. Based on
this approach, we derive a localized, more efficient and general algorithm which retains
a high efficiency by massively reducing the number of required cost function evaluations.
Even though originally formulated only for stereo matching of rectified image pairs, we
generalize our proposal in a way such that images from decalibrated stereo rigs can be
addressed efficiently. We further introduced a novel local energy minimization for the
post-processing of disparity maps, which improves the localization of depth discontinu-
ities and improves the results of area-based methods. In practice however, this simple
technique is relatively time-consuming and might be confused in difficult scenarios. The
validity and efficiency of our proposals is finally underlined by exhaustive experiments on
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Table 4.2. The execution times of the different optical flow methods in milliseconds. Stereo match-
ing was tested on images with a resolution of 1024x334 and a maximum disparity of 48
was used for methods that require it a priori. Optical flow was tested on 640x481 im-
ages and flow vectors with displacements of at most 30 pixels in each direction. We also
performed tests on images scaled to one third of their original size

Method Stereo Flow Flow
1024x334 640x481 213x160

Trad. Block Matching (SAD) 263 39744 641
Trad. Block Matching (Census) 2313 162769 2029
Trad. Block Matching (NCC) 2691 140648 1913
Our Method RT-LD (SAD) 129 466 52
Our Method RT-LD (Census) 403 1763 167
Our Method RT-LD (NCC) 560 1812 179
Horn and Schunk [64] - 313 34
Chambolle and Pock [27] - N/A N/A

stereo images with ground truth and imagery from real sequences. Our results show that
our proposals are more accurate and are faster than traditional area-based methods.

In practice, our real-time approach performs very well and is very efficient. The geo-
metric structure of the sequences from our vehicle is in most cases very simple (e.g. urban
scenarios with many planar surfaces), which leads to an even higher performance of our
method. However, at difficult lighting situations the quality of the disparity maps is im-
pacted by temporary phenomena like glare lights, light bursts or simply image noise. But
also at depth discontinuities and in occluded regions the disparity values are often not
correct, which is a well known drawback of window-based matching. Methods that are
based on energy minimization with pixelwise matching costs (like semi-global matching
or belief propagation) perform better in these cases, but take also much more time to pro-
cess and are far from real-time on our platform. We therefore chose to use the disparity
maps obtained from our very fast stereo matching method introduced in section 4.4 and
concentrated our efforts on improving these disparity maps by exploiting the redundancy
in the depth data, because most scene points are observed more than once. The success of
our investigations will be presented in the next chapter.
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The Problem of the Random Walk: A man starts from a point O and walks l yards
in a straight line; he then turns through any angle whatever and walks another l yards
in a second straight line. He repeats this process n times. . . 1 KARL PEARSON [108]

In this chapter we focus on improving the quality of binocular stereo matching. In prac-
tice, real-time performance is always desirable, but from a scientific point of view it is a
very prohibitive restriction and therefore we relax the constraint in this chapter. Further,
approaches which are not real-time today may achieve such performance in future as a re-
sult of increased clock speeds or due to novel processor architectures. A good example is
Hirschmüller’s semi-global matching. At the time of its presentation it was far from real-
time on ordinary CPUs. However, a few years later the method was ported to an FPGA
[51] and rendered the processing of megapixel images at frame rate possible.

Improvements in the quality of stereo matching have been made continuously over the
past decades as a result of a considerable amount of research. This has resulted in great ad-
vances that are mainly based on segmentation supported global optimization. However,
in real world applications, like automotive driver assistance, one is often faced with a wide
spectrum of illumination conditions and with huge variations of the environment, which
often makes the adaption of the parameters of the segmentation algorithm difficult. One
well known alternative are support weighted matching windows which make the corre-
lation function more distinctive. However, since perspective distortions of the matching
windows are usually not taken into account, these approaches have huge limitations at
slanted surfaces. Furthermore, since occluded pixels may be correlated with high support
weights, some limitations in regions near discontinuities exist.

Motivated by the strengths of segmentation and support weighting methods, we in-
troduce random walks as matching primitives that combine the strengths of both worlds.
Generally, random walks are stochastic processes that traverse the image in a random way.
At each step of the walk, the next adjacent pixel location is chosen based on color similar-
ity. In our proposal, we explicitly simulate random walks and use them for matching since
they are robust along discontinuities. Further, we incorporate surface orientations in order
to handle perspective distortions from slanted surfaces. We also introduce a novel voting
technique based on simulated random walks that serves to identify the most probable dis-
parities. After this voting step, we propagate disparities into occluded regions using ran-
dom walks and compute a probability distribution over disparities for every image pixel.

1In 1905 Prof. KARL PEARSON raised the question in the NATURE journal about random walks and asks: I
require the probability that after these n stretches he is at a distance between r and r + δr from his starting point.
Lord RAYLEIGH answered that for great values of n the probability sought is 2

n
e−r2/nrδr. Later, PEARSON

thanks several correspondants and comments: The lesson of Lord Reyleigh’s solution is that in open country the
most probable place to find a drunken man who is at all capable of keeping on his feet is somewhere near his starting
point!
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Finally, we use this distribution as a prior for global energy minimization. In this chap-
ter, we integrate strengths of many existing stereo methods in a completely novel manner,
where the use of random walks is essential not only for matching but also for selecting the
most probable disparities.

We provide extensive evaluation results and give an elaborate analysis on the contribu-
tions of the different steps of our algorithm, highlighting the improvements they provide.
The method presented in this chapter compares very well with state of the art and is capa-
ble of achieving top rankings at the Middlebury benchmark. As of Nov. 2012, we are able
to reach the 2nd place using the more restrictive quality threshold of 0.75 between com-
puted and ground truth disparities. The results demonstrate improvements in notoriously
difficult situations like occlusions, discontinuities and slanted surfaces.

5.1. Related Methods

In this section we only discuss directly related methods. We refer to section 3.2 for a thor-
ough overview on stereo.

Shen et al. [122] use the improved random walks algorithm of Grady [54] to compute
reliable matches. In a second step, they interpolate matches in ambiguous regions. Their
approach is very different from our work because we explicitly simulate random walks
and use them as matching primitives. Further, we incorporate surface orientations and we
also introduce a novel voting technique based on simulated random walks. Moreover, in
our propagation model, we obtain a complete probability distribution for the disparities
and use it as a prior for global energy minimization.

Local support weighted approaches like the works from Hosni et al. [66] or from Yoon
and Kweon [168] are also to some extent related. In these methods a rectangular region
is used for matching and the pixels inside the window are weighted based on color infor-
mation. Among local methods, [66, 168] can achieve a very good quality, but they often
produce errors in textureless regions which is due to the lack of global constraints. Since
the assumptions about fronto-parallel surfaces are violated, errors also appear on slanted
surfaces and near depth discontinuities.

In the context of window-based matching, Bleyer et al. [15] addressed slanted surfaces.
However, due to the relatively large size of the matching windows, a huge number of
orientations have to be evaluated. Therefore, their approach cannot explore the whole
parameter space and the solution is computed iteratively. In contrast, our method is able to
produce high quality results by considering only a few surface orientations and no iterative
scheme is required.

Wang and Yang [156] introduced sparse ground control points at the places where the
matching has been repeatedly achieved using three different local matching cost func-
tions. From them, a dense disparity map is obtained by diffusing these reliable matches
in the continuous disparity domain. Finally, the stereo problem is solved using global en-
ergy minimization with an additional unary potential which penalizes deviations from the
propagated disparity map. In contrast to their work, we discretely propagate disparities
into occluded regions in order to obtain a probability for every discrete disparity. Con-
sequently, we directly improve the matching cost function instead of using an additional
energy potential.
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Left Image Right Image 

Matching Cost 

Computation 

Random Walk 

Simulation and 

Cost Aggregation 

Voting using Random Walks 

Random Walk 

Simulation and 

Cost Aggregation 

Global Energy Minimization 

(a) 

(b) 

(c) 

(e) 

Propagation into Occluded Regions using 

Random Walks 
(d) 

Figure 5.1. The processing steps of our method: (a) Pixel-wise correlation of the input images; (b)
Aggregation of matching costs for every random walk where occlusions and slanted
surfaces are taken into account; (c) The information of all random walks is collected
in the voting volume; (d) Reliable matches are propagated to occluded regions and
probabilities of the disparities for every pixel are computed; (e) Finally, the probabilities
serve as a prior for global energy minimization.

5.2. Accurate Stereo Vision using Simulated Random Walks

Fig. 5.1 shows an overview of our method. We first compute pixel-wise matching costs
that are stored in the matching cost volume for every image location and the range of
evaluated disparity values. Instead of aggregating matching costs using windows around
the pixels like in local methods, we simulate random walks at every pixel to aggregate
matching costs along each walk. Since random walks rarely cross large image gradients,
this can be understood as a pre-segmentation step. In this way, we increase robustness at
discontinuities. We further explicitly consider occlusions, by simulating random walks in
both left and right images, and slanted surfaces, by evaluating different surface orienta-
tions. Once we computed a cost function for every random walk, we introduce a novel
voting technique that fuses the information of all random walks into one global voting
volume. After this step, we identify inconsistent regions which are mainly caused by oc-
cluded pixels and use random walks to propagate reliable matches into these regions. All
these computations result in a very robust data term which is finally used as a prior for
global energy minimization.
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5.2.1. Computation of Matching Costs

We first compute the matching costs which is basically a cost value for all possible image
correspondences. Formally, we compute a matching cost volume CM (x, y, d) where (x, y)
is defined for all possible image locations of the left image IL and d iterates over the set
of possible disparity values: dmin ≤ d ≤ dmax. For a given (x, y, d), a correspondence
between the left image pixel intensity IL(x, y) and right image pixel intensity IR(x− d, y)
of a rectified image pair is then computed.

We use pixel-wise dissimilarities using the sampling invariant differences of Birchfield
and Tomasi [9]. One might use any other method here, e.g. Census or Rank transform
[169], which are often preferred in practice because of their efficiency and robustness to
photometric variations.

5.2.2. Random Walks

We now formally define a random walk as an ordered sequence of pixel locationsR(xS) =
〈ri〉0≤i≤N starting at a start pixel r0 := xS , where N is the length of the random walk. At
each step of the walk, i.e. ri 7→ ri+1, a new pixel is randomly selected for ri+1 from the
four-connected neighborhood of ri based on transition probabilities pT (ri+1 | ri).

Later, we want to use the set of pixels defined by a random walk to infer information
about the depth of all the pixels along the walk. Therefore a random walk ideally never
crosses object boundaries and covers only pixels that are defined by the same scene surface.
Similar to many other works, we also assume that depth discontinuities coincide with
sharp color gradients and thus, we define the transition probability for a random walk
step from pixel ri to pixel ri+1 as a function of the color similarity:

pT (ri+1 | ri) =
1

C(ri)
· exp

(
−dC(I(ri)− I(2ri+1 − ri))

σC

)
(5.1)

where ri+1 is a pixel from the four-connected neighborhood N (ri) of ri. The value C(ri)
is a normalization factor, such that the transition probabilities sum up to one for every
pixel. The function dC computes the color norm for grayscale or RGB images and in prac-
tice we use dC(c) =

√
cT c, where the vector c contains the differences of the individual

color channels. In our experiments, we found that this choice of color similarities performs
quite well, but it may be necessary to adapt it to other types of camera sensors, for exam-
ple by weighting the different channels. Further, in (5.1) we used a step size of 2 pixels
for the probability computation because along depth discontinuities, there is an at least
1 pixel wide region of highly unreliable color values, which is a result of pixel sampling.
Therefore, by using a step size of 2 for probability computation, we reduce the risk that a
random walk crosses an object boundary.

The value σC in (5.1) controls how likely it is that a random walk steps towards a pixel
with a higher color difference. Given that dC is a strictly increasing function, the above
definition in (5.1) will always prefer pixels with a similar color (i.e. pixels with smaller
values of dC). This bias towards similarly colored pixels can be controlled using σC . For
example, if σC is set to a very large value, then the value of pT will depend less on the
actual value of dC . In practice, σC depends on image sensor noise which might be given
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Figure 5.2. Left-right simulation of random walks for the image pair Teddy. White arrows indicate
the pixels at which random walks were started. Occluded pixels are painted in blue. In
the top left image the random walk was started at a non-occluded pixel, but crosses the
area of occluded blue pixels. In the bottom right a random walk does not go into an
occluded area because no occluded pixels are present at that location in the right image.

in specifications from the image sensor supplier, but it can also be estimated efficiently for
a given image using the method of Immerkær [68]. In practice we obtained good results
with σC = 4σI with σI being the standard deviation of image noise computed by [68]. In
general, σC also depends on the texture of the scene surfaces: even if σC is set according
to sensor noise, a suboptimal behavior of the random walks is possible for highly textured
image content – that is, random walks cover only a few pixels. This can be explained by
the amount of surface texture present in the image: in such situations color variations may
lead to very small transition probabilities.

5.2.3. Left-Right Simulation

In this section, we take a closer look at the behavior of random walks near occlusions. In-
cluding occluded pixels later for correlation is highly problematic, because pixels with no
physical relation to the other image would be correlated with completely wrong surfaces,
and their corresponding cost values would not be reliable. In Fig. 5.2, we show a magni-
fied region of the stereo image pair Teddy from Middlebury [119]. The random walks are
simulated in both left and right images starting at the pixel labeled with a white arrow.
In the upper left image a left random walk painted in red is simulated. In the lower right
image a right random walk painted in green is simulated. In the left images occluded pixels
are painted in blue. The left random walk crosses occluded pixels painted in blue, but this
does not happen for the right random walk because no occluded pixels are present in the
vicinity in the right image.

In general, both the left and right images contain occluded pixels, however at different
locations in the images. Therefore, we simulate random walks for the left and right im-
ages independently and denote them as RL and RR respectively. Formally, every pixel
location xL of the left image is assigned a random walk and so they can be “re-used” for
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the different disparities (the same applies similarly for the right image). We will explain
in the next section how these left and right walks come together, but the basic idea is that
the aggregated correlation values of a random walk are usually higher if the walk covers
occluded pixels. This technique does not completely avoid the presence of occluded pixels
in random walks. It may fail in regions where many thin foreground objects are present
and it will fail for random walks whose start pixel is occluded.

5.2.4. Cost Aggregation using Multiple Surface Orientations

One of the big challenges for stereo methods are slanted surfaces and in the following
we describe how we tackle this problem. First, we assume that the surface shape can be
linearly approximated for the region covered by a random walk. While this assumption
might be violated for some walks that traverse a large image region, we argue that the fail-
ure of some walks is negligible for the final result, due to our voting technique presented
in the next section. Further, our experiments clearly show that our approach can handle
very difficult geometries.

To compute the aggregated cost CA(x, d, δk) for a given pixel x and disparity d, we use
the random walks defined in the left and right image and take different a priori surface
orientations δk ∈ ∆ into account. To perform left to right correlation, we use the random
walkRL(x) = 〈ri〉0≤i≤N and sum the pixelwise costs CM along the walk:

CLA(x, d, δk) =
N∑
i=0

CM (ri, d+ δTk (ri − r0)) (5.2)

The expression d + δTk (ri − r0) in (5.2) adapts the disparity value to the given surface ori-
entation δk, which is defined as the disparity gradient in horizontal and vertical direction.
Note that in this formulation some pixels may occur multiple times in the correlation sum.
For right to left correlation we use the random walk of the right image at the corresponding
positionRR(x− (d, 0)T ) = 〈ri〉0≤i≤N :

CRA(x, d, δk) =

N∑
i=0

CM (ri + (d, 0)T , d+ δTk (ri − r0)) (5.3)

Note that CM is defined for pixels of the left image and therefore, we shift the image posi-
tions back to the left image using ri+(d, 0)T . Finally, we obtain a global cost volume which
assigns a dissimilarity score to every disparity and orientation given a pixel location x of
the left image:

CA(x, d, δk) = min(CRA(x, d, δk), CLA(x, d, δk)) (5.4)

In the next section, we analyze the cost volume CA to determine depths and orientations
for every random walk of the left image.

5.2.5. Voting using Random Walks

In this step, we transform the volume of aggregated costs CA into a voting space V using a
novel technique based again on random walks. The main intuition consists of two simple
observations. Firstly, the minima of the aggregated costs CA provide optimal depth and
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orientation hypotheses for all pixel locations of the random walks. Secondly, every sim-
ulated random walk covers a set of different pixel locations and thus, in general, every
pixel is covered by many different random walks. Therefore, for every pixel x, there are
multiple depth and orientation hypotheses that are contributed by different random walks
which start in the neighborhood of x and which cover x. By collecting this information in
the voting space at every pixel we will obtain confirmation of all walks about optimal
disparities.

The voting space V(x, d) can be best understood as a data structure that holds a his-
togram for disparity values at every pixel location and is initialized to zero. First, for a
given pixel x of the left image, we collect a set S of relevant depth and orientation hy-
potheses:

S = {(d, δ) | CA(x, d, δ) ≤ ŝ+NΘ, dmin ≤ d ≤ dmax, δ ∈ ∆} (5.5)

with ŝ = mind,δ CA(x, d, δ). The parameter Θ specifies a small corridor within which the
hypotheses may be located relative to the minimum ŝ, and N is the length of the random
walks.

The second step is to update the voting volume with a random walk starting at pixel x
based on simulations using the hypotheses in S. For every hypothesis (d, δ) ∈ S for the
start pixel x, we update every pixel of the random walk R(x) = 〈ri〉i by simulating the
random walk again with the given depth and orientation prior using:

V(ri, di) 7→ V(ri, di) + 1 with di = d+ δT (ri − x). (5.6)

Note that for a given random walk, (5.6) is updated only once per pixel, even if a pixel
occurs several times in the walk. Ideally the optimal disparity for every pixel will receive
many votes from other random walks which cross that pixel.

5.2.6. Propagation into Occluded Regions

The voting space V(x, d) may be used to infer information about non-occluded pixels but,
in occluded areas, it is impossible to obtain depth information using binocular correlation.
Therefore, our idea is to identify occluded pixels using the well known left-right consis-
tency check [61] and then propagate depth information into inconsistent regions using
random walks. This can be achieved by either, explicitly simulating random walks or by
computing deterministic paths using Dijkstra’s shortest path algorithm. However, both
approaches are highly inefficient and we use the random walk framework proposed by
Grady [54] to propagate disparities with high confidence to the occluded regions. Orig-
inally, Grady used random walks for image segmentation by propagating a set of seed
labels into unlabeled regions using a weighted graph. In his work, he exploits an impor-
tant connection between random walks and potential theory which in turn is related to the
Dirichlet problem. The solution to such problems may be found by solving for the minima
of the combinatorial Dirichlet problem 1

2~x
TL~x, where in our case ~x holds label probabil-

ities for every pixel of the image and L is the combinatorial Laplacian matrix initialized
using the graph weights:

Lij =


1 i = j

−pT (xi|xj) xi and xj adjacent
0 otherwise

(5.7)
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where pT is computed using (5.1) with a step size of 1 to ensure Lij = Lji. By reorganiz-
ing the indices of L, the vector ~x can be split into unlabeled pixels ~u and known pixels ~m
(i.e. ~xT = (~uT , ~mT )). Also L can be partitioned into several submatrices where the sub-
matrix A represents the connectivity between unlabeled nodes and B the edges between
known and unlabeled pixels. If nm is the number of known pixels thenA andB are defiend
by Aij = Li+nm,j+nm and Bij = Li,j+nm .

The most important result is then a sparse system of linear equations A~u = −BT ~m
where, in our case, ~m is initialized with probabilities for disparities of non-occluded pixels
of the disparity map and ~u will contain the probabilities for the disparities of occluded
pixels after solving the linear system.

Finally, to compute the probability p(x, d) that the disparity is d at x we proceed as
follows. We first extract a disparity mapDC from V and filter out inconsistencies using the
left-right consistency check [61]. The probability for a consistent pixel is directly computed
using the histogram in V and for the inconsistent ones we use the propagation described
above. To compute the probabilities for the inconsistent pixels for disparity d, we first
initialize the vector of consistent pixels ~m by setting ~mj to 1 if |DC(xj) − d| < 1 and to
0 otherwise. Then, we solve the linear system and directly obtain the probabilities for
all inconsistent pixels: p(xi+nm , d) = ~ui. Note that the system must be solved for every
discrete disparity value.

5.2.7. Global Stereo Model

The steps described above compute a probability distribution p(x, d) for the disparities at
every pixel location. To resolve ambiguity and spurious matches we enforce a smoothness
constraint using an energy function E(D) = λED(D) + ES(D) with

ED(D) =
∑
x

− log p(x,D(x)) ES(D) =
∑
x

∑
y∈N (x)

min(κ|D(x)−D(y)|, τ) (5.8)

where the data term ED directly uses the computed probabilities and for the smoothness
term ES we use a simple linear truncated model. In practice we use loopy belief propaga-
tion to optimize the energy E(D).

5.2.8. Summary

To summarize shortly, we first aggregate pixel-wise costs CM (x, d) into the aggregated
cost volume CA(x, d, δ) by considering a small number of a priori orientations ∆. Using
CA we simulate random walks with specific depth and orientation hypotheses and collect
votes in V(x, d) which holds a histogram of disparities for every pixel. Then, we identify
inconsistencies and propagate there using random walks. These computations result in a
probability distribution p(x, d) which serves as a prior for global optimization.

5.3. Results

We tested our method using the Middlebury stereo datasets with ground truth following
the methodology of Scharstein and Szeliski [119] and used the same parameters for all
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images. We performed tests on a dual Intel X5690 and our highly parallelized but not yet
optimized C++ CPU implementation completes in just 9.7s and 13.3s for the datasets Teddy
and Art, respectively.

Since our method consists of many parts and depends on a few parameters we perform
a thorough analysis of the influence of these parameter and of the different parts of the
algorithm to the performance of our method.

5.3.1. Parameter Analysis

The walk lengthN and the parameter σC of the random walk transition probability of (5.1)
are the most critical ones for the performance of our method. Therefore we evaluate their
influence to the performance of our method. In Fig. 5.3, we present exemplary results for
varying values of N and σC using the datasets Tsukuba and Cones. We chose these two
datasets because we measured the biggest differences for them.
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Figure 5.3. The charts display the influence of the parameters N and σC on the errors in non-
occluded (nocc) and occluded (occl) areas. Errors are defined as percentages of dis-
parities that differ by more than 1 from the ground truth and we used a logarithmic
scale of the vertical axis for a better visualization. To generate these charts, we did not
use the random walk based propagation. For the first chart we fixed σC = 15 and for
the second chart N = 200.

Small values of N introduce errors because aggregated matching costs are less discrimi-
native in this case and thus, many wrong minimum values receive votes. Larger values of
N have a positive effect on the performance in occluded regions, which can be explained
by the voting strategy. If a walk covers occluded pixels and if the correct disparity and
orientation is contained in S then these occluded pixels will receive support for the correct
disparity. At the same time, the errors increase in non-occluded regions because it becomes
more likely that walks step over discontinuities. The steeper increase at Tsukuba might be
explained by the simple geometric structure of Tsukuba (there are less discontinuities than
in Teddy).
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Figure 5.4. The charts display the effect of disabling processing steps of our method. Error bars
show percentages of disparities that differ by more than 1 from the ground truth in
the whole image (all), non-occluded pixels (non-occl) and regions near discontinuities
(disc).

Very small values of σC lead to high errors in non-occluded regions because the walks
are then very sensitive to image noise. Especially at Tsukuba, there are some vertical arti-
facts present in the images, presumably a result from a Bayer-pattern, which seem to lead
to higher errors for small values of N and σC . Larger values of σC gradually increase the
error because it is more likely that walks cross object boundaries. In practice, good values
for σC and N , which minimize errors in non-occluded regions, can be obtained relatively
efficiently in an iterative manner. With a dense discrete parameter exploration we found
that the trends described above are still valid for other parameter combinations.

5.3.2. Method Analysis

In Fig. 5.4, we analyze the influence of the different processing steps of our method on
the quality in different image regions. The red bars (a) show the performance of the full
method with all processing steps.

The blue-colored bars (b-d) show the impact of the simulation in left and right images
and of the propagation. The left-right simulation helps in most parts of the image because
some false matches in regions near discontinuities are avoided. Due to the voting, both oc-
cluded and non-occluded regions benefit from that. The propagation clearly improves the
occluded regions by comparing (a) and (d), but may also slightly degrade non-occluded
areas because occasionally false matches are diffused into the neighborhood.

The green-colored bars (e-f) show the influence of the a priori surface orientations. For
(e) we used only a fronto-parallel prior ∆1 = {(0, 0)T }, for (a) 4 orientations ∆4 = ∆1 ∪
{(0, 1)T , (±1

2 , 0)T }, and for (f) 8 orientations ∆8 = ∆4 ∪ {(±1
3 , 0)T , (±3

4 , 0)T }. It is clearly
visible that the addition of only a few orientations using ∆4 results in a huge improvement
in performance on these datasets. The negative side-effects of adding more orientations us-
ing ∆8 is surprisingly low, since we would have expected a larger degradation due to a
higher matching ambiguity. However, there is nearly no improvement of using eight ori-
entations at these datasets, mainly because the disparity gradients on surfaces are relative
small at these datasets and thus, fewer orientations suffice. At the dataset Flowerpots of
Fig. 5.5 larger gradients occur and in non-occluded regions we measured an error of 7.8%,
6.5% and 4.8% for 1, 4 and 8 orientations respectively. These experiments also provide
some evidence for our assumption that random walks usually cover only a small region
and thus, perspective distortions have to be considered only for larger disparity gradients.
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The orange-colored bars (g-h) display the effect of the voting technique. In this case,
the data term was initialized using ED(D) =

∑
x minδ CA(x,D(x), δ). For (g) we only

disabled the voting but left the propagation enabled and for (h) we disabled both voting
and propagation. When comparing (g) to (h) it is noticeable that for Teddy in non-occluded
regions the propagation reduced the quality, which was due to a false match which was
propagated into the neighborhood. But also here the picture is clear that the propagation
mainly improves in occlusions. The impact of voting is best measured by comparing (h) to
(d) because in both cases no propagation is performed. From that, a considerable influence
on the quality can be observed in all image regions. This can be explained by the random
walks: if a random walk covers occluded and non-occluded pixels, all of them will receive
support for the correct depth if the true disparity and orientation is contained in the set S.

The gray-colored bars (i) show the influence of global energy minimization. In our ex-
periments we measured the best performance when using a relatively small strength of
regularization, which might explain the small influence.

Flowerpots With 1 orientation With 8 orientations Rocks1 No L/R-Sim., No Prop. With all steps

Baby3 No Voting, No Prop. With all steps Reindeer No Prop. With all steps

Figure 5.5. A qualitative comparison to visualize the effect of disabling processing steps of our
method. For each dataset we show the left image, a disparity map where specific steps
of the algorithm were disabled and a disparity map of the full method. Blue and red
pixels are wrong disparities in occluded and non-occluded regions respectively (i.e. the
disparity error is greater than one). We processed Flowerpots with one and eight a pri-
ori surface orientations. At Rocks1 we disabled the simulation in left and right images
(sec. 5.2.3) and the propagation of sec. 5.2.6. At Reindeer we disabled the voting and at
Baby3 the propagation additionally.

In Fig. 5.5, we give a qualitative impression using difficult Middlebury datasets which
underline the previous observations. In the supplementary material we provide more
elaborate results which show that our method produces quite robust results with the same
parameter set for all images. In general, our method has some limitations in textureless
regions, however, in most cases ambiguities are handled correctly by belief propagation
and the random walk based propagation.

5.3.3. Comparison to Other Methods

Fig. 5.6 and Tab. 5.1 show the results for the standard Middlebury stereo pairs. From
our perspective it is very important to underline that our method performs very well for
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smaller values of the threshold for the absolute disparity error. With a threshold of 1.0 we
currently achieve the 23rd place on the Middlebury evaluation, and with values of 0.75
and 0.5 we reach the 2nd and 6th place respectively.

We also compared to results of [156]. On the datasets Art, Bowling2, Flowerpots, Rein-
deer and Rocks2 the authors achieved in non-occluded areas errors of 15.3%, 14.6%, 20.1%,
10.4% and 4.8%, whereas our method performed better with 7.0%, 4.6%, 6.5%, 4.1% and
1.9%. Details can be found in the supplemental material.

Tsukuba Venus Teddy Cones

Figure 5.6. The disparities and bad pixels of our proposal for the standard Middlebury images
[119]. The rows show the disparity map of our method and the bad pixels for the dis-
parity error thresholds 1.0 (middle row) and 0.5 (last row). White pixels denote correct
disparities, black and grey pixels incorrect ones (i.e. the disparity difference is greater
than the threshold) in non-occluded and occluded regions, respectively.

5.3.4. Real World Sequences

We tested our method also on real world sequences from a moving vehicle. Fig. 5.7 shows
the rectified camera frame and the disparity maps obtained using our method based on
random walks. We also show disparity maps of our real-time method presented in sec-
tion 4.4. The disparity maps are shown as grayscale images and as color overlays (warmer
colors indicate higher disparities).
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Table 5.1. The performance of our method at the Middlebury benchmark [119]. At the time of
writing this thesis, we achieved places 6, 2 and 23 for error thresholds 0.5, 0.75 and 1.0
respectively.

Algorithm Error Rank Avg. Tsukuba Venus Teddy Cones
Thresh. Error nocc all disc nocc all disc nocc all disc nocc all disc

Our Method 0.5 6 9.68 7.20 7.94 13.9 2.84 3.51 9.04 7.71 14.8 17.6 5.81 11.9 13.9
Bleyer et al. [15] 0.5 8 9.91 15.0 15.4 20.3 1.00 1.34 7.75 5.66 11.8 16.5 3.80 10.2 10.2
Bleyer et al. [16] 0.5 23 13.1 22.8 23.1 18.7 3.70 3.85 8.79 10.6 13.8 22.6 5.47 11.0 13.4
Hosni et al. [66] 0.5 52 15.9 22.9 23.1 20.4 6.81 7.11 11.5 13.5 20.4 26.8 8.17 15.0 15.5
Wang and Yang [156] 0.5 71 17.5 22.5 23.9 18.5 6.81 7.41 10.7 16.1 22.2 30.6 12.2 18.3 20.1
Our Method 0.75 2 6.66 5.93 6.70 13.1 0.31 0.85 3.17 4.80 11.4 11.7 3.33 9.20 9.45
Bleyer et al. [15] 0.75 12 8.39 15.0 15.4 20.3 0.41 0.64 4.38 3.84 9.48 12.0 2.81 8.55 7.95
Bleyer et al. [16] 0.75 19 9.87 22.8 23.1 18.7 0.42 0.55 3.87 5.62 8.02 13.5 3.48 8.73 9.74
Hosni et al. [66] 0.75 44 11.5 22.9 23.1 20.4 0.67 0.89 3.57 8.36 15.1 19.3 3.73 10.1 9.86
Wang and Yang [156] 0.75 59 12.0 22.5 23.9 18.5 0.66 1.18 4.30 8.38 14.3 19.9 5.62 11.7 12.8
Bleyer et al. [16] 1.0 9 4.06 1.28 1.65 6.78 0.19 0.28 2.61 3.12 5.10 8.65 2.89 7.95 8.26
Bleyer et al. [15] 1.0 17 4.59 2.09 2.33 9.31 0.21 0.39 2.62 2.99 8.16 9.62 2.47 7.80 7.11
Our Method 1.0 23 4.83 2.02 2.77 8.58 0.21 0.68 2.31 3.87 9.47 9.34 2.67 8.28 7.74
Wang and Yang [156] 1.0 30 5.60 0.87 2.54 4.69 0.16 0.53 2.22 6.44 11.5 16.2 3.59 9.49 8.95
Hosni et al. [66] 1.0 33 5.80 1.45 1.83 7.71 0.14 0.26 1.90 6.88 13.2 16.1 2.94 8.89 8.32

Rectified view RT RT RW RW

Figure 5.7. Our method applied to sequences from our vehicle using our method based on random
walks (RW) and our real-time stereo method (RT). The disparity maps are shown as
grayscale images and as color overlays (warmer colors indicate higher disparities).

75



5. Accurate Stereo Vision

5.4. Discussion

In this chapter, we introduced a novel approach for accurate stereo matching. In particular,
we propose to use simulations of random walks for stereo vision. We make the matching
process systematically robust to challenging problems like discontinuities, occlusions and
slanted surfaces. This is mainly achieved by using random walks as matching primitives
because they, in some sense, perform a localized soft segmentation. Further, we intro-
duce a few a priori surface orientations for cost aggregation to handle slanted surfaces
and by using left-right random walk simulations we increase robustness in occluded re-
gions. Our novel voting strategy increases the general robustness in all image regions.
Finally, we perform a propagation of confident disparities into inconsistent regions and
use global optimization on a probability distribution over disparities to handle ambigui-
ties. We demonstrated experimentally that these measures lead to very reliable and very
accurate disparity maps which is strengthened by achieving the 2nd place at the Middle-
bury benchmark.

In practice, our proposed method works very well on many difficult images, however,
the biggest challenge for our method are currently homogeneous regions. In these cases,
the voting space is not able to aggregate meaningful votes and the resulting votes are
not very useful. To reduce the ambiguity, we introduced global optimization, but it does
not resolve successfully in all situations. The main reason for this is the conflict of goals
between the preservation of small image details and the regularization in homogeneous
regions.
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6. Probabilistic Stereo Fusion

If you want to inspire confidence, give plenty of statistics. It does not matter that they
should be accurate, or even intelligible, as long as there is enough of them.

LEWIS CARROLL

In this chapter we present the second, important component of our motion-stereo pipeline
which directly uses the disparity maps of the binocular stereo matching. The main mo-
tivation are the findings of the previous chapters where we evaluated that even very so-
phisticated global stereo methods do not perform very well in occluded regions or in areas
near discontinuities. Also robustness in adverse vision conditions is difficult to achieve
using binocular methods, because in some situations with glare lights the imagers are of-
ten physically limited in local image regions. The positive aspect of our motion-stereo
application is that almost all scene points are observed multiple times when passing by.

Thus, to increase the robustness and the accuracy of our depth sensing, we chose to
exploit the redundancy contained in disparity maps computed at different viewpoints.
Such methods are also known as multi-view stereo approaches and although a large amount
of research has been devoted to the stereo problem using multiple cameras [29, 85, 106,
116, 121, 133], obtaining dense high-quality depth maps in real-time is still a challenging
problem. A few multi-view stereo methods [100, 170] may achieve real-time performance,
but only by using the enormous processing power of graphics cards. But such hardware is
not available on our platform and therefore it is absolutely necessary that all calculations
can be performed in real-time on a standard mobile CPU at video frame rate.

Although we are particularly interested in parking assistance using motion-stereo, our
proposed solution is generic and can be applied to any video with known camera motion.
In Fig. 6.1 we show an example where the camera is mounted laterally on a vehicle. The
disparity maps can be computed from consecutive image frames over time when the ve-
hicle moves. From these disparity maps, we build a model of the environment, in order
to avoid collisions or to find lateral parking space. Even at higher velocities, the dispar-
ity maps exhibit a large overlap and thus depth information is highly redundant. At the
same time, due to the real-time stereo method used, disparities are very error prone. The
question is how to fuse all those disparity maps to improve the accuracy of the disparity
map defined by a reference image pair, for example, the last two images in case of motion-
stereo.

The problem of fusing disparity maps was addressed by [100, 170, 173] in order to pro-
duce either dense disparity maps of the scene from video [173], or to do a dense surface
reconstruction [100, 170]. These methods can either globally fuse disparity maps obtained
from different views or locally fuse them from the overlapping views. We restrict ourselves
to the local fusion of the disparities among overlapping views, because it is more typical
for our application. Since the methods of Merrell et al. [100] and Zhang et al. [173] currently
provide impressive results, we extensively compare our method to theirs. However, both
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(a) (b) (c) (d)

Figure 6.1. Real-Time motion-stereo for automotive driver assistance. When the vehicle moves,
depth is inferred via motion-stereo. (a) A camera mounted on the side of the vehi-
cle observes the lateral space. (b) One frame captured by the side-view camera. (c) A
disparity map obtained by pairwise real-time stereo matching. (d) The result of our pro-
posed fusion method which removes outliers and improves the quality of the disparity
maps.

methods are not real-time with our hardware: [100] requires a GPU to be real-time and
[173] performs expensive energy minimization with belief propagation which is far from
real-time.

In this chapter, we assume that a set of disparity maps is available and that they were
computed using any available short baseline stereo technique. Then, given any other ref-
erence view pair we propose a novel probabilistic disparity fusion method to produce an
accurate disparity map of the given reference view pair by fusing all available disparity
maps. We first project all disparity maps to the reference view pair. After maintaining vis-
ibility constraints, we estimate a probability density function over all valid disparities in
the reference view using uncertainties of these reprojections and their photo-consistencies.
Finally, this allows us to select the most probable disparity map from this distribution.
In addition we model occlusions which produce holes in the reprojected disparity maps
and define reliable areas by checking visibility in the reference and input views. This con-
tributes to the overall statistics of the disparity and provides better pdf estimation.

We tested our method on the challenging datasets of Middlebury [119] and compared it
to the fusion methods of [100] and [173]. The experiments show that our technique is very
robust and that the quality is significantly improved, especially in occluded regions and
at discontinuities. We also show results on real-world sequences acquired from a camera
attached to a vehicle. A very important fact is that our method allows real-time operation
on the CPU without dedicated hardware.

In the remainder we will first review the state of the art, then present our probabilistic
method and finally show an exhaustive experimental evaluation.

6.1. Related Methods

In recent years, multi-view stereo methods have been extensively studied and tested using
the available benchmarks [121, 129]. While resulting in a large amount of excellent results,
little attention has been spent on computational performance. However, when that was
the case and real-time stereo methods were proposed [61, 138], the reconstruction quality
was significantly decreasing. While multi-view stereo approaches introduce assumptions
on shape priors and use robust photo-consistency measures, there are others which aim
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to produce consistent disparity maps [47, 85, 100, 133, 173, 178]. In many cases, disparity
maps that are produced locally using a number of overlapping views are later fused into
either a global disparity video [173], or a full 3D model [100, 170]. Again, the vast majority
of works aim at high quality reconstructions of single objects and only very few try to
minimize the computational overhead.

Some works try to enforce temporal depth consistency using various smoothing ap-
proaches. For example, Bleyer and Gelautz [13] collect a number of depth values for every
fixed pixel location (ignoring the 3D geometry) and use in this sense temporal median fil-
tering. In other approaches [89, 91] temporal smoothness is formulated as a global energy
functional.

Since the main motivation of our work comes from motion-stereo we tend to fuse locally
overlapping disparity maps and do not aim to produce full 3D models. Works of Merrell
et al. [100] and Zhang et al. [173], which explicitly deal with fusion of the disparity maps,
are thus directly related to our approach.

Merrell et al. [100] compute depth maps between neighboring views and fuse this in-
formation based on the stability of every depth. In order to keep track of occlusions, the
stability is determined for every depth hypothesis and is defined by counting occlusions in
the reference and other views. A valid depth is defined as the first depth hypothesis which
is stable. However outliers affect the stability and such hard decisions may produce in-
correct depth estimates. Further, the computational complexity grows quadratically with
the number of disparity maps and in practice real-time operation is only possible with
GPU hardware. In our paper, we overcome these problems. Our probabilistic approach
employs reprojection uncertainties, handles outliers robustly and depth-accuracy gets im-
proved compared to this approach.

Zhang et al. [173] impressively generalized the fusion problem by formulating it as an
energy minimization problem. In their bundle optimization framework all disparity maps
are optimized iteratively using belief propagation. In contrast to Merrell et al. [100] they
do not model occlusions or visibility constraints explicitly. In their work these constraints
are handled by the simultaneous use of geometric coherence and color-similarity as well as
the regularization of belief propagation. The minimization of the energy functional is in
practice very time consuming and thus, this method is not an option for mobile real-time
applications.

Koch et al. [80] introduced the efficient correspondence linking algorithm: by chaining corre-
spondences across many views outliers are rejected and accuracy is improved. However,
no solution was provided for multiple disparity maps per view and disparities in occluded
regions or outliers near the beginning of the chain are problematic.

Finally the method of Zach [170], which fuses multiple depth maps to obtain a full vol-
umetric 3D reconstruction, was formulated as a relatively efficient method that uses the
GPU and produces very good results. However, the hardware requirements are too high
and the volumetric representation is problematic for our application.

Compared to other fusion methods, our work focuses on real-time performance, but also
offers high quality depth maps. This is demonstrated through exhaustive experimentation
and comparison to prior art where we obtained better depth maps, especially in occluded
and discontinuity areas.
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6.2. Probabilistic Stereo Fusion

The major problem in motion and multi-view stereo are occlusions and discontinuities.
Here we consider a reference view pair (RVP) in which we want to improve disparities, es-
pecially in occluded and discontinuity areas by bringing the information from other view
pairs to this view. For this we propose to compute a probability density function defining
the probability of the disparities in the reference image. It is done from the re-projection of
all disparity maps of all available view pairs to this RVP. This allows us to select the most
probable disparity at certain pixel locations of the RVP. Since the probability density func-
tion (pdf) is sampled from a relatively large number of measurements coming from other
view pairs reprojected to the RVP, we demonstrate in the results section, that our approach
significantly improves disparities at occlusions and areas near discontinuities.

6.2.1. Left-Right and Right-Left Distinction

We assume that there is a set of N input disparity maps between pairs of views. Disparity
maps between two, pairwise rectified views IA and IB are denoted by DA,B (using left-
right stereo-matching) and DB,A (using right-left matching). In the rest of the section we
will discuss the computation of only one pdf for left-right disparity maps DA,B . The com-
putation of the pdf for right-left disparity maps is identical. The intuition behind this is
that in most stereo methods left object boundaries are usually very stable when perform-
ing right to left matching (because no occluded pixels are present there in the right image).
The same can be said for right object boundaries and left to right matching. This implies
that the left-right consistency check only removes information and can introduce errors at
occluded areas around discontinuities. To avoid loss of information, we instead directly
use unfiltered disparity maps to compute two separate pdfs and combine the information
later.

6.2.2. Goal

Our goal is to compute an improved disparity map D̂ = D̂R1,R2 for a given RVP (IR1 , IR2).
To do this we transfer disparities from all input disparity maps (e.g. D0,1, D2,3) to the
RVP (IR1 , IR2). A simple triangulation and projection is sufficient [173] to perform this
transfer. Independent from the transfer method used, we refer to it using the transfer
function ΘA,B

k : (xA, dA,B) 7→ xk, which transfers a point xA using input disparity
dA,B = DA,B(xA) into view Ik. So, we use functions ΘA,B

R1
and ΘA,B

R2
to compute a repro-

jected disparity map D̃A,B by applying the transfer to every disparity inDA,B : D̃A,B(xR1) =

ΘA,B
R1

(xA,DA,B(xA))−ΘA,B
R2

(xA,DA,B(xA)) = xR1 − xR2 .
In practice, all available disparity maps are transferred to the RVP. Later, all these dis-

parity maps are used to compute the pdf of the disparities in the RVP. From this pdf, the
most probable values are extracted and they define the improved disparity map D̂R1,R2 .

6.2.3. Handling Occlusions

When performing the reprojection, depending on the occlusions and discontinuities in
DA,B , there are in general zero, one or even multiple disparity estimates for every pixel
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Figure 6.2. Holes as a consequence of reprojection. In these two cases, a 2D-scene is observed
by two different stereo cameras. In the first row, errors from disparity quantization
are interpolated and in the second row, holes at depth discontinuities are filled using
extrapolation.

of a reprojected disparity map. In an ideal world, the case with only one disparity occurs
when cameras of the reference and input views observe only non-occluded scene points.
Multiple disparities occur due to depth discontinuities where several input disparities of
different scene surfaces reproject to the same location in the reference view with different
disparities. However, in our method we must make sure that there is only one disparity
per pixel and thus we choose the closest depth estimate (i.e. maximal disparity) from these
values to maintain correct visibility. Zero disparities can occur due to disparity quanti-
zation in the input view or due to occlusions on surface discontinuities. It means that at
a particular pixel location in the reprojected disparity map there is no information about
the disparity, resulting in holes in the disparity map. We eliminate those holes by filling
them with approximated values based on surrounding disparities. This is important to be
done because it improves the estimation of the probability density function in many cases.
Below we discuss proposed solutions for the hole-filling. In addition it is very important
to check whether close parts of the scene are visible in the input views: we have to ensure
that background disparities are used for the pdf, if and only if the input disparity map
may contain information about the presence of foreground disparities (i.e. if close parts of
the scene are visible in both cameras). We perform this check (the reliable area) using the
maximum disparity (the closest possible depth) and invalidate areas which are not visible
in both, reference and input view pairs. If we did not perform this check, background
disparities would receive too much support and chances would be high that background
is visible in spite of the presence of foreground objects.

Holes from Disparity Quantization

In the first row of Fig. 6.2 we show an example where missing disparities in the reprojected
disparity map are artifacts of the disparity quantization. This usually happens on slanted
surfaces or on discontinuities. In Fig. 6.2 we used an example of a slanted surface. The
discontinuity of the input disparity map shown in the first row of Fig. 6.2 is an artifact of
disparity quantization. When reprojected to the reference view, holes are created whose
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sizes vary depending on the camera motion between the reference and input frames. We
detect and interpolate those holes by checking if the difference of the left and right neigh-
boring disparities is less than a small threshold. In practice, we set this value to two and
interpolate holes smaller than five pixels.

Holes at Occlusions

The remaining holes occur at depth discontinuities. In the second row of Fig. 6.2 we show
an example of an occlusion where part of the surface is visible in the RVP, but is not visible
in the input view pair. The reprojected disparities near the discontinuity (i.e. the occluded
area) will create a hole at that place. To fill this hole we chose to extrapolate the left and
right neighboring surfaces. To avoid using all left and right disparities, which can belong
to multiple objects in the scene, we segment those disparities and take only those that
potentially create the same surface. The interpolation is done by linear regression, i.e. we
fit the line to segmented left and right disparities as shown in Fig. 6.2. At a specific point
x, where the disparity is missing, the extrapolation gives two estimated disparities dl and
dr and we use the background (the occluded surface) as the final disparity, i.e. min(dl, dr).

Reliable Area

We must ensure that every reprojected disparity comes from the surface visible in both, ref-
erence and input camera pair. If that is not the case it means that the point corresponding
to this disparity is potentially occluded or not visible in the reference view. To check this
we verify if a point on the surface defined by the maximum disparity is outside the frustum
of IA and IB . In practice, for every point xR1 ∈ IR1 we compute xk = ΘR1,R2

k (xR1 , dmax)
and check if xk ∈ Ik for k ∈ {A,B}. If xk 6∈ Ik, then the disparity at xR1 is invalidated,
meaning that either it is occluded in the reference view or it is not visible in the input view.
Here, dmax is the maximum disparity of view pair IR1 and IR2 .

6.2.4. Probability Density Function of Disparity

We reproject all input disparities to the RVP and use them as measurements to compute a
probability density function of the disparity in the reference image. Later we draw from
this pdf the most probable disparity at every pixel location of the reference view as illus-
trated in Fig. 6.3.

First we build the set S of reprojected disparity maps by reprojecting all N input dispar-
ity maps to the RVP. Now we use these disparity maps as measurements to sample the pdf
of disparity d at every given pixel location x in the reference image. The unknown pdf p
can be modeled as:

p(x, d) =
∑

x̃∈IR1

∑
d̃∈S(x̃)

p(x, d | x̃, d̃) p(x̃) p(d̃) (6.1)

where p(x, d|x̃, d̃) is the joint probability of disparity d at pixel location x given a measure-
ment d̃ ∈ S(x) at measured location x̃ of a reprojected disparity map in S . We assume
that all the measurements of locations and disparities are equally probable. Therefore we
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Figure 6.3. The pdf estimation: (a) The 2D-geometry is observed from three different stereo cam-
eras. (b) Disparity maps from input stereo pairs are determined. (c) The reprojected
disparity maps to the reference view pair lead to (d) three pdfs for each reprojected
disparity map which are finally (e) combined in one pdf.

consider them constant and write after marginalization:

p(x, d) ∼
∑

x̃∈IR1

∑
d̃∈S(x̃)

p(x, d | x̃, d̃) (6.2)

The probability p(d,x | x̃, d̃) depends on the reprojection uncertainty defined by the prob-
ability pL(x, d | x̃, d̃) that the scene point X(x̃, d̃) (computed from the uncertain correspon-
dence xA ↔ xB before reprojection) projects to the location x in the image IR1 . It further
depends also on the probability pD(x, d | x̃, d̃) that the disparity of X is d in the RVP. So we
write it as:

p(x, d | x̃, d̃) = pL(x, d | x̃, d̃) · pD(x, d | x̃, d̃) · pC(x̃, d̃) (6.3)

These uncertainties are naturally coming from the input image pairs and can be directly
estimated there. In the following, we use the transfer function Θ to relate the uncertainties
to the RVP. The location uncertainty at pixel position x is measured by the discrepancy
between the true location xA = ΘR1,R2

A (x, d) and the measured location x̃A = ΘR1,R2

A (x̃, d̃)
in the input image obtained by back-projections of the true x and measured x̃ locations
from the reference image. Thus, pL has its maximum value when the true xA and measured
x̃A back-projections coincide and it decreases with increasing distance. So we use:

pL(x, d|x̃, d̃) ∼ exp

(
− 1

2σ2x

∥∥∥ΘR1,R2

A (x, d)−ΘR1,R2

A (x̃, d̃)
∥∥∥2
2

)
(6.4)

Similarly, pD is maximal at d̃ and decreases for differing depths:

pD(x, d|x̃, d̃) ∼ exp

(
− 1

2σ2d

∥∥∥(ΘB(x̃, d̃)−ΘA(x̃, d̃))− (ΘB(x, d)−ΘA(x, d))
∥∥∥2
2

)
(6.5)

where ΘA = ΘR1,R2

A , ΘB = ΘR1,R2

B and σx is the location uncertainty defined by pixelwise
sampling and σd is the accuracy of the disparity estimation. Note that x̃ and d̃ are taken
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from the set of reprojected disparity maps. If the disparities d and d̃ are the same, the point
defined by (x, d) will project to exactly the same input locations x̃A and x̃B and define
the same disparity in the input view, which will result in the maximum value. Otherwise,
points with different disparities or locations will back-project to locations away from the
measurement (x̃, d̃) and get lower values.

The color-similarity measure between xA and xB is given as in [173]:

pC(x̃, d̃) ∼ σC
σC + |IA(x̃A)− IB(x̃B)|

(6.6)

where σC is the color variance which we obtained experimentally. The value of pC is 1 for
points with identical intensities and decreases as a function of the color dissimilarity.

6.2.5. Disparity Selection

Finally we estimate the most probable disparity map from the estimated pdf. Assuming
that image positions x are equiprobable and with p(x, d) = p(d |x)p(x) we get:

d̂ = argmaxd p(d |x) = argmaxd p(x, d) (6.7)

We compute two different probability density functions pl and pr each corresponding to
the reprojection of left-right DA,B and right-left disparity maps DB,A. In our experiments
we found out, that the final disparity should be defined as d̂ = min(d̂l, d̂r), where d̂l and d̂r
are obtained from pl and pr. When determining d̂, using the max-function instead of the
min-function appears to significantly degrade the final disparity map (see Fig. 6.6). This is
due to the bad performance of most stereo methods at object boundaries (regions near dis-
continuities). Distinguishing between left-right and right-left matching will separate good
from bad left-boundaries (and bad from good right-boundaries). In ambiguous situations,
the min-function will favour the background (which is usually occluded).

6.2.6. Aligned Cameras

In the special case of linearly aligned cameras, the transfer function Θ is a linear relation-
ship depending on the baselines between the views:

xk = ΘA,B
k (xA, dA,B) = xA + λA,B,k · DA,B(xA) (6.8)

with

λA,B,k =
Bk,A
BB,A

(6.9)

where Bi,j is the signed baseline between views Ii and Ij , i.e. Bi,j = −Bj,i. In practice,
these factors may be numerically estimated using (6.9), even if the cameras are not per-
fectly aligned (for example, at motion-stereo).

As described in the previous section, we propose to add two disparity maps per input
view-pair: namely DA,B and DB,A. In practice, we first split the set of disparity estimates
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Art True Disparities GSW SGM BP RT

Figure 6.4. The disparities and bad pixels of our fusion method when using different stereo algo-
rithms on the dataset Art.

in S(x) into two disjunct sets Sl(x) and Sr(x), depending on the factors defined in (6.9).
We define

µA,B := λA,B,R2 − λA,B,R1 = −µB,A (6.10)

and distribute the values in S(x) to Sl if µA,B < 0 and to Sr if µA,B > 0. We then apply the
probabilistic fusion efficiently using the two different probability density functions pl and
pr as described.

While the use of these factors is only viable for special camera configurations, a simple
approximation of µ is possible, if an ordering on the cameras exists:

µA,B =

{
−1 A left of B
1 B left of A

(6.11)

6.3. Results

We evaluate our method using classical stereo datasets with ground truth from Middle-
bury [119] and demonstrate the applicability to real world data. In our experiments we
used σd = 1, σx = 1 and σC = 5. The standard two-frame stereo datasets from Middle-
bury [119] contain up to 9 images from which we computed 72 (Venus, Teddy, Cones) or
42 (Art, Moebius, Aloe) disparity maps from all possible image combinations. After that,
we fused these disparity maps to the standard reference view pair (e.g. (2, 6) for Teddy)
and computed the percentage of erroneous pixels (disparities that differ by more than 1).
For stereo processing we used Belief Propagation [40] (BP), Semi-Global Matching [59]
(SGM), Geodesic Support Weights [66] (GSW) and our local real-time stereo method of
section 4.4 (RT). We used constant parameters for the stereo methods among all baselines
and datasets.

We found out that fusion results are relatively independent of the actual stereo method
used (see Fig. 6.4 and Fig. 6.5), but characteristic systematic errors of each stereo method
are still visible after fusion (e.g. bad object boundaries for RT). The overall improvement
of hole-filling is below 2% – it helps mainly in occluded regions. The use of projection
uncertainties is relatively important (see Fig. 6.6): even for very well calibrated sequences,
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Figure 6.5. The performance of our fusion method with different stereo methods (GSW, SGM, BP
and RT) or when using GSW and no hole-filling. Error bars show percentages of dis-
parities that differ by more than 1 from the ground truth in the whole image (all), non-
occluded (nocc) or occluded pixels (occl) and regions near discontinuities (disc). We
fused up to 72 disparity maps. The overall improvement of hole-filling is below 2% and
replacing the stereo method makes only a slight difference.
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Figure 6.6. The impact of the different steps of our method: the use of projection uncertainties is
important and the distinction between left-right and right-left matching (LR/RL) using
the min-function helps at discontinuities. See Fig. 6.5 for a description of the bars.

there is always an uncertainty in matching which influences reprojection. The distinction
between left-right and right-left matching (see also section 6.2.5) is important in regions
near discontinuities (see Fig. 6.6).

6.3.1. Comparison to other Fusion Methods

We compare our method to other fusion algorithms, in particular the stability-based algo-
rithm of Merrell et al. [100] using our own implementation running on CPU and the bundle
optimization of Zhang et al. [173] using their own implementation (without their stereo-
matching and without final bundle adjustment). We used the same input data (i.e. dispar-
ity maps) for all fusion methods. We also perform hole-filling when using the method of
[100] (which was not described in [100]), because it leads to slightly better results. During
our benchmark, we got the feeling that the method of [173] is optimized for short baselines
(the video sequences of [173] have much smaller baselines than the datasets of [119]). Our
method works better with larger baselines, which is our target application.

For our comparisons we focused on recent, challenging datasets. Difficult occlusions
such as in Art [62] are ideal for testing fusion methods. We expect that fusion methods
perform well in occluded areas, due to information contributed by other views. Further,
performance in regions near discontinuities is also very interesting, because regularization
may blur discontinuities.
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Figure 6.7. The performance of different fusion methos. Disparity maps were computed using
GSW [66]. See Fig. 6.5 for a description of the bars.

Art True Disparities Our Method Zhang et al. Merrell et al.

Figure 6.8. The disparities and bad pixels of different fusion methods for the dataset Art.

Regions Near Discontinuities

Our method preserved sharp object boundaries and thin structures: obvious when looking
at the error bars in Fig. 6.7 (e.g. at Art) and disparity maps in Fig. 6.8, Fig. 6.9 (e.g. the
house in Teddy) and Fig. 6.10 (e.g. the pyramid tops in Moebius). Hole-filling helps only
slightly, but the distinction between left-right and right-left matching is important: left
object boundaries are stable in right to left matching (and vice versa). The approach of
Merrell et al. appears to perform better at discontinuities than the method of Zhang et al.,
but behaves less robust if the set S(x) contains many outliers. On the first sight, the actual
values of Merrell et al. near discontinuities may look odd, when taking the performance
in non-occluded and occluded regions into account, where Zhang et al. is better in most
cases. However, the disc-value is computed within a smaller portion of the image.
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Occluded and not Occluded Regions

In these regions, we benchmarked our method better than the other methods which is
mostly due to our probabilistic model (which is robust to outliers), the explicit visibility
computation (using reprojection and the reliable area; it reduces the number of hypothe-
ses) and also hole-filling (it reduces artifacts from reprojection and helps in occluded re-
gions). In general, the method of Zhang et al. seems to excel at planar surfaces and the
fused disparity maps tend to be slightly oversmoothed (visually very obvious in Fig. 6.9 at
the Moebius dataset), which might be optimized by parameter tuning. There is also another
interesting artifact, which we were not able to explain: thin objects in Fig. 6.8 are extracted,
but with an incorrect disparity value. The robustness of Merrell et al. seems to be impacted
by the number of outliers in the set S(x).

How can this proposal be better than prior art in these experiments?

In Merrell, visibility-constraints are enforced using their expensive definition of stability
(having a complexity of O(m2) – please note that the computation of S(x) is O(m) and
that for every element of S(x), m projections are performed). However, visibility can be
maintained more efficiently using reprojection and the reliable area (havingO(m), because
at every entry of S(x) we only update the global pdf by summation). This also has the
big advantage that projection uncertainties can be used later, whereas in Merrell it is not
possible. Moreover, for optimal stability calculation it is important that the number of
outliers having a negative stability is equal to the number of outliers with positive stability.
Our experiments suggest that this assumption is suboptimal in occluded regions, where
usually many outliers are present.

In Zhang’s method, the correct disparity is supported by the simultaneous combina-
tion of geometric coherence and color similarity. Geometric coherence alone supports also
background disparities of surfaces occluded by foreground objects in the reference view,
because visibility is not determined and this is problematic in cases where fore- and back-
ground objects are of similar color. The optimization using belief propagation ensures
smoothness in these ambiguous situations but seems to perform suboptimally in regions
near discontinuities. Due to the results we obtained during our experimental evaluation
(our method does not use any kind of energy minimization), we believe that our pdf will
also bring a huge advantage to the method of Zhang, especially near discontinuities and
when using wide-baseline sequences. While the probabilistic model in (6.3) is similar the
one in [173], we explicitly compute visibility to disambiguate depth hypotheses at an early
stage and model projection uncertainties.

Further, we would like to stress that in our method from every single input disparity a
global pdf is computed (parameterized using projection uncertainties and color-similarity).
The final pdf of the reference disparity map results from summing up all those single pdfs.
Efficiency is preserved by computing the final disparity map “bottom up” and the proba-
bilistic model ensures robustness. Hole-filling helps slightly in occluded regions and the
distinction between left-right and right-left matching is important for sharp object bound-
aries.
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Teddy True Disparities Our method Zhang et al. Merrell et al.

Cones True Disparities Our method Zhang et al. Merrell et al.

Aloe True Disparities Our method Zhang et al. Merrell et al.

Figure 6.9. The disparity maps and bad pixels of different fusion methods for the datasets Teddy,
Cones and Aloe.
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Venus True Disparities Our method Zhang et al. Merrell et al.

Moebius True Disparities Our method Zhang et al. Merrell et al.

Figure 6.10. The disparity maps and bad pixels of different fusion methods for the datasets Venus
and Moebius.

Execution Times

At the dataset Teddy (72 disparity maps) our method took 8.7 s (not optimized), the method
of [100] took 40.7 s and the method of [173] 175 minutes (i.e. 146 s/disparity map). These
times do not include stereo matching and were measured on a Intel E8200 dual-core with
2.66 GHz (for our method and [100]) or a Intel E5405 quad-core Xeon CPU with 2.00 GHz
(for [173]).

For our real-time implementation, we use SIMD-instructions of the SSE2 instruction
set and simplified the reprojection for motion-stereo (in this case, we assume that the y-
coordinate of projected scene points is constant over time). Using pre-computed kernels,
we are able to fuse 16 disparity maps in just 20 ms on a mobile CPU (2 GHz).

We also implemented an incremental variant that needs 3 ms per frame. We use the
pdf of the previous frame and reproject it to the current vehicle position. This pdf is then
updated using the disparity maps computed using the current camera image and the fused
disparity map is determined.
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6.3.2. Real World Sequences

We tested our method on real world sequences from a moving vehicle. Fig. 6.11 shows
a rectified camera frame, one input disparity map (computed using our real-time stereo
method of section 4.4) and one fused disparity map. For fusion we used a highly optimized
implementation (using SIMD instructions) to fuse 16 adjacent input disparity maps.

Fig. 6.12 shows fused disparity maps of a sequence provided by [173], along with the
camera frame and their fused depth map. For stereo matching we used GSW [66] and
ensured a minimal baseline of 5 and a maximal baseline of 7 frames (the baseline of ad-
jacent frames was too small for robust matching with GSW). We fused disparity maps of
only 20 adjacent frames and this explains why some disparities which are outside of the
field of view are missing (black regions at the left and right). Please have a look at the
supplemental material for a complete video sequence.

6.4. Discussion

We proposed a novel probabilistic method for fusing disparity maps in classical stereo
or motion-stereo setups. We achieve this by computing a probability density function
from all provided disparity maps. From this distribution, we determine the most probable
disparity map for a given reference view pair.

We introduce several novel concepts:

• Reprojection using the reliable area (for efficient visibility determination),

• A generic probabilistic model that uses projection uncertainties (for robustness to
outliers),

• A distinction between left-right and right-left matching (for sharp object boundaries),
and

• Hole-filling (for improved quality in occluded regions).

We compare our method to the current art using real scenes and disparity maps gen-
erated from datasets with ground truth. Our experiments show clearly that our proposal
appeals with good results and efficiency.

In practice, the fusion of 16 adjacent disparity maps runs in real-time and performs very
well at avoiding false matches and at improving the accuracy of depth discontinuities.
This results in a much better performance and availability of the application, especially
in very difficult situations, for example in low light or backlighting scenarios, when glare
lights are present, at illumination or exposure changes, with inaccurate camera positions,
and also with dirty camera lenses. Therefore, the fusion approach presented here is a
fundamental building block of our robust depth sensing and is more important than the
stereo matching itself. One important insight of our quantitative and qualitative results is
that the actual choice of the stereo method is only of minor importance. The redundancy
and massive amount of depth data is what leads to reliable and accurate results.

We found that the framework presented in this chapter is quite powerful and our idea
was to further generalize the concept towards multi-view fusion of image segmentations.
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Rectified view One input disparity map Fused disparities

Figure 6.11. Our method applied to sequences from our vehicle using our real-time stereo method.
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Input view Our result Zhang et al.

Figure 6.12. Our method applied to the sequence Road provided by [173].

Flower Fused Disparities (Real-Time Stereo)

Fused Disparities (GSW) Confidences (GSW)

Figure 6.13. Our method applied to the sequence Flower provided by [173].

While for disparity maps the fusion of numerical values from continuous domain (dispar-
ities) is relatively straightforward, the problem is much more difficult for image segmenta-
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Lawn One input disparity map

Fused Disparity Map Confidences

Temple One input disparity map

Fused disparity map Confidences

Figure 6.14. Our method applied to the sequences Lawn and Temple provided by [173].

tions, because the values are now discrete (the individual segment labels) and the labels of
segmentations from different images are also not coherent. In this sense, the next chapter
will address the problem of video segmentation.

94



7. Camera-based Parking Assistance

Automobile (French) originates from ancient Greek autós (αυτός; self) and from Latin
mobilis (movable); auto refers to the fact that the vehicle is powered by an engine
rather than being pulled by horses. [2]

In this chapter we finally close the circle of this dissertation and present a camera-based
parking assistant that makes use of the algorithms described in the previous chapters. Us-
ing our robust real-time depth sensing we introduce a streamlined approach for the inter-
pretation of the depth data, so to detect and measure parking slots, to perform a collision
analysis of specific regions around the vehicle and to visualize the acquired surroundings
of the vehicle. After a brief motivation and a review of related work we describe all image
processing and interpretation algorithms in detail. Towards the end we show results of
our exhaustive evaluation using a huge amount of very challenging video sequences from
our vehicle that comprises over 700 parking slots and different environmental conditions.
Since we concentrate on the applications, a brief summary of the implementation of the
motion-stereo method will be given (i.e. the stereo matching and probabilistic stereo fu-
sion). The customer functions, which rely on the recovered depth maps, will be discussed
in detail. There, we also compare to feature-based motion-stereo [151, 152] and a solution
based on an ultrasonic sensor [112]. A number of qualitative results and illustrations are
also provided.

7.1. Related Methods

In section 3.4 we give a broad overview on intelligent vehicle systems and parking assis-
tance. Directly related are vision-based methods which also use the principle of motion-
stereo [41, 124, 130, 131, 147, 151, 152]. However, these works address only a feature-based
strategy and no one utilized dense disparity maps. The basic idea is to calculate charac-
teristic features in subsequent images. Over time, this relatively small number of points is
tracked and then a 3D reconstruction is analyzed to find parking slots. These approaches
perform well in friendly conditions, i.e. as long as enough strong and distinctive features
can be derived from the images. However, challenging are both lowly textured objects,
which lead to very sparse point clouds, or also complex textures like foliage, where high
ambiguity during feature matching introduces wrong distance measurements. Moreover,
features are not necessarily located at the boundaries of objects. Thus the size of objects
and free space might be wrongly calculated. In these situations, the accuracy and reliabil-
ity of the determination of free parking areas varied in an inacceptable way.

In this chapter, we present a powerful approach that is based on our dense motion-stereo
pipeline, where at every frame a dense disparity map is computed. This results in im-
portant advantages, namely a very high detection rate of obstacles, a high measurement
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accuracy, a nearly drift free environment model and the ability to display a multitude of
different customer functions.

7.2. Environment Modeling

Our goal is to support the driver and eventually other occupants of the car at parking
related tasks. In the first place, this includes assistance for finding a parking slot (i.e. auto-
matic detection and measurement of free space). This also calls for an adequate interface
to the driver, which provides a visualization of the found parking place. In practice, we
generate a bird’s eye view of the ground plane with the host vehicle, parking space and
obstacles overlaid. Finally, we want to inform the driver and occupants if obstacles are
located in the pivoting ranges of the doors in order to prevent minor damage.

7.2.1. Method Overview

Image Acquisition

Rectification

Dense Stereo Matching

Temporal Disparity Fusion

Segmentation of Ground Plane and Obstacles

Silhouette

Map Creation

Parking Slot Detection

Map Creation

Collision Warning

Image Based Rendering

Augmented Parking

Figure 7.1. The processing pipeline of our approach: we rectify images acquired at different posi-
tions from a monocular camera and use them to compute dense disparity maps using
real-time stereo and probabilistic stereo fusion. From these measurements we segment
the ground plane and obstacles. This information is the foundation for the different ap-
plications: the parking slot detection computes silhouettes of the observed area from the
segmented disparity maps, creates a map out of them and detects and measures free
spaces. The collision warning uses obstacle points to examine the pivoting ranges of the
doors, and augmented parking takes advantage of segmented disparity data to render an
image of the ground plane with the host vehicle, parking space and obstacles overlaid.
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Following Fig. 7.1, our approach is composed of several processing steps. Based on the
principle of dense motion-stereo, we determine a depth for every pixel in every camera
image using stereo. In our case, a rectified pair of camera images is used for the stereo
matching (for example, the last two images acquired from the camera). Since these calcu-
lations are relatively expensive in terms of processing power, only efficient methods can
be applied, such as our proposals of chapter 4. After that, the history of disparity maps
is fused probabilistically using our multi-view method presented in chapter 6 in order to
obtain for every camera image the most probable disparity map that exposes a minimum
amount of outliers. In every fused disparity map we detect the ground plane, obstacles
and from that a silhouette which defines the free space. Then, we combine all these partial
silhouettes so that over time a global two-dimensional model of the environment is cre-
ated incrementally. Within this model, we detect parallel and cross parking slots. If a free
space region provides enough space for the vehicle and is bounded by obstacles, then it is
a candidate for a parking slot and the exact metric size is computed.

Further, we use the disparity maps to obtain a local 3D reconstruction of specific regions
of interest (for example, the pivoting range of a door). Using such a local 3D reconstruc-
tion, we perform a collision analysis and, if necessary, issue a warning to occupants to
prevent minor damages. Another application is Augmented Parking and uses image-based
rendering to compute a virtual bird’s eye view to visualize the positions of the host vehicle,
obstacles and the parking slot to the driver. In the following we will discuss all necessary
elements of the system.

7.2.2. Camera Sensors

The position and orientation of a camera with respect to the vehicle are important param-
eters. Two categories of cameras are relevant for dense motion-stereo with respect to their
orientation and applied functions.

The first class is the family of side-view cameras (see Fig. 7.2), which is located in the
front part of a vehicle. The optical axis of these cameras is parallel to the ground and
orthogonal to the orientation of the vehicle so that they are well suited for “first views” in
situations when the driver has an obstructed line of sight such as at the exit of car parks.
Accordingly, side-view cameras are mostly equipped with standard lenses.

Another class of lateral cameras is the family of top-view cameras (see Fig. 7.2). Here the
goal is to provide the driver with a virtual surround view containing the close environment
around his car to give visual support during low speed or parking maneuvers. Respec-
tively, these cameras are positioned in central parts of the body shell, where a wide angle
lens allows displaying the right and left areas.

In our experiments we used both types of cameras: The diagonal FOV of the side-
view and top-view camera is 68 and 170 degrees, respectively and they operate at VGA-
resolution (640x480 pixels) at 30 frames per second. For stereo matching, we down-sample
the images to a resolution of 213x160.

7.2.3. Calibration and Rectification

For stereo, a correct camera calibration and rectification is of eminent importance. In par-
ticular, a correction of the radial lens distortion is indispensable [34, 175]. Further, the
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(a) Side-View camera
mounted at the front
bumper of the vehicle.

(b) Schematic overview:
The vehicle is located
at a position where the
driver is not able to ob-
serve crossing traffic.

(c) Top-View camera
mounted at the mirror of
the vehicle.

(d) Schematic overview:
Top-View cameras observe
the close environment
around the car.

(e) User interface: the left- and right-looking side-view camera images are displayed so
that the driver is able to observe traffic.

(f) User interface: the images of the top-view and backward-looking cameras are undis-
torted and displayed together.

Figure 7.2. Side-View Cameras: (a) the mounting position, (b) schematic overview of the use case
and (e) the user interface. Top-View Cameras: (c) the mounting position, (d) schematic
overview of the use case and (f) the user interface.
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poses of a camera at two different points in time have to be determined, in order to rectify
pairs of images. In our case, odometry information was sufficient for that. However, if
no odometry is available or if it is too inaccurate, then this rectification may be estimated
from image correspondences [136]. The yaw-angle and movement in x- and y-direction
can be determined relatively well from odometry information, if the position of the cam-
era relative to the vehicle-origin is known. In practice, the recovery of pitch and roll angles
as well as the movement in z-direction is relatively imprecise with current vehicle sensors.
Due to this reason, we ignore these values in the first place. We rather use a simplified, ap-
proximated rectification (using only the yaw-angle and movement in x- and y-direction)
and resort to our extended stereo method presented in section 4.5.1, which is robust to
inaccurately estimated epipolar geometry. Therefore, it is not important that odometry
information is highly accurate: we only use it to approximate the rectification. Another
benefit of the simplified rectification is that the warping of images can be implemented in
an optimized way.

7.2.4. Stereo Matching

For stereo matching we use our local method of section 4.4 that runs significantly faster
than traditional real-time implementations [61, 104]. In particular, our method is suited
very well for motion-stereo setups, as it does not require a priori knowledge about the
maximum disparity, which depends on the motion model, the camera intrinsic parame-
ters and on the depths of the observed scene. In our implementation, the use of SIMD-
instructions allows us to compute a disparity-map for a 320x240 image in less than 30
milliseconds.

Frame Decimation. Since the vehicle moves with different velocities, the baseline of ad-
jacent frames is not constant. Especially for low velocities, the baseline becomes too small
for accurate depth computations. In practice, we use a simple frame decimation [105]
technique to improve depth estimation: for every reference frame, we select the matching
frame in a way such that the baseline is always greater than 10 cm. We obtain the baseline
from odometry information.

Histogram Equalization. To some extent, the high efficiency results from using the sum
of absolute differences (SAD) as a matching cost. However, when the camera moves
through its environment, lighting conditions will change constantly and sometimes very
abruptly. Because of the characteristics of the camera, we decided not to work with a con-
stant exposure time, so to always allow optimal exposure. But this results in stereo pairs
with different exposures, which has adverse effects on the matching using SAD. To reduce
these problems we chose to use histogram equalization.

7.2.5. Improved Matching for Motion-Stereo

In real-world situations, the ground is not perfectly flat and will cause the vehicle to pitch
and roll (e.g. due to road holes). In such scenarios the rectification would be more complex
than the simplified one described in section 7.2.3. However, in practice the simplified
rectification is sufficient, if the search area of stereo matching is slightly increased, so that
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a set of neighboring scanlines is taken into account, too. This is achieved by the method
presented in section 4.5.1. In practice, the extended method takes roughly twice the time,
so that real-time processing is still possible at a resolution of 213x160. In contrast, if the
search range is increased in traditional real-time stereo methods like [61], the execution
time is multiplied by the number of scanlines that have to be taken into account.

Please note that the vertical displacements may be used to update the rectification. In
practice however, we discard the vertical displacements.

7.2.6. Temporal Fusion of Disparity Maps

In chapter 6, we have already pointed out that real-time stereo matching is error prone
and is known to have weaknesses in regions near discontinuities [61, 119]. Therefore, we
use the method proposed in chapter 6 to obtain high quality disparity maps since it allows
real-time operation on standard CPUs and provides a very good accuracy, especially in
occluded parts and in regions near discontinuities (see Fig. 7.3 for an example). Popular
alternatives are [100, 170, 172], but [100, 170] require a GPU for real-time operation and
[172] is far from being real-time.

Rectified view Single baseline stereo Disparities using stereo fusion

Figure 7.3. Example for the temporal fusion. We show the camera frame, a single baseline disparity
map computed using our real-time stereo method and a fused disparity map. More
examples are shown in Fig. 6.11.

7.2.7. Ground Plane Segmentation

One goal of our system is to retrieve information about areas that are free for parking and
parts of the environment that are occupied by obstacles. To accomplish this, our strategy
is to analyze individual disparity maps to identify points that belong to the ground plane
and points that belong to the obstacles. We perform this classification solely in disparity
maps and therefore, we look at the plane plus parallax homography induced by the ground
plane:

HG = I + s e1v
T (7.1)

where s is proportional to the traveled distance, e1 = (1, 0, 0)T is the baseline and v =
(v1, v2, v3)

T is the normal vector of the ground plane. In our case, the camera is mounted
on a ground vehicle, so the baseline is parallel to the ground plane and therefore we
can assume that v1 = 0. The other two unknown components v2 and v3 depend on the
slope of the ground. These we want to recover from the disparity map (we could also
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use odometry information for that, but our experiments showed that it is less reliable).
With p = (x, y, 1)T , we obtain the following linear relationship for the disparities of points
belonging to the ground plane:

D(p) = eT1 (Hp− p) = eT1
(
s e1v

T
)
p

= s
(
eT1 e1

) (
vTp

)
= (s v2)︸ ︷︷ ︸

=:A

y + (s v3)︸ ︷︷ ︸
=:B

(7.2)

This implies that the disparity of the ground plane pixels is constant within a scanline
and motivates us to determine the parameters A and B by analyzing the histograms of
disparities created for each scanline.

The rough idea is to obtain initial guesses of A and B using a small set of scanlines
and then use a greedy algorithm to refine them by looking at more and more scanlines.
We start this estimation at the bottom of the image and successively use scanlines above.
We do it this way, because in practice in most cases the ground plane is visible in the
bottom part of the image. To reject scanlines containing a high amount of outliers, we use
the confidence measure which is provided by the temporal fusion for every disparity. By
assuming that disparities with a small confidence are wrong, we estimate the number of
outliers for every scanline. Then, during the whole estimation-process of A and B, we
use only those reliable scanlines whose outlier-count is below a threshold (in practice, a
scanline should not contain more than 50% outliers).

Initial Estimation. We start with an initial estimation of A and B, and iteratively refine
these values. For the initial estimation, we use the bottommost four reliable scanlines
and compute the parameters by L2-regression: for each scanline, we compute a separate
histogram of disparities and take the predominant value. Then these four values are used
for the regression using (7.2). The initial estimates are then filtered using a Kalman-filter,
together with values of the ground plane estimation of the previous camera frame.

Iterative Refinement. Once we obtained a first guess of the ground plane model, we add
more scanlines to refine the model: we visit each scanline from bottom to top and look
at the peaks of the histogram of each scanline. If the predominant value of the histogram
fits to the ground plane model we use the value to refine the parameters A and B by
adding the value to the regression: we do this by comparing the predominant value to
the value predicted by the current ground plane model, and if the absolute difference
is below a certain threshold, we update the ground plane model. During this process
only those scanlines have to be considered for which the predicted disparity is positive,
i.e. for y > −B

A (D(x, −BA ) = 0 is the horizon line). Finally, we are able to segment the
ground plane by checking the disparity of every individual pixel against the ground plane
model – independent from whether their scanline was used for the estimation of A and B.
Fig. 7.4 is an example for such a segmentation: blue pixels belong to the ground plane and
the blue line is the estimated horizon line. The red ticks indicate the theoretical position
of the horizon line (computed using the camera intrinsic and extrinsic parameters and a
canonical, perfectly flat ground plane).
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Figure 7.4. Superimposed ground plane segmentation: Blue pixels belong to the ground plane, the
blue line is the estimated horizon line and red ticks indicate the theoretical position of
the horizon line. Please note that the segmentation also finds points under the car.

Maximum Likelihood Estimation. After the iterative refinement we identified a set of
disparities that fulfill a simple linear model and the corresponding matrix HG has 2 de-
grees of freedom. To further improve accuracy, we randomly select 1000 points of the
ground plane segmentation and compute the parameters of HG using the QR decomposi-
tion.

7.2.8. Computation of Silhouettes

Once we obtained information about obstacles and the ground plane, our goal is to com-
pute a silhouette that limits the free space. The free space is bounded by obstacles and by
the region borders of the ground plane. For example, in the majority of cases, the curb is
not detected as an obstacle, but the ground plane segmentation stops there. We define that
the silhouette is represented in image coordinates.

Obstacle Silhouette. In practice the obstacles in our scenes can mainly be approximated
by large fronto-parallel planar patches (at least for side-view cameras – with top-view cam-
eras such a requirement can be enforced by rotating the camera virtually). Our practical
tests confirmed that this assumption still holds for plants (like bushes), motorcycles and
curved parts of other vehicles. To some extent, this can be explained by the quantization
of disparity values.

Due to these properties, we first compute the histograms of disparities within single
image columns, but only from those disparities which are not part of the ground plane.
Building such histograms increases robustness against outliers (in difficult scenes, more
stability can be attained by computing the histograms over multiple columns). From these
histograms we collect the first NOBS predominant entries, but only if their count is greater
than a specific threshold θOBS (to exclude disparities caused by noise)1. From these dis-
parities we take the largest one (minimal obstacle distance) and project the value onto the
ground plane by solving (7.2) for y. This results in a single silhouette-point for an im-
age column. By applying these steps to every image column we obtain a silhouette of the
obstacles.

Ground Plane Silhouette. Often, the curb is not detected as an obstacle but the ground
plane segmentation stops at the curb. Due to this reason, we also compute a silhouette

1In our experiments we set NOBS = 3 and θOBS = 10.
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Figure 7.5. Superimposed ground plane and obstacle segmentation. First row: fused disparity
maps. Second row: corresponding rectified camera frame superimposed with the seg-
mentation result. Blue pixels belong to the ground plane; the blue line is the estimated
position of the horizon line and red pixels belong to obstacles.

of the ground plane by analyzing image columns of the ground plane segmentation. For
a specific image column x, the location of the silhouette point is defined as the topmost
pixel that belongs to the ground plane. If the ground plane is not visible in column x we
invalidate this silhouette point, because then there is no information available about the
ground plane.

7.2.9. Cumulative Map Creation

We will use this map later for the parking slot detection and will propose slight modifi-
cations for other customer functions. We define our map to represent a specific region of
the ground plane around the host vehicle from a bird’s eye view as shown in Fig. 7.6b. We
build this map of the environment incrementally and we divide it into small equi-sized
cells where every cell stores the likelihood that the cell is occupied. We continuously up-
date this map by “adding” the silhouettes. Both the obstacle and ground plane silhouettes
are transformed from image coordinates into the bird’s eye view using a transformation
HBEV , which warps the camera image onto the ground plane. This is equivalent to map-
ping points of the horizon line to infinity. This transformation may be computed using the
horizon line computed using the ground plane segmentation. Every cell of the map has
associated a likelihood which is increased every time a silhouette projects there.

Hence, over time more and more silhouettes are added. It must be noted that the
ground plane segmentations may have different locations of the horizon line. Sudden
large changes of the horizon line should be avoided, or otherwise the distance measures in
the map become inconsistent. Therefore we assume that the variation of the horizon line
is small, in case a parking slot is in the FOV. While an imprecision within a specific range
is normal, large variations of the ground plane indicate either large changes in the slope of
the ground, or inaccuracies in the ground plane segmentation. Both situations are easily
detected using the variance of the location of the horizon line and then the parking slot
detection should disregard the corresponding region.
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Position Estimation. Our goal is to use the plane plus parallax homography HG ob-
tained from the ground plane segmentation for the position estimation. The map repre-
sents a defined portion around the host vehicle (the host vehicle has a constant position
and orientation). Since the vehicle moves over time, the map must be updated by a trans-
lation and rotation. These updates have to happen continuously at every camera frame,
because of the movement of the vehicle. With the transformations HBEV and HBEV ·H−1G ,
the movement of the vehicle can be taken into account. However, at this point we also
have to take care of the rectification of the stereo pair. Since the transformation HG maps
points of the current rectified camera frame to the previous rectified camera frame via the
ground plane, we have to include the pair of rectification matrices HRC and HRP of the
current and previous camera frames. Now, we obtain the plane plus parallax homography
in image coordinates which warps the previous camera frame to the current one taking
into account rectification:

H−1RC H−1G HRP (7.3)

Finally, the transformation with which the map has to be updated may be written as:

HBEV ·
(
H−1RC H−1G HRP

)
·H−1BEV (7.4)

Intuitively, we first warp the map to the previous image using H−1BEV and then transform
the map using (7.3) according to the camera motion. Finally, we warp the transformed
map from image coordinates back to the bird’s eye view using HBEV .

Cumulative Map Update. We need to update the likelihoods of the occupancies of the
map, according to the current obstacle and ground plane silhouettes. For that, we trans-
form the silhouette-points, given in image coordinates of the current rectified frame, into
the bird’s eye view using

HBEV ·H−1RC (7.5)

In general, the warped silhouette points in the bird’s eye view have a specific covariance,
which depends on the accuracy of disparity estimation and the uncertainty of camera lo-
cations. We take this uncertainty into account and for every silhouette point we update
the occupancy of the surrounding cells according to that uncertainty. The uncertainty is
spread using a Gaussian kernel around each warped silhouette point. The variance of the
Gaussian in x-direction is constant, while the variance in y-direction depends on the depth
uncertainty (this is, because we defined that the orientation of the vehicle always points
into the negative x-direction in the bird’s eye view). Taking the uncertainty into account
will help in difficult situations (for example, when using top-view cameras) and will make
the model independent of quantization.

In practice, we implemented these map updates very efficiently: these assumptions lead
to a rectangular region of the bird’s eye view, in which the map must be updated. We
implemented these operations very efficiently by using saturated additions and by scaling
precompiled Gaussian kernels.

7.3. Applications

In the following, we demonstrate three different customer-oriented functionalities. These
applications utilize the proposed motion-stereo processing pipeline but use disparity in-
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formation in slightly different ways.

7.3.1. Automatic Parking Slot Detection

For the detection of parking slots we use the cumulative map of the environment and
compute a global silhouette. Since the orientation of the vehicle is defined to be aligned
with the x-axis of the bird’s eye view, we compute one silhouette point for every column
of the map as shown in Fig. 7.6. For that, we first determine a line which runs through
the position of the camera in the bird’s eye view and is aligned with the orientation of the
vehicle (we assume that parking slots are either parallel or orthogonal to the orientation of
the vehicle). As indicated in Fig. 7.6, in every image column x of the cumulative map, we
find the closest occupied cell to that line (a cell is occupied, if its likelihood is greater than
a specific threshold) and store the distance in a global distance profile S(x).

(a) Parking slot

(b) Cumulative map
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Figure 7.6. Parking Slot Detection: the car passes by a parking slot (a) and builds the cumulative
map (b). From this map, a distance profile is derived and the parking slot detection is
performed (c).

Based on this global distance profile S, we define that a parking slot is an interval [x1, x2]
which fulfils

S− < S(x) < S+ ∀x ∈ [x1, x2] (7.6)

We use the parameters S− and S+ to constrain the size of the parking slot (as described
below). In practice, we use a small seed interval in which we check (7.6) and then we grow
the interval to the left and right.

Orientation. To detect cross and parallel parking slots, we perform the check using (7.6)
with different parameters:
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• To detect parallel slots we set S− and S+ to 2 m and 4 m, and

• For cross parking slots we use 4 m and∞ for S− and S+.

Depth. To compute the depth, we pick the camera frame from the history when the cam-
era was at position x1 (i.e. the nearest neighbor). Then we select two subsets of the seg-
mented obstacle disparities:

1. The set of close disparities: all disparities of the obstacle segmentation whose silhou-
ette position x fulfils x < x1 − 25cm.

2. The set of far disparities: all disparities of the obstacle segmentation whose silhouette
position x fulfils x > x1 + 25cm.

We compute the mean values of these disparity values and compute the depth of the park-
ing slot as the difference of these two depth values. We perform the same computations
for the position x2 and use the maximal value as the final depth for the parking slot.

Validation. We use several rejection cues for the validation of a free space. Every free
space has associated a specific interval of camera frames in which the free space is (par-
tially) visible. We reject a free space as a parking slot, if

• the steering angle exceeds defined thresholds, or

• the velocity is greater than a defined speed, or

• the variance of the location of the horizon line (of the ground plane segmentation)
exceeds defined thresholds.

7.3.2. Collision Warning

The sportive exterior design of cabriolets and coupés makes the pivoting ranges of doors
difficult to observe, because often the door-edge is located behind the driver’s head. Small
objects or unthoughtful opening of a door may lead to expensive minor damage. The
goal of this application is to prevent such damage by checking for possible collisions with
static objects in the pivoting ranges of the doors. If such a possible collision is detected,
occupants may be warned visually, acoustically or even haptically. In practice, we keep
the history of disparity maps and segmentations and perform these checks in the moment
when the vehicle stops.

We realized the collision detection in a slightly different way, however with the same
algorithmic components. Instead of using the silhouettes generated from the obstacle seg-
mentation, we directly use all disparities of the obstacle segmentation. For every disparity,
we compute the position on the ground plane (by solving (7.2) for y) and transfer that point
to the bird’s eye view using (7.5). Then, we update the corresponding cell of a cumulative
map at this position. This time however, we do not use a Gaussian kernel and we incre-
ment only one single cell per obstacle disparity. The collision detection is then performed
by analyzing defined regions of the map (for example, the regions corresponding to the
pivoting ranges of the doors). If a region contains cells whose counter is greater than a
specific value, a warning is issued.
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(a) Camera image of the pole (b) Local reconstruction (c) Exterior view with open
door

Figure 7.7. Collision detection within the pivoting area of the right front door: the car passes by
a pole (a) and in the moment when the vehicle stops, a local reconstruction (b) created
from the history of disparity maps is analyzed for possible collisions (c).

7.3.3. Augmented Parking

Once a parking slot has been detected, the question is how to visualize the actual location
to the driver. One idea is to generate a bird’s eye view displaying the image of the ground
plane with the position of the host vehicle and obstacles overlaid as shown in Fig. 7.8.

Figure 7.8. Augmented Parking: the host vehicle, the detected parking slot and surrounding obsta-
cles are displayed over the image of the ground plane.

Also this application can be implemented with the described components. We use a
slightly modified map: at this time, it represents a specific region of the ground plane,
which we want to visualize. Every cell of the map holds a pair of values (c, n), with c
being an intensity value and n being a counter. In the beginning, all cells of the map are
initialized to (0, 0). To obtain the optimal quality of this image-based rendering, we use
backward-warping: we iterate over all cells of the map and compute the location in every
relevant camera frame using the inverse transformation of (7.5) and by chaining the history
of plane plus parallax homographies (7.4). In practice, we keep a history of camera frames
and transformations in memory. For such an image pixel p, we check whether it is part
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of the ground plane segmentation and obtain the intensity value c′ from the camera frame
using bilinear interpolation. Let the current cell of the map be (c, n), then we update it
according to

(c, n) 7→
(
c n+ c′

n+ 1
, n+ 1

)
. (7.7)

Once all cells have been visited, we render the host vehicle and visualize obstacles using
the silhouettes as described above (see section 7.2.9).

7.4. Results

In the following section we present practical results of our system, measured on the appli-
cation level. We concentrated mainly on the performance at daylight conditions using the
side-view camera, but we also performed tests with the top-view camera and at different
environmental conditions.

For the parking slot detection, the accuracy and the false detection rates (false positives
and missed slots) are most important. For assessing the collision warning, we measured
only the detection rates. And finally, for the augmented navigation we present pictures of
the image-based rendering.

7.4.1. Test Methodology

Our goal was to test our method extensively in a large set of relevant scenarios. In our
case, this included quantifying the performance in terms of measurement accuracy and
detection rates of different algorithms and parameterizations. Especially for false detection
rates, the number of test cases should be quite large. Thus, practical experimentation is
usually very time-consuming and environmental influences make results of different test
sessions hard or even impossible to compare. Further, at every test case, ground truth
data must be acquired which requires time consuming labeling. Due to these reasons,
we decided to resort to software-in-the-loop techniques [154, 150]: we recorded videos
synchronized with data from the vehicle (e.g. odometry information). This allowed us
to execute different configurations of our method on exactly the same set of scenarios.
After recording the sequences we associated ground truth measurements to them. In every
video we mark all frames where a parking slot is, at least, in half of the image visible. To
each interval where a parking slot is visible we associate its ground truth size measured
using the laser distancemeter. We compare the results of our and those of other methods
to ground truth data and identify false detections.

The whole database contains over 120 GBytes of uncompressed video data (approxi-
mately 2 hours) of the side-view and top-view cameras and contains sequences of 718
parking slots. When recording the sequences we varied different parameters:

• Velocity: from idle speed up to 35 km/h, either with constant or varying speeds (by
braking and accelerating).

• Yaw-rate: in most cases we drove on a straight line, but in some sequences we mod-
ified the steering angle (e.g. driving on a sinuous line).
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(a) Garage (b) Garage (c) Garage

(d) Side-view image with a dirty
lens

(e) Top-view image (f) Rectified top-view image

Figure 7.9. Examples of camera images used: (a-c) sequences recorded in the garage have very
difficult lighting conditions due to inhomogeneous illumination (sun and neon light),
(d) an image of the side-view camera with a dirty lens and (e) a top-view image before
and (f) after undistortion.

• Slot length and depth (parallel and cross parking slots): lengths varied between 1.8
and 13.2 meters; depths between 2 and 10 meters. We configured the system in a way
such that a parking space should provide at least an area of 5.5 × 2.5 meters.

• Illumination: daylight (sunny, cloudy and rainy) and a subterranean garage (inho-
mogeneously illuminated by sun and neon light; see Fig. 7.9 for example images).

• Dirtiness of the lens: the database also contains a few recordings where the lens was
dirty (see Fig. 7.9 for example images).

We define that the length of a slot is the dimension being roughly parallel to the direc-
tion of the host vehicle and that the depth is orthogonal to the length. We measured every
parking slot manually using a Leica DISTO classic laser distancemeter, which is very ac-
curate in practice. When measuring these dimensions by hand, we could only achieve an
accuracy of±5 cm. The length is the minimal longitudinal size between two obstacles, but
the depth is more difficult to define: in general, the depth is the distance between a close
and a far boundary, both delimiting the parking space into which the vehicle must fit. The
far boundary is usually given by some structural installations (the curb, fences, walls or
other vehicles) but it may even not be present (then it may be given by ground markings
or implicitly by a change in the asphalt). The close boundary is even more complicated. In
some cases it is given by ground markings or a change in the asphalt, but in many other
situations such indications are missing and often it is defined by a “thought line” which is
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tangential to other parking vehicles or may even depend on complex scene understanding.
Therefore, we followed a two-fold strategy for the evaluation:

• The accuracy of length-measurements is evaluated using the whole database and the
associated ground truth measurements.

• The accuracy of depth-measurements is evaluated on a smaller set of parking slots,
where the far boundary was given by a wall or the curb. For the close boundary of a
parking slot we used the maximum depth of the bounding obstacles to the left and
right.

7.4.2. Analysis of the Stereo Pipeline
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(b) False detection rates

Figure 7.10. The average measurement error (a) and false detection rates (b) of our method with
different variations of the stereo pipeline at daylight conditions using the side-view
camera: our real-time stereo with our temporal fusion, our real-time stereo without
fusion, traditional real-time stereo [61, 104] with our fusion and dynamic program-
ming [119] with our fusion.

The most important part of our method is the disparity computation stage which in-
cludes the single baseline stereo method and the temporal disparity fusion step. Fig. 7.11
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Figure 7.11. The distribution of measurement errors of our method with and without our temporal
fusion at daylight conditions using the side-view camera. The fusion removes many
outliers and therefore, less false matches are accumulated in the map. Hence, the mea-
surements are more accurate.

shows that the temporal fusion is very important for accurate measurements and that the
amount of outliers is very critical for the overall performance (see also Fig. 7.10). If no
temporal fusion is performed, the disparity maps contain significantly more outliers and
imprecise object boundaries. These characteristics lead to errors in the cumulative map
and result in increased measurement errors. This becomes also obvious in Fig. 7.10 by an
increase in the false detection rates. The temporal fusion makes the whole system much
more reliable.

In Fig. 7.10 our proposed method, consisting of our real-time stereo method (section 4.4)
with our fusion (chapter 6), is slightly better than traditional real-time stereo [61, 104] with
fusion and is at the same time twice as fast. We also included dynamic programming [119]
in our evaluation (also with temporal fusion enabled), because it also belongs to the class
of efficient methods. However, the well known problem of streaking effects [119] limits the
practical use. The different configurations of the stereo pipeline effect also the detection
rates (see Fig. 7.10). The amount of outliers is a direct indicator for the robustness and thus
a measure for the customer value.

7.4.3. Performance when using Top-View Cameras

Our test vehicle was equipped with side- and top-view cameras. When we recorded the
sequences, we recorded the video streams of both cameras simultaneously and thus, we
were able to determine the performances in exactly the same conditions. Fig. 7.12 shows
the performance when using side- and top-view cameras: both systems offer the same
potential of accuracy (in 40% of all measurements the error was between ±10 cm, for both
systems) and it is more likely that the estimated size of a parking slot is too small, which
is a desirable property. However, it is more robust to use side-view cameras: the disparity
maps computed from rectified images of top-view cameras contain much more errors than
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Figure 7.12. The performance of our proposal with side- and top-view cameras at daylight condi-
tions. The bars show the distribution of measurement errors.

the ones from side-view cameras. This is due to the wide angle lenses used (less FOV and
lower resolution in the region of interest) and a worse signal-to-noise ratio (SNR).

7.4.4. Analysis of Environmental Influences

We also recorded scenes with different environmental influences:

• Daylight: sequences recorded at daytime (1 hour after dawn and 1 hour before dusk)
with sunny, cloudy or rainy conditions.

• Dirty Lens: we also recorded videos where the lens had (natural) dirt on it (com-
posed of the remains of a dead insect; see Fig. 7.9 for example images).

• Garage: sequences recorded in a garage with artificial lighting. In these scenes, light-
ing conditions were very difficult (see Fig. 7.9 for example images). To some extent,
this is due to the fact that sunlight is sometimes visible and the exposure control of
the camera adapts permanently and switches between day- and night-mode.

Fig. 7.13 shows that the performance of the system is different for these use cases. Large
mismeasurements are more likely in difficult situations but one important property always
remains: it is very unlikely that the parking slot is measured too large. In only 5% of all
cases, the length of the parking slot is over-estimated by more than 20 cm. This implies
that if the system has found a free space, there is a very high reliability that the vehicle
actually fits into it.

7.4.5. Comparison to other Methods

We compare our parking slot detection application to a feature-based method [151, 152]
and a solution based on an ultrasonic sensor [112]. For the camera-based approaches,
we used daylight sequences from the side-view camera. The feature-based method failed
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Figure 7.13. The distribution of measurement errors with different environmental influences:
scenes recorded at daylight (sunny, cloudy or rainy), with a dirty lens and in a garage
with very difficult lighting conditions.
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Figure 7.14. The distribution of measurement errors of different methods at daylight conditions:
we compare our method based on dense motion-stereo to a feature-based method [151,
152] and a solution based on an ultrasonic sensor [112].
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Figure 7.15. The distribution of measurement errors of different methods at daylight conditions:
we compare our method based on dense motion-stereo to a feature-based method [151,
152] and a solution based on an ultrasonic sensor [112].

completely on the top-view videos. The measurement errors of the feature-based approach
are much larger than the errors of our dense method. Only a few measurements have an
absolute error less than 0.5 meters (see Fig. 7.14). Fig. 7.15 shows the same error distribu-
tions with coarser intervals and shows that our approach achieves a very high accuracy.
The reason for the large errors of [151, 152] lies in the fact that the feature extractor often
fails to detect features on object boundaries. In many cases, features are mainly detected
at rims and license plates and this easily introduces an error of roughly 2 meters per park-
ing spot. In other cases, features are completely missing at textureless objects like walls
and this leads to much larger errors. Further, sometimes features are matched incorrectly
(for example, at repetitive structures) and this usually results in measurements that are too
small.

The approach based on the ultrasonic sensor [112] was only evaluated on parallel park-
ing slots (in total, 114 test cases), because due to a limited depth range, it does not detect
cross parking slots. This method had mainly problems when the obstacles had a complex
3D structure. For example, bushes are not detected reliably and curved object boundaries
led to large errors. Also trailer hitches and small objects seem to negatively impact the
measurement accuracy. There were a few false positives (only 4 cases), but probably due
to measurement errors, the number of false negatives (misses) was with 28% quite high
(in 32 cases). However, the overall impression is that it is a very reliable system, whose
performance is invariant to illumination.

7.4.6. Accuracy of Depth Measurements

The accuracy of depth measurements is difficult to compare. The feature-based system of
[151, 152] does not directly determine the depth of parking slots, so we cannot compare
to them. The ultrasound-based solution [112] has a limited depth range (in practice, the
maximum depth is between 3 and 4 meters) and so we evaluated it only on parallel parking
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slots.

Theoretical Discussion. In our approach, the depth Z is computed from a disparity d.
The relative depth-error is according to Eq. (2.27) given by

Zerr =
derr · Z

f ·B + derr · Z
(7.8)

with the focal length f , the baselineB and the error of disparity estimation derr. In practice,
the quantity fB is much larger than derrZ, and therefore the error Zerr is approximately
a linear function of Z. This means that for our system, range measurements using large
values for Z are most challenging. Thus, to evaluate our proposal, we used large values
for Z (i.e. only cross parking slots), in order to obtain an upper bound for the error.

0,0% 1,0% 2,0% 3,0% 4,0% 5,0% 6,0% 7,0%

Proposed Method (Side-View)

Proposed Method (Top-View)

Ultrasound-based Solution

Relative Error of Depth Measurements

Figure 7.16. The relative error of depth measurements of different approaches: for the ultrasound-
based approach, the depth of the parking spots was on average 2 meters and for our
method we used only cross parking slots with depths between 5 and 6 meters (the
distance between the camera and the far boundary was between 6 and 7 meters).

Fig. 7.16 shows the results of the depth accuracy: for the ultrasound-based approach,
the depth of the parking spots was on average 2 meters and for our method we used only
cross parking slots with depths between 5 and 6 meters (the distance between the camera
and the far boundary was between 6 and 7 meters). Notably, if we assume that derr = 0.125
then the theoretical error for a depth measurement at 6.5 meters is at 3.5% (for our side-
view camera). The measurements of [112] were relatively accurate in practice. For the
motion-stereo approach, the biggest challenge is given by repetitive structures: in one case
the absolute error was 48 cm (10%) which was due to mismatches at a fence (repetitive
structure). Also the characteristics of the camera play an important role: the worse SNR of
the top-view camera nearly doubles the error.

7.4.7. Performance of the Collision Warning

We also evaluated the collision warning application. We tested it on 123 obstacles (see
Fig. 7.18 for examples) and checked whether the warning was correct or not: if there is an
object in the pivoting range of a door, a warning should be issued – if it is save to open
all doors, then the warning should be suppressed. Based on these tests we determined
the detection rates (see Fig. 7.17). In 100 cases the decision for the warning was correct
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Figure 7.17. The performance of the collision warning at daylight conditions. We evaluated
whether the system warned correctly for the presence of obstacles in the pivoting
ranges of doors. In most cases, the decision upon the warning was correct (Correct
Detection). In other cases, the position of the obstacle was estimated falsely outside or
inside of pivoting ranges (Obstacle Missed or False Warning), or the collision-relevant
part of the object was outside the FOV of the camera (Obstacle Missed, but Occluded).

(i.e. issuing the warning or not; see Correct Detection). In 8 cases the location of the obstacle
was estimated too inaccurate (Obstacle Missed) and in 3 cases, the critical part of the obstacle
was out of the FOV (Obstacle Missed, but Occluded; e.g. an attachable trailer and in one case
the door would have hit a pole at a very high position). A False Warning happened in
12 cases: there was always an obstacle present, but the system falsely estimated that a
collision is possible.

7.4.8. Qualitative Impressions of Augmented Parking

We present generated bird’s eye views from different sequences in Fig. 7.19 and Fig. 7.20.
Challenging were situations in which the ground was not completely flat: in the bottom
example of Fig. 7.19 small distortions are visible in the rendered image. Also reflections
lead to artifacts which may be irritating in the first place. Lastly, since we did not introduce
photometric registration, coloring is often inconsistent within a rendering.

7.4.9. Execution Times

The execution times of the different processing steps can be found in Tab. 7.1. Dense stereo
matching and the temporal fusion of disparity maps consume most time. We partitioned
the whole system into several threads:

1. Acquisition-Thread: acquires video frames from the camera and performs the undis-
tortion.

2. Stereo-Thread: runs the dense stereo matching algorithm.
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Camera Image Reconstruction Camera Image Reconstruction

Figure 7.18. Examples for the Collision Warning: we present one camera image and the reconstruc-
tion obtained from segmented disparity maps. The objects (linewise from left to right
and from top to bottom): a bicycle (no warning), a motorcycle (no warning), a pole
made of stone, a pole made of steel, trailer 1, trailer 2, a bank and a stone.
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Frame 289 Frame 265 Frame 249 Frame 233 Frame 221

Generated Bird’s Eye View

Frame 201 Frame 178 Frame 150 Frame 124 Frame 087

Generated Bird’s Eye View

Figure 7.19. Examples for the bird’s eye views on different sequences: we show selected camera
frames and the generated bird’s eye view. In the bottom example, the ground plane
was not flat and caused the vehicle to pitch and movements in z-direction. This leads
to distortions in the rendering.
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Frame 702 Frame 682 Frame 664 Frame 647 Frame 626

Generated Bird’s Eye View

Frame 209 Frame 194 Frame 166 Frame 141 Frame 116

Generated Bird’s Eye View

Figure 7.20. Examples for the bird’s eye views on different sequences: we show selected camera
frames and the generated bird’s eye view. The top row is a good example for difficult
lighting conditions.
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Table 7.1. Execution times of the different processing steps on different processors: on the E8200
sub-pixel interpolation and many debug visualizations were disabled. The collision
warning and augmented parking are only run if required (i.e. event-triggered).

Step Time: Q9300 Time: E8200
2.53 GHz, 4 cores 2.66 GHz, 2 cores

Undistortion 2 ms 2 ms
Rectification 0.5 ms 0.5 ms
Stereo Matching 15 ms 12 ms
Temporal Fusion 31 ms 29 ms
Segmentation 2 ms 2 ms
Parking Slot Detection 4-11 ms 1-9 ms
Collision Warning 120 ms 80 ms
Augmented Parking ≈10,000 ms ≈10,000 ms

3. Fusion-Thread: performs the temporal fusion of disparity maps.

4. Interpretation-Thread: executes the segmentations and the applications.

5. Visualization-Thread: cares about the user-interface.

The collision warning and the augmented parking are not real-time, which is tolerable:
the collision detection is only run in the moment when the vehicle stops. The latency of
the augmented parking can be easily reduced to a minimum, if processing is started as
soon as a parking slot is found. Further, at the augmented parking most time is spent for
perspective warping and might be accelerated with dedicated hardware. Usually, we use
development settings for the interpretation thread, which includes many debug visualiza-
tions. In this case, the interpretation may consume up to 20 milliseconds, but by turning
off all unnecessary outputs it can be tweaked to 3 ms (including the segmentation). More-
over, we assigned the highest priority to the fusion- and acquisition-threads, the stereo-
and interpretation-threads ran with lower priority and the visualization-thread received
the lowest priority.

The whole system is implemented in C++ (using Microsoft Visual C++ 9.0) and runs
on Microsoft Windows. We achieved the best performance on a quad-core CPU with 2.53
GHz (Intel Core2 Extreme Q9300) and also on a dual-core CPU with 2.66 GHz (Intel Core2
Duo E8200). However, to allow real-time operation on the dual-core, we had to disable
sub-pixel interpolations in the stereo and fusion algorithms. Further, time-critical parts
are implemented using SIMD2 instructions. We also performed tests with another mobile
dual-core processor (in particular, a Intel T7600 with 2.33 GHz), but this CPU was not
sufficient for real-time processing.

7.5. Discussion

Some of the challenges one has to face are shearing effects when using rolling shutter
cameras, smearing with global shutter, and misalignments whenever interlaced images

2Single Instruction, Multiple Data: in particular, the SSE2 instruction set.
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are involved. Moreover, the current cameras suffer from weak sensitivity in low light
conditions. If an application is expected to work at night, some kind of active illumination
would be required. This would involve additional costs, installation space, and often leads
to legal conflicts in some countries. However, since parking maneuvers are performed
with relatively low speeds and having upcoming high dynamic range imagers in mind,
weaknesses of current technology are to some extent tolerable. Moreover, the temporal
fusion of disparity maps turned out to be highly effective against these issues.

Furthermore, it must be noted that there are mathematical limitations for monocular
systems in non-rigid scenes: in certain cases, if the motion-vectors of the host vehicle and
an obstacle are collinear then the motion of the obstacle is hard or impossible to recover
without additional knowledge or interpretation of data. In the worst case, this leads to
wrong distances. However, our focus lies on comfort functions: the detection of parking
slots and avoidance of minor damage is not safety critical. Therefore, we assume that
the scene is static and there are also techniques available to detect moving obstacles by
introducing other constraints [78].

Compared to the feature-based approach [151, 152], our approach based on our dense
motion-stereo pipeline has important advantages:

• Redundancy of measurements due to overlap of images: redundancy can be system-
atically utilized to detect wrong measurements and to improve accuracy.

• Higher detection rate of obstacles: while feature-based approaches are usually spe-
cialized in a specific class of features (e.g. corners and edges), problems arise if such
features are absent (e.g. regions with low texture). In our experiments the dense ap-
proach turned out to be much more flexible and detects almost all obstacles.

• Higher measurement accuracy of the measured dimensions of parking slots: high
accuracy requires a precise detection of object boundaries. Feature-based approaches
may miss detecting features which lie exactly on object boundaries. Such behavior
introduces large measurement errors.

7.6. Summary

This chapter presents a generic method for environment modeling based on dense motion-
stereo and demonstrates its flexibility using different applications for parking assistance.
Our processing pipeline exploits the principle of dense motion-stereo and relies on the
binocular and multi-view stereo methods presented in the previous chapters: after stereo
matching, we fuse the history of disparity maps probabilistically to obtain for every cam-
era location the most probable disparity map that exposes a minimum amount of outliers.
In every fused disparity map we detect the ground plane, obstacles and from that a silhou-
ette which limits the free space. Then, we combine all these partial silhouettes so that over
time a global model of the environment is created incrementally.

Using this model, we perform an Automatic Parking Slot Detection by examining the free
space. Further, we use the disparity maps to obtain a local 3D reconstruction of specific
regions of interest (for example, the pivoting ranges of doors). Using such a local 3D
reconstruction, we perform a collision analysis and, if necessary, issue a Collision Warning
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to occupants to prevent minor damages. Another application is Augmented Parking and
uses image-based rendering to compute a virtual bird’s eye view to visualize the positions
of the host vehicle, obstacles and the parking slot to the driver.

The accuracy and reliability of our approach is demonstrated via exhaustive experi-
mentation and comparison to solutions based on an ultrasonic sensor and feature-based
matching. The results show clearly that our proposal achieves high reliability, measures
accurately and is very flexible.
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Do not disturb my circles! Attributed to ARCHIMEDES of Syracuse

In the course of this thesis, we contributed novel computer vision methods for efficient
and accurate binocular stereo matching, for multi-view stereo reconstruction and we de-
veloped innovative functionalities for automotive parking assistance.

In particular, we introduced a novel disparity computation algorithm for efficient stereo
vision. It is mainly based on the observation that in dense stereo matching adjacent pix-
els have similar cost functions and that these cost functions can be minimized more effi-
ciently than in traditional approaches. In essence, our real-time stereo method performs
a pixelwise minimization combined with a propagation step that diffuses disparity val-
ues through the local neighborhood. The iterative computation principle results in less
required processing power and the ability to process images without knowledge about the
maximum disparity. The efficiency of this idea is emphasized by several generalizations
including robust cost functions like NCC or Census Transform and robust stereo matching
that accounts for decalibrated stereo rigs. We also introduce a simple post-processing rou-
tine to enhance the localization of depth discontinuities in disparity maps computed using
local window-based stereo methods. To summarize, we introduced a powerful disparity
computation algorithm with various generalizations which replaces the simple winner-
takes-all strategy found in many local matching approaches.

We also presented a novel stereo method based on simulated random walks for accurate
stereo vision. The main idea is that pixels with a similar color usually also have a simi-
lar depth and that simulations of random walks will help in determining small localized
segments with similar color. We introduced several measures to make the matching pro-
cess robust to challenging problems like discontinuities, occlusions and slanted surfaces.
The strengths of our method are mainly achieved by using random walks as matching
primitives because they, in some sense, perform a localized soft segmentation. Further,
we introduce a few a priori surface orientations for cost aggregation to handle slanted
surfaces and by using left-right random walk simulations we increase robustness in oc-
cluded regions. Our novel voting strategy increases the general robustness in all image
regions. Finally, we perform a propagation of confident disparities into inconsistent re-
gions and use global optimization on a probability distribution over disparities to handle
ambiguities. We showed experimentally that our proposed method computes very reliable
and very accurate disparity maps which is strengthened by achieving the 2nd place at the
Middlebury benchmark.

Chapter 6 focuses on the probabilistic fusion of disparity maps, in order to mainly im-
prove the quality and robustness of depth measurements. Our proposal is quite efficient
and allows real-time operation in our vehicle. Our efforts resulted in a novel probabilistic
approach for the fusion of disparity maps in classical multi-view or motion-stereo con-
figurations. For that, we compute a global probability density function and use several
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new concepts like a reprojection using a reliable area for efficient visibility determination,
a generic probabilistic framework that uses projection uncertainties for robustness against
outliers, a distinction between left-right and right-left stereo matching for sharp object
boundaries, and hole-filling for improved quality in occluded regions. In our comparisons
to the current state of the art we showed that our stereo fusion achieves very good results
and a high efficiency.

Finally, we presented our camera-based parking assistant that makes use of the algo-
rithms introduced for binocular and multi-view stereo. We implemented three prototyp-
ical functionalities, namely an automatic detection of parallel and cross parking slots, a
collision warning that monitors the pivoting ranges of the doors, and an image-based ren-
dering technique called augmented parking which visualizes the surroundings of the host
vehicle. Due to the high efficiency of our stereo matching and our disparity fusion meth-
ods, a real-time implementation only on a CPU was possible. Finally, the tests of these
customer-oriented functionalities in many difficult scenarios underline once more that the
probabilistic stereo fusion is an integral part for robust motion-stereo processing.
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A. List of Symbols

Mathematical Entities
x Lower-case italic character: a scalar value
d A disparity value
Z The depth of a 3D point
B The baseline between two cameras
f The focal length of a camera
x A 2D point in the image plane
X A 3D point in 3-space
P The projection matrix of camera P
K The intrinsic calibration matrix of a camera
C The optical center of a camera
R A rotation matrix
I The identity matrix
H A homography
F A fundamental matrix

Structures and Functions
I An image
D A disparity map
F A flow field
R A random walk (see section 5.2.2 on page 66)
V The voting space (see section 5.2.5 on page 68)
E(·) An energy function
CM (·) Pixelwise matching costs
CA(·) Aggregated matching costs

ΘA,B
C (x, d) A transfer function (see section 6.2.2 on page 80)
p(A |B) The probability of A given B

Operators
x1 × x2 The cross-product of x1 and x2
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