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Abstract

Accomplishing everyday manipulation tasks such as “Making Pancakes” successfully re-

quires autonomous robots to solve many physical reasoning problems. For example, to

perform the action of pouring pancake mix into a pan a robot has to infer where to hold the

container of the pancake mix, at what angle, and for how long in order to make a proper

pancake. Humans reason about such everyday problems seemingly effortless given their

experience and common sense. Hence, if we are aiming at robots that master human-

scale manipulation, they need to be equipped with similar problem-solving abilities as

humans have, namely, the abilities of naive physics and commonsense reasoning.

In this thesis we describe methods that allow robots to reason qualitatively about their

own manipulation capabilities, spatio-temporal configurations of objects as well as actions

and their effects. To this end, we have developed a formal description language for spec-

ifying robot components such as sensors, actuators, and algorithms and matching those

specifications against task descriptions to reason about the capabilities of robots. We have

also developed interval-based first-order representations called timelines for capturing the

state evolution of manipulation tasks performed by humans and/or robots in dynamic en-

vironments. These timelines are automatically generated through a novel framework for

envisioning the outcome of fully instantiated robot plans on the basis of detailed physi-

cal simulations. The developed framework has also been extended to acquire timelines

through “Games with a Purpose” in which humans perform manipulation tasks by con-

trolling a robot hand in a virtual environment. By interpreting and learning from timelines

robots can understand physical phenomena such as causal effects of parameterized ma-

nipulation actions. Finally, we present an approach for crowdsourcing and learning com-

monsense knowledge about spatial relations using web-based “Games with a Purpose”.

Experiments show how the complementary methods that have been developed in the

context of this thesis enable robots to reason about a wide spectrum of commonsense rea-

soning problems, whereby the overall problem-solving competence of autonomous robots

can be improved.
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Kurzfassung

Das erfolgreiche Erledigen von alltäglichen Manipulationsaufgaben wie dem Zubereiten

von Pfannkuchen erfordert von autonomen Robotern das Lösen einer Reihe physikalis-

cher Inferenzprobleme. Um beispielsweise Pfannkuchenteig in eine Pfanne zu schütten

muss ein Roboter inferieren, wo er den Behälter des Pfannkuchenteigs hält, in welchem

Winkel und wie lange er schütten muss. Menschen stellen über derartige Alltagsprobleme

anscheinend mühelos Inferenzen an, da sie sowohl über Erfahrung als auch einen gesun-

den Menschenverstand verfügen. Wenn also Roboter auf Menschen zugeschnittene Ma-

nipulationsaufgaben lösen sollen, müssen diese auch mit den Menschen ähnlichen Prob-

lemlösungsfähigkeiten ausgestattet werden — insbesondere mit naiv-physikalischem und

Common-Sense-basiertem Schlussfolgern.

In dieser Arbeit beschreiben wir Methoden die es Robotern ermöglichen, qualitative

Schlussfolgerungen über ihre eigenen Manipulationsfähigkeiten, raum-zeitliche Konfig-

urationen von Objekten, sowie Aktionen und deren Effekten durchzuführen. Zu diesem

Zweck haben wir eine formale Beschreibungssprache zur Spezifikation von Roboterkom-

ponenten wie Sensoren, Aktuatoren und Algorithmen entwickelt. Diese Spezifikationen

können dann mit Aufgabenbeschreibungen abgeglichen werden, um über die Fähigkeiten

eines Roboters zu schlussfolgern. Des Weiteren haben wir sogenannte „Timelines“ en-

twickelt, eine Intervall-basierte Logiksprache erster Ordnung, mit der sich der Ablauf von

durch Mensch und Roboter ausgeführten Manipulationsaufgaben repräsentieren lässt.

Derartige „Timelines“ können durch ein neu entwickeltes Framework, welches den Aus-

gang von vollständig spezifizierten Roboterplänen auf der Basis von detaillierten Physik-

simulationen vorhersagt, automatisch generiert werden. Wir haben das Framework um

die Möglichkeit erweitert, „Timelines“ auch durch interaktive Computerspiele, sogenan-

nte „Games with a Purpose“, zu akquirieren. Hierbei führen Menschen Manipulationsauf-

gaben in einer virtuell simulierten Umgebung durch. Durch die Interpretation und das

Lernen auf der Basis von „Timelines“ können Roboter physikalische Phänomene wie

zum Beispiel kausale Effekte von parametrisierten Manipulationsaktionen verstehen. Zum

Schluss stellen wir einen Crowdsourcing-Ansatz zum Wissenserwerb von aufgabenrele-
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vantem Common-Sense-Wissen über räumliche Relationen durch web-basierte „Games

with a Purpose“ vor.

Experimente zeigen wie es die komplementären Ansätze, welche im Rahmen dieser

Arbeit entwickelt wurden, Robotern ermöglichen, über ein weites Spektrum von Common-

Sense-Problemen zu inferieren. Hierdurch kann die Problemlösungskompentenz von au-

tonomen Robotern insgesamt verbessert werden.
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CHAPTER 1

Introduction

Robot technology has tremendously improved over the past decades. Today, special-

purpose robots are entering our daily lives in forms of vacuum cleaners, lawn mowers

and more recently telepresence robots. At the same time a new generation of integrated

robot systems with general-purpose manipulation capabilities is under research and de-

velopment. In the future, we will see the latter type of robots as personal assistants, care

takers, and co-workers in our households, homes for the elderly, and factories where they

will competently perform everyday activities (Bicchi et al., 2007; Hollerbach et al., 2009)

(Figure 1.1). Given the latest developments in robotics hardware and software robots have

made a considerable progress towards human-scale everyday manipulation. The wide

availability of compliant robot platforms like the PR21 and open-source software frame-

works like the Robot Operation System (ROS)2 greatly facilitated this progress. However,

the task spectrum of robots is still limited, mainly because current control mechanisms

are over-specialized and not flexible enough. That is, scaling the task repertoire of au-

tonomous mobile robots towards an open-ended set of human-scale tasks like doing

laundry and preparing meals requires novel ways of programming and controlling robots.

We strongly believe that robots that are to accomplish everyday manipulation tasks suc-

cessfully in human environments require reasoning capabilities similar to those of humans

deeply embedded within their control programs. In this work we will call such control meth-

ods and robots cognition-enabled.

1http://www.willowgarage.com/pages/pr2/overview
2http://ros.org
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CHAPTER 1 Introduction

FIGURE 1.1 Robot platforms with general-purpose manipulation capabilities. Left to right:
PR2 as household assistant, Human Support Robot as care taker, and Baxter as co-
worker. Courtesy: Intelligent Autonomous Systems (IAS), Toyota, Rethink Robotics.

1.1 Challenges for Everyday Robot Manipulation

Human environments exhibit properties that are quite challenging for everyday robot ma-

nipulation. These properties are diametrically opposed to those of a traditional industrial

setting. Figure 1.2 illustrates the different working environments of industrial and personal

robots. Industrial robots are made to perform repetitive tasks with high precision at a very

high speed. Often they are not equipped with any kind of sensor and therefore they are

only operated using open-loop control, that is, without any feedback from the environ-

ment. Within a typical industrial setting the work and task space of a robot is completely

specified. The environment of the robot is static and behaves deterministic. The robot per-

forms only episodic tasks. These properties stand in stark contrast to those in an everyday

household setting where the environment is only vaguely specified and partially observ-

able by the robot. Additionally, the robot has to account for dynamic and uncertain aspects

of the environment. Previously made decisions can also have long-term effects within the

robot’s course of action. Hence, robots need flexible and robust control and reasoning

mechanisms in order to cope with the inherent properties of human environments.

In contrast to the traditional industrial setting, everyday manipulation requires robots

to take quite a number of decisions within their course of action autonomously. Even a

seemingly simple action like picking up an object requires a robot to decide on where to

stand, which hand to use, how to reach for the object, where to grasp it, how to grasp it,

how much force to apply to it, how to lift it, and how to hold the object. Such decisions

should not be made once and for all, but rather based on the context. That is, task-related

objects, their states, the environment and the overall task determine how these decisions

have to be made in an appropriate way. Employing action-specific models based on the

context and the consequences of actions within their control programs robots are enabled

to make informed decisions and thereby can improve their overall performance.

2



SECTION 1.1 Challenges for Everyday Robot Manipulation

FIGURE 1.2 Robots in an industrial and household setting. Left: Industrial robots perform
repetitive tasks with high precision at a car assembly line under real-time conditions.
Middle: PR2 performs pick-and-place actions in the context of setting a table for break-
fast. Right: PR2 performs a complex meal preparation task in which it pours a granular
fluid from a bowl into a preheated cooking pot. Courtesy: ABB (left), IAS (middle, right).

In the long run, we envision cognition-enabled robots to perform everyday manipulation

tasks at a similar scale as humans. Those robots will perform and learn these tasks based

on naturalistic action specifications like, for example, clean the table. Reasoning compo-

nents that make sense of such ambiguous and under-specified instructions play a major

role for realizing systems with these capabilities. In particular, robots have to infer what

they have to do and also how they have to do it. The latter is especially important because

the outcome of a manipulation action highly depends on the way it is executed. Therefore

it is crucial to infer the missing information about the right parameterization of an action

in order to bring about the desired physical effects. In this thesis we refer to this kind of

inference as naive physics reasoning.

Overall we have seen that everyday manipulation in human environments poses many

challenges to robots. A good overview of these challenges is given in (Kemp et al., 2007).

One of them is Common Sense for Manipulation. Enabling robots to do commonsense

reasoning about everyday manipulation can be achieved by integrating methods from Ar-

tificial Intelligence (AI) into robot control mechanisms. In order to develop control programs

that exhibit robust and flexible robot behavior the reasoning components have to incorpo-

rate knowledge about the robot platform, the manipulation task, the environment and the

situated context. To this end, this work provides means to equip robots with naive physics

and commonsense knowledge that allow for reasoning about everyday robot manipulation.

But before we lay out what reasoning components robots need in order to perform every-

day manipulation tasks successfully, we will first look at the example of making pancakes

to illustrate what makes everyday robot manipulation so complicated.

3
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1.2 Beyond Pick-and-Place: “Making Pancakes”

In this thesis we consider “Making Pancakes” as our running example by which we il-

lustrate what knowledge robots need to competently accomplish everyday manipulation

tasks. Understanding everyday physical phenomena, that is representing and reasoning

about them, is an endeavor in the field of Artificial Intelligence which dates at least back

to the work of Hayes (1979). More recently, there has been work on realistic physical

reasoning problems like, for example, “Cracking an Egg” (Morgenstern, 2001). This and

similar problems as well as solutions to some of them can be found on the Common Sense

Problem Page3. Basically, the web page can be considered as a collection of benchmark

problems for commonsense reasoning. Often these problems are accompanied by a num-

ber of variants. Solutions to one of these problems should, first, apply to other problems

(at least partially), and second, account for a wide range of variants.

In analogy to this collection of benchmark problems, we have formulated the problem of

“Making Pancakes” as follows:

A robot pours a ready-made pancake mix onto a preheated pancake maker.

Properly performed, the mix is poured into the center of the pancake maker

without spilling where it forms a round shape. The robot lets it cook until the

underside of the pancake is golden brown and its edges are dry. Then, the

robot carefully pushes a spatula under the pancake, lifts the spatula with the

pancake on top, and quickly turns its wrist to put the pancake upside down

back onto the pancake maker. The robot waits for the other side of the pancake

to cook fully. Finally, it places the pancake using the spatula onto an upturned

dinner plate.

whereby a solution to the problem should take the following variants into account:

What happens if: the robot pours too much pancake mix onto the pancake

maker? too little? the robot pours the mix close to the edge of the pancake

maker? the robot flips the pancake too soon? too late? the robot pushes only

half of the spatula’s blade under the pancake? the robot turns its wrist too

slow? the robot uses a knife/fork/spoon to flip the pancake? the pancake mix is

too thick? too thin? the ingredients of the mix are not homogeneously mixed?

3http://www.commonsensereasoning.org/problem_page.html
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Humans can understand the challenge problem of “Making Pancakes” easily and can

immediately answer questions about it. However, for robots this problem formulation is

highly under-specified and therefore they need means to acquire the relevant knowledge

which enables them to perform and reason about the task.

Furthermore, this challenge problem illustrate the difference of carrying out and master-

ing an everyday manipulation task like making pancakes. This difference becomes evident

when a robot is presented with slight variations of the problem. A robot is only mastering

a task if it is able adapt its behavior to handle also variations of a problem. That is, it

understands the nature of the task and knows about related problems. Furthermore, the

robot knows what it is doing, how it is doing it, and why it is doing it. Given this knowledge

about the task, the robot is able to answer questions about its own decisions and its overall

performance.

Reasoning about this challenge problem involves different kinds of knowledge. To illus-

trate what information is needed to competently answer questions about this problem let

us consider the two principle actions of the task in greater depth, namely pouring the pan-

cake mix and flipping the pancake. Within the problem description these two actions are

described as follows:

POURING “A robot pours a ready-made pancake mix onto a preheated pancake maker.

Properly performed, the mix is poured into the center of the pancake maker without

spilling where it forms a round shape.”

FLIPPING “Then, the robot carefully pushes a spatula under the pancake, lifts the spatula

with the pancake on top, and quickly turns its wrist to put the pancake upside down

back onto the pancake maker.”

A robot about to make a pancake has to reason about various aspects with respect to

the pouring and flipping actions mentioned above. At first, it has to asses whether it is at

all capable to perform the actions given its own specification. For example, can it lift the

container of pancake mix which has a certain weight? Further, the robot has to reason

how it could perform the action in order to meet its respective constraints. For example,

how should it pour the mix in order to make a round shaped pancake? Additionally, the

robot should be aware of potential problems that might occur during the course of action.

For example, how could it avoid spilling some mix onto the table? Table 1.1 gives further

examples of different types of knowledge that a robot should know about in order to master

both pouring and flipping.
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TABLE 1.1 Examples of different kinds of naive physics and commonsense knowledge.

Knowledge Pouring Flipping

Capabilities � able to grasp bottle?
� able to lift bottle? (weight)

� able to grasp spatula?
� able to turn wrist quickly?

Spatial Concepts � where is the center?
� where is close to the edge?

� where is under the pancake?
� what means upside down?

Actions � where to hold the bottle?
� for how long?

� at what angle to push?
� with how much force?

Effects � spilling of pancake mix
� too less/much pancake mix

� push pancake off the oven
� pancake stuck on spatula

Based on the challenge problem of “Making Pancakes”, we have identified three major

categories of naive physics and commonsense knowledge which are subject of this work,

namely robot capabilities, spatial concepts, and actions and effects.

Robot Capabilities Robots need mechanisms to assess their own capabilities when

confronted with a task. Do they have the appropriate resources in terms of sensors, actu-

ators, algorithms and models to accomplish a task? For example, can a robot hand exert

a certain force onto another object and can it be controlled at a certain speed? Can the

robot apply enough force to lift the container holding the pancake mix? And can it turn its

wrist quick enough to flip the pancake? If robots know about their own capabilities and

limitations, they could asses which everyday manipulation tasks they are able to perform

and/or what components are missing in order to do so. This knowledge is also helpful for

the distribution of tasks and the exchange of information and skills between multiple robot

platforms.

Spatial Concepts Everyday manipulation requires robots to have a sound understand-

ing of, sometimes vaguely specified, spatial concepts. For example, when is a fluid like the

pancake mix on the pancake maker? And when is a spatula under the pancake? In the

latter case, it is actually only the spatula’s blade that has to be under the pancake. Many of

these spatial configurations can be assessed by looking at a particular situation. However,

some spatial concepts like pancake upside down involve at least two situations, that is,

reasoning over time. In general, knowledge about spatial relationships between objects is

an important aspect for understanding everyday manipulation and a prerequisite for the

next category, namely actions and their effects.

6
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How to pour the pancake mix?
� where to hold the bottle of pancake mix?
� at what height?
� at what angle?
� for how long? . . .

How to flip the pancake?
� how to push a spatula under the pancake?
� at what angle?
� with how much force?
� how to lift the pancake? . . .

FIGURE 1.3 Left: Robot Rosie about to make a pancake. Right: Questions Rosie has to
answer to accomplish the task. Courtesy: IAS.

Actions and Effects We consider knowledge about actions and their effects as the

most important type of knowledge in the context of everyday manipulation. By following

the description of the problem of “Making Pancakes”, a robot can acquire some basic

knowledge about the task. It does however not know what could happen when the robot

itself performs the task in a certain way. The knowledge how to perform a task is obtained

by what we call here envisioning (de Kleer, 1977). Figure 1.3 highlights some questions a

robot has to answer in order to accomplish the task successfully.

The main actions of this task are pouring the mix and flipping the pancake where the

latter action can naturally be split into the following sub-actions: pushing the spatula under

the pancake, lifting the pancake, and turning the spatula.

Pouring the mix onto the pancake maker successfully requires that the container holding

the mix is positioned at a certain height over the pancake maker. At this position the

container has to be tilted for some time at a certain angle, so that the mix flows out onto

the pancake maker. Figure 1.4 shows a robot pouring a pancake mix onto a pancake

maker.

As mentioned above, flipping the pancake can be considered as several sub-actions.

For pushing the spatula under the pancake the spatula has to be hold at an appropriate

angle to get under the pancake. When lifting and turning the pancake the spatula has to be

tilted at a certain height that the pancake falls off and lands upside-down on the pancake

maker. Figure 1.5 shows some images of Rosie performing the flipping action.

The pouring and the flipping actions performed by the robot could have various effects

ranging from undesired to desired. Some of the undesired effects are depicted in Fig-

7
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FIGURE 1.4 Rosie pouring mix onto the pancake maker. Courtesy: IAS.

FIGURE 1.5 Rosie flipping a pancake. Courtesy: IAS.

ure 1.6. During the pouring action, the robot could spill some pancake mix onto the table

or it could only pour the mix onto the pancake maker with lots of splashes. During the flip-

ping action, robot could damage the pancake by touching it from the top or the pancake

could get stuck to the spatula.

Since knowledge about actions, their effects and related problems plays a key role in

naive physics and commonsense reasoning for everyday robot manipulation, it is the pri-

mary focus of this thesis.

FIGURE 1.6 Physical Behavior Flaws: pancake mixed spilled, spatula placed over the pan-
cake, pancake stuck on spatula. Courtesy: IAS.
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1.3 Need for Naive Physics and Common Sense

How can humans accomplish and reason about a task like making pancakes given fairly

abstract natural language descriptions as presented in the previous section? Two impor-

tant factors that allow humans to do this are their everyday experience and their common

sense. But what are the computational principles that enable robots to master such tasks?

Before we present our approach in Section 1.4, let us first consider different kinds of ques-

tions a robot has to answer to demonstrate that it understands a task, and second, how

some of these questions are seen from the fields of Artificial Intelligence and Cognitive

Science.

1.3.1 Reasoning Problems

The example of making pancakes described in Section 1.2 illustrates why everyday ma-

nipulation is a hard problem and why robots should be equipped with the human-like

capabilities of naive physics and commonsense reasoning. In particular, robots should be

able to answer some of the following questions:

MONITORING What is the expected outcome of an action?

PLANNING Which action will lead to an intended goal?

DIAGNOSIS What has caused something to happen?

QUESTION ANSWERING Why has an action being performed?

REINFORCEMENT LEARNING When does the outcome of an action change qualitatively?

IMITATION LEARNING What is the intended outcome of an action?

These questions illustrate exemplarily to what types of problems this kind of reasoning

can be employed in order to adjust the behavior and/or to improve the overall performance

of robots.

Within this line of research we are interested in how robots can understand the under-

lying principles of everyday manipulation. That is, they should not only be able to perform

a task, but rather master it. We have designed and implemented methods to envision the

outcome of single actions like reaching for an object and complex tasks through mental

simulations. We also consider examples of human performances to inform robots about

9
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important parameters of their actions. Furthermore, we investigate how robots themselves

can assess whether they are physically capable of performing a task.

Given that the underlying ideas and the developed methods are applicable to a wide

range of problems, we believe that this work can have a broad impact in field of Robotics.

1.3.2 An Artificial Intelligence Perspective

Autonomous robots assistants that can operate in human-scale environments has al-

ways been a great motivation to researchers in the fields of Artificial Intelligence (AI) and

Robotics. Maybe the earliest example of an integrated robot system was Shakey realized

by SRI’s Artificial Intelligence Center4 in the late 1960s (Nilsson, 1984). However, since

then, research in AI and Robotics has mainly been focused on isolated problems such

as knowledge representation and reasoning, planning, uncertainty, learning, and percep-

tion. Therefore, another big challenge remains the integration of the developed methods

from AI and Robotics. This demand has already been recognized by researchers of both

fields and is documented, for example, by a series of symposia titled “Designing Intelligent

Robots: (Re)-integration of AI” 5. Also, several European projects target at the integration

of methods of both fields, namely IntellAct6, RACE7, Xperience8, RoboEarth9, First-MM10,

and RoboHow11. In a similar light, this work integrates symbolic approaches from the area

of knowledge representation and (probabilistic) reasoning and learning with methods from

the area of Robotics.

Within Artificial Intelligence (AI), the problem of reasoning about actions was often con-

sidered in the area of classical planning. But in the context of Robotics the problem has

to be approached in a different way, because, first, the open-endedness of tasks makes

classical planning intractable, and second, robot control programs are not represented ad-

equately by sequences of actions as noted by McDermott (1992). Logical axiomatizations

for representing and reasoning about actions and their effects have also been developed

for problems like, for example, “Cracking an Egg”12 (Morgenstern, 2001). However, when

temporal projections are made on the basis of logical formalizations physical details of

4http://www.sri.com/about/organization/information-computing-sciences/aic
5http://people.csail.mit.edu/gdk/dir2
6http://www.intellact.eu
7http://project-race.eu
8http://www.xperience.org
9http://www.roboearth.org

10http://www.first-mm.eu
11http://www.robohow.eu
12http://www.commonsensereasoning.org/problem_page.html
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the manipulation actions are abstracted away and variants of the problem could only be

handled by extending the underlying theory. To enable robots to reason about the future,

they have to predict the effects of their actions before committing to them which requires

the handling of an enormous amount of interdependent temporal data (Dean, 1989).

1.3.3 A Cognitive Science Perspective

Evidences from cognitive psychology and the neurosciences show that humans perform

their actions based on the expected consequences of their actions (Haazebroek and Hom-

mel, 2009; Ingram et al., 2010). One of the important factors that determines how humans

perform an action is, for example, the end-state comfort (Weigelt et al., 2006). Mirror neu-

rons allow humans to perform mental simulations and thereby enable us to recognize and

understand the outcome of actions (Oztop et al., 2006). The simulation theory of cognition

is mainly based on three components: firstly, behavior can be simulated, secondly, per-

ception can be simulated, and thirdly, real and simulated actions can provoke perceptual

simulations of their most likely consequences (Hesslow, 2012). Thus, the question “What

would happen if I perform this action?” can be answered by simulating the action and

looking at the simulated perceptual outcome. Subsequently, the perceptual outcome can

serve as stimulus for new simulated behavior. Evidences show that even high-level cogni-

tive processes are grounded in bodily-based simulations (Svensson and Ziemke, 1999).

1.4 Approach

The basic idea of our approach is to equip robots with reasoning (or cognitive) capabilities

similar to those of humans. We embed reasoning components deeply within robot control

programs. Thereby, programmers can write very general control programs in a concise

way. Task and context related decisions are made and action parameters are determined

based on the underlying models. The following excerpt of Lisp pseudo-code illustrates the

basic idea of constraint-based action specifications where an action has to fulfill a set of

constraints:

(perform (an action

(attribute/constraint1 value1)

...

(attribute/constraintn valuen)))

11
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A more complex example of a pouring action is shown in the following where the type

of the action is pour, the object ?obj is a part of an object of type pancake-mix contained

in a mug, and the destination ?loc is a location on the pancake-maker. The desired effect

of the action is a conjunction of several constraints. The object bound to the variable ?obj

should be of small size and have a round shape. Furthermore, the location bound to ?loc

should be centered on the pancake-maker. An undesired effect of the pouring action is the

spilling of ?obj of type pancake-mix.

(perform (an action

(type pour)

(object ?obj = (an object-part

(contained-in mug)

(type pancake-mix)))

(destination ?loc = (a location

(on pancake-maker)))

(desired-effect (and (size ?obj small)

(shape ?obj round)

(centered ?loc pancake-maker)))

(undesired-effect (spilled ?obj counter))))

The above example should give the reader an idea of how we envision the use of naive

physics and commonsense reasoning within cognition-enabled robot control. However,

the aim of this thesis is the acquisition of knowledge and the generation of models that

can be employed for this kind of reasoning.

Figure 1.7 gives a functional overview of the different components at a very high level.

The main goal of this work is to equip robots with naive physics and commonsense rea-

soning capabilities that allow them to answer questions in the context of everyday robot

manipulation tasks. To this end, we obtain knowledge from various resources and trans-

form it into powerful models that can be queried by the robot and employed during execu-

tion.

The first information resource is robot itself. More precisely, a formal specification of

the robot platform. Given a description of the robot’s sensors, actuators and software

components we are able to match it with a particular task description. The individual task

steps require certain capabilities which might be provided by the set of components a

robot has. Thereby, the robot is able to asses whether it is capable to perform a task.

A second resource is the World Wide Web. We crowdsource information about direc-

tional spatial relations and the proximity between objects using “Games with a Purpose”.

12
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?- assert_scenario(Scn).

?- paramSpace(pour,ParamSpace),
    member(P,ParamSpace),
    envision($Scn,pour(P),TL).

?- holds(occurs(pour),I1,$TL),
    holds(occurs(X),I2,$TL),
    before(I1,I2).

Crowdsourced Common Sense (WWW)

Observed Human Object Manipulation

Envsioned Robot Object Manipulation

Semantic Robot Description

Narratives of 
Everyday  
Manipulation

Robot Capabilities 

Naive Physics and 
Commonsense 
Knowledge/
Reasoning 

What happens if
a robot/human pours the 
pancake mix too close to 
the edge of the pancake 
maker?

Specification and 
Query Interface

Query

Answer

Spatial and Vague 
Concepts

Empirical Analysis 
and Learning

FIGURE 1.7 Functional view of naive physics and commonsense reasoning.

These are computer games with the purpose to solve problems in a certain domain. That

is, by playing such games users provide valuable information about a problem. In our

case, we employ Games with a Purpose to acquire information about spatial relations

from Internet users. Based on this information we learn models that can determine the

spatial relations of objects within a manipulation scenario, for example, a breakfast table.

Furthermore these models can also generate geometric poses given a qualitative spatial

relation.

A third information resource are humans. We observe humans performing manipulation

tasks at a table with a fixed set of objects. We have built a virtual manipulation environ-

ment in which a user can manipulate virtual objects using a data glove and/or a game

controller. The acquired data sequences, also called narratives, are analyzed with respect

to behaviors of interest that can inform robots how to select meaningful values for their

parameters within their robot control programs.

A fourth and very essential part for the acquisition of naive physics and commonsense

knowledge about manipulation tasks is the envisioning component. We have designed

and implemented a framework by which a robot can envision the qualitative outcome of

its parameterized manipulation actions. The framework takes a formal description of a

13
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FIGURE 1.8 Left: Rosie pushing the spatula under the pancake. Right: Envisioning the
pushing action using a physics-based simulation. Courtesy: IAS.

manipulation scenario and a parameterized instance of a robot control program as its input

and generates a symbolic timeline (or narrative) grounded in the logged data structures of

physics-based simulations. Based on the timelines, robots can answer questions related

to the outcome of their actions.

By considering the manipulation problem of making pancakes, we aim at finding ap-

propriate representations and inference mechanisms that enable robots to predict the ef-

fects of their own actions which depend very much on the way the actions are executed,

i.e., their parameterizations. Therefore we have designed, implemented, and analyzed a

framework that allows us to envision the outcome of parameterized robot actions based on

physical simulations (Kunze et al., 2011b,a). Figure 1.8 shows the robot Rosie pushing a

spatula under a pancake and envisioning the action through mental simulation. However,

within our research we do not aim to interpret the physical effects at a very detailed level,

but rather at a coarse one. That is, we strive for an abstraction that gets the qualitative be-

havior right by which we can understand how physical effects depend on the parameters

of the respective manipulation actions. Furthermore, the developed representations and

inference mechanisms should allow to diagnose and to revise the executed actions. In the

context of learning they could also make it possible to direct the exploration in the search

space based of the information of causal models.

Given the strong dependence of physical effects and concrete action parameterizations

it is hard to predict the outcome of an action solely on abstractions. In particular within

Robotics it is crucial that robots perform actions which maximize the expected utilities. Let

us illustrate this problem by a robot navigation task where a robot has to find a position

14
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?- assert_scenario(Scn).

?- paramSpace(pour,ParamSpace),
    member(P,ParamSpace),
    envision($Scn,pour(P),TL).

?- holds(occurs(pour),I1,$TL),
    holds(occurs(X),I2,$TL),
    before(I1,I2).
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FIGURE 1.9 Contributions to naive physics and commonsense reasoning.

from where it can reach a cup. If the robot only infers qualitatively that the cup is in the

kitchen and stands on a table, and then, uses this information to move to a place in front of

the table, the robot might not be able to reach the cup, e.g., because of its kinematic struc-

ture and/or kinematic singularities of the robot’s manipulators. The concept of ARPLACE

(Stulp et al., 2012) solves such problems by updating the decision about the target place

as soon as new task information is available. Thereby, for example, information about

obstacles and the robot’s kinematic is effectively incorporated within the decision.

1.5 Contributions

In this work we have integrated methods of the fields of Artificial Intelligence and Robotics

in order to reason about robot manipulation tasks qualitatively. To this end, we have real-

ized several open source components which integrate information of different resources,

namely, robot specifications, the World Wide Web, observations of human object manipu-

lations, and simulated robot manipulations, in a coherent framework. The main contribu-

tions of this work are as follows:
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• as the main contribution of this thesis we have designed, implemented and ana-

lyzed a framework for envisioning robot manipulation tasks based on parameterized

physics-based simulations (Chapter 4 and 5). To this end:

– we have established an interface for parameterizing and controlling physics-

based simulations using the logic programming language PROLOG13;

– we have linked first-order representations to physical object models that can

be instantiated in simulation;

– we have started a library of physical object models and controllers realizing

specialized physical behaviors which are not covered by rigid-body simulations,

for example, the breaking of an egg and the mixing of liquids;

– we have developed a monitoring and logging mechanism that observe data

structures of interest within the simulator; and

– we have introduced interval-based first-order representations (called timelines)

that tightly integrate subsymbolic and symbolic information from logged simu-

lations as a powerful means for reasoning about narratives.

• we have extended the framework mentioned above with an interface that can be

used to process data of object manipulation tasks performed by humans through

Games with a Purpose played in a virtual environment. The captured data has been

used to analyze the parameter space of particular manipulation actions and to learn

compact models of their effects (Chapter 6 and 7).

• we have crowdsourced information from the World Wide Web using Games with a

Purpose in order to generate models for spatial relations. We have also investigated

spatial relations in the context of particular tasks, for example, setting a table for

breakfast (Chapter 8).

• we have specified a robot description language that allows to describe sensors and

actuators as well as the software components of a robot semantically. Additionally,

we have implemented reasoning components that match a particular robot descrip-

tion with a formalized task description in order to assess the capabilities of a robot

with respect to a given task (Chapter 3).

13http://www.swi-prolog.org

16

http://www.swi-prolog.org


SECTION 1.6 Thesis Outline

1.6 Thesis Outline

The thesis can be read in a linear fashion. However, the interested reader might skip

chapters or go though them in a different order. To provide some guidance while read-

ing this thesis, we briefly summarize the content of the chapters and comment on their

dependencies to others.

CHAPTER 2 introduces the general concepts of the approach and thereby sets the scope

and limits of this thesis. As this chapter defines the conceptual apparatus of this

work it should be read by all readers to gain a better understanding of the author’s

mindset.

CHAPTER 3 describes the basic ideas and implementations of the underlying representa-

tions used within this work. In particular, the semantic robot description language

is introduced as well as the first-order representations for manipulation episodes.

The reader might browse through this chapter in the first place and only return to

it whenever she needs more detailed explanations about the formal representation

methods.

CHAPTER 4 explains the design principles and the realization of the envisioning frame-

work for robot manipulation tasks. First, it describes how manipulation tasks are for-

malized using first-order representations, second, how these tasks are transformed

into parameterized simulations, and third, how the logged simulations are trans-

formed into time-interval-based first-order representation. Experimental results for

various everyday tasks are presented and analyzed. Finally, the overall approach of

simulation-based envisioning is thoroughly discussed.

CHAPTER 5 presents a detailed account on the representations and algorithms for sim-

ulating and reasoning about fluids within the envisioning framework described in

Chapter 4.

CHAPTER 6 shows how the representations and methods introduced in previous chapters

enable a knowledge-based and physics-aware analysis of virtual manipulation tasks

performed by humans. Readers with a primary focus on robots only might skip this

chapter. However, in Chapter 7 we will see how these techniques are used for teach-

ing physical aspects of manipulation tasks to robots.

CHAPTER 7 describes a learning framework for teaching robots aspects of manipulation

tasks in a structured way. For learning especially physical aspects of tasks robot
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learners employ the envisioning framework explained in Chapter 4 to deeply under-

stand manipulation actions. Techniques presented in Chapter 6 are used to teach

examples to robots. This chapter basically builds on concepts described in all previ-

ous chapters.

CHAPTER 8 explains how general and task-depended knowledge about spatial relation-

ships of objects can be acquired through web-based Games with a Purpose.

CHAPTER 9 concludes this thesis by summarizing the major contributions and by giving an

outlook into the future of physics-aware robot manipulation. The reader looking for a

condensed description of this work’s findings might want to look at this chapter.

1.7 Publication Note

Part of the research presented in this work appeared in publications of international work-

shops, conferences and journals. In particular, research on a semantic robot description

language has been published in (Kunze et al., 2011c). Work on the envisioning of robot

manipulation tasks in (Kunze et al., 2011b,a; Beetz et al., 2012; Klapfer et al., 2012). A sys-

tem for the acquisition of commonsense task knowledge through Games with a Purpose

is described in (Kunze et al., 2012). Work on commonsense knowledge for robots and

semantic environment models is described in (Kunze et al., 2010; Tenorth et al., 2010a).
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CHAPTER 2

Everyday Robot Manipulation

Today’s robot systems are physically capable to perform complex everyday manipulation

tasks like, for example, cleaning a room1, folding clothes (Lakshmanan et al., 2012) and

preparing a meal (Beetz et al., 2011). However, current robot control programs are tailored

to particular tasks, specific environments, and the robot platforms themselves. That is,

these programs are far from being very flexible and robust. Furthermore, most of these

programs will fail when presented with slight variations of a problem they should solve. But

if robots are to master everyday manipulation tasks instead of only performing them, they

would need more general reasoning capabilities embedded within their control programs.

The aim of this work is to equip robots with naive physics and commonsense reasoning

that allows them to understand everyday phenomena of manipulation tasks. But before

we present our account on the problem we lay out the general concepts and terminology

we are using throughout this thesis.

This chapter defines the basic concepts of everyday robot manipulation, namely every-

day manipulation scenarios, tasks, environments, robots and plans. We introduce the con-

cept of narratives in order to represent and reason about episodes of manipulation tasks

and experiences of a robot. Furthermore, we explain which of these concepts are involved

within the different types of naive physics and commonsense reasoning. In particular, we

address reasoning methods by which robots can assess their own manipulation capabil-

ities, understand vaguely specified spatial concepts, and envision the physical effects of

actions performed by humans and by themselves. Finally, we summarize and discuss the

presented concepts and reasoning methods.

1http://personalrobotics.stanford.edu
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CHAPTER 2 Everyday Robot Manipulation

2.1 Scenario

Robots performing everyday manipulation in the real world face many challenges (Kemp

et al., 2007). These challenges include, for example, the dynamics of the world, varying

object poses and/or object types, the need for specialized tools, and handling of nonrigid

objects and substances. Although we address all of the above mentioned challenging

characteristics in this work, we have to leave out many others. In order to be clear by what

we mean by “everyday robot manipulation” we define an everyday robot manipulation

scenario as follows:

An everyday robot manipulation scenario is defined by four components:

• a task ,

• an environment ,

• a robot , and

• a plan.

None of these concepts is new. On the contrary, they are all very common and have

been used extensively throughout the AI and Robotics literature. The problem is that there

are already quite a number of definitions for them and that everybody has a slightly dif-

ferent understanding of these concepts. In order to lay out a common terminology in the

context of this thesis we specify what we mean by task, environment, robot, and plan in

the subsequent sections.

2.1.1 Task

Everyday manipulation tasks are often specified by natural language instructions like, for

example, “Clean the table”. It is difficult to interpret such instructions because they are

ambiguous and/or incomplete specifications of a task. The instruction “Clean the table”

might be interpreted as:

“Take all items from the table, put them where they belong to, and finally, use

a wet washcloth and wipe down the table.”,

whereby “put them where they belong to” could mean to put dirty dishes into the dish-

washer, a box of cereals back into the cupboard and a half-eaten banana into the bin.

However, the interpretation of instructions is always dependent on the context.
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SECTION 2.1 Scenario

How to Make Pancakes (Steps)

1. Take the mix from the refrigerator.

2. Add 400ml of milk (up to the marked
line) shake the bottle head down for
1 Minute. Let the pancake-mix sit for
2-3 minutes, shake again.

3. Pour the mix into the frying pan.

4. Wait for 3 minutes.

5. Flip the pancake around.

6. Wait for 3 minutes.

7. Place the pancake onto a plate.

FIGURE 2.1 Left: Recipe for making pancakes (wikihow.com). Right: Step-by-step instruc-
tions for making pancakes according to the website on the left.

A more complex example of task instructions is shown in Figure 2.1. It shows a web-

site of wikihow.com that explains step-by-step how to make pancakes using a particular

type of pancake mix. Work by Tenorth et al. (2010b) has demonstrated how natural lan-

guage instructions of such recipes can be extracted from the Web, parsed, analyzed, and

transformed into formal task specifications. Given that the disambiguation and completion

of naturalistic task instructions are by themselves difficult and challenging research prob-

lems they are beyond the scope of this thesis. Hence, this work assumes that a task is

always specified completely using unambiguous and well-defined concepts:

A task is a complete and formal specification of a manipulation problem using well-

defined concepts that can be interpreted by a robot . The specification has a hierarchical

structure and is composed of complex sub-tasks and/or primitive actions. Additionally,

task-related problems and capabilities needed to perform the task (or the action) are

specified in a common terminology.

Following the instructions (3-7) of Figure 2.1, the task of making pancakes could be for-

malized as shown graphically in Figure 2.2. The main task MakePancake comprises five

steps of four different types, namely Pour, Flip, Place, and Wait. According to the challenge

problem in Section 1.2, the Flip task is further split into three sub-tasks, namely Push, Lift,

and Turn. Using well-defined concepts of an ontology the task specification can be unam-

21

wikihow.com
wikihow.com


CHAPTER 2 Everyday Robot Manipulation

MakePancake

Pour

. . .

Wait Flip

Push

. . .

Lift

. . .

Turn

. . .

Wait Place

. . .

FIGURE 2.2 Conceptual representation of the task of making pancakes.

biguously interpreted by a robot. Furthermore, the hierarchical composition of tasks using

complex sub-tasks and primitive actions allows designers of tasks to heavily reuse pre-

viously defined concepts (tasks). Hence, given a set of very basic and elementary tasks

the overall task library can be kept quite compact. The creation of a comprehensive and

reusable task library for robots that is based on a common terminology makes perfor-

mances and reasoning tasks about everyday manipulation comparable across different

robots. Furthermore, the capabilities that are needed to perform a task are associated

with the individual task and action types. For example, the Lift task requires a robot to

exert a certain force when picking up an object.

Please note, that Chapter 6 deviates from the above definition of a task. In Chapter 6

we use the colloquial meaning of the word task since humans are the main actors within

the everyday manipulation scenarios instead of robots.

2.1.2 Environment

We envision robots to perform everyday manipulation tasks in real world human envi-

ronments such as households, homes for the elderly, and factories. In the following, we

characterize the environment of an everyday robot manipulation scenario according to the

criteria listed in (Russell and Norvig, 2009):

FULLY/PARTIALLY OBSERVABLE The environment of an everyday robot manipulation sce-

nario is only partially observable by the robot given its restricted field of view and its

noisy and inaccurate sensors.

DETERMINISTIC/STOCHASTIC Everyday robot manipulation is clearly stochastic as the robot

cannot foresee the exact outcome of its manipulation actions, for example, when

pouring the pancake mix onto the pancake maker or cracking an egg.
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EPISODIC/SEQUENTIAL The environment is sequential. That is, manipulation actions of the

robot can have long term effects. For example, if a robot pours too much pancake

mix onto the pancake maker, the robot might not be able to flip the pancake after-

wards.

STATIC/DYNAMIC The environment is dynamic. That is, the environment will change al-

though the robot is not manipulating it. For example, if the robot decides to wait too

long until it flips the pancake, the pancake will burn.

DISCRETE/CONTINUOUS The state of the environment is continuous. For example, the pose

of the robot’s hand is characterized through a range of continuous values in space

and time.

SINGLE/MULTI-AGENT Everyday robot manipulation is a multi-agent environment. If robots

perform manipulation tasks in households, homes for the elderly and factories they

have to cooperate with robotic co-workers and/or humans.

In summary, this leaves us with an environment that is partially observable, stochastic,

sequential, dynamic, continuous and multi-agent. Basically, the most difficult environment

that one could characterize. However, in the context of this work we make assumptions

that simplify some of the above criteria.

Our first assumption, or simplification, is about the presence of robotic and/or human

co-workers. Challenging problems for everyday manipulation in multi-agent environments

include the distribution of tasks and the interaction between agents. Both settings multi-

robot and human-robot span their own research fields which are not addressed in this

work. Therefore, we consider everyday manipulation tasks only in scenarios where a sin-

gle agent, robot or human, is present.

A second assumption is about the change of the environment. Since we assume a

single agent environment, the change through other agents is already out of question.

However, physical processes like, for example, cooking might still change the environment

without the interference of the robot. But since the number of such physical processes

that could change the world is restricted within our manipulation problems we consider

the environment as semi-dynamic.

The third and last assumption is about the observability of the environment. Here we as-

sume that the robot can fully observe all the details of its environment. We achieve this by

using a physical robot simulator. The use of a physical simulation might be controversial.

However, we belief that the advantages of using physical simulations for reasoning about

manipulation problems outweigh their disadvantages as is elaborated in the following.
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Physical Simulations In this work we employ physical simulations as a means to ac-

quire knowledge about everyday manipulation. With regards to the simulation we use the

Gazebo2 simulator which will be introduced in Section 4.3. Obviously, there is a risk that

drawn inferences that are based on simulations do not reflect the circumstances in the

real world. To minimize this risk, all design decisions related to the simulation have to be

made very carefully. For example, in the next section we explain how the controllers of a

simulated and a real robot are related. On the other hand, the use of simulations gives

us the opportunity to focus on those aspects that are most relevant to naive physics and

commonsense reasoning about everyday manipulation. For example, we can fully ignore

the problem of robot navigation.

Other advantages of physical simulations include their repeatability, variability, extend-

ability, and their inexpensiveness. First, given that simulations can be repeated over and

over again make them very attractive for systematic testing and benchmarking. Methods

from statistics can effectively be applied to evaluate the results from hundreds of simu-

lations. Second, it is important to show the feasibility and generality of an approach by

applying the developed methods to various problems. Simulations can cover a wide range

of manipulation problems and their respective variants by altering their initial configura-

tions and/or adding noise to certain processes. Third, physical models of objects and

robots can relatively easy be substituted and/or enhanced by improved versions. Finally,

all of the above can be achieved in a simulation at very low costs compared to the efforts

and expenses that would be necessary in the real world. A thorough discussions about

physical simulations and pointers to related work are given in Section 4.6 and 4.7.

Figure 2.3 shows an image of a kitchen environment in the Gazebo simulator. The scene

consists of static objects like cupboards, a refrigerator, and a kitchen counter and dynamic

objects like a container of pancake mix and a spatula. Whereas the static objects function

as supporting planes, the dynamic objects can be manipulated by the robot.

In general, we distinguish between three different types of objects within the simulated

environment, namely rigid, deformable, and fluid objects:

RIGID OBJECTS or solid objects are composed of links and joints whereby joints between

links are always fixed. That is, we do not consider articulated objects composed of

rigid parts like, for example, scissors. Examples of rigid objects include a spatula

and a container. Most rigid objects are decomposed of sub-parts. For example, a

spatula is composed of a handle, a blade, and an elongated part which connects

both former parts.
2http://gazebosim.org
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FIGURE 2.3 Simulated kitchen environment.

DEFORMABLE OBJECTS are composed of links and joints whereby joints allow for defor-

mation between the links. That is, the overall structure of an object can change. An

example of a deformable object is a pancake. A special case are fragile objects be-

cause a joint can also cease to exist whereby the object breaks apart. An example

for the latter type of object is an eggshell.

FLUID OBJECTS are either liquids or granular fluids. Fluids are basically particles (links)

without connecting joints. Therefore, particles can move freely within the environ-

ment. A example is the pancake mix. When in contact with a heat source, particles

of the pancake mix can form a pancake, and thereby become a deformable object.

All of the above characteristics and properties yield to the following definition of an

environment:

A simulated environment of a manipulation scenario is fully observable, stochastic, se-

quential, semi-dynamic, continuous and single-agent. It comprises objects with different

properties:

• static objects are rigid and serve as supporting planes in the environment (e.g.,

furniture)

• dynamic objects are either rigid /solid (spatula), deformable (pancake), or fluid

(pancake mix) and can be manipulated by a robot
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FIGURE 2.4 Left: Personal Robot 2 (PR2). Right: Sensors of PR2 in a schematic illustration.
Courtesy: Willow Garage.

2.1.3 Robot

Robots performing everyday manipulation tasks need to fulfill certain hardware and soft-

ware requirements. Robots need appropriate sensors and actuators to perceive and ma-

nipulate objects within their environment. In addition to their hardware components, they

need software components that operate and control them.

The robot model mainly used in our work is the PR2 robot platform developed by Willow

Garage3. The PR2 has an omnidirectional base, a telescoping spine and a pan-tilt head.

Each of the two compliant arms of the platform have four degrees of freedom (DOF) with

an additional three DOF in the wrist and one DOF gripper. The sensor setup is comprised

of a laser sensor on the base, a tilting laser sensor for acquiring 3D point clouds, two

stereo camera setups and a high resolution camera in the head. The hands also have

cameras in the forearms, while the grippers have three-axis accelerometers and fingertip

pressure sensor arrays.

Major challenges in everyday robot manipulation are the perception and manipulation

of objects. Robots have to perceive, recognize and localize objects in an environment

which is only partially observable. Perception of everyday objects is already a complex

and complicated task and therefore it is beyond the scope of this work. The same is true

for dexterous manipulation of arbitrary objects. Since this work focuses on reasoning about

everyday manipulation we suppose that robust perception and action routines are avail-

3http://www.willowgarage.com/pages/pr2/overview
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able for a fixed set of everyday objects within respective libraries. Throughout this work

we make use of off-the-shelf software components whenever available as ROS library.

Whenever necessary we extend these libraries, for example, we implemented a faked

perception. That is, whenever an object is in the field of view of the robot, the object and

properties like its extensions, pose, and bounding box can be perceived. Furthermore, we

assume that the robot knows about the static parts of its environment given a semantic

environment map.

As mentioned in the previous section, it is critical that results obtained through simula-

tions resemble those of the real world. Therefore we use standard software components

that can be applied to control both the real and the simulated PR2 robot. This is pos-

sible, because the simulated robot is realistically modeled according to the mechanical

specification of the real robot. Table 2.1 and Table 2.2 show excerpts of the mechanical

specification of the PR2 Manual4. For example, the gripper of the simulated robot has the

same joint limits and can apply the same force as the real robot. We will use such infor-

mation in order to reason whether robot are capable to perform a task. Another important

aspect in the kinematic structure of the robot. Figure 2.5 shows the arm kinematics of

the PR2. Given that information, we can use the algorithms from the ROS arm navigation

package to control the arm of the simulated robot.

TABLE 2.1 Forces and torques.

Joint Velocity (rad/s or m/s) Torque (Nm or N)

∗_wrist_flex_joint 3.10 10.00
∗_wrist_roll_joint 3.60 10.00
∗_gripper_joint 0.20 1000

TABLE 2.2 Joint limits and types.

Joint Type Limit (+) Limit (-)

∗_wrist_flex_joint revolute 130◦ 0◦

∗_wrist_roll_joint continuous - -
∗_gripper_joint prismatic 86 mm 0 mm

4http://pr2support.willowgarage.com/wiki/PR2%20Manual/Chapter8#Mechanical_

Specification
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(a) (b) (c)

FIGURE 2.5 Kinematics of PR2’s left arm. Left: PR2 in its initial pose. Middle: Hardware
parts of its arm are highlighted. Right: Coordinate frames of all joints involved in the
arm kinematics are visualized.

Considering the above aspects we define the concept of a robot as follows:

A robot is a physical agent that has sensors and actuators. It perceives and manipulates

objects in its environment by performing actions of a plan. A robot is characterized by:

• a kinematic model,

• a semantic description of its components,

• an action and perception library.

Please note, that Chapter 6 slightly deviates from the above definition of a robot. In

Chapter 6 we use simply a robotic hand that is teleoperated by a human.

2.1.4 Plan

A robot plan is basically a procedural description of how to solve a task. It is composed

of complex and primitive actions. A robot can execute a plan if its action and perception

libraries contain all actions of the plan. A plan usually resembles the structure of the task.

That is, in analogy to tasks, plans are organized in a hierarchical fashion. However, to

what extend they match a specification of a task depend on the granularity of the robot’s

action library. For example, a detailed task specification can describe how flip a pancake

in several steps, namely push the spatula under the pancake, lift the spatula, and turn the

spatula. On the other hand, an action library might only have a flipping action as its most
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primitive action. That is, the processes of pushing, lifting, and turning are not represented

explicitly within the plan.

A plan can be represented using a plan language like, for example, CRAM (Beetz et al.,

2010). The CRAM plan language is a reactive plan language and is based on Common

Lisp. Control structures in CRAM allow programmers to embed lightweight reasoning

mechanisms that infer control decisions rather than requiring the decisions to be pre-

programmed. These cognition-enabled programs are more flexible, reliable, and general

than robot control programs that lack these capabilities. The following CRAM pseudocode

shows an example of a consequence-based action specification of a push action.

(perform (an action

(type push)

(object (an object-part

(part-of spatula)

(type blade)))

(destination ?loc = (a location

(under pancake)))

(desired-effect (and (pose spatula ?loc)

(succeeds (an action

(type lift)

(object pancake)

(starting-pose ?loc)))))

(undesired-effects (and (damaged pancake)

(on pancake counter)))))

The parameters of the push action are determined by grounding the symbolic expres-

sions into the control and perception routines of the robot. For example, the reasoning

components determine the set of parameters that allows to, first, push the spatula under

the pancake, and second, lift it afterwards.

Plan languages like CRAM allow robots to reason about their own programs explicitly

and even modify them at execution time. However, in the context of this thesis we only as-

sume that robots know about the structure of their plan/program. That is, during execution

robots know when an action starts and when it finishes. Hence, plans/programs in this

work can be implemented in any kind of programming language as long as they report the

internal state of their actions.

Following the above considerations we define a plan as follows:
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A plan (or robot control program) is a procedure (or sequence of actions) that can be

executed by a robot within a particular environment to accomplish a task . It is imple-

mented by a plan language or any other programming language and reports the state

and progress of the executed actions.

2.2 Narratives

In the previous section we formalized an everyday robot manipulation scenario as con-

sisting of four components, namely a task, an environment, a robot, and a plan. However,

everyday manipulation and reasoning about it is most fascinating and challenging when

a robot actually executes a plan within a particular environment in order to accomplish

a task. To capture the dynamics of the world during the execution of the robot plan we

introduce the concept of a narrative:

A narrative is a record of states and events that results from the actions performed by

a robot that executes a fully instantiated plan (or which is teleoperated) in a particular

environment in order to accomplish a task .

In this work we use narratives to describe “manipulation stories” performed by both

robots and humans, where the latter control a teleoperated robot hand. Thereby, narratives

are an excellent way to capture experiences of the robot’s own performances (Chapter 4)

and examples from observations of human object manipulations (Chapter 6). Hence, the

detailed study of a manipulation problem like “Making Pancakes” and its variants result in

a comprehensive set of such narratives (Figure 2.6).

FIGURE 2.6 PR2 reasons about a set of narratives.
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2.3 Naive Physics and Commonsense Reasoning

We have seen that everyday robot manipulation poses many challenges. A robot that is to

competently reason about such problems has first to understand how a specification of a

task is related to its own sensors, actuators and software components. Using routines of

its perception and action libraries the robot can follow the individual task steps and per-

form the manipulation task. In order to interpret the outcome of the task, the robot need

reasoning capabilities that capture the dynamic aspects of the environment. Therefore, the

robot needs conceptual knowledge about space and time. It also has to understand phys-

ical phenomena. Hence, the robot’s main reasoning tasks include the reasoning about its

own manipulation capabilities, about spatial and physical configurations of objects in the

environment, and the effects of its actions.

2.3.1 Capability Reasoning

There is a gap between simple but high-level task instructions like “Make a pancake”

and low-level robot descriptions that model, for example, the structure and kinematics of

a robot’s manipulator. Currently, programmers bridge this gap by mapping abstract in-

structions to parametrized algorithms and rigid body parts of a robot within their control

programs. By linking descriptions of robot components, i.e., sensors, actuators and con-

trol programs, via capabilities to actions in an ontology we equip robots with knowledge

about themselves that allows them to infer the required components for performing a given

action. Thereby a robot that is instructed by an end-user, a programmer, or even another

robot to perform a certain action, can assess itself whether it is able to perform the re-

quested action. For example, it can answer queries like:

“Can you make a pancake? And if not, why not? What capabilities are miss-

ing?”

This self-knowledge for robots could considerably change the way of robot control, robot

interaction, robot programming, and multi-robot communication. In Chapter 3 we present

the underlying representations of tasks and robots and explain how they can be matched

in a similar way as semantic web services (Martin et al., 2007). Thereby, we define capa-

bility reasoning as follows:
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Capability reasoning involves the reasoning about a task and a robot . A task requires

certain capabilities of its doer. These capabilities are specified by a designer of a task.

On the other hand, a robot is composed of a set of different components: sensors, actu-

ators and software modules. These components provide certain capabilities. Inference

algorithms basically match the specifications tasks and robots via the concept of ca-

pabilities in order to asses the general ability of robots to perform a task. This kind of

reasoning is not about concrete performances and/or execution traces of robots.

2.3.2 Spatial Reasoning

An important factor to understand everyday robot manipulation is the ability to reason

about spatial relations between objects and the robot. That is, robots have to know about

topological relations like in and on, directional relations like left of and in front of, and

distance relations like close and distant. The meaning of these concepts is often very

vague and/or context-dependent what makes it even more difficult for a robot to interpret

a scene and answer a question like:

“Is the pancake close to the edge of the pancake maker?”

However, humans have a sound and intuitive understanding of such concepts given their

wealth of experience. For example, they know that the instruction “Place the knife right

to the plate” means to put the knife to right side of the plate at a certain distance and

orientation. Such implicit and context-dependent knowledge cannot be extracted directly

from task instructions but rather has to be acquired by other means. After we present

the basic formalisms for spatial concepts in Chapter 3, we explain how knowledge about

spatial relations can be bootstrapped from the WWW using Games with a Purpose in

Chapter 8. In the context of this thesis we define spatial reasoning as follows:

Spatial Reasoning is the ability to make inferences about geometric configurations be-

tween different objects of the environment and the robot . It includes the reasoning

about topological, directional and distance relations and sometimes depend on the con-

text of a task .

2.3.3 Reasoning about Narratives

Narratives, as introduced in Section 2.2, capture the dynamics of the world. In contrast

to reasoning about spatial relations described in the previous section, reasoning about
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narratives is reasoning over time. That is, most often inferences are based on a sequence

of situations. For example, the query

“Does the pancake eventually lie upside down on the pancake maker?”

can only be answered by looking at the orientation of the pancake in at least two (subse-

quent) situations. As spatial reasoning is used to evaluate the situations individually it is

an essential building block of reasoning about narratives.

In general, reasoning about narratives can be considered as spatial, temporal, and

physical reasoning as well as reasoning about actions. Basically, it considers all aspects

of everyday robot manipulation captured in a narrative. As a single narrative represents a

“manipulation story” of a robot or a human queries can extract information about individ-

ual experiences. However, a knowledge base of thousands of narratives can provide finally

answers to questions listed in Section 1.3.1 by using methods from statistics and proba-

bility theory. For example, a question like “What is the expected outcome of an action?” is

answered based on a set of narratives stored in a knowledge base. Having seen quite a

number of examples of that action, whereby only a few had an undesired outcome, it can

be inferred that the expected outcome will have a desired effect with a high probability.

Reasoning about Narratives makes qualitative inferences about spatial and physical

configurations of objects of the environment and the robot over time. It also considers

the actions of a robot plan, relates them to other events and interprets their outcome as

desired and/or undesired effects of a task .

Envisioning Envisioning is a special form of reasoning about narratives. Basically, a

robot hallucinates what would happen if it executes a fully instantiated plan in an environ-

ment. For example, it can answer a question such as:

“What happens if the pancake is flipped too late?”

In this work, the process of hallucination is based on physical robot simulations. The result

of a hallucination is a narrative. By repeating this process for different parameterizations

of an action and/or different variants a problem the robot can actively explore the physical

effects of its manipulation actions and thereby get an understanding of the problem.

Envisioning is a “mental” process of projecting a state of the environment into all

possible future states by “executing” fully instantiated plans with a robot . The result of

this process is a set of narratives.

Reasoning about narratives and envision is explained in Chapter 4, 5, 6 and 7.
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2.4 Summary

In this chapter we have laid out the basic terminology as it is used and understood in this

thesis. We have defined an everyday robot manipulation scenario by four components:

a task , an environment , a robot , and a plan. Furthermore, we have presented differ-

ent types of reasoning relevant for everyday manipulation, namely capability reasoning,

spatial reasoning, and reasoning about narratives including the special case of envi-

sioning. For the different types of reasoning we have explained how these are realized

based on the previously defined concepts of a scenario. The following chapter (Chapter 3)

introduces the underlying representations of the most important concepts and describes

our approach on capability reasoning. The reasoning methods about spatial concepts and

narratives are presented in the subsequent chapters (Chapter 4, 5, 6, 7 and 8).

34



CHAPTER 3

Representations

In this chapter we present the formal representations for naive physics and commonsense

reasoning for everyday robot manipulation. In particular, we describe the underlying repre-

sentations needed for capability reasoning, spatial reasoning and reasoning about narra-

tives. First, we revisit the example of “Making Pancakes” and examine the different entities

involved in reasoning about everyday manipulation. Afterwards, we discuss general as-

pects regarding logical representations. And finally, we describe the representations that

have been developed in greater depth, relate them to the concepts introduced in Chap-

ter 2, and conclude with a discussion in Section 3.7.

3.1 “Making Pancakes” Revisited

Let us reconsider the example problem of “Making Pancakes” from Section 1.2. To un-

derstand what representations are needed to reason about the task we first examine the

task-related objects, second, the actions a robot has to carry out to perform the task, and

finally, the physical effects that could result from the actions.

The task-related objects mentioned in the natural language description are a pancake

mix, a pancake maker, a pancake, a spatula and a plate. Not mentioned in the descrip-

tion are additional tools, for example, a container holding the pancake mix. Inferring these

missing objects is straight forward for humans given their common sense. However, robots

have to figure out these objects by other means and then locate and retrieve them from the

environment. Overall, the task scenario comprises objects with different physical proper-

ties, namely rigid, liquid, and deformable objects. Given that the task involves a spectrum

of object types it covers a wide range of manipulation problems. Furthermore, objects

are composed of multiple parts. For example, the spatula has a handle, a blade and an

elongated part connecting the former two. Hence, different representations are needed to
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handle the various types of objects and their respective parts effectively.

A robot performing a task generally follows a plan, i.e., it executes a robot control pro-

gram. A plan is basically composed of a sequence of actions. In the case of the “Making

Pancakes” problem the main actions of the task are pouring the pancake mix and flipping

the pancake. Both actions have a set of parameters that determine the way how an action

is performed. For example, the parameters of the pouring action include the position of the

container over the pancake maker, its tilting angle, and the duration how long the container

is tilted. That is, representations of actions should cover sequences of actions, primitive

actions and their respective parameters.

Eventually, the robot should reason about the effects of its actions. That is, the robot

reasons about spatial and physical configurations of objects in the environment and how

these configurations evolve over time when objects are manipulated by the robot. Thus,

representations for spatial and temporal configurations of objects are needed. Moreover,

the formalization should allow to represent and distinguish between multiple performances

of a robot. By storing a large collection of these “manipulation stories” in a knowledge base

a robot can give answers using methods from statistics and probability theory.

Table 3.1 lists some of the relevant variables, their sorts and meanings that need to be

represented within this work. We mainly distinguish between objects, actions, space and

time. Whereas most concepts are very general, some of the object and action variables

are mainly related to the “Making Pancakes” problem.

3.2 Logical Representation

In this thesis we chose logic for representing the robot’s knowledge about everyday manip-

ulation. However, there is not a single thing called “logic”. Rather there are several different

types of logic. For example, it can be distinguished between propositional, first-order, tem-

poral, probabilistic and fuzzy logic. These types of logic can represent different aspects

of the world and a robot can belief these aspects in different ways. That is, committing

to a certain logic determines what a robot can know about the world and what its beliefs

might be. There is always a trade off between the expressiveness of a certain logic versus

its efficiency for making inferences. For example, propositional logic allows a knowledge

engineer to represent facts only. However, there exist efficient inference algorithms that

can solve large problems quickly. On the contrary, first-order logic allows a knowledge en-

gineer to model the world using facts, objects and relationships. But generally, reasoning

about large problems in first-order logic is slow. However, there exist logic programming
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TABLE 3.1 Variables, their Sorts and Meanings.

Sort Variable Meaning

Object

o objects, object parts
fo, lo fluid and liquid objects
do deformable objects
mix pancake mix (fluid)
pancake pancakes (deformable)
spatula spatulas
pan pans (pancake makers)
container containers
table tables

Action

a actions
pour pouring actions
flip flipping actions
par parameters of actions
plan plans (or robot control programs), a sequence of actions

Space

pos positions in 3D space
x,y,z coordinates in 3D space
orient orientations in 3D space
ro, pi, ya roll, pitch, yaw (angles in 3D space)
d,w,h depth, width, height (dimensions in 3D space)
bbox bounding boxes

Time

e events
f fluents
t time points
[t1,t2], i time intervals
tl timelines

systems like PROLOG1 that are very fast for particular types of inferences. Temporal logics

allow a robot to represent aspects about the world over time, probabilistic logics allow it to

believe facts only to a certain degree, and fuzzy logics to represent facts with a degree of

truth. In order to represent everyday manipulation scenarios, that is objects, actions and

their relations over time, we chose a temporal, many-sorted first-order logic. Whenever

necessary we used probabilities to express the degree of belief of the robot.

The knowledge of the robot is basically represented by logical sentences in a knowledge

base. The sentences formalized in first-order language contain different symbols, namely

constants to represent objects, predicates to represent relations and functions to represent

1http://www.swi-prolog.org
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functions. These basic elements must obey the syntax of the particular logic. Furthermore,

sentences should have a semantics, that is, the symbols should refer to entities in the

world. Later we will see how the symbols are grounded in the data structures of physical

simulations. The interface to a knowledge base comprises mainly two methods: One for

asserting new sentences, and a second for querying the knowledge base. In the literature

these two operations are often named tell and ask (Russell and Norvig, 2009).

In this work we use the Web Ontology Language (OWL)2 and the logical programming

language PROLOG to represent sentences about everyday manipulation scenarios in a

knowledge base. The interactive PROLOG interpreter also functions as an interface to

assert knowledge and query the knowledge base.

Web Ontology Language (OWL) There are three sub-languages of the Web Ontol-

ogy Language: OWL-Lite, OWL-DL, and OWL-Full. They differ with respect to their ex-

pressiveness and computational completeness. In our work we use OWL-DL as it is a

good compromise between expressiveness and computability. The OWL-DL language ba-

sically corresponds to Description Logics. Description Logics have two appealing features:

Firstly, information about objects can be structured hierarchically in a sub-concept/super-

concept relationship whereby sub-concepts inherit all constraints of their super-concepts.

Secondly, it is possible to reason over the structured information. In Description Logic it

is distinguished between a terminological and an assertional box, also called TBox and

ABox respectively. Whereas the TBox describes relations between concepts, the ABox de-

scribes relations between individuals and concepts. Individuals are concrete instances of

general types that are described by concepts. Overall, the language elements of OWL-DL

are ideally suited to describe individuals of objects, their types, and relationships among

each other. For example, different types of objects can be modeled as sub-concept of a

general object concept as we will see in Section 3.3.

PROLOG The logical programming language PROLOG is used as an interface to the

robot’s knowledge base. We defined a logical language to query the knowledge base

and retrieve answers by utilizing PROLOG’s reasoning engine based on backtracking.

Additional libraries like the Semantic Web Library3 are used for accessing knowledge de-

scribed in OWL. Besides the function of an interface, PROLOG is used as logical language

for modeling spatial and temporal relationships that would be difficult to represent in OWL.

2http://www.w3.org/TR/owl-features/
3http://www.swi-prolog.org/pldoc/package/semweb.html
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3.3 Objects (Environment)

As laid out in the previous section, we use OWL to represent concepts in an ontology. All

physical objects are derived from a generic Object concept. The three major subclasses

are Solid, Fluid, and Deformable. Fluid has further specializations, namely Liquid and

GranularFluid. Given the principle of inheritance, properties of a concept are derived from

their super-concepts. For example, Object has a property named HasModel that relates

Object to PhysicalModel. Thereby all sub-concepts of Object as well as their respective

sub-concepts have this property. As we have defined environment in Section 2.1.2 as

a simulated environment it makes sense to relate all objects to physical models. These

models can basically be described in all formats that can be loaded into the physical

simulator Gazebo4. In this work we mainly make use of physical object models described

in the Unified Robot Description Format (URDF)5. But other formats such as COLLADA6

are also feasible. Eventually, a concrete instance of an object is linked to physical model

that can be instantiated within the Gazebo simulator.

Figure 3.1 shows an excerpt of the ontology. At the top, it visualizes the relation between

Object and PhysicalModel, on the left, the hierarchical object taxonomy including the con-

cepts Liquid, Solid, PancakeMix and Container, on the right, the sub-concepts of Physi-

calModel, and at the bottom, it shows concrete instances and their relations among each

other. The in relation between PancakeMix and Container is explained in Section 3.4.

Object PhysicalModel

Liquid Solid URDF Collada

PancakeMix Container

mix7 cont42 particles.urdf bottle.xml

IsType IsType IsType IsType

in

HasModel

in

HasModel HasModel

IsType IsType

IsA IsA

IsA IsA

FIGURE 3.1 Simplified Ontology about “Making Pancakes”.

4http://gazebosim.org
5http://www.ros.org/wiki/urdf
6http://www.collada.org
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Another important aspect for the representation of objects is their physical structure.

Let us consider, for example, a spatula. It is a solid object and it is composed of two

parts, namely a handle and a blade. Using the predicate HasPart we relate an object

to its respective parts. The following logical sentences show some knowledge about an

instance of a Spatula:

IsA(spatula,Spatula)∧
HasPart(spatula, handle)∧
HasPart(spatula, blade)∧
HasModel(spatula, spatula.urdf)

As we have seen above, an individual of a spatula is linked to a concrete physical model.

This model is described in a language like URDF. In such a specification, parts of the

spatula are described by their extension, mass, position, and orientation. The individual

parts are connected by different types of joints. However, in order to reason about the

individual parts of the spatula like, for example, the blade, it is necessary that the logical

instance of a blade is also linked to its respective part within the physical model. We

achieve this by a naming convention.

3.4 Space and Time

Reasoning about everyday object manipulation requires robots to understand the spatial

and physical configurations of objects and their parts over time. A very good and general

overview on spatial, physical and temporal reasoning is given in the book by Davis (1990).

Robots should be able to extract information about an object’s position, its contacts, and

its spatial relations to other objects from its environment in order to reason about a task.

Since we employ physical simulations all these information can be abstracted from the

data structures of the simulator. Conceptually, the robot can access this information using

the predicate SimulatorValue as follows:

SimulatorValue(

Function︷ ︸︸ ︷
position(o, pos),

Time point︷︸︸︷
t )

where position is an exemplary function for retrieving information about an object o at

a certain point in time t. Eventually, the information about the object’s position is bound to

the variable pos. Table 3.2 lists further functions that can be used to access information

about an object’s world state. All functions provide information for a given object, e.g. its
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position, orientation, velocity, dimension, and its bounding box. As we will see later, many

spatial relations are computed based on the object’s bounding box. Thereby, the bbox

function plays an important role for reasoning about the object’s state.

TABLE 3.2 Functions for accessing the object’s world state.

Function Description

position(o, pos) 3D position of object o, pos is a vector 〈x, y, z〉
orientation(o, quat) 3D orientation of object o, quat is a quaternion 〈q1, q2, q3, q4〉
linear_velocity(o, lv) linear velocity of object o, lv is a vector 〈lvx, lvy, lvz〉
angular_velocity(o, av) angular velocity of object o, av is a vector 〈avx, avy, avz〉
dim(o, dim) dimensions of object o, dim is a vector 〈dx, wy, hz〉
bbox(o, bbox) bounding box of object o, bbox is a vector

〈xmin, ymin, zmin, xmax, ymax, zmax〉

Another set of functions that can be accessed via the SimulatorValue predicate provides

information about an object’s contacts. Contact information are crucial for the interpreta-

tion and analysis of the physical effects of actions. As information about contacts are

always reported between two objects all functions take also two objects as arguments.

For example, the contacts function is true when there is a contact between two objects at

a certain point in time. It is a symmetric function, that is, whenever object o1 is in contact

with o2, object o2 is in contact with o1. However, please note that not all functions about

contacts are symmetric. For example, the force function provides information about the

force one object exerts onto another. Thus, the reported information about the force has

a direction. Table 3.3 shows functions that extract information about contacts between

objects including contact positions, normals, penetration depths and forces. Figure 3.2

depicts physical configurations of blocks within a simulated environment, and visualizes

the internal belief state of the robot including contact information in the 3D visualization

tool RVIZ7.

Fluents Based on the low-level information about an object’s world state and its con-

tacts we define fluents, i.e. conditions over time, about an object’s spatial relationships

to other objects. Here we distinguish between three different types of spatial relations,

namely topological, directional, and distance relations. Whereas topological relations are

independent from the point of view, directional relations always depend on the current po-

sition and view of the robot. In our work we denote this position as origin. Figure 3.4 gives

an overview of the implemented fluents.
7http://www.ros.org/wiki/rviz

41

http://www.ros.org/wiki/rviz


CHAPTER 3 Representations

TABLE 3.3 Functions for accessing contact information between objects.

Function Description

contacts(o1, o2) true if object o1 is in contact with object o2
positions(o1, o2, positions) list of contact positions between o1 and o2
normals(o1, o2, normals) list of contact normals at contact positions
depths(o1, o2, depths) list of penetration depths at contact positions
force(o1, o2, forces) forces between o1 and o2, forces is a vector 〈fx, fy, fz〉
torque(o1, o2, torques) torques between o1 and o2, torques is a vector 〈tx, ty, tz〉

TABLE 3.4 Fluents of Topological, Directional and Distance Relationships.

Type Fluent Description

Topological

on(o1, o2) either onrigid(o1, o2) or onfluid(fo1, o2) holds
onrigid(o1, o2) rigid object o1 is on object o2
onfluid(fo1, o2) fluid object fo1 is on object o2
in(o1, o2) either inrigid(o1, o2) or influid(fo1, o2) holds
inrigid(o1, o2) rigid object o1 is in object o2
influid(fo1, o2) fluid object fo1 is in object o2

Directional

in_front(o, ref, orig) o is in front of reference ref given origin orig
behind(o, ref, orig) o is behind of reference ref given origin orig
left(o, ref, orig) o is left of reference ref given origin orig
right(o, ref, orig) o is right of reference ref given origin orig
below(o, ref, orig) o is generally below of ref given orig
belowstrict(o, ref, orig) o is strictly below of ref given orig whereby

o’s x-y-bounding-box is inside ref ’s x-y-
bounding-box

belowrelaxed(o, ref, orig) o is below of ref given orig whereby o’s cen-
ter is inside ref ’s x-y-bounding-box

above(o, ref, orig) o is generally above of ref given orig
abovestrict(o, ref, orig) o is strictly above of ref given orig whereby

o’s x-y-bounding-box is inside ref ’s x-y-
bounding-box

aboverelaxed(o, ref, orig) o is above of ref given orig whereby o’s cen-
ter is inside ref ’s x-y-bounding-box

Distance
close(o1, o2) object o1 is close to object o2
distant(o1, o2) object o1 is distant from object o2
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(a) (b)

(c) (d)

(e) (f)

FIGURE 3.2 Blocks world scenario. Left: Various physical configurations of blocks in the
Gazebo simulator. Right: The robot’s belief state about the scenario including annotated
contact information visualized in RVIZ.
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Fluents describe conditions over time. For example, the condition that object A is on

object B changes during the course of action. Therefore, fluents have to be related to time.

In this work, we represent fluents as functions and use similar notations as in the Event

Calculus (Kowalski and Sergot, 1986a). The Holds predicate is used to test whether a

fluent is true at a certain point in time or not. Fluents that are interpreted as functions are

called reified. Generally, the Holds predicate looks as follows:

Holds(

Fluent︷︸︸︷
f ,

Time point︷︸︸︷
t )

where f is an arbitrary fluent from Table 3.4 and t a point in time.

The truth values of fluents are defined by logical sentences. These sentences are

formed on the basis of other fluents or/and predicates that are grounded in the data struc-

tures of the simulator. For example, the on fluent is defined as follows:

Holds(on(o1, o2), ti)⇔
Holds(contacts(o1, o2), ti, )∧
Holds(above(o1, o2), ti, )

Basically, an object o1 is on another object o2 whenever the objects are in contact with

each other and the first object is above the second. The contacts fluent is simply defined

by the value reported by the simulator:

Holds(contacts(o1, o2), ti)⇔
SimulatorValue(contacts(o1, o2), ti)

The above fluent retrieves the bounding boxes of both objects and compares them in

order to compute its truth value:

Holds(above(o1, o2), ti)⇔
SimulatorValue(bbox(o1, bbox1), ti)∧
SimulatorValue(bbox(o2, bbox2), ti)∧
Above(bbox1, bbox2)

The Holds predicate, introduced above, can be used to assess a condition at a certain

point in time. However, many conditions hold not only a single point in time, but rather

during a certain time span. To express that a fluent holds during whole interval we define

another predicate as follows:
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time

A before B A B

A equals B A

B

A meets B A B

A overlaps B A

B

A during B A

B

A starts B A

B

A finishes B A

B

FIGURE 3.3 Possible relationships between pairs of intervals (Allen, 1983).

HoldsThroughout(

Fluent︷︸︸︷
f ,

Time interval︷ ︸︸ ︷
[t1, t2] )

whereby f denotes a fluent and [t1, t2] is a time interval. Sometimes we also use i to

denote a time interval. The HoldsThroughout predicate allows us to talk about enduring con-

ditions over time. In order to relate fluents that hold at different intervals we implemented

predicates realizing the thirteen temporal relationships according to Allen (1983). Fig-

ure 3.3 depicts the possible ways two intervals can be related. For example, to describe

that the pancake mix was in the container before it was on the pancake maker the following

logical sentence can be used:

HoldsThroughout(in(mix, container), i1)∧
HoldsThroughout(on(mix, pan), i2)∧
Before(i1, i2)

Events Besides fluents, a temporal representation must be able to describe the occur-

rence of events and actions. In analogy to fluents, we assess the truth value of events and

actions using the Holds and the HoldsThroughout predicates, i.e.:
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Holds(occurs

Event︷︸︸︷
(e) ,

Time point︷︸︸︷
t ) or HoldsThroughout(occurs

Event︷︸︸︷
(e) ,

Time interval︷ ︸︸ ︷
[t1, t2] )

For example, the event of cooking the pancake mix is formalized as

HoldsThroughout(occurs

Event︷ ︸︸ ︷
(cook(mix)),

Time interval︷ ︸︸ ︷
[t1, t2] ).

Actions of a robot can be represented similarly. Pouring the pancake mix can be repre-

sented as

HoldsThroughout(occurs

Event︷ ︸︸ ︷
(pour(mix)),

Time interval︷ ︸︸ ︷
[t1, t2] ).

The next section explains how “manipulation stories” or narratives can be represented

effectively using timelines.

3.5 Timelines (Narratives)

In this thesis we have developed timelines as a data structure to represent all information

about narratives. Similar to chronicles (Ghallab, 1996), timelines represent reified fluents

in temporally qualified predicates. Figure 3.4 visualizes fluents and events of the “Making

Pancakes” problem that are captured by a timeline. The actions of the robot correspond

to the formal representation shown in Figure 2.2 (yellow). The cooking event (blue) is

relatively short, since it only transforms the mix into a pancake. This behavior can be rec-

ognized by a change from fluent on(mix,pan) to on(pancake,pan) (green). The undesired

effect of spilling some pancake mix onto a table is represented by the fluent spilled (red).

Timelines are comprehensive data structures that are consulted for answering queries

about a particular narrative or a set of multiple narratives. Therefore, it is important that

queries can be formulated in a way that they relate either to a single or to multiple timelines.

We achieve this, by extending all previously introduced predicates by a third argument,

namely a timeline. Hence the Holds predicate is finally formalized as follows:

Holds(

Fluent︷︸︸︷
f ,

Time point︷︸︸︷
t ,

Timeline︷︸︸︷
tl )

and the HoldsThroughout predicate as:

HoldsThroughout(

Fluent︷︸︸︷
f ,

Time interval︷ ︸︸ ︷
[t1, t2] ,

Timeline︷︸︸︷
tl )
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time

pour(mix) pour

place(pancake) place

flip(pancake) flip

push(spatula) push

lift(spatula) lift

turn(spatula) turn

cook(mix) cook

in(mix,container) in

on(mix,pan) on

on(pancake,pan) on on

on(pancake,plate) on

on(pancake,spatula) on

spilled(mix,table) spilled

FIGURE 3.4 Timeline representation of making pancakes.

whereby tl is a unique ID for accessing a timeline. Similarly, the SimulatorValue predi-

cate is extended with an additional argument.

We use PROLOG’s search mechanism to retrieve answers from a set of timelines. In

general, the linear search for particular objects, fluents, and/or events over a set timelines

is quite slow. Therefore, we have designed and implemented several internal data struc-

tures that allow for an efficient search. For example, we use object-dependent skip lists

(Munro et al., 1992) of temporal events to find fluents and events related to an object rather

quickly. Furthermore, instead of linear search we use binary search methods to retrieve

information from a timeline in logarithmic time.

3.6 Robots and Actions

Increasing the re-usability of robot control programs and software libraries has spawned

several efforts to decouple the control programs as much as possible from the robots they

are applied to. One line of abstraction is the use of robot description languages which

provide models of a robot and then design and implement software components that work
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FIGURE 3.5 Left: Visualization of URDF’s basic language elements: links and joints. Right:
Naming convention of labeling the parts of PR2 robot. Courtesy: Willow Garage (http:
//www.ros.org/wiki), available under a Creative Commons Attribution 3.0 license.

on the model components rather then the particular robot instance. The specialization to

particular robots is then performed through the parametrization of the control programs.

A recent and successful example of such a robot description is the Unified Robot De-

scription Format (URDF)8, which can be used to specify the kinematics and dynamics,

the visual representation and the collision model of a robot. By using the information of

a robot description which is specified in URDF robot systems can calculate the 3D pose

of a robot and detect potential collisions between a robot and its environment. Program-

mers can use the URDF description to visualize the respective robot and to simulate it in

a physics-based simulator.

URDF specifies robot models using primarily two different language elements, namely

links and joints (Figure 3.5, left). A link element describes a rigid body part of a robot by

specifying its origin, mass, inertia, geometry, visual appearance, and a collision model,

whereas a joint element describes the connection of two links. The joint specification in-

cludes for example the joint type, e.g. revolute, continuous, or prismatic, and the joint limits.

Figure 3.6 shows the arm and hand of our robot Rosie and visualizes the corresponding

URDF specification.

While URDF robot descriptions go a long way they are also still limited. In this work

we investigate one of these limitations: the lack of semantics of robot parts in the URDF

model. In URDF what a link corresponds to is only present in the link name. Thus, links

have the name left-gripper-motor or left-gripper-encoder but the robot system does not

know what this name means (Figure 3.5, right).

In this thesis, we explicitly represent the components of URDF descriptions in a sym-

8http://www.ros.org/wiki/urdf
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FIGURE 3.6 Left: Rosie’s KUKA-lightweight LWR-4 arm with DLR-HIT hand. Right: Visual-
ization of the corresponding URDF specification. URDF’s links and joints are visualized
by boxes and ellipses respectively.

bolic knowledge base containing encyclopedic knowledge about robots and their compo-

nents. We show how the robot specification format URDF can be embedded into a more

powerful semantic robot description language, which we call SRDL. SRDL addresses not

only robot descriptions but also the descriptions of actions and capabilities. It also pro-

vides inference mechanisms that allow reasoning about the ability of robots to perform

certain actions.

SRDL enables robots to map an instruction like “Turn the wrist quickly to put the pancake

upside down onto the pancake maker” onto its own robot model and thereby generate

it into an executable robot plan, as described in (Tenorth et al., 2010b). The action in

this generated plan refers to the concepts wrist, but not to the individual links or joints.

Although wrist is implicitly described by the URDF specification, the concepts cannot be

located within the robot body.

The following fictitious dialog between a human and a robot illustrates the kind of ques-

tions that could be answered using SRDL:
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HUMAN: Can you make a pancake using a pancake maker?

ROBOT: Yes, I can.

HUMAN: How good are you in making pancakes?

ROBOT: I’ve a success rate of 78%.

HUMAN: Can you also make pancakes using a frying pan?

ROBOT: No, I cannot.

HUMAN: Why not?

ROBOT: I am missing an object model for perceiving a frying pan.

For answering these questions the robot basically has to match the action specifications

and requirements with its own robot description and its collected experience.

To this end, this work contributes the following:

• we have developed a semantic description language for robots (including sensors,

actuators, control algorithms and information objects);

• we have extended the action representation established in (Tenorth et al., 2010b)

and link it to the developed robot descriptions; and

• we have designed and implemented inference mechanisms for matching robots and

actions and computing a success probability for actions based on experience.

3.6.1 Semantic Robot Description Language (SRDL)

SRDL is used to specify robots, capabilities and everyday actions. Inference algorithms

are used to match action descriptions to components of robots via the concept of capabili-

ties. In the following, we first give an overview of the overall system and clarify the meaning

of important concepts. Secondly, we present how robots, actions and capabilities are rep-

resented by the means of ontologies. And finally, we explain how the developed SRDL

inference algorithms work.

3.6.1.1 System Overview and Terminology

SRDL is tightly integrated within the knowledge processing system KNOWROB (Tenorth

and Beetz, 2009). In terms of knowledge representation and reasoning this means that

SRDL uses the Web Ontology Language OWL9 for modeling knowledge about robots,

9http://www.w3.org/TR/owl-features/
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TABLE 3.5 Terminology.
Concept Definition Examples
Robot We define Robot, according to (Russell and

Norvig, 2009), as physical agent that performs
actions by manipulating the physical world and
that have effectors and sensors. (Section 2.1.3)

Rosie, PR2

Component A Component of a robot is defined as hardware,
e.g. sensors and effectors, software control pro-
gram or information object, e.g. maps and ob-
ject models.

DLR-HIT-Hand,
GraspPlanner,
TeaCupModel

Action Following OpenCyc’s definition of Purposefu-
lAction, an Action is consciously, volitionally,
and purposefully done by at least one actor.

MakingPancakes,
PickingUpAnOb-
ject

Capability A Capability is the ability to perform a certain
action. A robot has a Capability due to its com-
ponents.

PickAndPlace-
Capability

capabilities and actions, and that it uses the logical programming language PROLOG for

implementing inference algorithms.

Using an OWL representation allows SRDL to build on the inference mechanisms al-

ready available for OWL reasoning. For example, an object can be classified as being

a LaserScanner based on the necessary and sufficient conditions for a LaserScanner

defined in the OWL ontology. This classification can be used in SRDL inference if a Laser-

Scanner is necessary for a certain action.

The integration within KNOWROB allows SRDL to build on an established knowledge

base for robots. Whereas it mostly re-uses KNOWROB’s knowledge about actions, SRDL

extends the knowledge with information about robots, components and capabilities and

relates it to existing knowledge. Furthermore, we established a separate module that au-

tomatically imports URDF specifications into SRDL’s ontology.

But before we delve into the details of SRDL, it is important to understand the most

relevant concepts within our approach, namely Robot, Component, Action and Capability.

Definitions and examples for these concepts are given in Table 3.5, whereas their relation-

ship is visualized in Figure 3.7.

3.6.1.2 Ontological Representation

In this section we present how robot components, actions, and capabilities are modeled

within SRDL using OWL.
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Robot

Component Capability Action

hasComponent

needsComponent requiresCapability

dependsOn

FIGURE 3.7 Relationships between the concepts Robot, Component, Capability and Action

Robot Components A component is everything a robot consists of including but not

limited to hardware components, software control programs and information objects.

Each component is represented in the SRDL ontology as being an instance of a com-

ponent class to capture its type and its specific properties. The component taxonomy is

shown in Figure 3.8 and defines component types, their relationships to other components

and specific properties on component level. The component taxonomy covers hardware

components (sensor and actuators), software components (control programs) and infor-

mation objects (object models, data sets, and maps). The inheritance relationship of a

taxonomy can be used to query for certain types of components or components with spe-

cific properties, e.g. all sensors or all information objects.

In order to capture the kinematic chain between hardware components of a robot the

transitive object property hasSuccessorInKinematicChain can be used. Examples for such

relationships in kinematic chain are a hand being a successor of an arm or a joint being

the successor of a link. When using the URDF import module, an individual for each com-

ponent is created and the relationships are asserted in this way. For example, in Figure 3.6

each arrow corresponds to a hasSuccessorInKinematicChain assertion. Due to the tran-

sitivity of property hasSuccessorInKinematicChain it is easy to obtain all successors of an

arbitrary component just by traversing the kinematic chain spanned by hasSuccessorInK-

inematicChain assertions.

The robot description at link and joint level is a rather low-level description. It can be

used in order to calculate forward and inverse kinematics but it does not contain knowledge

about the purpose of a certain link or joint. Often it is interesting to know what high-

level component such as hand or arm is formed by a set of links and joints. In order

to be able to model such high-level components that consist of low-level components, a

high-level component can be defined as a component composition, e.g. a DLR-HIT-Hand,

and the set of low-level components that are part of the high-level component can be
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FIGURE 3.8 (Part of) Component and sensor taxonomy

specified. This can be done using the object properties hasBaseLinkInComposition and

hasEndLinkInComposition. As the kinematic chain is a tree structure there is always one

base link of a component composition but there may be more than one end links (as is the

case for a hand). For example, if we want to define the right hand pictured in Figure 3.6

as a composite component, we would define palm as base link and ring_4, middle_4,

index_4, and thumb_5 as end links.

So far we have discussed how single components and component compositions can be

defined. In the following we present how specific components can be asserted to be part

of a specific robot. There are three ways how this can be achieved: first by the kinematic

chain mechanism as explained above; second by directly asserting a component to a

robot using the property hasComponent, and third by the property chain mechanism for

software components.

Actions Actions are events that are performed by a robot purposefully to change its

environment and accomplish a goal.

An action consists of steps or sub-actions and those themselves are actions and can

consist of sub-actions. This structure results in a hierarchical tree, called action tree. The

action tree of an action is specified in SRDL using the object property hasSubAction. For
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each sub-action an assertion of property hasSubAction between the action and the sub-

action is made. Figure 3.10 shows an example of an action tree.

An action depends on a set of capabilities. The robot must possess all of these capa-

bilities, otherwise it is judged to be incapable of performing the action. These capability

dependencies of an action are specified using the object property requiresCapability. For

example, action PickingUpAnObject in Figure 3.11 needs capability MovingArmCapability

among others in order to perform the picking action.

A goal of SRDL is to enable a robot to use experience about narratives of an action

in order to predict how likely it will be successful when performing an action. To accom-

plish this, experience information about an action has to be modeled. Datatype properties

hasNumSuccesses and hasNumNarratives are used to store the number of successful

narratives and total number of narratives for an action.

Capabilities Capabilities represent the ability of robots to perform certain actions.

It is difficult to compare a robot and an action directly because they have very different

characteristics: a robot has physical, spatial characteristics whereas an action abstract,

hierarchical ones. In order to be able to match between robots and actions the concept

of “capabilities” is introduced. An action depends on a set of capabilities and a set of

components equips the robot with a certain capability. A capability is defined as a class in

the capability taxonomy and its properties are specified as explained below.

In order to exhibit a certain capability, a robot has to possess a set of components

that cooperate and jointly enable the robot to exhibit the capability. For example, to ex-

hibit the capability of navigating around in its environment, the robot needs components

such as mobile base, a motion controller, a sensor, a object detection component and

a map. Component dependencies of a capability can be modeled using object property

needsComponent.

Additional to depending on components, a capability can also depend on other capabili-

ties, so called "sub-capabilities". Sub-capabilities denote prerequisites of capabilities. This

design allows modularization and reuse of definitions of capabilities and their component

dependencies. The inference algorithm has to check sub-capabilities recursively when

matching between robots and actions. Dependency of a capability on another capability

can be modeled using object property dependsOn.
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3.6.1.3 Inference Algorithms

The developed inference algorithms are realized by utilizing PROLOG’s reasoning engine

and additional libraries like the Semantic Web Library10, but not employing of-the-shelf

Description Logic reasoners. This allows us to easily extend the inference mechanism with

other types of reasoning which are available in KNOWROB, e.g. commonsense reasoning.

For instance, if a robot could not find cups for setting a table, it can propose to use glasses

which are also of type container (cf. (Galindo et al., 2008)).

In this section we will discuss inference algorithms that match between robots and ac-

tions and calculate a success probability for performing an action. It is helpful to keep the

knowledge model that is discussed above and summarized in Figure 3.7 in mind when

studying the inference algorithms.

Matching between Robots and Actions The main question of SRDL is the matching

between robots and actions: to judge if a robot can perform an action, totally independent

of a real execution.

The matching algorithm depends on the action tree and capability dependencies of

actions. Robot R must fulfill two conditions in order to be able to perform an action A:

First, all dependencies on capabilities of A must be fulfilled, meaning that all capabilities

needed by A are available. Second, R must be able to perform all sub-actions of A.

In order to check those conditions, the inference algorithm iterates over all capability

dependencies of A and checks for each single capability if it is available on R as described

below. Further, the inference algorithm checks all sub-actions of A recursively. If a single

missing capability or unfeasible sub-action of A is found, A is being judged to be unfeasible

on R. If all capability dependencies are met and all sub-actions are feasible, A is judged

to be feasible on R.

There are two conditions a robot R must fulfill in order to exhibit capability C: First, all

component dependencies of C have to be fulfilled. A single component dependency is

fulfilled if R possesses an instance of the component specified by the component depen-

dency. Second, all sub-capabilities of C must be available on R also.

The inference algorithm checks these two conditions for capability C by iterating over all

component dependencies and sub-capabilities of C and checking each single one (in case

of sub-capabilities recursively). If only one missing component dependency or unavailable

sub-capability is found, C is judged to be unavailable on R.

10http://www.swi-prolog.org/pldoc/package/semweb.html
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In case of a negative matching outcome between a robot R and an action A it is desir-

able to know the reason for the failure. Thus, SRDL must be able to explain its inference

result and enumerate all capabilities and components that are required for performing A

but are missing on R.

The inference algorithm achieving this is an extension of the matching algorithm de-

scribed above. It collects all capabilities that are required by A or one of its sub-actions,

checks which of these capabilities are unavailable on R and produces a list of miss-

ing capabilities MissingCapabilities. Iteration over MissingCapabilities and collecting all

their component dependencies results in the list of missing components. Note that sub-

capabilities have to be considered recursively and a component dependency has to be

checked if it is really nonexistent on R as missing capabilities usually depend on existing

and nonexistent components.

Success Probability of an Action A second inference task of SRDL is to predict a

success probability PSuccess(A) for robot R performing action A. We implemented two

strategies for computing the success probability; both of them are based on the asserted

numbers of narratives and successes in the past.

If numbers of successes and narratives are asserted for action A the success probabil-

ity PSuccess(A) can be calculated by dividing the number of successes by the number of

narratives: PSuccess(A) = NumSuccesses
NumNarratives

.

If none or only one number for narratives and successes is asserted for action A on

robot R, direct calculation is not possible. But the success probability of A can be calcu-

lated based on the success probabilities of the sub-actions of A. This is done by computing

the success probabilities PSuccess(SubA) of all sub-actions of A and setting the success

probability PSuccess(A) of A to the product of success probabilities of all sub-actions. The

product of success probabilities of sub-actions is used assuming that all sub-actions are

independent and due to the fact that the joint probability of independent events is the prod-

uct of the probabilities of each single event. Sub-actions for which no success probability

can be calculated are ignored and the calculation fails if there is no sub-action for which a

success probability can be calculated.

3.6.1.4 Example Problems

In this section we demonstrate the applicability of our approach by providing examples

for robot and action descriptions and by explaining how the inference algorithms compute

their consequences. We take a situation where our robot Rosie (Figure 3.9) is supposed
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to make pancakes as sample problem. We first elaborate on the robot specification of

Rosie, then present the action description for making pancakes, and finally explain how

the inference algorithms compute their results for various queries.

Rosie the Robot The URDF description of Rosie can be automatically imported into the

SRDL ontology. Thereby Rosie’s low-level description including its kinematics is available

in SRDL. Based on this low-level description, high-level components, i.e. sensors and

actuators, are defined as instances of their respective classes. For example, the hand of

Rosie is of type DLR-HIT-Hand and it is constituted of 18 instances of type URDFLink and

17 instances of type URDFJoint (Figure 3.6). The information about Rosie’s components

can be retrieved from the ontology via a PROLOG interface. For example, the following

query asks for all components of Rosie that are of type Sensor :

?- hasComponent(srdl:'Rosie', Comp),

isType(Comp, srdl:'Sensor').

Comp = 'camera1-left' ;

Comp = 'camera2-right' ;

Comp = 'infraredCamera' ;

Comp = 'swissRangerTOF' ;

Comp = 'videreStereoOnChip' ;

Comp = 'hokuyo-shoulder' ;

Comp = 'hokuyo-rear' ;

Comp = 'hokuyo-front'.

Note, that hasComponent collects all components of Rosie by following the underlying

kinematic chain imported from URDF and that isType filters all instances whose type is

derived from the concept Sensor.

Exemplarily, let us now look more closely at the last three instances, i.e. hokuyo-<pos>.

All of them have are asserted to be of type HokuyoURG4LX and their membership of

being of type Sensor is derived because of the subclass specifications of Sensor, 2D-

VisualSensor and 2D-LaserScanner in the sensor taxonomy. Although all three instances

have the same type, they differ in the way they are mounted on Rosie. But despite the

different mounting locations, a more critical distinction is that the shoulder scanner can

be tilted whereas the others are fixed. This distinction is reflected within the ontology

where hokuyo-front and hokuyo-rear are additionally modeled as sub-concepts of 2D-

FixedLaserScanner whereas hokuyo-shoulder is additionally modeled as sub-concept

of 3D-TiltingLaserScanner. This differentiation within the taxonomy is highly relevant for
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FIGURE 3.9 Rosie and its high-level components. Courtesy: IAS.

Rosie’s software components that rely on data gathered by these sensors. For exam-

ple, perception routines for 3D object recognition require as input 3D point cloud data

which can only be provided by an instance of type 3D-TiltingLaserScanner but not 2D-

FixedLaserScanner.

After we highlighted some details about our robot Rosie, we now shortly consider the

action description for making pancakes and explain how these concepts are related to

robot components via capabilities.

Making Pancakes For modeling actions we adopted the formalism established within

KNOWROB. The action description for making pancakes is represented by an instance

of type MakingPancakes which consists of several sub-actions. For example, the action

PouringDoughOntoPancakeMaker refers to an object on which is acted on, e.g. an in-

stance of type Dough and a location to which the dough is poured to, namely the Pancake-

Maker. FlippingAPancake has itself an ordered sequence of sub-actions: PushingAnOb-

ject, LiftingAnObject and TurningAnObject. Again, these actions denote further sub-actions,

for example, PickingUpAnObject. A simplified excerpt of the hierarchical action represen-

tation of making pancakes is depicted in Figure 3.10.

We now explain how the action representations are related to robot components by

examining the action PickingUpAnObject in detail. Picking up an object is basically an

ordered sequence of actions, namely recognizing the object, moving the arm/hand to-

wards it, grasping it, and finally lifting it. For doing so, the robot needs the respective
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MakingPancakes

PouringDoughOntoPancakeMaker

. . .

FlippingAPancake

PushingAnObject

PickingUpAnObject

RecognizingAnObject

. . .

MovingArm

. . .

Grasping

. . .

. . .

LiftingAnObject

. . .

TurningAnObject

. . .

FIGURE 3.10 Hierarchical action tree for making pancakes.

capabilities. These capabilities are associated with PickingUpAnObject within the ontol-

ogy. More specifically, the logical conjunction of role requiresCapability with range re-

strictions 3D-ObjectRecognitionCapability, MovingArmCapability, and GraspingCapability

form a super-class of PickingUpAnObject. The capabilities themselves refer to compo-

nent classes they require, e.g. 3D-ObjectRecognitionCapability depend on components of

class 3D-VisualSensor (e.g. 3D-TiltingLaserScanner ) and 3D-ObjectRecognitionAlgorithm.

The latter component has further dependencies, for recognizing a certain object the algo-

rithm needs the respective 3D-ObjectModel. Figure 3.11 visualizes the relations between

Rosie’s components, its capabilities and the action of making pancakes.

Inferences After we have seen how knowledge about robots and actions can be repre-

sented by SRDL, we demonstrate the inference mechanisms by examining the questions

of the dialog presented in Section 3.6.

Q1 Can you make a pancake using a pancake maker?

For determining whether Rosie is able to make a pancake the inference algorithm matches

the instance of MakingPancakesUsingPancakeMaker with Rosie’s robot description.

In the first step the algorithm collects all sub-actions of MakingPancakesUsingPancake-

Maker. The result is a list including the following actions: PouringDoughOntoPancake-

Maker, FlippingAPancake, PushingAnObject, LiftingAnObject, TurningAnObject, PickingU-
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Robot: Rosie

. . .

Component: Arm

Component: ArmController

Action: FlippingAPancake

. . .Action: PushingAnObject

Action: PickingUpAnObject

. . .

. . .

Capability: MovingArmCapability

hasSubAction

hasSubAction

hasComponent

needsComponent

needsComponent

requiresCapability

FIGURE 3.11 Relations between Rosie’s components and a flipping action through the con-
cept of capabilities.

pAnObject, RecognizingAnObject, MovingArm, Grasping etc.

In the second step the algorithm proves for each action found in step one that Rosie

is capable of performing it. For example, for proving that Rosie is capable of Flippin-

gAPancake all capability dependencies of this action sub-tree are collected and ver-

ified. As we saw earlier, PickingUpAnObject is one of the sub-actions in this action-

tree. And since we cannot provide details for all sub-actions we give some explanations

for PickingUpAnObject : MovingArmCapability and GraspingCapability are provided by

Rosie’s hardware components of type KUKA-LWR4-Arm and DLR-HIT-Hand and their re-

spective control programs. Rosie’s component instances of type 3D-TiltingLaserScanner,

3D-PerceptionPipeline, and 3D-SpatulaModel provide the 3D-ObjectRecognitionCapability.

Similarly, the other actions retrieved in step one can be verified. Hence, the following PRO-

LOG predicate evaluates to true:

matchRobotAndAction(srdl:’Rosie’, srdl:’MakingPancakesUsingPancakeMaker’).

Q2 How good are you in making pancakes?

The success probability for setting the table is calculated on the basis of Rosie’s experi-

ence made in the past, that is, narratives. If the number of successful narratives and the

total number of narratives are explicitly available for an action the success probability is

directly given by the ratio. Otherwise the success probability of an action is the product of

the success probabilities of all its sub-actions. In the case of MakingPancakesUsingPan-

cakeMaker the success probability, computed on made-up data, is 78%.
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Q3 Can you also make pancakes using a frying pan? Why not?

This prove is exactly the same as for Q1, despite that it fails. The reason why Rosie’s

description cannot be matched with MakingPancakesWithFryingPan is, that Rosie does

not have an adequate object model. SRDL is designed that it can report why a prove

fails by providing a list of missing capabilities and components. Here it says that the re-

quirements for 3D-ObjectRecognitionCapability are unmet because a component of type

3D-FryingPanModel is missing.

3.6.2 Related Work on Robots and Actions

Related work oon robots description languages and action specifications comprises three

directions: robot descriptions, capability matchmaking and a combination of both.

3.6.2.1 Robot Descriptions

URDF was already discussed in some detail in the beginning of Section 3.6. Its application

to kinematics, collision detection and visualization make it a powerful and indispensable

tool for robot development. However, URDF is not designed for specifying robot compo-

nents such as sensors, actuators, and control programs and matching those to action

descriptions. In contrast, SRDL exactly addresses these issues and thereby aims at filling

the gap between low- and high-level descriptions.

COLLADA11 is an XML Schema designed for describing 3D objects including their kine-

matics. It mainly focuses on modeling information about scenes, geometry, physics, ani-

mations, and effects. But similar to URDF, it lacks elements for describing sensors, actua-

tors and software.

Both (Schlenoff and Messina, 2005) and (Chatterjee and Matsuno, 2005) developed an

OWL ontology to describe robots including their capabilities that operate in the domain of

urban search and rescue. In contrast to SRDL, components and attributes are directly as-

serted to robots without modeling a kinematic chain. Also capabilities are directly asserted

and not inferred from robot components.

The state-of-the-art of semantic sensor specifications is reviewed by (Compton et al.,

2009a). An OWL ontology that focuses on the composition of sensors is developed in

(Compton et al., 2009b). Efforts for providing a standard for sensor specifications are

undertaken by the W3C Semantic Sensor Network Incubator Group12. As sensors are an

11http://www.collada.org
12http://www.w3.org/2005/Incubator/ssn
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important aspect within robotics, the work by (Compton et al., 2009a,b) and the Semantic

Sensor Network Incubator Group is highly relevant for SRDL.

3.6.2.2 Capability Matchmaking

In general, the term capability matchmaking refers to the process of matching an adver-

tisement of a capability with a request. In context of SRDL, a robot with its components

corresponds to the advertisement whereas an action description resembles the request.

The matching algorithm has to determine whether a robot is capable to perform an action.

In (Gil and Ramachandran, 2001), agent and task descriptions are modeled in an on-

tology and matched by subsumption-based reasoning.

The LARKS system developed by Sycara et al. (2002) is built for matching web-based

software agents. It employs several matching mechanisms based on semantic similarity

and service specification structure to determine different degrees of matching.

OWL-S (Martin et al., 2007) allows to model the functionality and the process of web

services semantically by using domain ontologies and predefined modeling constructs.

Information about the functionality is used by the matchmaking algorithm to semantically

compare advertisement and request.

As the approaches above, SRDL uses an ontology for representing knowledge. But a

major difference lies in the way the capability advertisements and requests are matched.

Whereas the described systems match structurally equivalent specifications, SRDL matches

action specifications to robots by verifying required capabilities and robot components.

3.6.2.3 Matching Sensor Descriptions to Tasks

In (Preece et al., 2008), the directions of robot descriptions and capability matchmaking

are combined. The approach is able to compute compositions of assets that are jointly

able to perform specific tasks in a military setting. Matching between tasks and assets is

done by the means of capabilities.

When comparing SRDL to work of Preece et al. (2008) it is noticeable that similarities

exist. This is because we adopted and transferred some of their ideas to the domain of

household robots. But there exist also considerable differences: the support of kinematics,

sets of components providing a capability and modeling of diverse robot components like

actuators, control programs and information objects. Furthermore, SRDL includes mech-

anisms to handle experiences about actions.
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3.7 Discussion

Spatio-temporal Representations In the beginning of this chapter we revisited the ex-

ample of “Making Pancakes” and identified the relevant aspects that need to be repre-

sented for reasoning about such problems, namely, objects, actions, space, and time. We

provided arguments for using logical representations and explained why we have chosen

OWL and PROLOG to represent everyday manipulations scenarios. We further described

how objects are represented within an ontology and how they are linked to physical mod-

els of a simulator. The logical representations of space and time which are based on the

notations of the Event Calculus have been explained in detail. Further, we showed how

these representations are grounded in the data structures of a physics-based simulator.

As a major contribution of this thesis timelines has been introduced as a data structure

for representing and reasoning about narratives of manipulation actions. In this thesis we

demonstrate that timelines are suitable to capture robot and human object manipulation

tasks. However, the applicability of timelines for representing everyday activities in general

would be an important direction of future research.

Robots and Actions In this work we have investigated semantic robot description lan-

guages and inference mechanisms for matching robot descriptions with hierarchical action

specifications. We presented SRDL for describing robot components, capabilities and ac-

tions, and showed that linking those descriptions allow us to make inferences about the

ability of robots to perform certain actions. The proposed system has been implemented

and integrated within the knowledge processing system KNOWROB. We demonstrated the

applicability of our approach by closely looking into the descriptions of our robot Rosie

and the action specifications of making pancakes, and by carefully following some sample

inferences.

In future work SRDL can be extended in several ways. For example, mechanisms that

keep track of the current state of robot components, including sensors, actuators, control

programs and information objects could be integrated. Furthermore, constraints of com-

ponents or sets of components could be considered in more detail. Another line of future

work could investigate the monitoring of future tasks and the current state of robot compo-

nents. For example, consider a robot that is supposed to use a rolling pin. Since it needs

both hands for accomplishing this task, a problem can be detected when it is monitored

that the robot already holds another object in one of its hands or one of its hand is broken.

Such a monitor for tasks and components would help to observe potential problems, to
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recognize them in advance, and to deal with them proactively. Finally, a further direction

that one could investigate is a tighter integration of SRDL with robot planning and robot

learning.
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Envisioning Robot Object Manipulation

Autonomous robots that are to perform complex everyday tasks like making pancakes

have to understand how the effects of an action depend on the way the action is executed.

In case that the executed action do not achieve the desired goals or even lead to some un-

desired effects, a robot has to recover from the caused circumstances (if possible) and has

to redo the action, but this time in the right way. By envisioning the outcome of its actions

before committing to them, a robot becomes aware of everyday physical phenomena and

thereby it can prevent itself of ending up in unwanted situations. Hence, robots can per-

form manipulation tasks more efficient, robust and flexible and they can even accomplish

previously unknown variations of tasks successfully.

Within Artificial Intelligence, classical planning reasons about whether actions are ex-

ecutable but make the assumption that the performed actions will succeed (with some

probability). In this work we have designed, implemented and analyzed a framework that

allow us to envision the physical effects of robot manipulation actions. The envisioning

is achieved by translating a qualitative physics problem formalization into a parameter-

ized simulation problem, performing a detailed physics-based simulation of a robot plan,

logging the state evolution into appropriate data structures and then translating these

subsymbolic data structures into interval-based first-order symbolic/qualitative represen-

tations, called timelines. The result of the envisioning is a set of detailed narratives rep-

resented by timelines which are then used to infer answers to qualitative reasoning prob-

lems.

4.1 Physical Reasoning (in AI)

The basic idea of how human reasoning about problems like making pancakes (Sec-

tion 1.2) can be realized using formal logic-based methods is depicted in Figure 4.1.
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FIGURE 4.1 Commonsense reasoning and its formalization using first-order logic.

Given an initial situation and an intended goal, humans try to anticipate the appropriate

sequence and configuration of actions that will lead to a desired outcome. Formally, the

initial situation and a script of actions are described using a logical axiomatization. Then, a

specialized calculus, for example, the situation or the event calculus (Kowalski and Sergot,

1986a), are applied in order to transform the axiomatization from the initial situation into a

proof that resembles the intended goal.

However, if robots are supposed to use a similar mechanism several problems arise.

Figure 4.2 shows a robot that has to infer how its behavior and physical effects influence

the world state after executing a parameterized plan. Basically we see three major prob-

lems with this approach:

LEVEL OF ABSTRACTION Physical effects strongly depend on the concrete parameteriza-

tion of actions. For example, the position of the hands and the tilting angle of the

container when pouring the pancake mix onto the pancake maker clearly affect the

outcome of the action. Abstracting away from these relevant details yields to over-

simplified and inadequate conclusions.

INTERFERING EFFECTS/CONCURRENT ACTIONS Effects of single and/or concurrent actions can

interfere with each other. For example, a robot that simultaneously moves its hand

holding the pancake mix to a position over the pancake maker and tilts it might spill

some mix onto the table before reaching its target position. Generally, such interfer-

ing effects are difficult to model using rules in a logical calculus.

HANDLING VARIANTS Robots should to be able to handle variants of the original problem.

An intrinsic feature of everyday manipulation tasks is that they will never be per-
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FIGURE 4.2 Reasoning about everyday robot manipulation. Given a belief state and a robot
plan a robot reasons about its own behavior and the resulting effects.

formed under the same conditions. For example, ingredients or tools a robot has to

use might differ. If the pancake mix has a higher viscosity the robot has to pour for a

longer duration than usual. Of course, not all variants of a problem can be foreseen.

However, to some extend a robot should be able to cope with variants without the

need to extend the underlying theory.

In conclusion, reasoning components for robots have to be realized by other means

than pure Logic. In the next section we will outline the principle by which we enable robots

to envision the outcome of their own actions adequately.

4.2 What is Envisioning?

As described in the work of de Kleer (1977), envisioning denotes the kind of reasoning that

predicts what might or could happen in a given situation. Thereby the reasoning considers

multiple or all possible situations that could be generated from an initial situation.

Figure 4.3 shows how the underlying idea of commonsense reasoning explained in the

previous section is extended. Based on the logical axiomatization, that is, a description

of a manipulation scenario and a fully instantiated robot plan, a physics-based simulation

is parameterized. The states of task-relevant objects and actions are monitored and their

data structures are logged. These log files are interpreted and translated into interval-

based first-order representations, called timelines. Eventually, logical queries of the robot

can be answered based on timelines which are grounded in the logged data structures of

physical simulations.
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FIGURE 4.3 Envisioning of robot manipulation tasks based on physics-based simulations.

The general principle of the envisioning framework is depicted in Figure 4.4. The frame-

work is accessed via a logic-based interface, meaning that both the framework’s input

and output are formalized using first-order representations. The input is a description of

a situated scenario σ of a manipulation problem along with an parameterized action plan

φ that potentially solves the problem. The output of the envisioning framework is a time-

line τ which hold information about object states, their relationships to other objects and

the performed actions of the robot. For example, a robot formalizes the problem of making

pancakes by providing a minimalist description of the environment including the kitchen

work space, manipulable objects like a container holding the pancake mix and a spatula

and a specification of the robot itself. In addition, the robot provides an instantiated ac-

tion plan based on the plan’s corresponding parameter space for pouring the ready-to-use

pancake mix onto the pancake maker, flipping the half-baked pancake and placing the full-

baked pancake onto a plate. Finally, based on the envisioned timeline the robot is able to

evaluate its parameterized action plan with respect to various performance measures, for

example, whether the pancake mix was poured onto the pancake maker without spilling.

In order to evaluate a set of parameterized action plans we sample parameter values from

the parameter space associated with a plan.
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TABLE 4.1 Envisioning process for flipping a pancake. The process steps comprise the
assertion of the scenario, envisioning over a set of parameterized plans, and question
answering based on timelines grounded in logged simulations.

Logic Programming Environment Physical Simulation

?- assert_scenario(Pancakes).

?- assert_scenario($Pancakes,kitchen).

?- assert_scenario($Pancakes,pr2).

?- param_space(flip,ParamSpace),

setof(TL,(member(P,ParamSpace),

envision($Pancakes,flip(P),TL)),

TLs).

?- member(TL, $TLs),

holds_tt(on(pancake,pancake_maker),I1,TL),

holds_tt(on(pancake,spatula),I2,TL),

holds_tt(on(pancake,pancake_maker),I3,TL),

before(I1,I2),before(I2,I3),

holds_tt(occurs(flip(P)),I4,TL),

during(I2,I4).
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FIGURE 4.4 Input and output of the envisioning framework.

Table 4.1 illustrates the individual steps of the envisioning process by the example of

flipping a pancake. The logical language allows to assert a certain scenario and initiate

the envisioning process. Eventually, logical predicates such as Holds and HoldsThroughout

(holds_tt) are used to determine whether certain conditions hold within a time interval. For

example, the query in Table 4.1 asks whether the pancake was first on the pancake maker,

then on the spatula during the flipping action, and finally back on the pancake maker.

Having shown the envisioning process step-by-step in Table 4.1, Figure 4.5 visual-

izes how the process is embedded within PROLOG’s backtracking mechanism. Given the

depth-first search strategy of PROLOG a proof tree is generated whereby the branches

correspond to different parameterizations of robot plans. Eventually, the timelines are eval-

uated with respect to desired and undesired effects.

4.3 Physics-based Robot Simulator: Gazebo

As the physics-based simulator can be considered as the “workhorse” within our approach,

we would like to introduce it separately, before we present the overall framework in detail.

Gazebo1 is a multi-robot simulator which is currently under active development at the

Open Source Robotics Foundation2 and has a large user community. Moreover, the Gazebo

software is the basis of the simulator used in the current DARPA robotics challenge3.

Gazebo provides feedback from sensors and physical interactions between objects in

a three-dimensional space. One of the reasons why we have chosen Gazebo is because

it gives us direct control over the parameters of the underlying physics engine, namely

ODE4. Other advantages include the direct control over world components such as ob-

1http://gazebosim.org
2http://osrfoundation.org
3http://www.theroboticschallenge.org/aboutsimulator.aspx
4http://www.ode.org/
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envision(pancakes,flip(ParamTuple),Timeline)

occurs(Event,Time,Timeline)
              

stuck on 
spatula

 turned
successfully

pushed 
from griddle

simulate(pancakes,flip(ParamTuple),Log)
              

translate(Log,Timeline)
              

log_o(pose,[pancake, (1.31934 0.093622 0.932908), (-175.28 -6.22547 
-23.4585)], 120.597000000)
log_o(pose,[pancake, (1.31934 0.0936212 0.932908), (-175.279 -6.22827 
-23.4587)], 120.697000000)
log_o(pose,[pancake, (1.31934 0.0936213 0.932905), (-175.297 -6.20338 
-23.4612)], 120.798000000)
log_o(pose,[pancake, (1.31934 0.0936209 0.932906), (-175.307 -6.17945 
-23.4647)], 120.898000000)
log_o(pose,[pancake, (1.31934 0.0936206 0.932906), (-175.311 -6.15599 
-23.47)], 120.997000000)
log_o(pose,[pancake, (1.31934 0.0936199 0.932905), (-175.313 -6.12287 
-23.4742)], 121.098000000)
log_o(pose,[pancake, (1.31934 0.0936189 0.932905), (-175.314 -6.11547 
-23.4737)], 121.197000000)
log_o(pose,[pancake, (1.31934 0.0936185 0.932904), (-175.318 -6.10426 
-23.4777)], 121.297000000)
log_o(pose,[pancake, (1.31934 0.0936187 0.932902), (-175.323 -6.08893 
-23.4827)], 121.397000000)
log_o(pose,[pancake, (1.31934 0.0936179 0.932902), (-175.325 -6.06293 
-23.4868)], 121.497000000)
log_o(pose,[pancake, (1.31934 0.0936174 0.932904), (-175.329 -6.0583 
-23.4909)], 121.598000000)
log_o(pose,[pancake, (1.31934 0.0936168 0.932903), (-175.335 -6.03086 
-23.4916)], 121.697000000)
log_o(pose,[pancake, (1.31934 0.0936172 0.932901), (-175.351 -6.00921 
-23.4951)], 121.798000000)
log_o(pose,[pancake, (1.31934 0.093617 0.932902), (-175.355 -5.99698 
-23.4988)], 121.897000000)log_o(pose,[pancake, (1.31934 0.0936168 
0.932901), (-175.359 -5.97459 -23.5033)], 121.997000000)log_o(pose,

log_o(pose,[pancake, (1.31934 0.093622 0.932908), (-175.28 -6.22547 
-23.4585)], 120.597000000)
log_o(pose,[pancake, (1.31934 0.0936212 0.932908), (-175.279 -6.22827 
-23.4587)], 120.697000000)
log_o(pose,[pancake, (1.31934 0.0936213 0.932905), (-175.297 -6.20338 
-23.4612)], 120.798000000)
log_o(pose,[pancake, (1.31934 0.0936209 0.932906), (-175.307 -6.17945 
-23.4647)], 120.898000000)
log_o(pose,[pancake, (1.31934 0.0936206 0.932906), (-175.311 -6.15599 
-23.47)], 120.997000000)
log_o(pose,[pancake, (1.31934 0.0936199 0.932905), (-175.313 -6.12287 
-23.4742)], 121.098000000)
log_o(pose,[pancake, (1.31934 0.0936189 0.932905), (-175.314 -6.11547 
-23.4737)], 121.197000000)
log_o(pose,[pancake, (1.31934 0.0936185 0.932904), (-175.318 -6.10426 
-23.4777)], 121.297000000)
log_o(pose,[pancake, (1.31934 0.0936187 0.932902), (-175.323 -6.08893 
-23.4827)], 121.397000000)
log_o(pose,[pancake, (1.31934 0.0936179 0.932902), (-175.325 -6.06293 
-23.4868)], 121.497000000)
log_o(pose,[pancake, (1.31934 0.0936174 0.932904), (-175.329 -6.0583 
-23.4909)], 121.598000000)
log_o(pose,[pancake, (1.31934 0.0936168 0.932903), (-175.335 -6.03086 
-23.4916)], 121.697000000)
log_o(pose,[pancake, (1.31934 0.0936172 0.932901), (-175.351 -6.00921 
-23.4951)], 121.798000000)
log_o(pose,[pancake, (1.31934 0.093617 0.932902), (-175.355 -5.99698 
-23.4988)], 121.897000000)log_o(pose,[pancake, (1.31934 0.0936168 
0.932901), (-175.359 -5.97459 -23.5033)], 121.997000000)log_o(pose,

log_o(pose,[pancake, (1.31934 0.093622 0.932908), (-175.28 -6.22547 
-23.4585)], 120.597000000)
log_o(pose,[pancake, (1.31934 0.0936212 0.932908), (-175.279 -6.22827 
-23.4587)], 120.697000000)
log_o(pose,[pancake, (1.31934 0.0936213 0.932905), (-175.297 -6.20338 
-23.4612)], 120.798000000)
log_o(pose,[pancake, (1.31934 0.0936209 0.932906), (-175.307 -6.17945 
-23.4647)], 120.898000000)
log_o(pose,[pancake, (1.31934 0.0936206 0.932906), (-175.311 -6.15599 
-23.47)], 120.997000000)
log_o(pose,[pancake, (1.31934 0.0936199 0.932905), (-175.313 -6.12287 
-23.4742)], 121.098000000)
log_o(pose,[pancake, (1.31934 0.0936189 0.932905), (-175.314 -6.11547 
-23.4737)], 121.197000000)
log_o(pose,[pancake, (1.31934 0.0936185 0.932904), (-175.318 -6.10426 
-23.4777)], 121.297000000)
log_o(pose,[pancake, (1.31934 0.0936187 0.932902), (-175.323 -6.08893 
-23.4827)], 121.397000000)
log_o(pose,[pancake, (1.31934 0.0936179 0.932902), (-175.325 -6.06293 
-23.4868)], 121.497000000)
log_o(pose,[pancake, (1.31934 0.0936174 0.932904), (-175.329 -6.0583 
-23.4909)], 121.598000000)
log_o(pose,[pancake, (1.31934 0.0936168 0.932903), (-175.335 -6.03086 
-23.4916)], 121.697000000)
log_o(pose,[pancake, (1.31934 0.0936172 0.932901), (-175.351 -6.00921 
-23.4951)], 121.798000000)
log_o(pose,[pancake, (1.31934 0.093617 0.932902), (-175.355 -5.99698 
-23.4988)], 121.897000000)log_o(pose,[pancake, (1.31934 0.0936168 
0.932901), (-175.359 -5.97459 -23.5033)], 121.997000000)log_o(pose,

FIGURE 4.5 PROLOG’s proof tree for three different flipping plans.
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FIGURE 4.6 Envisioning framework overview.

jects and robots, access to the world and contact state information at each time step, the

availability of ready-to-use object and robot models and a tight integration with the ROS5

software framework.

4.4 Framework Design

After we have looked at the general principle of the envisioning framework and its input and

output specifications in Section 4.2 let us now investigate how the envisioning functionality

is achieved through the interplay of various components. Figure 4.6 shows the various

components of the framework as well as their interactions among each other.

As stated earlier, the framework’s interface is based on first-order representations. In our

work we employ PROLOG6 to realize the interface of the envisioning framework. Given do-

main knowledge (knowledge base), a scenario description and an action plan, PROLOG

initializes and orchestrates the overall envisioning process and eventually evaluates the

resulting timelines. One of the main constituents of the envisioning process is a physics-

based simulation in which a specified robot performs manipulation actions according to its

5http://www.ros.org
6SWI-PROLOG: http://www.swi-prolog.org/
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parameterized action plan. During simulation dedicated monitoring routines observe the

world state, including object poses, velocities, contacts between objects, etc. Similarly,

the actions of the robot are monitored and logged. After the execution of the robot con-

trol program the logs are read by PROLOG and translated into interval-based first-order

representations, called timelines. Eventually, the timelines are evaluated with respect to

predefined goal conditions and other performance measures. Now that we have shortly

put all components of the framework into context we will explain how the individual com-

ponents are realized.

4.4.1 Knowledge Base

In this work the robot runs physics-based simulations and evaluates their outcome in or-

der to reason about a manipulation problem such as flipping a pancake. To pursue this

task most effectively the robot is equipped with knowledge about situated manipulation

problems, action plans that generally describe how to solve such problems, and parame-

ter spaces of primitive actions occurring in the plans. We use first-order representations

to formalize these information within a knowledge base. For representing the knowledge

we mainly use Description Logic (DL), in particular the semantic web ontology language

OWL7. We build our representations on OpenCyc’s8 upper-ontology and extend type and

property descriptions whenever necessary.

Following our previous work, we represent the environment of the robot with seman-

tic maps (Tenorth et al., 2010a). These maps describe not only the geometric properties

of the environment but also the semantic categories like cooking top within an ontology.

Similarly, everyday objects that are to be manipulated by the robot are described within

the ontology. For example, a spatula is composed of an elongated handle and a blade for

turning or serving food. The robot itself is specified by the Semantic Robot Description

Language (SRDL) (Kunze et al., 2011c) which we introduced in Section 3.6. The descrip-

tion includes the kinematic structure of the robot as well as a semantic description of its

sensors and actuators. All of the above mentioned descriptions have links to physical mod-

els that can be instantiated within a simulator. Action plans are represented hierarchically

within the ontology as depicted in Figure 4.7.

To give the reader an idea about the physically relevant knowledge of everyday objects,

their type, properties and relations to other objects let us have a closer look at an object

which is subject in one of our grasping experiments: an egg. We consider an egg as con-

7http://www.w3.org/2004/OWL
8http://www.opencyc.org
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MakingPancakes

PouringDoughOntoPancakeMaker

. . .

FlippingAPancake

PushingAnObject

PickingUpAnObject

RecognizingAnObject

. . .

MovingArm

. . .

Grasping

. . .

. . .

LiftingAnObject

. . .

TurningAnObject

. . .

FIGURE 4.7 Ontological representation of an action plan for making pancakes.

sisting of an eggshell and its content, i.e. egg white and egg yolk. An eggshell is a solid

rigid (but fragile) container that has a shape, a mass, and extensions in space. Since the

eggshell is fragile it can break. The egg’s content is a liquid which has a viscosity and

a mass. Figure 4.8 depicts a simplified excerpt of the ontology that shows type, relation

and property information about eggs. For describing a specific situation individuals of rel-

evant objects and their properties are explicitly asserted, e.g., an individual of type Egg,

egg3, has eggshell3 and yolk3 as its parts, where eggshell3 and yolk3 have a mass of

0.01 kg and 0.04 kg respectively. Other properties and relations are specified similarly. For

a specific task like grasping an egg information about all relevant objects is asserted in the

knowledge base. These assertions build the basis for parameterizing the physics-based

simulation which is explained in Section 4.4.3.

4.4.2 PROLOG — A Logic Programming Environment

PROLOG is the heart of the envisioning framework. It serves as an interface to the robot,

and coordinates all other components of the framework using a simple language for mak-

ing temporal projections.
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Egg
Liquid Solid Container

EggWhiteYolk EggShell

Viscosity Mass Extensions Rigidity Fragility Shape

hasPart hasPart

isType isType isType

hasProp hasProp hasProp hasProp hasProp hasProp hasProp

FIGURE 4.8 Ontology showing physical aspects of eggs.

4.4.2.1 Overview

In order to answer a query from the robot, PROLOG retrieves the descriptions of all task-

related objects and the robot’s environment from the knowledge base and sets up the

simulation using these descriptions and launches a parameterized robot control program

that is executed within the simulator. During the execution object states and associated

data structures are monitored and logged. After the execution of the program, PROLOG

stops the simulation and the object logs are translated back into first-order representations

and eventually they are evaluated in regard to specified performance criteria. If the eval-

uation is successful, PROLOG presents a solution, otherwise it backtracks over different

parameterizations. To realize this functionality we have developed a temporal projection

language which is explained in the following section.

4.4.2.2 Temporal Projection Language

The basic idea of a logic programming language for making simulation-based temporal

projections is as follows. First, a new scenario is asserted and task-relevant descriptions

are added to it successively, for example, an environment description, a robot description,

and a number of object descriptions. After initializing the simulator with the asserted sce-

nario descriptions, a robot control program is executed whereby formal control parameters

are selected from a specified range of possible values. States of the robot and objects that

are traversed during simulation are monitored, logged, and translated into interval-based

first-order representations, namely timelines. Eventually, the generated timelines are sub-

ject to further evaluations of specialized predicates. For example, a timeline is evaluated
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with respect to desired (or undesired) outcomes, qualitative spatial relations, or other per-

formance criteria like the speed of execution.

The following PROLOG query shows exemplarily how the simulation-based temporal

projection can be used where terms starting with an upper-case letter like Scenario denote

variables, terms starting with a lower-case like kitchen_env denote concrete instances in

the knowledge base, and the predicate holds(occurs(event),Time,Timeline) stands exem-

plarily for a specialized predicate that evaluates a given timeline:

?- assert_scenario(Scenario),

assert_scenario(Scenario,kitchen_env),

assert_scenario(Scenario,pr2_robot),

assert_scenario(Scenario,obj1),

param_space(actionplan,ParamSpace),

setof(TL, (member(P,ParamSpace),

envision(Scenario,actionplan(P),TL)),TLs),

member(Timeline,TLs), holds(occurs(event), Time, Timeline).

Values for the formal parameters, e.g. param1, are selected from their respective ranges

and are bound to the parameter variables (e.g. P1) in order to make them accessible for

further evaluations. How to generate and/or select the values of the parameters more

effectively is another interesting problem. Intuitively, the parameters could be chosen de-

pending on the qualitative outcomes of the simulation, however, this is beyond the scope

of this work.

The language elements for making temporal projections, i.e., the PROLOG programs

(or predicates) that have been implemented in order to assert a scenario, to perform a

simulation-based temporal projection, and to logically evaluate the resulting timelines, are

explained in the following.

ASSERT_SCENARIO(SCENARIO) Asserts a new scenario and generates a unique identifier

(Scenario) to access the scenario within other predicates.

ASSERT_SCENARIO(SCENARIO, ENTITY) Asserts an entity or set of entities to a given sce-

nario. There are three ways of asserting an entity: either by naming the entity, if it

is already known by the knowledge base including its physical specifications that

are needed by the simulator, by providing the physical specifications of a previously

unknown entity explicitly, or by providing an object type that can be generated by the

object model factory.
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ENVISION(SCENARIO, PLAN(PARAMS), TIMELINE) Performs a simulation-based temporal pro-

jection for an asserted scenario, a fully instantiated robot control program/plan, and

returns an ID of the projected timeline. This program is realized by two subprograms,

namely simulate and translate.

SIMULATE(SCENARIO, PLAN(PARAMS), LOG) Sets up and runs the simulation. First, Gazebo

is launched and all entities that were asserted by the assert_scenario command are

loaded successively. If necessary, entity specifications are generated on-the-fly by

the object model factory and spawned into the simulator. Second, the robot control

program is executed, where formal parameters are selected from their respective

ranges. By utilizing PROLOG’s backtracking mechanism the cross product of all

valid parameter instantiations is automatically generated. After a certain time, the

simulation is stopped and all processes are shut down. The output variable Log

points to the log files of the robot control program and the task-related objects.

TRANSLATE(LOG, TIMELINE) Translates the logged simulations into a interval-based rep-

resentation, that is, a timeline, by using the first-order predicates Holds(f,t) and

Holds(Occurs(e),t). To differentiate between the individual timelines a unique ID

(Timeline) is generated and attached to the individual fluents and events.

HOLDS(OCCURS(EVENT), TIME, TIMELINE) Retrieves the given Timeline and evaluates it with

respect to an event (Event) that might have occurred at a point in time (Time) during

the simulation. If the specified event is found in the timeline the predicate evaluates

to true.

HOLDS(FLUENT, TIME, TIMELINE) Retrieves the given Timeline and evaluates it with respect

to a fluent (Fluent) that might have hold at a point in time (Time) during the simula-

tion. If the specified fluent is found in the timeline the predicate evaluates to true.

4.4.3 Physics-based Simulation

Within our approach, we utilize a physics-based simulator, namely Gazebo9, for computing

the effects of robot actions, object interactions and other physical events. We augmented

the rigid-body physics to simulate specialized behaviors.

9http://gazebosim.org
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4.4.3.1 Rigid-Body Simulation

We parameterize the simulator on the basis of the logical axiomatization, i.e. the domain

knowledge, run simulations and log data of features like position, velocity, forces, and

contact points between objects over time. After explaining shortly how a physics-based

simulator computes physical effects generally, we present how the Gazebo simulator can

be configured and how we derive a configuration based on the assertions in the knowledge

base.

Generally a physics-based simulator works as follows: the simulator starts its computa-

tion of physical effects based on an initial configuration. Then it periodically receives motor

control commands which are translated into forces and updates the state of the simulated

world according to physical laws. Within each tiny update step, forces are applied to af-

fected objects by considering both the object’s current dynamic state and its properties like

mass and friction. Later we explain how we augment the simulation in order to account for

physical phenomena like breaking or absorbing.

The initial configuration of the Gazebo simulator is based on an XML file, called world

file. The world file describes properties of the simulation, specifies parameters for the

physics engine (ODE) and describes all things occurring in the world, including robots,

sensors and everyday objects. Within a world file each object has its own model descrip-

tion. Such model descriptions comprise mainly the object’s shape and a set of physical

properties like size, mass, and rigidity. When properties are not explicitly specified within

the knowledge base, we simply assume default values.

To simulate physical phenomena like breaking objects we augment the model descrip-

tions, how this is realized is presented in the next section.

4.4.3.2 Augmented Simulation

The Gazebo simulator is designed for simulating robots, sensors and objects, whereby

physical aspects of objects and their interactions are more or less limited to rigid body dy-

namics. Since we want to simulate naive physics problems with phenomena like breaking,

mixing, and cooking we augment object model descriptions with detailed shape models,

controllers for simulating physical phenomena, and monitors for logging states of objects.

The extended model descriptions are collected in a library for simulating phenomena of

everyday physics.

Instead of modeling objects as rigid bodies, we describe the shape of objects similar

to work by Johnston and Williams (2008) with graph-based structures which allow us to
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BODY ID: #42
x: -0.082 y: 0.297 z: 0.265
type: {solid, eggshell} mass: 0.1

JOINT ID: #88
body1: #42 body2: #18
x: -0.123 y: 0.322 z: 0.199
roll: 0.0 pitch: -54.092 yaw: -31.626
type: {solid, eggshell} forcelimit: 150 broken: false

BODY ID: #71
x: -0.053 y: 0.305 z: 0.02
type: {liquid, egg-yolk} mass: 0.1

FIGURE 4.9 Modeling shape and physical properties of an egg. The shape of the egg is
modeled with a graph-based structure of bodies which are linked by joints. The physical
properties of these individual bodies and joints, which are shown exemplarily on the left
side, determine the physical properties of the whole egg, e.g. its mass and fragility.

inspect physical aspects at a more detailed level. Figure 4.9 visualizes the shape of an

eggshell with egg yolk inside. These models configurations are derived from the informa-

tion stored in the knowledge base. The basic entities for modeling the shape of an object

are bodies10 and joints, which are mutually connected. Properties of an object like type,

mass, spatial extensions, and rigidity determine the attributes of these basic entities.

In order to simulate new classes of objects, for example, objects that are breakable and

objects that change their state from liquid to a deformable structure we add controllers

to the object model descriptions. These controllers are called within each simulation step

and perform some specialized computation. The computation can be based on physical

properties calculated by the simulator or on results computed by other controllers. Thereby

object attributes like being broken and being cooked can be computed. This allows us to

simulate a new range of processes like breaking and cooking.

Given that there is only a limited number of processes that have to be implemented

makes this approach scalable. Furthermore, the implementation of the various continuous

processes with procedural programs is easier, than their realization by the means of logical

axioms. In Chapter 5, we explain in detail how fluids are represented and simulated within

the framework.

4.4.4 Monitoring of Simulations and Actions

In addition to controllers realizing physical behaviors, we add monitoring routines to ob-

serve and log the state of objects at each simulation step. Additionally we monitor the

actions the robot is performing.

10Bodies are called links in URDF.
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TABLE 4.2 Excerpt of the action log. Example: Pick-up action.

Time ID Status Action Parameter

53.917 12 begin pick_up (spatula_handle, left_arm)
53.917 13 begin open_l_gripper (width, 0.09)
56.844 13 end open_l_gripper –
56.959 14 begin move_l_arm (l_wrist_flex_link,

(position, (0.310885, 0.490161, -
0.195159)), (orientation, (-2.73593e-05,
0.013794, 0.00194869, 0.999903)))

59.175 14 end move_l_arm –
59.200 15 begin move_l_arm (l_wrist_flex_link,

(position, (0.380885, 0.490161, -
0.195159)), (orientation, (-2.73593e-05,
0.013794, 0.00194869, 0.999903)))

60.573 15 end move_l_arm –
60.590 16 begin close_l_gripper (width, (0.0))
72.020 16 end close_l_gripper –
72.063 17 begin move_l_arm (l_wrist_flex_link,

(position, (0.380885, 0.490161,
0.00484052)), (orientation, (-2.73593e-
05, 0.013794, 0.00194869, 0.999903)))

74.307 17 end move_l_arm –
74.315 12 end pick_up –

Actions of the robot are monitored as follows. Ideally, robot control programs would

be written as plans. For example, using a plan language like CRAM (Beetz et al., 2010)

allows robots to interpret and reason about their own programs. However, in this work

we treat a robot control program as black box meaning that it can be implemented in

any kind of programming language. In order to reason about the actions of a robot we

assume that at least the actions of interest are logged using a simple interface. Basically,

the begin and the end of an action as well as its parameters should be logged by the

control program. This allows robots to related their actions to the physical events of the

simulation. An example of an action log for picking up a spatula using the left robot arm

is shown in Table 4.2. In the excerpt of the log the hierarchical decomposition of actions

and sub-actions is visible. The pick_up action is decomposed into several action primitives

including opening and closing the gripper, and moving the arm’s end-effector into certain

pose.

The data structures of the world state we are monitoring are basically the position,

orientation, linear and angular velocities, and the bounding boxes of objects and their
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TABLE 4.3 Excerpt of the world state log.

Time Object Position Orientation Linear velocity Angular velocity

72.70 blade (1.32,-0.04,0.90) (-0.00,0.02,-0.00,0.99) (0.00,0.01,0.09) (-0.18,0.03,0.01)
72.80 blade (1.32,-0.03,0.91) (-0.00,0.02,-0.00,0.99) (0.01,0.00,0.09) (0.16,0.09,-0.10)
72.90 blade (1.32,-0.03,0.92) (-0.00,0.02,-0.00,0.99) (0.00,0.00,0.12) (0.41,0.06,-0.09)

. . . . . . . . . . . . . . . . . .
74.30 blade (1.32,-0.04,1.08) (0.00,0.03,0.00,0.99) (0.00,-0.00,-0.00) (-0.04,0.00,0.01)

TABLE 4.4 Excerpt of the contact log.

Time 1st Object 2nd Object Total force Total torque Num. of
Contacts

67.00 spatula_handle l_gripper_r_finger (-0.17, 0.75, -0.21) (0.00, -0.01, -0.06) 9
68.00 spatula_handle l_gripper_r_finger (0.32, -2.37, -0.46) (0.00, -0.02, 0.18) 12
68.00 spatula_handle l_gripper_l_finger (-0.44, -1.55, -2.02) (-0.00, -0.17, 0.11) 14

respective parts. Furthermore, we observe the physical contacts between objects and log

information such as contact points, contacts normals, and forces. All these information

are constantly monitored and only changes are logged. Table 4.3 and Table 4.4 show

excerpts of the world state and the contact log respectively. Both excerpts are taken from

the interval during which the pick-up action (see above) took place. Whereas Table 4.3

report the world state information for the blade of the spatula, Table 4.4 reports contact

information between the handle of the spatula and the robot gripper.

4.4.5 Timelines

In this section we explain how we ground first-order representations in logged data struc-

tures of the simulator. Before we explain how log files are translated into logic, we will

present the representation formalism for temporal knowledge and shortly discuss its rela-

tion to domain knowledge.

For representing temporal knowledge, i.e. object configurations and events at given time

points, we make use of notations common in the event calculus (Kowalski and Sergot,

1986a) and its extensions. In the following we present predicates relevant for temporal

reasoning.

The notation is based on two concepts, namely fluents and events. Fluents are condi-

tions that change over time, e.g., a cup contains coffee: contains(cup,coffee). Events (or

actions) are temporal entities that have effects and occur at specific points in time, e.g.,

consider the action of pouring coffee from a pot into a cup: pourTo(coffee,pot,cup). Logical

statements about both fluents and events are expressed mainly by two predicates:
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TABLE 4.5 Fluents for static physical configurations.
fluent intuitive description
contacts(o1, o2) object o1 and object o2 contact each other
attached(o1, o2) object o2 is attached to object o1
supports(o1, o2) object o1 supports object o2
contains(o1, o2) container o1 contains object (or stuff) o2
broken(o1) object o1 is broken
spilled(o1) object o1 is spilled

• Holds(f,t) and

• Occurs(e,t),

where f denotes a fluent, e denotes an event and t simply denotes a point in time.

The statement Holds(f,t) represents that fluent f holds at time t, whereas Occurs(e,t)11

represents an occurrence of event ev at time t. Although fluents and events look as if they

were predicates themselves, they are not: both fluents and events are reified as functions

returning respective instances. Thus, by treating them as ’first-class citizens’ in a first-order

representation allows us to state at what points in time they hold or occur.

The relation of domain and temporal knowledge is straight forward. Domain knowledge,

in particular the assertions about individual objects, characterize the initial conditions for

the temporal reasoning. From the temporal reasoning point of view, the assertional knowl-

edge holds at time point 0.0, i.e. Holds(f,0.0). That the assertional knowledge describes

the initial conditions for the temporal reasoning perfectly makes sense since it is also used

for parameterizing (or initializing) the simulation as we explained earlier.

Logged simulations are translated into interval-based timeline representations by using

extended versions of the predicates Holds and Occurs. We have added an additional vari-

able for distinguishing between the individual timelines. That is, the predicates become

Holds(f,t,tl) and Holds(occurs(e),t,tl) respectively where tl denotes a timeline. Whenever a

fluent or event is recognized an instance of its corresponding type is generated and either

the Holds or the Occurs predicate is asserted for the observed timepoint. We reuse a gen-

erated instance only if the fluent or event is also valid in successive timesteps. Thereby

we get an interval-based representation of timelines. Table 4.5 and Table 4.6 list exam-

ples of implemented fluents and events for which we assert predicates from the logged

simulations.

11Please note, in the context of this thesis we use Holds(occurs(e),t) instead of Occurs(e,t)
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TABLE 4.6 Fluents for physical events.
fluent intuitive description
moving(o1) object o1 is moving
openingGripper(o1) robot is opening gripper o1
closingGripper(o1) robot is closing gripper o1
breaking(o1) object o1 is breaking

How fluents and events are grounded in the data structures of the simulator is ex-

emplarily explained for the fluents contacts(o1, o2) and supports(o1, o2) and the events

moving(o1) and breaking(o1).

A contact between objects is directly reported by the simulator:

Holds(contacts(o1, o2), ti, tl)⇔
Collisions = SimulatorValue(Collisions, ti, tl)∧
Member(〈o1, o2〉,Collisions)

Object o1 supports an object o2 when there exists a contact between both objects and

the maximum value of o1’s bounding box within z-dimension is slightly less or equal than

the minimum value of o2’s bounding box and o2’s center of mass lies within the spatial

extensions of object o1 regarding the x-y-dimensions. The later condition is captured by

the isDirectlyBelow predicate. Furthermore the gravity force of o2 has to be canceled out:

Holds(supports(o1, o2), ti, tl)⇔
Holds(contacts(o1, o2), ti, tl)∧
p1 = SimulatorValue(Pose(o1), ti, tl)∧
p2 = SimulatorValue(Pose(o2), ti, tl)∧
isDirectlyBelow(p1, p2)∧
gravityForceIsCanceledOut(o2)

An object o1 is moving when its pose has changed between two successive timesteps:

Holds(occurs(moving(o1)), ti, tl)⇔
p1 = SimulatorValue(Pose(o1), ti, tl)∧
p2 = SimulatorValue(Pose(o1), tj, tl)∧
previousTimestep(tj, ti)∧
p1 6= p2

An object o1 is breaking in timestep t1 when one of its joints is detached within that

timestep. The controller that realizes the breaking phenomenon of objects directly reports

which joints are detached in a timestep:
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Holds(occurs(breaking(o1)), ti, tl)⇔
j1 = SimulatorValue(Detached(joint1), ti, tl)∧
Member(j1,GetJoints(o1))

The next section illustrates in various experiments how robots can interpret and evaluate

the grounded timelines with respect to desired and undesired outcomes.

4.5 Experiments

For showing the feasibility of our approach we have conducted several robot manipulation

experiments including the problem of making pancakes as described in Section 1.2. In

these experiments we addressed the requirements posed in the problem formulation.

4.5.1 Cracking an Egg

Besides making pancakes, cracking an egg is another interesting problem with respect to

both commonsense reasoning and robot manipulation and has been proposed by (Davis,

1997) as a challenge problem for logical formalization and reads as follows:

“A cook is cracking a raw egg against a glass bowl. Properly performed, the

impact of the egg against the edge of the bowl will crack the eggshell in half.

Holding the egg over the bowl, the cook will then separate the two halves of

the shell with his fingers, enlarging the crack, and the contents of the egg will

fall gently into the bowl. The end result is that the entire contents of the egg

will be in the bowl, with the yolk unbroken, and that the two halves of the shell

are held in the cook’s fingers.”

Solutions to this problem should not only characterize aspects mentioned above but also

account for variants of the problem:

“What happens if: The cook brings the egg to impact very quickly? Very slowly?

The cook lays the egg in the bowl and exerts steady pressure with his hand?

The cook, having cracked the egg, attempts to peel it off its contents like a

hard-boiled egg? The bowl is made of looseleaf paper? of soft clay? The bowl

is smaller than the egg? The bowl is upside down? The cook tries this proce-

dure with a hard-boiled egg? With a coconut? With an M & M?”
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The cracking an egg problem poses many challenges, especially in the context of everyday

robot manipulation. In order to solve it we regard the following aspects to be substantial:

First, the abstraction level of a formalization should reflect the sensing and acting capa-

bilities of the manipulating robot. Second, variants should be handled without the need of

explicit modeling. And third, concurrent actions and events should be taken into account.

Cracking an egg against another object and then separating (splitting) it requires a robot

to be able to grasp an egg at all. Therefore we start our experiments with a scenario where

a robot is supposed to simply grasp an egg lying on a table.

The first experiment consists of several trials in which a robot, in this case the PR2,

is using different values of gripper force to grasp an egg. The experiment underlines the

importance of a physical simulation since it allows to determine an appropriate force for

grasping an egg which would not be possible by pure symbolic reasoning.

A robot would not know that an egg will break if it is grasped with a force that is too high,

that it will fall down if it is grasped with a force that is too low, and that it will slip away if it

is grasped at an inappropriate position.

We setup a grasping experiment where the parameters force and position were varied. A

scenario (grasping) was asserted and entities like kitchen environment, PR2 robot, and an

egg were added. The following code was used for running the experiments and evaluating

their respective results:

?- assert_scenario(grasping),

assert_scenario(grasping,kitchen),

assert_scenario(grasping,pr2),

assert_scenario(grasping,egg).

?- envision($grasping,

grasp_object([(P1, force, [1, 3, 5, 7, 9, 11]),

(P2, position, [-0.02, 0.00, 0.02])]),

Timeline),

not(occurs(break,_,Timeline)),

not(occurs(slip,_,Timeline)).

The qualitative results of this experiment are shown in Table 4.7, where the grasping

position is measured as the center of the gripper pad relative to the center of the egg (in

meters) and the different grasping forces are indicated by the identifiers f1–f11. During the

experiments we found three possible outcomes (see Figure 4.10): the egg slips out of the

robot’s gripper, the egg is held by the robot successfully, and the egg is crashed by the
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TABLE 4.7 Qualitative results: Grasping an egg.

position f1 f3 f5 f7 f9 f11

-0.02 slip ok slip ok break break
0.00 slip ok ok ok ok break
0.02 slip ok ok ok break break

robot (Figure 4.11). The different outcomes are denoted as ok if the robot could grasp the

egg successfully, as slip if the egg slipped away, and as break if the the egg was broken

within the trial.

In the second experiment we used a valid grasping force to pick up an egg and test its

behavior when hitting it against obstacles and tables. The egg is picked up and then is hit

or pressed against an obstacle. The results here are of course dependent on the forces

that affect the egg model: while hitting the egg against another object very gently would not

break it, hitting it stronger or pressing it firmly against the table would produce breaking.

Figure 4.12 shows the egg model being cracked after being hit against an obstacle. This

experiment can be used to gather information on how to safely manipulate such a fragile

object and how the robot’s actions influence the forces applied to the object.

The last experiment focused on egg splitting. The robot is grasping the egg from the

table that is lying on the table and, after hitting it against an obstacle and cracking it, it

is trying to split it using his other gripper (Figure 4.13). This experiment was not entirely

successful as the egg to be too fragile for the PR2 grippers. The result of most of the

trials involved in this experiment was the cracked egg being completely crashed by the

two grippers.

In contrast to the logical formalization that has been proposed by (Morgenstern, 2001)

our approach is able to make temporal projections about almost all aspects of the problem

specification and its variants. Their theory (Morgenstern, 2001) is based on roughly 70

axioms, but variations as follows cannot be handled without further extensions.

• the cook brings the egg to impact very quickly or very slowly

• the bowl is upside down

• the cook tries the procedure with a hard-boiled egg, coconut, or an M&M

• the cook puts the egg in the bowl and exerts steady pressure with his hand

• the cook, having cracked the egg, attempts to peel it off its contents like a hard-boiled

egg
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FIGURE 4.10 PR2 robot picking up an egg with different force levels (upper left: successful;
upper right: egg slipping; bottom left: egg crashed, parts of the eggshell fell onto the
table; bottom right: egg crashed).
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FIGURE 4.11 The egg model crashing in a grasp trial because of too much gripper force.

All these variations, except the last, seem to be feasible with our simulation approach.

We simply have to adapt the robot control program to induce a different manipulation

behavior, to change the configuration of the environment, or to adjust the physical pa-

rameters of the object models, e.g. size, structure and/or fragility of objects. Although the

adjustment of the physical parameters is not trivial, it seems to be much easier than the

extension of a logical theory since machine learning techniques can be applied for finding

the appropriate physical models.

Figure 4.14 shows the robot moving its arm away from the egg after breaking it. In

the beginning, parts of the eggshell stuck to the gripper and fell off at a later point in

time. It is impossible to model such phenomena within logical abstractions, whereas in

detailed simulations they simply emerge from the laws of physics. This example strongly

emphasizes the benefit of combining first-order representations with physical simulations.
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FIGURE 4.12 An egg model cracked by hitting an obstacle.

4.5.2 Making Pancakes

4.5.2.1 Pouring a Pancake Mix

In a recent experiment12 two robots jointly performed the task of making a pancake (Beetz

et al., 2011). Following this experimental setup we conducted an experiment where a

robot is supposed to pour a certain amount of pancake mix onto a pancake maker in

order to determine the right parameter values for the pouring position, angle and duration.

Depending on these values the mix is either poured onto the pancake maker or spilled

onto the table. Furthermore, if the pouring duration is too short, it will not be enough

pancake mix, but if the duration is too long, it will be too much mix on the pancake maker.

So, finding the right parameters is essential for making a proper pancake.

For simulating a liquid in a rigid body simulator as Gazebo, a model constructed out of

small particles with an attached controller can be used. The controller has to regulate the

particles’ behavior, so that the model’s behavior is close to the liquid’s. In our experiments

we used models containing a high number of small spheres, with an attached controller

12Making a Pancake: http://bit.ly/fNB6I5

89

http://bit.ly/fNB6I5


CHAPTER 4 Envisioning Robot Object Manipulation

FIGURE 4.13 An egg splitting trial using the PR2 robot model.

that applies forces to these spheres to simulate the viscosity of the pancake mix. The

particles tend to stay together and have high friction coefficients. Another task that the

controller needs to address is logging at each timestep the state of each particle of the

liquid: with which models is it in contact, and is it free falling or supported by an exter-

nal body. Figure 4.15 shows different moments from a pouring action performed in the

simulator by the PR2 robot.

After setting up the scenario the following code was used to run the experiments which

results are shown in Table 4.8.

FIGURE 4.14 Grasping an egg. (1) eggshell stuck to gripper (2) eggshell fell off the gripper.
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FIGURE 4.15 The simulated pancake mix, made out of small spherical particles is poured
onto the pancake maker.

?- envision(pouring,

pour_mix([(P1, position, [-0.09,0.0,0.07]),

(P2, time, [0.0,0.5,1.0]),

(P3, angle, [1.84,1.99,2.14])]),

Timeline),

not(holds(amount20,_,Timeline)),

not(occurs(spill,_,Timeline)).

In addition to the evaluation of timelines with respect to a certain amount of pancake

mix and to an occurrence of a spilling event further criteria can be evaluated on the data

structures of the logged simulations. For example, qualitative spatial predicates can eval-

uate whether the mix was poured to the center of the pancake maker, or close its edge.

Furthermore, predicates can assess shape of the poured pancake mix, e.g. its roundness.

The evaluation of qualitative spatial relations is possible because logical predicates can

directly be grounded in the simulator’s data structures.

In the following we explain the calculations that are performed in order to evaluate the

predicate round based on the data structures of the logged simulations.

For this, at the end of each pouring experiment, the positions of the particles that are

found on the pancake maker are used for determining the centroid of the particles dataset.

The centroid is considered to be the position of the poured pancake mix and is then used

to determine the offset of the pancake relative to the pancake maker’s center. The shape

of the poured mix is evaluated using Principal Component Analysis (PCA). This is done

by computing the covariance matrix of the particles dataset and afterwards by performing

the eigen decomposition of this matrix. Naturally, this returns three eigen value – eigen

vector pairs. The smallest eigen value is going to be a measure of the thickness of the

poured pancake mix and its corresponding vector is perpendicular to the pancake maker’s

surface, while the other two values express the variance of the particles dataset in the

other two dimensions, along their corresponding vectors. The ratio of these values, with

the biggest one as denominator, gives us a good measure of the dataset’s roundness: a
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FIGURE 4.16 PCA of particle configurations on the pancake maker. Roundness of the area
left: 0.96 and right: 0.36.

value close to zero of this ratio describes a highly elliptical shape, and for values close

to 1, the shape approaches a circle. Results of the PCA for two datasets are shown in

Figure 4.16.

4.5.2.2 Flipping a Pancake

The third experiment also follows the “Making Pancakes” scenario. We investigated the

problem of flipping a half-baked deformable pancake using a spatula at different angles.

The simulation model used in this scenario is built out of small spherical particles con-

nected by flexible joints. This enables the model to have the behavior of a soft deformable

body (Figure 4.18). During this scenario, the PR2 robot uses a spatula to flip a pancake

on the pancake maker. The parameter of interest in this case is the angle of the spatula

with the horizontal and the outcome can either be failed if a pancake flip is not achieved

or successful if it is. The qualitative results of the experiments performed in this scenario

are shown in Table 4.9. The experiments were launched using the following query:

?- envision(flipping,

flip_pancake([(P1,angle,[0.1,0.3,0.4,0.5,0.7,0.9])]),

Timeline).

Figure 4.17 visualizes the temporal relations between the on fluent and the flipping

action. Generally, all 13 possible temporal relations between time intervals can be used to

constrain the query (Allen, 1983).

The following PROLOG query was used to evaluate whether the flipping action was

successful or not:
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TABLE 4.8 Results: Pouring a pancake mix.

pos1 time2 angle3 pan4 spill5 offx6 offy7 round8

-0.09

0.0
1.84 2 0 -0.004 -0.098 0.00
1.99 25 2 -0.028 -0.096 0.19
2.14 106 6 -0.011 -0.095 0.55

0.5
1.84 14 1 -0.021 -0.094 0.14
1.99 95 6 -0.005 -0.087 0.89
2.14 205 16 0.005 -0.086 0.51

1.0
1.84 57 1 -0.007 -0.091 0.37
1.99 163 6 0.000 -0.083 0.58
2.14 247 28 0.000 -0.085 0.59

0.00

0.0
1.84 1 0 0.008 -0.110 —
1.99 41 0 -0.025 -0.004 0.51
2.14 100 1 -0.015 -0.003 0.77

0.5
1.84 19 0 -0.010 -0.005 0.19
1.99 81 0 -0.022 -0.004 0.57
2.14 212 0 -0.009 -0.003 0.89

1.0
1.84 36 1 -0.016 0.000 0.57
1.99 132 0 -0.015 0.001 0.57
2.14 255 2 -0.019 0.000 0.88

0.07

0.0
1.84 0 0 — — —
1.99 44 3 -0.017 0.067 0.59
2.14 117 1 -0.002 0.062 0.76

0.5
1.84 24 1 -0.007 0.054 0.39
1.99 109 2 -0.012 0.074 0.62
2.14 222 3 -0.011 0.062 0.90

1.0
1.84 40 0 -0.012 0.071 0.85
1.99 156 4 -0.002 0.068 0.79
2.14 287 5 0.001 0.070 0.76

Abbreviations
1 Offset of cup position relative to the center of the pancake

maker.
2 Duration that the cup is maintained at the pouring angle.
3 Angle of the cup’s inclination in radians (e.g.: 0 = cup upright;

1.57 = cup tilted 90 degrees counterclockwise).
4 Number of particles found on the pancake maker
5 Number of particles spilled onto the table.
6 X-offset in meters of particles’ centroid relative to pancake

maker.
7 Y-offset in meters of particles’ centroid relative to pancake

maker.
8 Degree of roundness. Ratio of first two eigenvalues of particles

on pancake maker (range: 0.0–1.0, values closer to 1 mean
more round).

93



CHAPTER 4 Envisioning Robot Object Manipulation

TABLE 4.9 Qualitative results: Flipping a pancake.

angle 0.1 0.3 0.4 0.5 0.7 0.9

ok ok ok fail fail fail

time

occurs(flip(pancake)) flip

on(pancake,pancake_maker) on on

FIGURE 4.17 Timeline representation.

?- holds_tt(on(pancake,pancake_maker),I1,TL),

occurs_tt(flip(pancake),I2,TL),

holds_tt(on(pancake,pancake_maker),I3,TL),

overlaps(I1,I2),

overlaps(I2,I3).

Pouring and flipping experiments can be combined by using the poured particles that

end up on the pancake maker for generating a more complex pancake model. We start

at the particle closest to the center of the cluster and create a graph like flexible joint

structure. Joints are created between the seed particle and the particles found within a

certain radius from it, and afterward these new particles become seeds themselves. To

make the pancake model look more realistic, a flexible textured mesh created from the

convex hull is attached to the structure (Figure 4.18).

4.6 Related Work

The present work can be considered as interdisciplinary research of two fields: robotics

and AI. With this research, we want to enable robots to reason about the consequences of

action parameterizations and thereby allowing them to make appropriate decisions in their

course of action by using well-established methods of AI and detailed physical simulations.

Only recently, Smith and Morgan (2010) stressed the importance of using simulations in

AI research. They developed the open source simulator IsisWorld for investigating prob-

lems in commonsense reasoning. Although they also employ a physics engine for their

simulations, they consider actions like picking up an object only at a very abstract level,
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FIGURE 4.18 The pancake model in different views: a generic circular model (up), a gener-
ated model showing the joint structure and flexible mesh (down).

whereas we focus on the physical details of such actions in order to recognize qualitative

phenomena occurring during their execution.

Our simulation-based approach is in a similar line of work by (Johnston and Williams,

2008) who integrated logic and simulation for a practical approach to commonsense rea-

soning. Whereas they use a general purpose simulation, we utilize a physics-based simu-

lator augmented with phenomena of everyday physics since we are particularly interested

in naive physics reasoning for robot manipulation. Instead of looking at isolated problems,

we aim for a tight integration between the our proposed reasoning system and other pro-

cesses like planning, e.g., to predict whether a pancake can be flipped when executing a

specific plan for making a pancake.

Work by Ueda et al. (2008) describes the design and implementation of a program-

ming system based on EusLisp that make use of a simulation for deformable objects.

Thereby, robot control programs can easily exploit the specialized computations made by

the simulation. Similarly, we use the logic programming environment PROLOG and utilize

a physics-based robot simulator. In addition, we integrated methods for making simulation-

based temporal projections into PROLOG’s backtracking mechanism in order to perform
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reasoning about action parameterizations for robot manipulation tasks.

Research on the interactive cooking simulator (Kato et al., 2009) is relevant for our

work, since it aims at a deep understanding of cooking operations, which could bring

new insights with respect to representations and reasoning mechanisms for manipulation

actions in everyday meal-preparation tasks.

Exploiting physical simulators for effectively solving sub-problems in the context of robotics

has become more attractive as shown by a number of recent investigations, where simu-

lations are employed for planning in robocup soccer (Zickler and Veloso, 2009), for nav-

igating in environments with deformable objects (Frank et al., 2009), and for reasoning

about the consequences of everyday manipulation tasks (Kunze et al., 2011b). A detailed

evaluation for using physics engines for improving the physical reasoning capabilities of

robots is given in (Weitnauer et al., 2010). But other fields also recognize simulators as

valuable tools and utilize them, e.g., for character animation (Faloutsos et al., 2001) and

motion tracking (Vondrak et al., 2008).

In the context of Naive Physics (Hayes, 1979, 1985), solutions to the problem of egg

cracking (Davis, 1997), were formulated by (Lifschitz, 1998; Morgenstern, 2001) based on

logical axiomatizations. Limitations of these approaches are mainly that physical details

are abstracted away and that variants cannot be handled very flexibly. To overcome such

limitations this work proposes a simulation-based approach: we take a logical axiomati-

zation and translate it into a parametrized simulation problem, simulate and log simula-

tion data, translate logged simulation data into an interval-based first-order representation

which is used for answering queries about a qualitative reasoning problem.

The integration of numerical simulation and qualitative methods has been investigated

before (Weld and Kleer, 1990), for example, work on qualitative-numeric simulation (Berleant

and Kuipers, 1992) and self-explanatory simulations (Forbus and Falkenhainer, 1990).

Work by Lugrin and Cavazza (2007) has shown an integration of numerical simulation and

qualitative modeling based on the Qualitative Process Theory (Forbus, 1984) for virtual

interactive environments. But none of the approaches, we are aware of, have investigated

a simulation-based approach for making predictions in the context of every robot object

manipulation.

The grounding of logical predicates like contacts(o1, o2) in data of logged simulations

is done similar to work by Siskind (2001) who grounded semantics in visual perception.

Similarly, we ground only primitive predicates in logged simulations. Complex predicates

are formulated in PROLOG and are based on primitive or other complex predicates similar

to definitions of symbolic chronicles (Ghallab, 1996).
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A simulation-based approach for temporal projection in reactive planning is proposed

in (Mösenlechner and Beetz, 2009), that is, predicting the interfering effects of continuous

and concurrent actions. Similarly, this work proposes a simulation-based approach for

naive physics reasoning for robot manipulation tasks.

4.7 Discussion

In this section we discuss why autonomous robots should be endowed with methods al-

lowing to make temporal projections about naive physics problems. We provide arguments

to base these methods on detailed physical simulations and elaborate on the right fidelity

of these simulations. Furthermore, we outline how this approach of logic programming us-

ing a simulation-based temporal projection can be used to adjust the behavior of robots.

Finally, we examine how far the proposed approach can be taken, and also name some

possible application scenarios.

One might argue that most robotic applications are developed for specialized tasks and

thereby robots do not need robust commonsense reasoning capabilities, or as we pro-

pose, capabilities for naive physics reasoning. But in the context of autonomous personal

robots the set of everyday manipulation tasks is not fixed, and furthermore, task and envi-

ronment conditions change all the time and therefore robots need flexible mechanisms to

reason about the appropriate parameters of their control programs.

In the literature there exist some approaches using symbolic reasoning methods for

making inferences about simple physical problems (Morgenstern, 2001). The main limi-

tations of these approaches especially in the context of robotics are threefold: (a) impor-

tant details like positions of manipulators and objects are abstracted away; (b) variants

of problems like manipulating an object with different physical properties cannot be han-

dled without extending the logical theory; and (c) consequences of concurrent actions and

events are very difficult to foresee with pure symbolic reasoning, e.g., what does a robot

see when turning its camera while navigating through its environment? All of these limi-

tations do not occur in physics-based simulators. Even if the simulation do not reflect the

physical world, parameters can be learned by applying machine learning technologies as

in (Johnston and Williams, 2009).

One important issue when using high-fidelity physics models in simulations is perfor-

mance. Currently, the system cannot make predictions in a reasonable time that would

allow us to use it for planning during execution. Nevertheless, it is a powerful tool for

robots to mentally simulate (offline) the consequences of their own actions either to pre-
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pare themselves for new tasks or to reconsider task failures.

Related to the issue of performance is the issue of the right fidelity, i.e. how to make

the physical models robust enough to enable effective behavior and yet small enough

to be usable during execution. When creating physical models we are concerned about

getting the qualitative behavior of objects right, i.e., we are not aiming at models that reflect

every sheer detail. Very detailed models do not readily provide the information needed to

choose the appropriate action parametrization, therefore we abstract the reality into a

smaller qualitative state space.

Although it would be desirable to use the presented approach for planning during exe-

cution by using more realistic physical models, we are currently not aiming at both, high

performance and very realistic models. Rather the developed system represents a proof-

of-concept how to use simulation technologies for symbolic reasoning. In the long run, we

assume that issues regarding performance and the appropriate fidelity of physical models

will be addressed by the game and character animation industry (Cho et al., 2007), which

will provide powerful technologies that could be employed.

The realized logic programming framework allows robots and programmers to automat-

ically determine the appropriate action parameters by setting up a manipulation scenario,

by executing differently parametrized control programs in simulation, and finally, by eval-

uating queries based on the resulting timelines. An interface to the logic programming

framework is provided by both PROLOG’s command-line and a ROS13 service, which

takes arbitrary PROLOG queries as request and provides the respective variable bind-

ings as response. Thereby, naive physics reasoning for manipulation tasks can be flexibly

integrated into control programs and planners in order to effectively change the robot’s

behavior.

Finally, we want to approach the question of how far this approach can or should be

taken, before we point to some potential application scenarios. It is clear that one would

not want to do this kind of full-fidelity physics simulation for all kinds of problems, e.g. prob-

lems in motion planning can be solved by employing more specific planners as primitives.

However, some kind of limited simulation seems to be very plausible, at least for some

very hard problems. We believe that lifting physics-based simulations to a symbolic level

is beneficial for deriving solutions for robot manipulation, and also other domains, where

current methods are not effective.

Planning is increasingly considering physical platforms in complex, real world environ-

ments. The presented framework could provide a more precise guidance in the planning

13http://www.ros.org
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process since the simulation-based methods for making temporal projections are tightly

linked to the technical details of platforms under question. Naive physics reasoning could

also be used as a tool for developing robot control programs. Programmers could recog-

nize and prevent problems occurring during execution more easily. Additionally, the pre-

sented framework could be used for benchmarking purposes. For example, data gener-

ated by the simulations could serve as basis for inference tasks. Thereby, different ap-

proaches to physical reasoning could be compared in a straight forward way. In general,

the usage of the open source software like Gazebo and ROS allow to employ the naive

physics reasoning to new problems including other robot platforms and different objects

quite easily. Therefore we believe that logic programming using detailed physical simula-

tions is a well-suited tool for making predictions about every manipulation tasks and also

for other potential applications.
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CHAPTER 5

Naive Physics Reasoning for Handling

Fluids

Personal robot assistants that are to accomplish an open-ended set of everyday manipu-

lation tasks like making pancakes are required to understand the physical effects of their

own actions. In particular challenging are tasks that involve the handling of fluids.

In this work we investigate how robots can infer the consequences of their parameter-

ized manipulation actions (here particularly pouring and mixing) in order to make com-

petent and failure-aware decisions during their course of action. The proposed system

allows robots to determine the action parameters that lead to the desired effects by asking

queries using a first-order language. The queries are answered based on interval-based

first-order representations, called timelines (Section 3.5), which are grounded in detailed

physics-based simulations of parameterized robot control programs as explained in Chap-

ter 4. Preliminary work on handling fluids has been published in (Klapfer et al., 2012).

5.1 Fluids in Everyday Manipulation

Modern robotics attempts to go beyond simple pick-and-place scenarios and equip robots

with the capabilities for executing more complex tasks like, for example, making pancakes

(Beetz et al., 2011) or baking cookies (Bollini et al., 2011). When preparing pancakes,

ingredients for the dough like milk, eggs, and granular fluids like sugar and flour have to

be mixed, stirred and eventually poured into a pan.

Accomplishing such everyday manipulation tasks successfully requires robots to un-

derstand the physical effects of manipulation actions. That is, robots have to predict the

consequences of their parameterized actions before committing to them. In the domain of

meal preparation tasks there is only a limited set of core actions and physical processes
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as shown by Nyga and Beetz (2012). Therefore in seems a feasible approach to analyze

and model the physical principles of each of these core actions. In this work we place our

emphasis on robots performing manipulation tasks which involve the handling of fluids.

For example, a robot about to pour pancake mix onto a pancake maker has to decide

where and how to hold the container without spilling the contents. Inferring answers to

such questions provide valuable information for robots when actually performing the task.

Humans are able to reason about these physical processes and to estimate the right

parameterization intuitively based on both experience and common sense. Davis (2008)

presents a formal solution to the problem of pouring liquids and in his work on the rep-

resentation of matter (Davis, 2010), he investigated the advantages and disadvantages

of various representations including those for liquids. Further Davis (2012) claims that it

is tempting to use simulations for spatial and physical reasoning problems. But he also

argues that simulations are not suitable for the interpretation of natural language texts be-

cause many entities in texts are highly underspecified. However, in the context of robotics

entities in the environment can often be sufficiently recognized by sensors and repre-

sented using internal models. Therefore we believe that if we equip robots with Naive

Physics, that is knowledge about the characteristics of physical processes, objects, and

substances, we will enable them to make informed decisions in context of planning, diag-

nosis and learning.

In this work we build on the concept of simulation-based temporal projections as pro-

posed in Chapter 4 and (Kunze et al., 2011b,a). Everyday robot manipulation tasks are

simulated with varying parameterizations, world states of the simulation and states of the

robot control programs are monitored and logged. The resulting logs are translated into

a first-order representations, called timelines. These timelines are then used to answer

logical queries on the resulting data structures in order to understand the physical effects

of the robot’s actions. The main contribution of this work is the design and implementation

of data structures and algorithms for representing and reasoning about fluids within this

framework.

The remaining chapter is structured as follows: In Section 5.2 we give a short overview

of the envisioning framework and briefly explain its components. Section 5.3 describes

how fluids are represented and simulated. The experimental results are presented in Sec-

tion 5.4. Finally, we discuss the present work in Section 5.5.
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knowledge base prolog

rigid-body simulation

augmented simulation
� graph-based models
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FIGURE 5.1 The simulation-based temporal projection framework.

5.2 Envisioning Revisited

This section briefly revisits the envisioning framework introduced in Chapter 4 and explains

its extensions for handling fluids.

The overall framework is depicted in Figure 5.1. It is based on state-of-the-art technolo-

gies such as ROS1, the Gazebo simulator2 and the point cloud library PCL3. A manipula-

tion scenario can be specified using predicates of a first-order language within PROLOG.

Based on this description a physical simulation is instantiated. Within the simulation a

robot can freely navigate and interact with objects. The behavior of the robot is specified

by a robot control program. In the simulator we represent, e.g., a pancake mix as particles

using the data structures of Gazebo. Given that we are particularly interested in analyz-

ing the behavior of liquids we group the simulated particles by an Euclidean clustering

technique. Having obtained information of clusters makes it possible to reason about the

fusion or division of volumes or chunks of liquids. The clustering is realized as ROS node

located at an augmented simulation layer. As Gazebo uses ODE4 which is only capable of

dealing with rigid bodies the simulation of liquids is only an approximation. Therefore we

use the information about the clusters to initialize a more accurate simulation of liquids by

1http://www.ros.org
2http://www.gazebosim.org
3http://www.pointclouds.org
4http://www.ode.org
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considering physical aspects such as molecular motion due to diffusion and convection.

The robot’s actions, its interactions with the objects, the state of the liquid, the clusters

and the state of the environment (world) are crucial information for the reasoning frame-

work. How these data structures are represented and accessed is explained in detail in

Chapter 3 and 4. For example, the world state comprises information about the position,

orientation, linear and angular velocities, and the bounding box of an object at a point in

time and is denoted as follows:

World state : 〈time, obj, pos, orient, lin_vel, ang_vel, bbox〉.

Additionally, we also monitor contact events:

Contact state : 〈time, o1, o2, num, force, torque, normal〉,

whereby we observe the number of contact points as well as the forces, torques and

normals between them. We have implemented monitoring routines as Gazebo controllers

that keep track of the dynamics of objects and write this information to log files.

These logs are then translated into interval-based first-order representations. We ac-

cess and evaluate the data structures from PROLOG using the following predicate

SimulatorValue(

Function︷ ︸︸ ︷
position(o, pos),

Time point︷︸︸︷
t ,

Timeline︷︸︸︷
tl ),

whereby different functions are available for accessing the time-stamped information of

the world and contact states.

In order to define more high-level predicates we use concepts similar to those in the

Event Calculus (Kowalski and Sergot, 1986b) (Section 3.4). The notation is based on

two concepts, namely fluents and events. Fluents are conditions that change over time,

e.g., a mug contains a pancake mix: contains(mug,mix). Events (or actions) are temporal

entities that have effects and occur at specific points in time, e.g., consider the action of

pouring the mix from the mug onto the pancake maker: occurs(pour(mug,pan)). Logical

statements about both fluents and events are expressed by using the predicate Holds(f,t,tl)

where f denotes a fluent or event, t simply denotes a point in time, and tl a timeline.

Using the similar predicate HoldsThroughout we can query for a time interval throughout the

fluent holds. Logical queries to the framework are basically answered through Prolog’s

backtracking mechanism over a set of timelines.

Having given an overview of the overall system, the next section will lead us to the

representation and simulation of fluids within this framework.

104



SECTION 5.3 Representation and Simulation of Fluids

5.3 Representation and Simulation of Fluids

Simulating liquids is of great interest in physics and chemistry (Allen and Tildesley, 1989).

As some processes occur very fast, events might not be observable in all its details in

reality. The purpose of simulating liquids in our work is to observe the impact of the robot’s

action with respect to the liquid’s behavior, which is of great importance when, e.g., pour-

ing and mixing liquids. Different approaches have been incorporated to simulate liquids

depending on the required level of accuracy needed (Griebel et al., 2007). In this work we

propose two complementary approaches for simulating liquids, (1) a graph-based model

similar to (Johnston and Williams, 2008) and (2) a Monte-Carlo simulation for modeling

diffusion and convection (Frenkel and Smit, 2001). Both do not simulate liquids in all their

aspects but provide enough information for making logical inferences about qualitative

phenomena.

5.3.1 Representing Fluids using Graph-based Models

The model for representing fluids was adapted from the work of Johnston and Williams

(2008). Originally, it was designed to simulate a wide range of physical phenomena includ-

ing diverse domains such as physical solids or liquids as hyper-graphs where each vertex

and edge is annotated with a frame that is bound to a clock and linked to update rules that

respond to discrete-time variants of Newton’s laws of mechanics.

Our pancake mix model can be in two states: first, the mix is liquid, and second, the mix

becomes a deformable pancake after cooking. In the simulation we use a graph-based

model for representing the mix and the pancake. The vertices of the graph are particles

where each particle is defined by a round shape with an associated diameter, a mass

and a visual appearance model. The benefit of this model is that it is realized as graph

with no connection between the vertices whenever the state is liquid. This means that the

individual particles could move freely to some extent. This was useful for performing the

pouring task. Due to the fact of the particles not being connected with joints, the simulated

liquid can be poured over the pancake maker where it dispenses due to the round shape

of the particles. A controller was attached to the particles that applies small forces to them

in order to simulate the viscosity of the pancake mix. Currently, we do not consider heat

as the trigger of transforming the liquid to a solid pancake but simply assume the event to

occur after constant time. We identified all particles on the pancake maker and created the

pancake based on a graph traversal algorithm starting at the cluster center (Figure 5.2).

105



CHAPTER 5 Naive Physics Reasoning for Handling Fluids

  

(a)

  

(b)

  

(c)

FIGURE 5.2 Generating a deformable pancake model from liquid particles. Illustration of
the algorithm’s procedure: (a) Radial search from the seed Point. (b) Creation of hinge
joints to the neighbors. (c) Radial search and creation of joints in a recursive step.
Courtesy: Reinhard Klapfer.

  

(a)

  

(b)

FIGURE 5.3 Basic idea of the clustering approach: during simulation we identify clusters
of particles. For example, after pouring, one cluster resides still in the mug, a second
is on the pancake maker and a third is spilled onto t he table. We are able to extract
information including contacts, position, extension, and size of the individual clusters.
Courtesy: Reinhard Klapfer.

5.3.2 Clustering of Fluid Particles

The basic idea of applying clustering methods is as follows. Let us, for example, assume

that someone pours some pancake mix onto a pancake maker as illustrated in Figure 5.3.

After the pouring action some particles reside in the container, some are spilled onto the

table, and some others are on the pancake maker which will eventually form the pancake.

If we want to address the particles in these three locations it perfectly makes sense to

group them in chunks (clusters). This reflects also how humans address fluids like milk or

sugar in natural language, for example, there is some milk spilled onto the table. Therefore

the behavior and the contact information of clusters of particles in everyday manipulation

tasks are of particular interest. We decided to use a Euclidean clustering strategy for
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Algorithm 1 Euclidean clustering of particles.
1) Set up an empty list of clusters Clst

2) For every particle pi ∈ P do
� Add pi to the current cluster C
� For every point pj ∈ C do

� Find particle pk using a radial search around particle pj
� For each particle pk add it to C if not processed, yet
� Terminate if all pj ∈ C have been processed

� Add C to the list of clusters Clst and reset C to an empty list

3) The algorithm terminates if all particles have been assigned to a cluster ci ∈ Clst

computing the groups of particles as shown in Algorithm 1.

Instead of looking at the individual particles when interpreting the outcome of a manip-

ulation scenario we look at clusters of particles. For every cluster we compute information

such as mean, covariance, size (number of particles), and its bounding box. Since we

have full knowledge about every particle and its belonging to a cluster, we can keep track

of it. Thereby we can detect if the pose or extension of a cluster change over time. How-

ever, whenever new particles become part of or are separated from a cluster we assign a

new ID to it. That is, clusters of particles have only a limited time during which they exist.

Hence, we can recognize which actions cause changes to clusters.

5.3.3 Monte Carlo Simulation of Fluids

Deformable bodies are seen as a big challenge in simulation and usually require a lot of

computational power (Brown et al., 2001). The physical simulation approach (Frenkel and

Smit, 2001) uses a Monte-Carlo process to simulate diffusion of liquids. Molecular move-

ment is either provoked from heat or from a difference in potential. The rate of change

depends on the diffusion coefficient and its respective change. This is a well known con-

cept in physics described by equation 5.1 and denoted as the macroscopic diffusion equa-

tion or Fick’s second law of diffusion. This differential equation takes into consideration a

change of concentration over time.

∂C
∂t

= D · ∂2C
∂2t

(5.1)

Frenkel and Smit (2001) showed that Random Walk gives one particular solution for the

above partial differential equation. Motivated by this idea we applied Algorithm 2 pro-
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posed by Frenkel and Smit (2001) to simulate this physical effect. The algorithm follows

the Metropolis scheme and uses a probability function to decide if a particle is going to

be displaced or not. The Leonnard-Jones Potential Function (Equation 5.2) was used to

Algorithm 2 Metropolis scheme.
1) Select a particle r at random and calculate its energy potential U(rN)
2) Give the particle a random displacement, r′ = r + ∆
3) Calculate the new energy potential U(r′N)
3) Accept the move from state rN to r′N with probability

acc( rN 7→ r′N ) = min
(
1, exp

(
−β
[
U(r′N)− U(rN)

]))
model the interaction among the particles in the liquid, that is, to model the particles’ be-

havior according to the concentration of particles in their neighborhood. The parameters

σ and ε are used to shape the function and r is the distance to neighboring particles.

U(r) = 4ε
[(

σ
r
12
)
−
(
σ
r
6
)]

(5.2)

Stirring a material is another type of mass transfer called convection. Convection is the

movement of mass due to forced fluid movement. Convective mass transfer is a faster

mass transfer than diffusion and happens when stirring is involved. The faster the fluid

moves, the more mass transfer and therefore the less time it takes to mix the ingredients

together (Gould et al., 2005). We simulated this physical property by simply introducing

an impulse in stirring direction to the particles in the point cloud that are in reach of the

cooking spoon. In this way, we could achieve the behavior of molecular motion due to

forced fluid movement.

5.3.4 Measuring the Homogeneity of Mixed Fluids

The homogeneity of the liquid was of particular interest when stirring was involved in the

conducted experiments. It was decided to use the local density of the particles represented

as point cloud as a measure of divergence, while using the assumption that the inverse of

this is a measure of homogeneity. This distance measure (Majtey et al., 2005) is known

as the Jensen-Shannon divergence and used widely in information theory. The Jensen-

Shannon divergence is defined as:

JS(P,Q) = 1
2
S
(
P, P+Q

2

)
+ 1

2
S
(
Q, P+Q

2

)
(5.3)
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Chapter 3: Simulation-Based Temporal Projection Framework 36

This term is known as the Relative Entropy. A symmetriced version of the Kullback-Leibner

divergence has been defined by Lin in [23] and is defined as

JS(P,Q) =
1

2
S

�
P,

P +Q

2

�
+

1

2
S

�
Q,

P +Q

2

�
(3.32)

where S is the Kullback divergence shown in equation 3.31, and P and Q two probability dis-

tributions defined over a discrete random variable x. The point cloud representing the particles

of the liquid was divided into a grid of static size. Each cell of this three-dimension grid repre-

sents one outcome of the discrete random variable x. As we are dealing with the problem of a

robot mixing two ingredients in a bowl, a consideration of a two class problem with the mixed

probability distributions of P and Q is taken. Let us assume both liquids having a different

colour, red and blue. Then for every cell in the grid it becomes possible to measure the density

for each class. We propose to divide the volume in a discrete grid of size wxhxd, which needs to

be adapted depending on specific configurations. The particles in the two liquids are illustrated

as red and blue points in Figure 3.17. Each cell of the grid represents a discrete probability

x

x :





P (x)
count

�
Particles

�

n

Q(x)
count

�
Particles

�

n

Figure 3.17: The density grid ..

distribution x defined on the mixed probabilities of the two classes P and Q, shown respectively

in red and blue. Based on this, we compute the class density Di for a class i as

Di =
count ( Particlesclassi )

n
(3.33)

where n is the total number of samples and used for normalisation. There are some cases where

the Jensen-Shannon divergence (Equations 3.31 and 3.32) is not defined. There are some cases

FIGURE 5.4 Density grid used for discretization and local density estimation. Courtesy:
Reinhard Klapfer.

where S(P,Q) is the Kullback divergence shown in equation 5.4, and P and Q two prob-

ability distributions defined over a discrete random variable x.

S(P,Q) =
∑

x P (x) log
(
P (x)
Q(x)

)
(5.4)

We propose the division of the point cloud in a three-dimensional grid (Figure 5.4). Each

cell of the grid represents a discrete probability distribution x defined on the mixed prob-

abilities of the two classes P and Q, that could be computed as the relative frequency.

The following example emphasizes the usage of this distance function related to the

homogeneity of a liquid which consists of two classes of particles. If we assume a perfect

separation of the two classes as shown in Figure 5.5(a), we would expect a high diver-

gence and a low homogeneity as we define the homogeneity as its inverse.

5.4 Experimental Results

In this section we are going to highlight the results of both experiments, namely mixing

ingredients in a bowl while measuring the level of homogeneity5, and second, pouring the

mix onto a pancake maker and reasoning about whether some mix was spilled6.

5Video (mixing): http://www.youtube.com/watch?v=ccHXmkKT8CE#!
6Video (pouring): http://www.youtube.com/watch?v=tzQk7S5PRaY
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(a) Maximum divergence, minimal homo-
geneity.

  

(b) Minimal divergence, maximal homo-
geneity.

FIGURE 5.5 A simple 2D density grid for a two class problem. Courtesy: Reinhard Klapfer.

(a) Initial Position (b) Pouring (c) Grasping Spoon (d) Stirring

FIGURE 5.6 PR2 pours two ingredients in a bowl and stirs them.

5.4.1 Mixing Liquids — Analysis of Homogeneity

We used the Monte Carlo method previously described in Section 5.3.3 to simulate the

physical effects when mixing liquids with different trajectories. Figure 5.6 shows the PR2

performing the task.

We selected the coefficients to represent two viscous liquids. Figure 5.7 and Figure 5.8

show the course of homogeneity when the robot stirs the liquids using (1) an elliptic tra-

jectory, (2) a spiral trajectory, (3) a lineal trajectory, and (4) no trajectory (without stirring).

As we expect, the ingredients do not mix very well when the robot does not stir the liq-

uids. Hence, the result of the experiment confirms our hypothesis: Stirring increases the

homogeneity of mixed liquids.

Furthermore, the result shows that with an elliptic trajectory the best result could be

achieved. Although Figure 5.7 visualizes continuous data of the homogeneity, we are

mainly interested in qualitative effect models. These qualitative models of homogeneous,

semi-homogeneous and inhomogeneous regions are simply defined by thresholding the
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FIGURE 5.7 Homogeneity over time of different stirring trajectories. The graph shows the
change of homogeneity on the vertical axis for different trajectories in direct comparison
with the result of scenario of not stirring over time. Courtesy: Reinhard Klapfer.

quantitative data. Given the knowledge of homogeneous, semi-homogeneous and inho-

mogeneous regions a robot could adapt the trajectory dynamically by applying techniques

known from Reinforcement Learning.

5.4.2 Pouring Fluids — Reasoning about Clusters

In this experiment we address the scenario of pouring some pancake mix located in a

container onto a pancake maker: the robot grasps a mug containing pancake mix from the

table, lifts it and pours the content onto a pancake maker (Figure 5.9). In this experiment

we used the resulting timelines to analyze the qualitative outcome of the executed action.

The parameterization of the task included the gripper position, the pouring angle and

the pouring time. The task was considered to be successful if no pancake mix has been

spilled, that is, the liquid resides on the pancake maker or in the container and not on

other objects such the kitchen table after the pouring action ends. We used the resulting

clusters and their corresponding contact and spatial information to examine the outcome.

Figure 5.10 shows exemplarily how clusters of pancake mix are spatially related to other

objects before, during and after the pouring action.

More results are summarized in Table 5.1 where the numbers for Mug, Pan, and Table

denote the number of particles of clusters in contact with the respective models. The

following PROLOG expression shows exemplarily how such information about clusters
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(a) t=0 s (b) t=60 s (c) t=250 s

(d) t=0 s (e) t=60 s (f) t=250 s

(g) t=0 s (h) t=60 s (i) t=250 s

(j) t=0 s (k) t=60 s (l) t=250 s

FIGURE 5.8 The color coded images show the spatial distribution of homogeneity of two
liquids. Black stands for uncovered regions, red and blue for inhomogeneous liquids
of corresponding classes and purple homogeneous regions. Stirring trajectories: (a-c)
without stirring, (d-f) elliptic, (g-i) lineal, (j-l) spiral. Courtesy: Reinhard Klapfer.
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(a) Grasping mug (b) Pouring (c) Success (d) Failure

FIGURE 5.9 PR2 pours mix onto pancake maker.

time

pour(mug,pan) pour

in(X,mug) mix131 (150) . . . mix156 (96)

on(X,pan) . . . mix164 (49)

on(X,table) mix892 (1)

FIGURE 5.10 Visualization of the main clusters of particles before, during and after the
pouring action. The pancake mix was represented by 150 particles. The number of
particles of a cluster is shown in parenthesis. During the simulation there were more
than 20 clusters generated on this timeline.

can be retrieved from timelines TL

?- holds_tt(occurs(pour(Params)),I,TL), [_,End] = I,

partOf(X,pancake_mix), holds(on(X,table),Time,TL),

after(Time,End),

simulator_value(size(X,Size),Time,TL),

simulator_value(mean(X,Mean),Time,TL),

simulator_value(var(X,Var),Time,TL).

where X denotes a cluster of pancake mix in contact with the table after the pouring action

has been carried out.

We used logical queries such as above to extract data for learning decision trees in

order to classify pancake sizes and pouring angles (Chapter 7). Although decision trees

can also be learned on continuous data, we mapped the numerical data to qualitative

concepts such as, for example, Small, Medium and Large pancakes. Thereby, the resulting

qualitative models are intuitively interpretable by humans.
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TABLE 5.1 Distribution of particles in clusters and their contacts.

Control parameters Desired contacts Undesired Clusters
pos. angle time mug pan table

0.00

2.09
1.0 102 98 - 2
1.5 1,2,100 96 - 4
2.0 123,1,1 75 - 4

2.44
1.0 22 178 - 2
1.5 1,25 174 - 3
2.0 27,1,1 1,170 - 5

2.61
1.0 1,7 1,1,1,1,187 1 6
1.5 13 187 - 2
2.0 1,7 192 - 3

0.05

2.09
1.0 97 103 - 2
1.5 138 62 - 2
2.0 1,1,64,132 - - 4

2.44
1.0 3,23 1,1,172 - 5
1.5 1,1,34 1,163 - 5
2.0 1,1,29 1,168 - 5

2.61
1.0 10 190 - 2
1.5 11 189 - 2
2.0 1,9 190 - 3

0.10

2.09
1.0 1 93,105 - 3
1.5 1,119 1,79 - 4
2.0 125 74 1 3

2.44
1.0 18,1 1,1,2,177 - 6
1.5 24 1,1,174 - 4
2.0 19 1,179 - 3

2.61
1.0 6 193 1 3
1.5 1,11 1,186 1 5
2.0 19 181 - 2

0.20

2.09
1.0 1,133 10 1,53 5
1.5 1,1,113 15 1,1,1,1,64 9
2.0 1,1,127 11,57 1 6

2.44
1.0 25 1,50 124 4
1.5 2,24 1,1,23 1,1,1,146 9
2.0 1,26 1,28 1,1,142 7

2.61
1.0 11 - 189 2
1.5 11 42 1,146 4
2.0 1,11 1,19 1,167 6
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5.5 Discussion

The present work can be considered as interdisciplinary research of two fields: Robotics

and Artificial Intelligence.

With our approach we enable robots to reason about the consequences of their own

actions. We equip them with the capability of making appropriate decisions about their pa-

rameterizations throughout their activity using well-established methods of AI and detailed

physical simulations.

To this end, we have developed a system that simulates robot manipulation tasks, moni-

tors relevant states and actions, and translates this information into first-order representa-

tions, called timelines. Then, we use the logic programming language PROLOG to answer

queries based on the data structures of the temporal projections.

The main contribution of this work is the extension of the framework with respect to

data structures and algorithms for representing and simulating fluids. We conducted two

experiments within the framework: mixing and pouring liquids. The resulting timelines of

the experiments were qualitatively evaluated with different performance criteria, e.g., the

homogeneity of the mix and the number of spilled particles.
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CHAPTER 6

Acquiring Task Knowledge through

Games with a Purpose

Teaching robots everyday tasks like making pancakes by instructions requires interfaces

that can intuitively be operated by non-experts. By performing novel manipulation tasks

in a virtual environment using a data glove task-related information of the demonstrated

actions can directly be accessed and extracted from the simulator. We translate low-level

data structures of these simulations into meaningful first-order representations whereby

we are able to select data segments and analyze them at an abstract level. The proposed

system uses Games with a Purpose for acquiring examples of manipulation actions. By

analyzing such examples robots can be understand how humans would perform a task.

6.1 Human-scale Manipulation Tasks

Scaling the task repertoire of autonomous manipulation robots towards open ended sets of

human-scale manipulation tasks requires novel ways of efficient programming. A promis-

ing way to do so is the transformation of task instructions made for human use into ex-

ecutable robot plans (Tenorth et al., 2010b). Key problems are that the instructions are

typically very incomplete and ambiguous and omit to state what everybody knows anyway.

Even worse, many aspects that are key factors for the success of everyday manipulation

actions are so obvious that people have problems stating them. People can be asked to

cut a piece of bread but almost everybody would have serious problems in describing the

action detailed enough such that a successful control program could be written from this

specification. This is a huge problem for autonomous robots that are to perform everyday

manipulation tasks because they lack the commonsense knowledge that humans have.

The most prominent approach to enable robots to acquire the skills for such actions is
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imitation learning or learning by demonstration (Khansari-Zadeh and Billard, 2010; Schaal

et al., 2004). While these approaches have proven successful they are also limited be-

cause they only copy observed behavior without understanding the object interactions that

are desired, intentions behind the behavior, and which variations of behavior are caused

by which context conditions.

For example, in imitation learning it is difficult to acquire a general and flexible routine for

pouring pancake mix into the pan. It is hard to learn how fast and how far to turn the bottle

and how high to hold it because the robot does not know that the demonstrator tries to

avoid spilling the pancake mix. In addition, how the bottle is held depends on the viscosity

of the pancake mix in the bottle and how big the hole in the bottle is, state aspects that the

learning observer cannot see.

In this work we propose the use of computer games (GWAP) that are coupled with a

physics simulator as a powerful means to extend the information of task instructions written

for humans. The computer game puts all ingredients and tools specified in the instructions

of a task on a table. It then prints the individual instruction steps on the screen and asks

the player to perform the step. The physics simulator provides the information about object

interactions (contact, object modifications), cause-effect relationships for action effects,

and forces. The simulator even lets the learner actively acquire example action executions

for variations in the physical situation, such as pouring pancake mix with varying viscosity

of the pancake mix.

The solution that we propose are Games with a Purpose in which players have to per-

form descriptions of manipulation actions. The players are controlling a robot hand to

perform the action. The simulator is extended with specific physical processes such as

mixing, cooking and so on as presented in Chapter 4 and 5. The data structures of the

simulator are logged throughout the game. The log data structures are then turned into a

virtual knowledge base in which the learning robot can query abstract information about

the game episode in a PROLOG-based query language. Using the query language intro-

duced in Chapter 3 the robot can answer queries such the following:

• What is the effect of an action?

• Which action lead to the desired outcome?

• Which action caused the current circumstances?

• Why should an action being performed?

• How should an action be parameterized to yield a different effect?
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To this end, we have designed and implemented a framework for the acquisition of

task knowledge. In a virtual manipulation environment users can play games using a data

glove. The gaming data is stored virtual knowledge base. Through the realized framework

data in the knowledge base can be retrieved by semantic queries in a first-order language.

The remainder of the chapter is structured as follows. We first reconsider the problem

of making pancakes in Section 6.2. In Section 6.3.1, we give an overview of the overall

framework for the acquisition of task knowledge through Games with a Purpose before we

describe the virtual manipulation environment in more detail in Section 6.3.2. We explain

how virtual manipulation tasks are represented using interval-based first-order abstrac-

tions called timelines, and how these are grounded within the data structures of physics-

based simulations in Section 6.3.3. We describe two realized games in which users have

to perform a pouring task and evaluate the thereby acquired data in Section 6.4. Finally,

we present and discuss related work in Section 6.5 before we conclude in Section 6.6.

6.2 Revisiting the Example of Making Pancakes

In their daily routines personal robot assistants are supposed to accomplish novel tasks

for which they have not been pre-programmed in advance. In this work we take the task

of making a pancake as our running example. Tenorth et al. (2010b) demonstrated how

robots can extend their task repertoire by extracting natural language step-by-step de-

scriptions from the Web and translating them into well-defined executable plans. The Web

instructions for making a pancake read as follows:

1. pour the pancake mix into a pan

2. flip the pancake using a spatula

3. place the pancake onto a plate

Figure 6.1 shows a hierarchical plan using primitive actions from the robot’s action li-

brary. In (Beetz et al., 2011), we conducted an experiment where our robot Rosie actually

performed the task of making pancakes on the basis of such a plan (Figure 6.2).

The natural language instructions are descriptive enough for humans to understand

the task. However, for robots these instructions are highly underspecified. That is, within

the experiment many parameters of the plan were determined and specified by program-

mers. But in principle, a robot has to infer the appropriate parameters of these actions

by other means. By observing humans performing the task the robot can estimate some
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MakingPancake

Pouring

. . .

Flipping

Pushing Lifting Turning

Placing

. . .

FIGURE 6.1 Ontological representation of an action plan for making pancakes.

FIGURE 6.2 The robot Rosie preparing a pancake.

of the missing parameters. For example, the robot could estimate parameters like height

and angle of the container while the pouring action is performed. Also the duration of this

action could be estimated. Such information could be extracted from instruction videos

retrieved from the Web or from a human tracking system (Beetz et al., 2009). Since our

goal is to acquire a deep understanding of the physical effects of such manipulation ac-

tions, we propose to acquire such task-related knowledge based on games played in a

physics-based simulator. When considering, for example, the pouring action we would like

to answer questions such as

• how much mix was spilled during the game?

• how much was poured onto the pancake maker?

• did it form a proper pancake?

• how much mix was left in the original container?
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FIGURE 6.3 Framework of the virtual manipulation environment.

• how long did the user hold the container over the target?

• at what height?

• at what angle?

6.3 Framework Design

First, the section gives an overview of the overall framework for the acquisition of task-

knowledge through Games with a Purpose. Second, we explain the virtual manipulation

environment and its user interface. Third, we describe how the monitored and logged data

structures of the simulator serve as a virtual knowledge base for answering queries formu-

lated in a first-order language. Finally, we illustrate the processing steps of the framework

by an example.

6.3.1 Overview

Figure 6.3 gives an overview of the overall framework for the acquisition of task knowledge.

The framework consists of two parts: a virtual manipulation environment and a knowledge

processing module for the extraction and analysis of the acquired data.

In the virtual environment objects can be manipulated using a data glove and a 3D posi-

tion sensor where the sensor information is directly translated into a pose and articulation
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FIGURE 6.4 Virtual Manipulation Environment.

of the simulated hand model. Since we have complete knowledge about the simulated

world state we are able to extract different kinds of information of the task-related objects.

These information include, for example, an object’s position, orientation, linear and angu-

lar velocities as well as its bounding box. Also contacts between objects are reported in

each time step. In contrast to vision-based systems we do not have to deal with occlusions

and other typical problems like the recognition of transparent objects.

The framework, that we have designed and implemented, can be used as a tool for

the acquisition of task-related information by logging the internal states of the simulator.

The logged simulations are then translated into interval-based first-order representations,

called timelines, as described in (Kunze et al., 2011b). By formulating logical queries we

can extract task-related information from these timelines semantically. For example, we

can query the pose of the container while it was hold by the hand. Then, further methods

can be applied on the selected data to analyze the manipulation actions with respect to

various aspects.

6.3.2 Virtual Manipulation Environment

The virtual environment is based on Gazebo1 a 3D multi-robot simulator with rigid-body

physics. In the environment a user wearing a data glove controls a robot hand which allows

him/her to interact with various objects. Figure 6.4 shows the hardware equipment and a

user controlling the robot hand in the virtual environment.

The virtual hand is a simulated version of the DLR-HIT robot hand, described using

the Unified Robot Description Format (URDF), which is an XML format for representing a

1http://gazebosim.org
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robot model, and then loaded in the simulator. The hand consists of four identical fingers,

each having four joints except the thumb which has an additional degree of freedom for

mimicking the human opposable thumb.

The data glove we use for detecting the positions of the finger joints is the X-IST Data-

glove. It is equipped with 15 bend sensors (three per finger, one for each joint).

For detecting the absolute position and orientation of the hand, we use the Razer Hydra

gaming controller. It has a base station that emits a weak magnetic field, and with the help

of the sensors, that were initially integrated in the controllers and afterwards attached to

the data glove, we can have a true six degree-of-freedom motion tracking.

The position of the virtual hand is controlled by calculating at each simulation time step

(1000 hz) the required linear/rotational velocities that need to be applied on it in order to

move to the desired position. Having the difference between the simulated position and the

real one a proportional-integral-derivative (PID) controller returns the required velocities

in order to have smooth hand movements. For simplifying the controller, the gravity force

acting on the hand was disabled, which does not influences its behavior as the inertial

forces are still present.

The fingers are controlled in a similar manner. Each joint having a PID controller that

takes as input the difference between the virtual and real fingers position and returns the

amount of force needed to apply on the joint in order to reach the desired angle.

6.3.3 Representation and Reasoning about Manipulation Tasks

Within the framework, monitors track the state evolution of the simulator and log informa-

tion whenever there is a difference between two succeeding states. Hence, logged sim-

ulations are a sequence of states over time. We basically distinguish between two kinds

of states, namely World states and Contact states. World states comprise the position,

orientation, linear and angular velocities, as well as the bounding box of an object at a

certain point in time:

World state : 〈time, obj, pos, orient, lin_vel, ang_vel, bbox〉.

A contact state holds information about the number of contacts (num) between two ob-

jects at a point in time. Additionally, it includes the respective forces, torques, and normals

for each of these contact points:

Contact state : 〈time, o1, o2, num, force, torque, normal〉.
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Data structures of the logged simulations are accessed using a predicate, called Simu-

latorValue, as follows:

SimulatorValue(

Function︷ ︸︸ ︷
position(o, pos),

Time point︷︸︸︷
t ,

Timeline︷︸︸︷
tl ),

whereby different functions are available for accessing the time-stamped information of

the world and contact states.

By using the above predicate, logged simulations are translated into interval-based first-

order representation, called timelines. We access and evaluate the timelines from PRO-

LOG by using predicates similar to those in the Event Calculus (Kowalski and Sergot,

1986b). The notation is based on two concepts, namely fluents and events. Fluents are

conditions that change over time, e.g., a mug contains a pancake mix: contains(mug,mix).

Events (or actions) are temporal entities that have effects and occur at specific points in

time, e.g., consider the action of pouring the mix from the mug onto the pancake maker:

occurs(pour(mug,pan)). Logical statements about both fluents and events are expressed

by using the predicate Holds(f,t,tl) where f denotes a fluent or event, t simply denotes a

point in time, and tl a timeline. The following logical formulas show how the fluent on is

based on two other fluents, namely contacts and above, which in turn are grounded in the

data structures of the simulator:

Holds(on(o1, o2), ti, tl)⇔
Holds(contacts(o1, o2), ti, tl)∧
Holds(above(o1, o2), ti, tl)

Holds(contacts(o1, o2), ti, tl)⇔
SimulatorValue(contacts(o1, o2), ti, tl)

Holds(above(o1, o2), ti, tl)⇔
SimulatorValue(bbox(o1, bbox1), ti, tl)∧
SimulatorValue(bbox(o2, bbox2), ti, tl)∧
Above(bbox1, bbox2).

Using the predicate Holds_tt and SimulatorValue_tt, instead of Holds and Simulator-

Value, we can even query for a complete time interval throughout a fluent holds.

The following simplified excerpt shows how a pouring action can be defined using the

above mentioned language elements. The pour predicate is true if there is some mix X

inside the Mug at the beginning of the timeline and if there is a subset of X, namely Y ,
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FIGURE 6.5 Virtual Manipulation Task: Pouring pancake mix onto a pancake maker.

inside the Pan at the end of the timeline. Note that this predicate does not determine when

the action has happened and whether there has been mix spilled onto the table.

occurs(pour(Mug,Pan)) :- hasType(Mix,liquid),

partOf(X,Mix), subsetOf(Y,X),

holds_tt(in(X,Mug),I1,TL),

holds_tt(in(Y,Pan),I2,TL),

begin(TL,Begin), end(TL,End),

starts(I1,[Begin,End]),

finishes(I2,[Begin,End]).

Similarly, we can formulate first-order queries to retrieve the answers to questions as

listed at the end of Section 6.2.

6.3.4 An Example: Acquiring Knowledge of a Pouring Task

In this section we provide an example, how task knowledge can be acquired from execu-

tion traces of the virtual manipulation environment.

A user performed a task related to the making pancakes scenario, namely pouring

pancake mix onto a pancake maker. Figure 6.5 illustrates how the task was performed

in the virtual manipulation environment.

By translating the data structures of the simulator into timelines we can use first-order

logic to query task-related data semantically. For example, we can ask for pose, velocities,

and bounding box of the mug in a time interval when there was a contact between mug

and the robot hand as follows:
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FIGURE 6.6 Trajectories of the mug when it was in contact with the hand. Raw (left) and
clustered (right) trajectories after aligning them using dynamic time warping.

?- holds_tt(contacts(mug,hand),I,TL),

simulator_values(position(mug,Ps),I,TL),

simulator_values(orientation(mug,Os),I,TL),

simulator_values(linear_velocities(mug,LVs),I,TL),

simulator_values(angular_velocities(mug,AVs),I,TL),

simulator_values(bboxes(mug,BBs),I,TL).

where I denotes a time interval and the other variables denote lists of their respective

data types. Similarly, we can get the last position of the mug in that interval for analyzing

where the user has placed the mug after the pouring.

In the experiments liquid was poured from different heights which can be seen by clus-

tering the trajectories (Figure 6.6). We applied dynamic time warping to align the trajecto-

ries and then we clustered the trajectories as in (Albrecht et al., 2011).

Logical queries allow us to select data segments of the logged simulations on an ab-

stract level. For example, we can select only the data segments when the mug is over the

pancake maker or when it is tilted at an angle in a certain range.

6.4 Experimental Results

We set up two games within the virtual environment for acquiring task knowledge. In both

games the task is to pour pancake mix onto a pancake maker. However, the conditions and

contexts in the games were varied. For each game we first explain its initial conditions and

the task the user has to achieve, and second, we describe how we analyze and evaluate

the extracted data.

126



SECTION 6.4 Experimental Results

6.4.1 Pouring without Spilling

6.4.1.1 Overview

Within the first game, the task of the user is to pour pancake mix onto a pancake maker

without spilling2. The simulation is initialized with a pancake maker and a mug on a table.

The virtual robot hand of the user is floating around in the environment. The user has to

grasp the mug, move it to a position over the pancake maker, tilt the mug that the mix

flows out of the container onto the pancake maker, and eventually put the mug back onto

the table. Since the user should not spill anything, he has to be careful while performing

the task.

To analyze the behavior of users with respect to the viscosity of liquids we changed the

fluidity of the pancake mix within the game.

The model of the liquid has a controller attached that sets a given damping factor to

each of its particles. The damping is realized by multiplying the current angular velocity

of each particle with one minus the damping factor value (1-8) multiplied by 0.05 at every

time step (1000 hz). Hence we have a controllable level of viscosity for the liquid.

We used eight different levels of fluidity. For each level the user has to perform ten trials,

that is, 80 trials in total. However, the user does not know the level of fluidity in advance.

So, she has to experience it in the first round(s) of each game.

Our hypothesis is that a user would lower the position of the mug while pouring if the

fluidity of the mix is increased in order to prevent the liquid to be spilled onto the table. On

average we would expect also an increased angle while tilting the mug if the mix has a

higher viscosity to increase the flow velocity.

6.4.1.2 Results

In total, we analyzed 80 trials of eight different levels of fluidity with respect to various

aspects. The logged data of the individual trials is represented using the timeline data

structures which allows us to make queries using a first-order language. For the analysis

we basically selected the data from the interval where the user hold the mug over the

pancake maker and tilted it by more than 30 degrees. The following query shows how

the data was selected where I1 and I2 denote time intervals on a timeline TL, and Data

includes all information about the mug within a given interval, for example, its position,

orientation, linear and angular velocities, and contacts.

2Video: https://ias.cs.tum.edu/~kunzel/videos/exp1-viscosity.mp4
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FIGURE 6.7 Number of games with spilled particles for different damping coefficients.

?- holds_tt(tilted-X(mug,pi/6),I1,TL),

holds_tt(over(mug,pancake_maker),I2,TL),

cooccur(I1,I2),

simulator_values(data(mug,Data),I1,TL).

First of all, we evaluated whether the user spilled liquid onto the table for the different

levels of fluidity. Figure 6.7 show that liquid was spilled in almost all trials when the fluidity

was high. The number of trials in which the user spilled something decreased when the

viscosity increased.

Figure 6.8 indicates clearly how the user became acquainted with the task and op-

timized his behavior during the ten trials across all damping factors. Both duration and

height decrease visibly when the game advances to the next round (1-10).

However, more interesting is how the observed behavior changes for the different levels

of viscosity. We analyzed the pose of the mug in the interval when it was tilted over the

pancake maker. For each of the ten trials we calculated the arithmetic mean of height and

angle during that interval. Figure 6.9 shows that both height and angle generally increase

if the viscosity increases. An exception can be seen for the angle with the lowest damping

value. Maybe this is due to the fact that this was the first game played by the user.

We also calculated the Pearson product-moment correlation coefficient for the height of

the container and the level of viscosity. The r and p values of 0.968 and 0.0001 indicate

that the correlation between the variables is significant.
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FIGURE 6.8 Left: Duration of tilting the container for the individual trial across all damping
coefficients. Right: Height of container with respect to the individual trials.

6.4.2 Pouring the Right Amount

6.4.2.1 Overview

The task of the user in this game is to pour a certain amount of pancake mix onto the

pancake maker3. Similar to the other game, the simulation is set up with a pancake maker

and a container containing some pancake mix. The user should grasp the container with

the robot hand, pour a certain amount of its contents onto the pancake maker and put it

back onto the table.

Within the game we varied two conditions. First, the user is presented either a mug or

a bottle of pancake mix. The opening of the latter is smaller, that is, less liquid flows out of

the container while tilting it. Second, we varied the filling level of the container. In total, we

looked at four filling levels of the respective containers. The amount of pancake mix the

user is asked to pour corresponds to the lowest filling level. Figure 6.10 show the different

types of containers and different levels of filling.

By performing the task in various contexts, that is, with different types of containers and

filling levels, we want to analyze whether the behavior of users is context dependent. If

our hypothesis is true, we should be able to extract parameters like pouring angle, height

and time that depend on the task context. Overall the user performed 80 trials, 40 for each

container and the different filling levels.

3Video: https://ias.cs.tum.edu/~kunzel/videos/exp2-container-level.mp4
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FIGURE 6.9 Left: Height of container for different damping coefficients. Right: Angle of con-
tainer for different damping coefficients.

FIGURE 6.10 Different types of containers and different filling levels.

6.4.2.2 Results

In this section we briefly present the results of the second game.

Firstly, Figure 6.11 (left) shows that the user was able pour an amount reasonable close

to the target amount of 20 particles onto the pancake maker with both containers at all

filling levels. Figure 6.11 (right) indicates that the user generally poured longer when the

container was a bottle. This makes sense since the bottle has an opening that is smaller

than that of the mug.

Figure 6.12 (left) illustrates that the height for both containers decrease on average

when the filling level increases. The Figure 6.12 (right) show an interesting result with re-

spect to the tilting angle of the container. The greater the angle, the steeper the inclination
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FIGURE 6.11 Left: Number of particles on pancake maker for different types of containers
and filling levels. Right: Duration of tilting the container during the pouring action.
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FIGURE 6.12 Left: Height of container. Right: Angle of the tilted container in the main pour-
ing direction.

of the container. We will investigate this behavior by more performing more trials and an

in-depth analysis of the data.

6.5 Related Work

Research related to this work stems from a range of areas including physics-based sim-

ulation, data acquisition through games, tracking and recognition of human activities, and

imitation learning. Therefore a thorough review of the related work is beyond the scope of

this thesis.

Within robotics, physics-based simulators are have been successfully used in the con-
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text of planning (Zickler and Veloso, 2009), and navigation (Frank et al., 2009). In (Kato

et al., 2009), a simulator is developed to gain a deep understanding of cooking tasks.

Games with a Purpose have been used to acquire commonsense knowledge from In-

ternet users (Ahn, 2006). However, most of these games focus on image and natural

language tasks.

Beetz et al. (2009) describe an approach of markerless tracking of human motions.

Tempting are also technologies like Kinect and its tracking software to capture human

motions for games. However, we used a data glove and the Razer Hydra sensor to reliably

control the virtual robot hand. Data sets like (De la Torre et al., 2009) provide a wide range

of sensor information for everyday cooking tasks.

Work on imitation learning focuses often on the imitation and optimization of observed

trajectories (Albrecht et al., 2011). That is, information about the context and the user’s

intentions are neglected. In line with the present work is (Chella et al., 2006) it also incor-

porates high-level information about tasks.

6.6 Discussion

In this chapter we have presented an approach for acquiring knowledge about manipula-

tion tasks through Games with a Purpose. Within a game a user is instructed to perform

a manipulation action in a virtual environment. In the simulated environment the user ma-

nipulates objects by controlling a robot hand with a data glove. The data structures of the

simulator are monitored, logged, and translated into timelines. The timelines are queried

using a first-order language and the query results are analyzed and interpreted using

methods from statistics and machine learning in order to generate informative models for

manipulation tasks.

In future work it would be interesting to explore how robots can learn actively missing

task knowledge. To this end, one could investigate how the initial configurations of games

can be generated automatically based on the perceptual information of perceived situa-

tions.

In general, common sense of everyday manipulation tasks has never been described

because its information always seemed so obvious. In addition, it would be very difficult

to express most of this kind of knowledge by the means of natural language. However,

people are able to appropriately apply it when asked to actually perform a task. Therefore

we believe, that the acquired task knowledge from GWAP ideally complements the infor-

mation extracted from Web instructions written in natural language (Tenorth et al., 2010b).
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By linking both information resources we are able to ground high-level task instructions in

the execution traces of performed actions. For example, based on these grounded data

structures robots are able to make decisions about the appropriate parameters of their

actions which can impossibly derived from natural language instructions.

The acquired task knowledge from games goes beyond the information that is usu-

ally extracted in imitation learning. Whereby imitation learning often learns and optimizes

stereotypical trajectories we also consider information about the task context as well as

the relationship between objects with respect to spatial and physical aspects during the

overall task execution. Thereby we can build models that reflect, for example, the situated

context, physical phenomena, and intended goals of a user.

Acquiring data from games has also the advantage that large amounts of information

can be crowdsourced from users over the Internet. However, currently our system is limited

to a workplace given the equipment requirements.

As a downside of our approach, we would see the problem that the current state-of-

the-art robot simulators are not as robust, flexible and easy to use as one would desire.

However, we believe that issues regarding performance and usability will be solved by the

game industry which heavily employs physics engines in the game development. Another

strong indicator that the development of simulation software will get facilitated in the near

future is the commitment of DARPA to support the Open Source Robotics Foundation

(OSRF)4 in the development of an open-source robot simulator to be used in the DARPA

Robotics Challenge.

Overall we believe that the proposed framework for extracting information from Games

with a Purpose can be a useful tool for the acquisition of task-related knowledge that can

be applied in many areas of robotics research including execution monitoring, planning,

diagnosis, question answering, and learning.

4http://www.osrfoundation.org
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CHAPTER 7

Learning Action Models from Narratives

In Chapter 2 we have introduced narratives as a way to capture and describe the dynamics

of manipulation actions over time. We have explained in Chapter 3 how narratives can be

formalized using interval-based first-order representations called timelines. In Chapter 4

and Chapter 6 we have presented a framework for envisioning and interpreting everyday

object manipulation actions performed by both robots and humans and represent them

using timelines. In this chapter we describe how robots can learn compact action models

based on information extracted from these timelines which are obtained from robot and

human performances.

Learned action models are compact representations of physical behaviors that are gen-

eralized from individual cases. Thereby they allow robots to reason about a whole range

of problems and their variations. For example, a robot about to make a small pancake has

to decide on the appropriate parameters of its pouring action. If it has learned a model that

predicts the size of a pancake given a parameterized action, the robot can also apply this

model to novel situations in which, for example, it pours the contents of some eggs into a

pan for making an omelet. Such models would not only allow a robot to plan its actions,

but also to monitor their effects and thereby to detect flaws in the physical behavior.

Another reasoning problem were action models can be applied is question answering in

the context of everyday manipulation, as stated in Section 1.3.1. When answering ques-

tions, it is often desirable to provide an explanation of why an answer has been given. For

example, a robot could explain that it chose a low angle to pour the contents of a container

onto the pancake maker, because the container had a wide opening and it was rather full.

Likewise the robot could explain that it chose a high angle, because the bottle holding the

pancake mix had a small opening and it was almost empty. In order to provide such ex-

planations, it is necessary that models are represented in an interpretable and meaningful

way. Hence, this work focuses on models whose internal structure is represented explicitly
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by propositions, predicates, and rules using a logical language.

But how can robots actually learn action models of physical behaviors for accomplish-

ing and reasoning about everyday manipulation tasks? A promising way to do so is to

look at examples performed by skilled human subjects. Imitation learning analyzes the

performances of humans and estimates critical parameters (Schaal et al., 2004; Billard

et al., 2004; Azad et al., 2007). The learned behavior thereby copies and imitates the

movements performed by humans. Albrecht et al. (2011) use methods from optimization

theory to improve learned models in a post-processing step. However, such systems only

capture aspects that were present within the example data. That is, examples of excep-

tional and border cases of manipulation actions, that are essential for generating robust

and failure-aware models, are not reflected within the learned models. In this work we con-

sider examples performed by humans as described in Chapter 6 and use them to estimate

ranges of important parameters such as the angle and the duration of a pouring action. On

this basis we semi-automatically instantiate simulations of robot manipulation tasks and

thereby explore the parameter space of an action until its effects change qualitatively, for

example, when too much pancake mix is spilled. Finally, we abort the robot simulation if

we have explored the local region of the parameter space and its boundaries qualitatively

enough.

Another limitation of many approaches in imitation learning is that they do not take

intermediate configurations of objects and/or intentions of the agent into account. Work by

Chella et al. (2006) addresses this challenge by incorporating symbolic knowledge about

occurring actions and states of objects into the learning process. Similarly to their work,

we use rich semantic descriptions of scenes (timelines) grounded in the data structures of

robot and interactive human simulations to assign a meaning to intermediate situations.

The remainder of this chapter is structured as follows. First, we discuss different learn-

ing paradigms in Section 7.1. Secondly, we describe the problem domain and sketch our

approach. Thirdly, we give an overview of the learning framework and explain how it pro-

cesses data of human object manipulation tasks (Chapter 6) and the envisioning frame-

work (Chapter 4) to learn compact action models in Section 7.3. Section 7.4 presents

experimental results of learned models. Finally, we conclude with a short summary and a

discussion in Section 7.5.
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7.1 Learning Paradigms

Before we present our approach on learning physical behavior models for everyday ma-

nipulation in Section 7.3, we briefly discuss different types of learning. Basically one can

distinguish between three different types, namely:

• supervised learning,

• unsupervised learning, and

• reinforcement learning.

In supervised learning a learner basically learns a function that maps an input to a

corresponding output based on a set of training examples. If there is only a finite number

of discrete output values, the resulting function is called a classifier. In supervised learning

it is crucial that input and output of all training examples are known.

Unsupervised learning is mainly used to understand the underlying structure, similar-

ities and patterns in data. In contrast to supervised learning, the training examples only

include inputs but no outputs. This type of learning is also called clustering.

In reinforcement learning a learner only receives a feedback about its behavior. If the

learner receives a positive feedback, its current behavior or strategy gets reinforced; oth-

erwise, it gets downgraded. However, the learner receives no feedback on how to improve

its behavior.

An extensive explanation of these different learning paradigms is beyond the scope of

this thesis. Therefore, the interested reader is rather referred to a classical text book such

as (Russell and Norvig, 2009).

In regards to the problem of “Making Pancakes”, all of the above mentioned learning ap-

proaches could be applied in one context or another. For example, unsupervised learning

could be applied to distinguish between different types of pancakes. Looking at the re-

sulting clusters a learner could possibly tell pancakes of different sizes and shapes apart.

Please note, that an interpretation of the clustering results is always up to the learner.

Reinforcement learning could be applied to learn a pouring behavior. Whenever the robot

pours something onto the pancake maker without spilling it could receive a positive feed-

back, otherwise a negative. Thereby the robot could learn an appropriate parameterization

of its pouring action. Finally, the robot could employ supervised learning to learn an action

model that predicts the size of a pancake given a set of input variables, in particular action

parameters and a context.
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Although we have seen that all three types of learning could potentially be applied to

problems in regards to “Making Pancakes”, in the remainder of this chapter we focus on

methods based on supervised learning.

7.2 Problem Domain and Approach

The previous section already mentioned the problem of learning a model for predicting

the size of a pancake. In this section we discuss this problem in more detail and sketch a

solution to it using supervised learning methods.

Table 7.1 gives an overview of attributes and their respective ranges that are relevant

for a pouring action. Some of the attributes are controllable parameters of the pouring

action such as angle, time, and position. Others describe the context of the scenario.

Context-dependent attributes such as fill level (particles) and container type (container )

are perceptible by the robot, whereas the viscosity of the pancake mix is imperceptible.

Effects of the action include the size of the pancake and the amount of spilled particles.

Basically all attributes, except container, are continuous by nature. However, as motivated

earlier, we would like to learn interpretable action models. Therefore, we discretized the

ranges of all continuous attributes to nominal concepts. For example, instead of numerical

values such as 0.2, 0.8, and 1.4 seconds, we now represent the pouring duration using

the concepts short, medium, and long, respectively.

Having laid out a set of logical attributes with their respective ranges as in Table 7.1, we

are able to define predicates for specifying the size of a pancake. Let us imagine that we

only want to distinguish between small and large pancakes. Hence, we could specify two

predicates as follows:

∀x Size(x, Small)⇔ P1(x) ∨ P2(x) ∨ · · · ∨ Pn(x),

∀x Size(x, Large)⇔ Q1(x) ∨Q2(x) ∨ · · · ∨Qn(x)

whereby Pi(x) and Qi(x) denote a conjunction of tests based on the logical attributes.

The logical predicates from above can also be represented as a decision list. A decision

list is basically a logical expression of restricted form, namely a sequence of logical tests.

Figure 7.1 shows an example of a decision list that we have learned on training data

obtained through robot simulations. The advantage of such explicit models is that they

can directly be interpreted and analyzed by humans. For example, it is very intuitive that

low pouring angles applied to containers with a small opening (bottle) yield only small

pancakes, whereas high pouring angles applied containers with a large opening (mug)
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TABLE 7.1 Attributes of the pouring domain with their respective types and ranges.

Type Attribute Range Description

Action
Parameter

Angle Low, Mid,
High

The angle at which the container is hold
during the pouring action

Time Short, Med,
Long

Denotes the time during which the con-
tainer is hold at a certain angle

Position Left, Behind,
Above, . . .

The position with respect to the pan-
cake maker

Context
(perceptible)

Particles Few, Many Number of particles, i.e., the amount of
pancake mix in the container

Container Mug, Bottle The type of the container

Context
(imperceptible)

Viscosity Low, Mid,
High

The viscosity of the pancake mix

Effect Size Small,
Medium,
Large

The size of the pancake (particles that
are on the pancake maker)

Spilled Small,
Medium,
Large

The amount of pancake mix that has
been spilled after the pouring action

yield large pancakes. A robot could use a decision list that predicts the size of a pancake,

for example, for monitoring the outcome of an action. Alternatively, it could use a decision

list for selecting appropriate parameters that lead to a desired outcome, for example, a

small pancake.

After we have explained the pouring domain and have introduced our approach on

learning action models from narratives, we continue by describing the overall framework

in the next section.

7.3 Learning Framework

In this section we provide a brief overview of the learning framework. Figure 7.2 shows the

main components of the system. The data for learning is acquired from two sources: the

interactive simulation and the envisioning framework described in Chapter 6 and Chap-

ter 4, respectively. That is, data from both human and robot object manipulation functions

as input to the system. As described in Chapter 3, narratives about object manipulation
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Angle(x, Low) ∧ Container(x,Bottle)

Angle(x,High) ∧ Container(x,Mug)

Particles(x, Few) ∧ Time(x, Short)

Angle(x,High)

Particles(x,Many)

Size(x, Small)

Size(x, Large)

Size(x, Small)

Size(x, Large)

Size(x, Large)

Size(x, Small)

false

false

false

false

true

true

true

true

true

false

FIGURE 7.1 Decision list predicting the size of a pancake.

tasks are represented as timelines. However, timelines are not used as raw input for the

learning algorithms. We rather use specialized predicates that extract relevant information

from timelines. For example, in order to predict the size of a pancake we extract the size

of the cluster of particles on the pancake maker as well as the angle and duration of the

tilting action from a timeline. In addition, we extract context information such as the type of

a container and its fill level. This information is then used as the input to different learning

algorithms. In this work we used algorithms implemented in the Weka library (Frank et al.,

2005), to learn compact models of actions such as decision trees.

?- holds(occurs(pour),I1,$TL),
    holds(occurs(X),I2,$TL),
    before(I1,I2).

First-order Query 
Language

Query

Answer

Interactive Simulation Framework

Simulation-based Envisioning Framework

Answer and Evidence SourcesLearned Action 
Models

First-order Interval-
based Represenations  
of Narratives

FIGURE 7.2 Framework for learning action models from narratives.
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7.4 Experimental Results

In this section we present learned action models obtained through the framework as de-

scribed above. But before we look at the resulting models, we first summarize how the

data was acquired.

7.4.1 Data Acquisition

We acquired data from human object manipulation tasks through Games with a Purpose

as described in Chapter 6. A human subject manipulated objects by controlling a robot

hand in a virtual environment. In particular, the subject performed the task of pouring pan-

cake mix onto a pancake maker under various conditions. In these experiments we mainly

paid attention to the movements of the container of pancake mix. That is, we extracted

position and orientation information of the container within an interval during which cer-

tain conditions hold, namely, when the container was tilted and above the pancake maker.

The duration of the interval corresponds to the time span that the container was tilted. The

information extracted from the human object manipulation was used to setup the envision-

ing framework (Chapter 4). Basically, we derived a reasonable range of parameter values

for all action parameters from the observed data. In addition, we included more extreme

values to cover border cases which had not been observed. Figure 7.3 shows averaged

positions in the x-y-plane that the human subject used for pouring the contents of the con-

tainer onto the pancake maker. In all trials the pouring direction was always towards the

center of the pancake maker.

0.15 0.10 0.05 0.00 0.05 0.10 0.15
X-pos

0.2

0.1

0.0

0.1

0.2

Y-
po

s

FIGURE 7.3 Averaged pouring positions above the pancake maker extracted from games
played by a human subject (Chapter 6). Courtesy: Johannes Mikulasch.
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FIGURE 7.4 Simulation of a pouring action. Left: The PR2 pours pancake mix onto the
pancake maker. Right: Efficient simulation of the action whereby the PR2 robot is ab-
stracted away.

Using the information extracted from human performances we set up the envisioning

framework and carried out hundreds of robot simulations. In order to speed up the perfor-

mance of the simulator, we abstracted the robot away and directly controlled the container.

However, the pouring action was performed as if the robot was present. Figure 7.4 shows

images of the simulated pouring action with and without the robot.

Figure 7.5 shows results from experiments in which the position of the container was

varied in x and y direction over the pancake maker. The figure shows the amount of pan-

cake mix (particles) that are poured onto the pancake maker. The tested positions (red

dots) are organized in a grid structure above the pancake maker. Given the symmetry of

the pancake maker, for each of the positions the pouring direction was always pointing to-

wards north. Otherwise we would have duplicated some results. The experiments demon-

strate that the averaged pouring positions of the human (Figure 7.3) almost correspond to

the optimal positions of the robot (center of the grey-shaded area). The effect of different

levels of viscosities on the number of spilled particles can be observed in Figure 7.6. No-

ticeably, the diameter of the white area, meaning no or almost no spills, increases as the

viscosity increases.

7.4.2 Learned Action Models

In this section we describe how we learn qualitative action models on the basis of quanti-

tative robot simulations. First, we present some quantitative results of the simulations, and

second, we explain how qualitative action models are obtained through learning.

In the following, we explain how we learn two different models: one that predicts the size

of a pancake, and a second that predicts the pouring angle. The input data that we extract
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FIGURE 7.5 Amount of particles on the pancake maker while pouring from different posi-
tions. Courtesy: Johannes Mikulasch.

from each simulation run is a tuple as follows:

〈container, particles, time, angle, size〉

whereby container denotes the type of container (mug or bottle), particles denotes

the fill level of the container (few or many ), time denotes the duration of pouring (short,

medium, long), angle denotes the angle of the container while pouring (low, medium,

high), and size denotes the size of the resulting pancake (small, medium, large).

Figure 7.7 shows two situations after a pouring action has been performed using the

same parameterization. The left image depicts the situation when a mug was used, the

right when a bottle was used for pouring. The distinctive distributions of particles on the

pancake maker show how the outcome of a pouring action depends qualitatively on the

context, that is, on the type of the container.

Figure 7.8 visualizes the relation of pouring angle and duration (time) quantitatively. The

top row of the figure shows results when the container contains only a few particles (50).

The bottom row visualizes the results for many particles (200). The left column shows the

results for the mug, the right for the bottle. Looking at the results, it is obvious that the

size of a container’s opening (mug vs. bottle) has a dramatic effect on amount of particles

that are poured onto the pancake maker. Additionally, the type of the container has also

a noticeable effect on the continuity of the function describing the amount of pancake

mix. The discontinuity results from the fact that the opening of the bottle occasionally got
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(a) Viscosity level 1 (lowest). (b) Viscosity level 2 (second lowest)

(c) Viscosity level 3 (second highest) (d) Viscosity level 4 (highest)

FIGURE 7.6 Amount of spilled particles while pouring pancake mix with different viscosities
from different positions . Courtesy: Johannes Mikulasch.
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FIGURE 7.7 Different qualitative outcomes of a pouring action. Left: A mug with a large
opening. Right: A bottle with a small opening.

TABLE 7.2 Mapping between the qualitative and quantitative size of a pancake.

Size Number of particles

Small (0, 66]
Medium (66, 133]
Large (133,+∞)

clogged up. Further, it can be noted that a different fill level (few vs. many ) has more

impact on the bottle than on the mug. In general, it can be seen that the pouring angle is

more important for controlling the amount of pancake mix than the time.

As we have discussed some of the quantitative results, we now proceed by explaining

how we learn the qualitative models.

Whenever it is desirable to describe quantitative measurements by qualitative concepts

one has to find an appropriate mapping between both. For example, if we want to distin-

guish between three different sizes of pancakes, namely Small, Medium and Large, we

have to provide a mapping that relates, for example, each size to a certain number of

particles. Such a mapping can either be based on thresholds or it can be learned using

methods we present in Chapter 8. However, out of simplicity, we assume a static mapping

as stated in Table 7.2.

As mentioned above, we have chosen a decision tree for the classification of pancake

sizes. Although decision trees are rather simple models, they have the advantage that

they are interpretable by humans. For learning the size of a pancake we used Weka’s

J48 algorithm in its default parameterization. The resulting decision tree is visualized in

Figure 7.9. Overall, the learned model achieves an accuracy of 92.41%. That is, out of

the 474 instances used for learning, 438 are classified correctly withing the 10-fold cross-
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(a) Fill level: 50 particles. Left: mug. Right: bottle.
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(b) Fill level: 200 particles. Left: mug. Right: bottle.

FIGURE 7.8 Relationship between pouring angle and time. The pouring results are shown
for different types of containers and different fill levels. Courtesy: Johannes Mikulasch.

validation. The most decisive attribute is the fill level (particles). If there are only a few

particles available, the robot can only make small pancakes. In case of many particles, the

size of the pancake depends first on the type of container, and second on the tilting angle.

Only if the container is a bottle with a small opening and the pouring angle is high, the robot

can make pancakes of different sizes by varying the pouring duration (time). The confusion

matrix in Table 7.3 shows that mainly pancakes of medium size were misclassified.

In a second experiment we have learned an action model for predicting the pouring

angle. Here we assumed an alternative mapping between the number of particles and

the qualitative size of a pancake as shown in Table 7.4. The reason for using a different

mapping was due to an unbalanced distribution of samples in regards to the different sizes

of pancakes as can be derived from Table 7.3. Again, we used Weka’s J48 algorithm for

learning. The learned decision tree, depicted in Figure 7.10, achieves an accuracy of
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Particles
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Small (237/0)
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FIGURE 7.9 Decision tree for predicting the size of a pancake. The size is discretized in
three classes, namely Small, Medium, and Large. The tree is learned from 474 in-
stances and classifies 438 instances correctly (92.41%) and 36 incorrectly (7.59%).

TABLE 7.3 Confusion matrix for classifying the size of the pancake.
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Class

Small 348 2 0
Medium 17 8 7

Large 8 2 82
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TABLE 7.4 Alternative mapping between the qualitative and quantitative size of a pancake.

Size Number of particles

Small (0− 15]
Medium (15− 50]
Large (50,+∞)

Size

Container

medium

Low (159/30)

small

High (135/60)

large

Particles

mug

Particles

bottle

High (90/49)

few

Low (8/0)

many

High (60/18)

few

Mid (22/9)

many

FIGURE 7.10 Decision tree for selecting an angle. The angle is discretized in three classes,
namely Low, Mid, and High. The tree is learned from 474 instances and classifies 305
instances correctly (64.35%) and 169 incorrectly (35.65%).

64.35% in the 10-fold cross-validation. A robot can basically use the model for figuring out

what angle to use. Given a desired size of a pancake and a context determined by the

container’s type and its fill level, the robot can infer an appropriate angle. As the confusion

matrix in Table 7.5 shows, mainly the mid angles are misclassified.

7.5 Discussion

In this chapter we have presented work on learning from narratives. We have motivated

that imitation learning often only copies the behavior without considering the underly-

ing structure of tasks. In this work, we have shown how low-level data obtained through

Games with a Purpose and robot simulations can be abstracted to learn more descrip-

tive task models. In particular, we have learned decision trees for predicting the size of
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TABLE 7.5 Confusion matrix for classifying the pouring angle.

C
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Class

High 158 9 0
Mid 100 10 30
Low 30 0 137

a pancake and the pouring angle dependent on the context. However, although the pre-

sented models are efficient for reasoning their expressiveness is limited since they are

only propositional. For a better integration with timelines, it would be interesting to investi-

gate powerful first-order models such as Markov Logic Networks (Richardson and Domin-

gos, 2006) for learning compact representations of activities as, for example, described by

Biswas et al. (2007). Another direction of research one could look at, is a tighter coupling

between the data acquisition from human observations and an automatic exploration and

exploitation of the parameter space through systematic robot simulations.
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CHAPTER 8

Crowdsourcing Common Sense

through Games with a Purpose

As we have continually motivated throughout this thesis, autonomous robots need to be

equipped with common sense to understand and accomplish everyday manipulation tasks.

However, a fair amount of commonsense knowledge is only tacit knowledge, that is, it

cannot directly be extracted from any comprehensive source of knowledge such as the

World Wide Web. In fact, much of this knowledge has never been described because

either its information always seemed obvious or would be difficult to express explicitly.

Parts of this knowledge can be obtained by putting humans in situations where they have

to apply their common sense. By analyzing and interpreting the resulting performance

data, common sense can be revealed and modeled.

In this work we focus on commonsense knowledge about spatial relations between

objects. For example, imagine a situation where a robot has perceived various objects on

a table as shown in Figure 8.1. After the robot has segmented and detected some of the

objects on the table, it is asked to describe the scene semantically relying upon spatial

concepts. The robot needs discriminative models of spatial knowledge in order to state,

for example, the blue cup is right of the plate. In another situation a robot might be asked

to set a table for breakfast. The robot receives instructions such as

• put the cereals next to the milk, and

• place the spoon right to the bowl.

Interpreting these instructions is difficult because they are both ambiguous and context-

depended. For instance, the instruction put the cereals next to the milk implies a certain

relative distance between the cereals and the milk. However, it is not explicitly specified.
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FIGURE 8.1 Segmented and detected objects on a breakfast table. Courtesy: IAS.

Similarly, the area which is characterized by right to the bowl is not clearly defined either.

This is in particular interesting because the expression right to the bowl refers to different

meanings (areas) in different contexts. In the context of setting a table, the space denoted

by right to the bowl is restricted by additional implicit constraints. What this actually means

is that the spoon should be placed in an appropriate distance and orientation on the right

side of the bowl. In order to come up with potential locations where to place objects the

robot needs generative models of spatial knowledge.

As humans are experts in applying their spatial knowledge to everyday situations, we

propose a crowdsourcing approach using Games with a Purpose (Ahn, 2006). Games

with a Purpose (GWAP) are used to acquire valuable information on the basis of games

which would be hard and/or expensive to obtain otherwise. We have designed and imple-

mented a framework that captures human knowledge about spatial relations using GWAP.

Figure 8.2 visualizes the overall idea of the framework. Multiple users play games and

thereby provide spatial information about everyday situations. This information is stored

in a database, analyzed and used for learning compact models that can be employed by

robots. Robots can also contribute made-up and/or perceived situations such as shown in

Figure 8.1 by uploading these to the game database. Thereby they can actively acquire

knowledge about specific spatial aspects.

Within the developed game, a user is confronted with different scenes of a breakfast

table. For each scene, the user has to describe the relationships between objects which

are stored in a database. Figure 8.3 shows an example of a rendered scene of a breakfast

table. In the game, users have to describe the relationships between objects from their
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FIGURE 8.2 Crowdsourcing framework using Games with a Purpose: PLAY4ROBOTS.
Courtesy: Raphael Teßmer.

own viewpoint. With respect to the figure, a description of the scene could include that the

spoon is in front of and close to the box of cereals and that it is right, behind and rather

distant to the butter dish.

The computer game we have developed is browser-based. Thereby it can be played by

many users over the Internet. Hence, the information about spatial relations cannot only

acquired from a limited number of well chosen people, but rather from a large number of

unknown people, the crowd. Hence, we belief that the obtained information should reflect

the common sense of people to a reasonable degree.

The remainder of this chapter is structured as follows. First we provide background

information and discuss related work about crowdsourcing and reasoning about spatial

relations in Section 8.1. Thereafter, we explain the crowdsourcing framework that we have

designed and developed in Section 8.2. Third, we present experimental results in Sec-

tion 8.3. Finally, we conclude with a discussion and an outlook on future work in Sec-

tion 8.4.
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FIGURE 8.3 Rendered scene of a breakfast table.

8.1 Background

8.1.1 Crowdsourcing

The term crowdsourcing was coined by Howe (2006b). In a related blog post (Howe,

2006a) to his Wired magazine article he gave a definition of the term which reads as

follows:

“Simply defined, crowdsourcing represents the act of a company or institution

taking a function once performed by employees and outsourcing it to an unde-

fined (and generally large) network of people in the form of an open call. This

can take the form of peer-production (when the job is performed collabora-

tively), but is also often undertaken by sole individuals. The crucial prerequisite

is the use of the open call format and the large network of potential laborers.”

Given this definition, the term crowdsourcing applies to a broad range of activities in

which services, information, funding and so on are obtained from a large group of unknown

people. People who provide a service can be of any of the following groups: experts,

amateurs, or lay men. The type of group basically depends on the task to solve and to

whom the call for participation is addressed.

When looking at current crowdsourcing platforms, one can also distinguish between

different motivations why people participate in crowdsourcing activities:
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• One of the primary motivations for people to participate and contribute in crowd-

sourcing activities is simply to make money and/or to obtain compensations in other

forms such as vouchers. For example, platforms like Amazon’s Mechanical Turk1

pay compensations for accomplished tasks called HITs (human intelligence tasks).

Other platforms such as OMICS (Gupta and Kochenderfer, 2004) issued vouchers

to very active users who provided information about commonsense facts.

• Another source of motivation is fame. For example, within some art projects of Aaron

Koblin2 people retained their authorship of a created piece of art.

• People also participate in crowdsourcing projects out of altruistic reasons. For exam-

ple, in the project SETI@Home3 people download a software package and thereby

simply provide computational resources for the analysis of large amounts of data.

Other examples include LabelMe4 where people label parts of images and Comirit

Objects5 where people build simple 3D models of objects just for the sake of science.

• And finally, people participate in crowdsourcing just for fun. “Games with a Pur-

pose” (GWAP) (Ahn, 2006) obtain valuable information about a subject area based

on gaming data of their participants. For example, Artigo6, a social image tagging

platform, collects labels for artworks. Similarly, the social language tagging platform

Metropolitalia7 acquires information about regional dialects by mapping Italian lan-

guage expressions to geographical areas.

In this work we use one particular form of crowdsourcing, namely Games with a Pur-

pose, to acquire information about spatial concepts. We use GWAP because they are an

excellent means to acquire information from a large group of motivated people over the

Web without paying a compensation. After we have provided some background informa-

tion about spatial relations in the next section, we continue by explaining the developed

crowdsourcing framework based on GWAP in Section 8.2.

1https://www.mturk.com
2http://www.aaronkoblin.com
3http://setiathome.berkeley.edu
4http://labelme.csail.mit.edu
5http://www.comirit.com/objects
6http://www.artigo.org
7http://www.metropolitalia.org
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FIGURE 8.4 Partitioning of two different reference systems for relative relations.

8.1.2 Spatial Relations

As discussed in Chapter 3, spatial relations between objects can be grouped into differ-

ent categories, namely topological, directional, and distance relations. In Chapter 4, we

investigated mainly topological relations such as on and in. This chapter focuses rather

on directional and distance relations. However, the presented methods can also be used

to acquire information about other spatial concepts.

In their work, Moratz et al. (2003) developed a qualitative positional calculus based on

ternary relations for the task of robot navigation. The three positions in the calculus are

referred by origin, relatum and referent. The origin corresponds to the position of the robot.

Origin and relatum define the reference axis which partitions the surrounding space. Then,

the spatial relation is basically defined by the partition in which referent lies with respect

to the reference axis. Figure 8.4 shows the partitioning of two different reference systems.

In order to determine the directional relation Moratz et al. (2003) calculate the relative

angle φrel as follows:

φrel = tan−1
yref − yrel
xref − xrel

− tan−1
yrel − yorig
xrel − xorig

(8.1)

Figure 8.5 shows which angle is represented by φrel. Basically, it is the angle between

the reference axis, defined by origin and relatum, and the referent point. Table 8.1 shows

how areas characterized by angle limits are mapped to the spatial relations.

Moratz et al. (2003) use the relative radius rrel to describe the distance between origin,

relatum and referent. It is defined as follows:
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referent

origin

relatum

φrel

FIGURE 8.5 The relative angle φrel is defined by the reference axis, which is specified by
origin and relatum, and the referent.

TABLE 8.1 Partitioning of space for determining directional spatial relations.

Relation Partition

referent behind relatum −45◦≤ φ ≤ 45◦

referent left relatum 45◦< φ < 135◦

referent front relatum 135◦≤ φ ≤ 225◦

referent right relatum −45◦> φ > −135◦

referent left - back relatum 0◦< φ < 90◦

referent left - front relatum 90◦< φ < 180◦

referent right - front relatum −180◦> φ > −90◦

referent right - back relatum −90◦> φ > 0◦

rrel =

√
(xref − xrel)2 + (yref − yrel)2√
(xrel − xorig)2 + (yrel − yorig)2

. (8.2)

The relative radius is calculated as the ratio of the distance between referent and rela-

tum and the distance between relatum and origin as visualized in Figure 8.6. If the ratio is

smaller than one (< 1) the relation is classified as close, otherwise as distant.

As presented above, Moratz et al. (2003) have defined partitioning functions based on

thresholds for the classification of both directional and distance relations. In this work we

investigate how parametric models such as Gaussian distributions can be learned on the

basis of crowdsourced information about spatial relations.

157



CHAPTER 8 Crowdsourcing Common Sense through Games with a Purpose

origin

relatum

close

distant

FIGURE 8.6 Distance relations are calculated as ratio of the distance between the referent
and the relatum and the distance between the relatum and the origin.

8.2 Crowdsourcing Framework: PLAY4ROBOTS

The overall idea about the crowdsourcing framework has already been presented in Fig-

ure 8.2. Users play web-based games in a browser and thereby contribute information

about spatial relations. This information is stored in a database and used for learning

parametric models. In this section we provide details about the game interface, the game

logic and the game database. For more details about the technical implementation of the

framework please refer to the work of Teßmer (2012).

8.2.1 A Game Walkthrough

In this section we explain the developed game with a quick walkthrough.

Whenever a user starts a game, the instructions of the game are displayed on the

screen as shown in Figure 8.7. In this particular variant of the game a first object (referent)

has already been selected by the game logic. The user’s task is to select a second object

(relatum) and then to define the spatial relation between these two; assuming that the

user’s viewpoint is at the camera position (origin). Afterwards the user should submit the

specified relation. For each scene, the user can submit as many relations as he desires. If

the user would like to label a different scene he can press the Next Round button. Finally,

the user is informed that his game is matched with a partner and that he will only score

points if he and his partner submit the same relations for a scene. After having read the

game instructions, the user can continue with different options dependent on his status: a
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FIGURE 8.7 Game instructions.

registered user can simply start playing the game; an unregistered user can either register

himself or start playing the game as a guest.

Let us assume that the user starts playing the game. Figure 8.8 shows the main user

interface of the game. It is basically divided into three columns. In the leftmost column,

the current status of the game is displayed. Every game consist of seven rounds whereby

each round lasts at most 50 seconds. As stated earlier, a user can finish a round and

immediately switch to the next round by pressing the Next Round button. In addition, the

current score and all labeled relations are displayed on the left hand side. In the center

column mainly the scene is visualized. Above the rendered scene there is a phrase in

natural language which reflects the user’s input as specified in the rightmost column. In

the column on the right hand side, the user has first to select an object which is used as

relatum. Secondly, the user has to specify a spatial relation such as left, right, behind, in

front, close and distant that holds between the referent and the relatum using the graphical

user interface and submit his selection. If the labeled relation matches one of the partner’s

labels, the user receives some points and the labels are stored in the database. If the user

has finished a round he continues with the next one and so on.
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FIGURE 8.8 PLAY4ROBOTS interface for labeling directional and distance relations of ob-
jects in a scene. Q: Where is the Cup? A: The Cup is in front of and close to the Milk.
The user provides its answers by selecting objects and their respective relations to the
Cup.

8.2.2 Game Logic and Database

Whereas the last section explained the game from the user’s perspective, this section

provides details about the underlying game logic and data structures of the framework.

The most import data structure in the framework is a game. A game basically combines

all relevant information in one place: the user, a scene, and its associated labels. Within

the game play, games are matched with a prerecorded game of a partner. Thereby only

labels which have already be assigned to a scene are taken into account. This is an

important aspect of the game play to keep the number of false positives labels low.

Labels that are associated with a scene are basically triples that relate two objects and

a spatial relation. A triple stating that a cup is left of the milk looks as follows: (left, cup,

milk). Using the interface as shown in Figure 8.8, a user specifies usually multiple relations

with a single submission. However, all relations are stored and matched individually. That

is, the relation currently selected in the figure would yield the following triples: (front, cup,

milk) and (close, cup, milk).

A scene consists of a number of items that are placed on a table. The scenes for the
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FIGURE 8.9 Scenes from the game database. Users have to answer a question about a
particular object. For example, where is the cup?

game have been automatically generated using the Gazebo8 simulator. A script was used

to place a set of items (at least three) randomly on the table. Figure 8.9 shows some

examples of generated scenes that are used within the game. In order to ground the

learned models of spatial relations between objects within geometric data structures, we

extract the following information from Gazebo’s world state for each item:

• position (x, y, z)

• orientation (roll, pitch, yaw)

• bounding box (minx,miny,minz,maxx,maxy,maxz),

and store it along with the rendered scene in the database. Although our current ap-

proach only considers the position of objects, it would be interesting to include also the

information about an object’s orientation and occupied space.

8.3 Experiments

The web-based game for acquiring knowledge about spatial relations was deployed on a

publicly available web server9. However, since the framework was still under development,
8http://gazebosim.org
9http://play4robots.cs.tum.edu
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we only made a call for participation within the Intelligent Autonomous Systems group10,

that is, among colleagues and students. In the following, we firstly provide some statistics

about the game, and secondly, we present the obtained data and describe the derived

parametric models for reasoning about spatial relations.

Game Statistics Within the announced testing phase of two weeks, 24 users have reg-

istered and 106 guests participated in the game. However, only 23 of the 106 guests have

actively played the game. Overall, 777 games have been played during this period. Within

these games 2367 labels have be assigned to the 145 scenes from the game database.

We now continue by explaining the obtained and analyzed data.

Spatial Relations As we have motivated in the beginning of this chapter, we would like to

acquire commonsense knowledge about directional and distance relations. In Section 8.1

we explained the concepts of origin, relatum, and referent and described how Moratz

et al. (2003) use these concepts to determine spatial relations such as left, right, in front,

behind, close, and distant.

Figure 8.10 visualizes the labeled data points for the directional relations left, right,

behind and in front in 2D. Please note, that the visualized data was revised in a post-

processing step, because some users interpreted the spatial directions the other way

round. On average 11% of the labeled data points have been discarded. The coordinate

systems are centered at the position of the relatum which is represented by the red circle.

The blue circles represent the respective referent objects. The origin, that is, the user’s

viewpoint, is not explicitly represented in this figure. It can approximately be imagined at

the bottom center of each sub-figure. The mean angles and standard deviations for the

respective directional relations are shown in Table 8.2. Moreover, the table lists also artifi-

cial values of the model depicted in Figure 8.11(a) for a better comparison. Figure 8.11(b)

visualizes normal distributions of the crowdsourced parameters (µgwap, σgwap). In compar-

ison to the artificial model it can be noted that the angle means of the crowdsourced data

reflect the idealized directions very well. However, the learned standard deviations are

generally smaller than those of the artificial model. On average the standard deviation is

0.76 radians, which is approximately 1
4
π radians or 45 degrees. This finding provides a

plausible explanation for both reference models presented in Figure 8.4. As stated by the

three-sigma rule in statistics, about 68.27% of the values lie within 1 standard deviation

of the mean. This means that the left model of Figure 8.4 would already cover 68.27%

10http://ias.cs.tum.edu
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TABLE 8.2 Comparison of crowdsourced angles with an artificial model (in radians).

Direction µartificial µgwap σartificial σgwap

Behind 0 (0.00) 0.24 1.00 0.86
Left 1

2
π (1.57) 1.58 1.00 0.81

Front π (3.14) 3.23 1.00 0.59
Right 3

2
π (4.71) 4.30 1.00 0.78

of the data people would classify as a particular direction. About 95.45% of the values lie

within 2 standard deviations of the mean, that is, the right model of Figure 8.4 would cover

almost all data points.

Overall, we think that the acquired parametric models are reasonable representations

for directional relations which can be used for the discrimination as well as the generation

of spatial relationships. Moreover, the Gaussian distributions of different directional rela-

tions such as left and behind can be combined for generating a position which fulfills both

requirements.

In the following we present the results with regards to the distance relations close and

distant. Figure 8.12 visualizes the labeled data points for both relations. The blue circle

in the center of the coordinate system represents the relatum. The red and yellow circles

represent distant and close referent objects, respectively. Some of the data points have

actually been labeled as both close and distant. An analysis of the absolute distance in

meters provides the following numbers: The mean distance of the referent object from

the relatum is 0.42 meters for the close relation and 0.66 meters for the distant relation.

The standard deviation of the close relation is 0.14 meters, which is slightly smaller than

the standard deviation of the distant relation with 0.17 meters. However, it would not be

reasonable to only interpret these numbers in absolute terms, because they might depend

on the size of the table on which the objects were represented. Therefore we also looked

at the ratio between two distance measurements. The distance between referent and

relatum and the distance between origin and relatum. We have calculated this measure

according to Moratz et al. (2003):

rrel =
distance(referent, relatum)

distance(origin, relatum)

whereby distance is simply a function that calculates the Euclidean distance between

two points in 2D space. Figure 8.13 visualizes the parametric models based on the relative

radius rrel. As can be derived from the figure, the obtained models suggest a different

classification boundary between close and distant as proposed by Moratz et al. (2003).
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(b) Right.
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FIGURE 8.10 Directional relations: left, right, behind, and in front. Courtesy: Raphael
Teßmer.
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(a) Idealized artificial models.

φrelπ
2

π 3π
2

2π

behind left front right behind
φrel

φrel

origin relatum

referent

(b) Crowdsourced models.

FIGURE 8.11 Parametric models of directional relations.
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FIGURE 8.12 Distance relations: close and distant. The blue circle in the center denotes the
relatum, whereas the red and yellow circles denote distant and close referent objects,
respectively. Courtesy: Raphael Teßmer.

Whereas the proposed boundary of the relative radius rrel was 1, we found a boundary

at approximately 0.75. However, we do not believe that our model is more general than

the model of Moratz et al. (2003). We rather think, that our result suggests that a mapping

between vague spatial concepts, such as close and distant, and geometric properties is

very context-sensitive. Hence, it would be necessary to learn a spatial model for each

particular context of interest. To this end, it would be interesting to evaluate how the size

of the table as well as number and the size of the present objects would affect the learned

models.

8.4 Discussion

In this chapter we have presented a framework for crowdsourcing spatial knowledge us-

ing GWAP. At first, we provided background information about crowdsourcing and spatial

relations. Afterwards we gave an overview of our approach based on GWAP. The de-

veloped framework, called PLAY4ROBOTS, uses a web-based interface and stores infor-

mation about object relations provided by users in a relational database. Within the con-

ducted experiment the obtained information about scenes was post-processed, analyzed

and used for learning parametric models of directional and distance relations. The learned

models can be considered as a proof-of-concept which demonstrates the feasibility of our

approach. Given that the learned models are based on the data structures of the Gazebo
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FIGURE 8.13 Parametric models of the relative radius rrel.

simulator, they can directly be employed within the envisioning framework presented in

Chapter 4.

However, our results are only a first step into the direction of using crowdsourcing as

a means for the acquisition of commonsense knowledge. Overall, we see two major ad-

vantages of using GWAP for this purpose. One is the ability to obtain a large number of

labeled training examples through the crowd for free of charge. And second, is the possi-

bility that robots can actively learn spatial and other commonsense concepts by making

up situations within the simulator and feeding them into the game database. Hence, we

belief that PLAY4ROBOTS can be a powerful tool for robots with respect to the acquisition

of commonsense knowledge in general.
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CHAPTER 9

Conclusions

In this chapter we first briefly summarize the conducted research in Section 9.1. Second,

we evaluate the results in regards to the “Making Pancakes” problem and highlight the

major contributions of this work in Section 9.2. Third, we discuss potential impacts of this

work on Cognition-enabled Robotics in Section 9.3. Finally, we give an outlook on future

directions of this research in Section 9.4.

9.1 Summary

The aim of this work is to equip robots with naive physics and commonsense reasoning

capabilities. By analyzing the example of “Making Pancakes” in Section 1.2, we illustrated

why this type of reasoning is absolutely essential for mastering everyday manipulation

tasks. Having motivated that reasoning about robot capabilities, spatial concepts, and ac-

tions and their effects are prerequisites for understanding everyday manipulation, we pro-

ceeded by describing how we approached this inherently complex problem from various

directions in Section 1.4.

However, before we presented our solutions to the problem, Chapter 2 laid out a con-

ceptual apparatus for addressing the problem properly. The concept of a Scenario has

been introduced for describing an everyday manipulation problem by four components:

a Task, an Environment, a Robot, and a Plan. The Task is a complete and formal spec-

ification of a manipulation problem. A Robot accomplishes a Task by executing a fully

instantiate robot Plan in a particular Environment. Executions traces of the robot as well

as physical configurations of objects in the environment are captured within Narratives. A

Narrative is basically a story about a manipulation task that was performed by an agent.

After we presented a common terminology for describing a manipulation problem, we

introduced the underlying formal representations used in this work in Chapter 3. We ex-
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plained how objects and relations among them are represented in space and time using

logical representations. We introduced the concept of timelines as the fundamental data

structure for representing narratives of agent performances in Section 3.5. Finally, we

explained how components of robots, that is, sensors, actuators, and control programs,

can be represented using the semantic robot description language SRDL in Section 3.6.

Furthermore, we showed how these semantic robot descriptions can be matched against

formal task descriptions to reason about the capabilities of a robot. Both timelines and

SRDL are major building blocks on which the contributions of this thesis rely.

In Chapter 4, we presented a framework for envisioning the effects of everyday robot

manipulation actions using physics-based simulations. Within this framework, we have de-

signed and implemented components for asserting the initial conditions of a manipulation

scenario and for utilizing a simulation-based approach for making temporal projections

about parameterized robot control programs. In Chapter 5 we extended the framework

and integrated representations and methods for handling fluids in everyday manipulation.

Overall, we conducted experiments for various scenarios, namely grasping an egg, mix-

ing fluids, pouring a pancake mix, and flipping a pancake, in which formal parameters

of robot control programs were systematically selected from ranges of possible values.

These experiments, or more precisely, their resulting timelines, were evaluated with re-

spect to specified performance criteria, e.g. desired and undesired effects. Moreover, we

discussed the need for naive physics reasoning in the context of everyday manipulation

and provided arguments for basing this kind of reasoning on detailed physical simulations.

The simulation-based envisioning framework can be considered as the main contribution

of this thesis.

Chapter 6 showed how narratives and timelines are used to capture examples of ma-

nipulation tasks performed by humans. We have developed a framework where humans

can perform everyday manipulation tasks in a virtual environment. Humans have per-

formed these tasks by controlling a virtual robot hand in an interactive simulator. Within

this framework, we have developed two games where humans have to pour some pan-

cake mix onto a pancake maker. We used methods from statistics to analyze and interpret

the acquired data from human performances. The contribution of this part of work is a

powerful framework for acquiring examples of everyday manipulation actions performed

by humans through Games with a Purpose.

In Chapter 7 we explained how robots can learn from information obtained from en-

visioning (Chapter 4, 5) and observing (Chapter 6) everyday manipulation. We showed

how data can be extracted semantically from timelines in order to learn logical represen-
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tations such as decision lists and/or decision trees. A major advantage of such models is,

that their inner structure is explicitly represented using logical predicates. Thereby, logical

rules can easily be extracted and/or interpreted. The contribution with regards to learn-

ing is an established pipeline that allows robots to learn from robot as well as human

performances.

Chapter 8 demonstrated how spatial knowledge can be crowdsourced from Internet

users on the Web. In everyday language, the meaning of concepts such as left of and

close to are often vague, ambiguous and/or dependent on the context. Therefore, we have

developed a Game with a Purpose to acquire commonsense knowledge about spatial re-

lations over the Web. Users described and assessed spatial relations between objects in

artificially rendered scenes showing a breakfast table. Whenever two users agreed on a

relation for the same scene, it was stored in a database. Thereby information about spatial

relations between objects has been accumulated. Using methods from statistics and ma-

chine learning we were able to generate models for spatial relations that are grounded in

the data provided by human users reflecting their common sense. The developed frame-

work PLAY4ROBOTS is another important contribution of this thesis which allows robots to

acquire commonsense knowledge through web-based Games with a Purpose.

9.2 “Making Pancakes” Evaluated

In Section 1.2 we have presented “Making Pancakes” as a challenge problem for rea-

soning about everyday robot manipulation. Although it is not the main aim of this thesis

to solve this particular problem in all its aspects, we discuss and evaluate how the pre-

sented methods address the various subproblems of “Making Pancakes”. First, we look

at the original problem. Thereafter, we investigate its numerous variants. Eventually, we

highlight the contributions of this work in the light of this challenge problem.

Table 9.1 presents the subproblems of “Making Pancakes” sentence-by-sentence, asks

the most relevant questions, and shows how these questions can be answered using the

methods developed in this thesis. The table also gives references to the related chapters.

Similarly, Table 9.2 steps through and discusses the variants presented in Section 1.2.

Overall, the example of “Making Pancakes” demonstrates how the contributions of this

thesis provide answers to questions raised by the challenge problem. We have designed

and realized the following components:

• an envisioning framework that allows robots to make temporal projections of pa-
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rameterized robot control programs (plans) based on detailed physical simulations.

The resulting physical effects are abstracted and described qualitatively using logi-

cal representations. Thereby, robots can reason about their actions and effects at a

symbolic level.

• an interactive simulation framework that allows robots to observe and interpret ma-

nipulations episodes performed by humans. The framework can be used to let robots

acquire initial information about manipulation actions and/or deepening their knowl-

edge about boarder cases by setting up specialized scenarios.

• a crowdsourcing framework that allows robots to acquire commonsense knowledge

from Internet users. In this work, we acquired information about directional and

context-depended spatial relations in the context of a table-setting task. However,

generally the framework is flexible to collect all kinds of commonsense knowledge

through web-based Games with a Purpose.

• a semantic robot description language that allows robots to assess their own ca-

pability to perform a certain task and/or action. By matching robot descriptions with

task specifications semantically, robots can reason about their about their ability and

missing components.
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TABLE 9.1 Evaluating Subproblems of “Making Pancakes”.

Problem, Questions and Evaluation Chapter

Problem: A robot pours a ready-made pancake mix onto a preheated

pancake maker.

Questions: Can the robot pour the pancake mix (at all)? How does it

perform the pouring action?

Evaluation: We can address the first question by reasoning about the

robot’s capabilities using SRDL. Basically, the robot has to be able to

detect and localize a container of pancake mix in the environment,

grasp it, and hold it at a certain angle. If it has the capabilities to do

this, the robot is generally able to perform the action. A detailed exam-

ple of a pick up action was given in Section 3.6.1.4. The second ques-

tion asks how the robot exactly executes the action. For answering this

questions the robot can envision the task and evaluate the resulting

timelines to determine an appropriate action parameterization. It could

also reason about how a human would perform the action.

3, 4, 5, 6, 7

Problem: Properly performed, the mix is poured into the center of the

pancake maker without spilling where it forms a round shape.

Questions: When is the mix centered on the pancake maker? And

when does it have a round shape?

Evaluation: Again, we can address this questions using the envision-

ing framework and compute the truth value of the fluents centered

and round respectively. Within the work we used simple heuristics for

grounding both predicates in the data structures of the simulator (Sec-

tion 4.5.2.1). It would also be possible to learn models through crowd-

sourcing from the Web.

4, 5, 6, 7, 8
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TABLE 9.1 Evaluating Subproblems of “Making Pancakes”. (continued)

Problem, Questions and Evaluation Chapter

Problem: The robot lets it cook until the underside of the pancake is

golden brown and its edges are dry.

Questions: How can the robot recognize that a pancake is cooked suf-

ficiently?

Evaluation: In this work we ignore the problem of assessing the state

of the pancake from the robot’s perception. Within our physical sim-

ulation we have used a cooking routine that generates a deformable

pancake model given the particles in contact with the pancake maker.

The robot itself simply waits for a certain amount of time. It would be

necessary ingrate perception routines that assess the state of the pan-

cake from its texture. But in regards to this integration, we refer the

reader to Section 9.4.

4, 5

Problem: Then, the robot carefully pushes a spatula under the pan-

cake, lifts the spatula with the pancake on top, and quickly turns its

wrist to put the pancake upside down back onto the pancake maker.

Questions: Can the robot flip the pancake (at all)? How does the robot

perform the flipping action?

Evaluation: Again, for answering the first question we can employ the

capability reasoning based on SRDL. Similar to the pouring action, we

employ our envisioning framework to determine appropriate parame-

ters for the flipping action as we did in Section 4.5.2.2.

3, 4

Problem: The robot waits for the other side of the pancake to cook

fully.

Questions: How can a robot detect that the pancake is cooked fully?

Evaluation: As mentioned above, we do not base the action on the

robot’s perception system but rather use a simple waiting operation in

the robot’s control program

NA
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TABLE 9.1 Evaluating Subproblems of “Making Pancakes”. (continued)

Problem, Questions and Evaluation Chapter

Problem: Finally, it places the pancake using the spatula onto an up-

turned dinner plate.

Questions: Can a robot place a pancake on a plate (at all)? How does

it perform the action?

Evaluation: In our implementation the placing action is almost the

same as as the flipping action. Only the target location differs. There-

fore the same kind of reasoning methods as above are employed.

3,4

TABLE 9.2 Evaluating Variants of “Making Pancakes”.

Variant and Evaluation Chapter

Variant: the robot pours too much pancake mix onto the pancake

maker? too little?

Evaluation: In case that the robot pours too much pancake mix, it ei-

ther spills some pancake mix or the resulting pancake is too large to be

flipped. In case the robot pours too little of pancake mix, the resulting

size pancake might not match the size specified in the task description.

Such behaviors can be detected using the envisioning framework.

4, 5

Variant: the robot pours the mix close to the edge of the pancake

maker?

Evaluation: We observed problems when flipping the resulting pan-

cake. A robot and/or a human might push the pancake off the pancake

maker. To determine whether a pancake is too close to the edge one

could employ the crowdsourcing framework. Using this framework we

learned models for determining the closeness of objects.

4, 5, 6, 7, 8
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TABLE 9.2 Evaluating Variants of “Making Pancakes”.(continued)

Variant and Evaluation Chapter

Variant: the robot flips the pancake too soon? too late?

Evaluation: If the robot flips the pancake too soon, i.e. the cooking rou-

tine has not finished yet, the robot pushes the particles off the pancake

maker. We have not simulated the burning of a pancake in our cooking

routine. Therefore, the robot could not flip the pancake too late in our

framework. However, it would be interesting to investigate this in future

work.

4, 5

Variant: the robot pushes only half of the spatula’s blade under the

pancake?

Evaluation: Again, an answer to this problem can be generated using

the envisioning framework.

3, 4

Variant: the robot turns its wrist too slow?

Evaluation: We have observed that the pancake got folded when the

robot turned its wrist to slowly. This behavior can also be easily tested

and observed in the interactive simulator. Moreover, SRDL allows the

robot to reason about its own mechanical specifications such as the

forces, torques and limits of its wrist (Table 2.1 and 2.2).

3, 4, 6

Variant: the robot uses a knife/fork/spoon to flip the pancake?

Evaluation: We have not evaluated different tools within envisioning

framework. However, we have tested different versions of a spatula

within the interactive simulator. In future work, it would be interesting to

see how humans would flip a pancake when confronted with different

tools such as knifes, forks and spoons.

6
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TABLE 9.2 Evaluating Variants of “Making Pancakes”.(continued)

Variant and Evaluation Chapter

Variant: the pancake mix is too thick? too thin?

Evaluation: We investigated this variant in both the envisioning frame-

work and the interactive simulation by adjusting the viscosity of the

pancake mix. From the episodes performed by the robot one could ob-

serve how the effects change when the viscosity is varied. On the other

hand, the episodes performed in the interactive simulation framework

show how the human adapt his/her behavior to account for the different

levels of viscosity.

4, 5, 6

Variant: the ingredients of the mix are not homogeneously mixed?

Evaluation: We have simulated the mixing of two substances and

measured the homogeneity of the resulting mixture. So far, we have

not investigated the effects when pouring and/or cooking an inhomo-

geneous mixture. Whereas one could directly observe the effects of

pouring a mixture without any changes to the simulator, we would have

to adapt our cooking routine to account for differences in the behavior.

4, 5

9.3 Impact on Cognition-enabled Robotics

We believe that the present work is an important step in extending the reasoning capabili-

ties of cognition-enabled robots in regards to everyday manipulation. For example, through

this work robots can envision the outcome of their own manipulations actions, interpret hu-

man performances at a semantic level, crowdsource commonsense knowledge from the

Web, and evaluate their own manipulation capabilities.

Envisioning is not only useful to determine an appropriate parameterization of an action

but also in other contexts. For example, during the execution of an action it is important to

predict the expected outcome in order to monitor the progress of an action. In the context

of planning it is important to select an action that lead to desired effects. When diagnosing

a problem, it is important to analyze what action has caused something to happen. When

explaining a procedure, it is also important why an action has been performed and what

is its intended outcome. All these examples above illustrate interesting contexts where the
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method of envisioning can potentially be employed.

Narratives of human manipulation actions can inform robots about intermediate states

and configurations of objects within manipulation tasks. Furthermore, they could provide

valuable information about the intentions of human agents. By integrating and exploiting

this kind of knowledge in imitation learning robots could not only slavishly copy the behav-

ior of humans but rather understand the inherent structure of a task to be learned.

The Web is valuable resource for robots. However, most of the commonsense knowl-

edge of people has never been written down. Therefore dedicated platforms such as

OMICS and Amazon Mechanical Turk are needed to accumulate the information about

common facts. In the same line, we established the framework PLAY4ROBOTS where In-

ternet users provide information about spatial relations by playing games. Users evaluate

scenes of artificial rendered scenes. We believe that the impact of crowdsourcing can be

quite huge, if we enable robots to generate novel problems in such a framework. When-

ever a robot misses information about a relation and/or it wants to verify a hypothesis,

it could generate a set of scenes that will be evaluated by the crowd. By analyzing the

provided answers robots could autonomously bootstrap their common sense.

The semantic robot description language (SRDL) originally proposed in (Kunze et al.,

2011c) has already been adapted and integrated in the RoboEarth1 project. Similar to

semantic web services, robot descriptions are matched with task specifications in order

to assess and possibly update the capabilities of service robots. Thereby, SRDL can play

a key role in bridging the gap between abstract tasks specification and concrete robot

platforms by grounding high-level instructions into available hardware and software com-

ponents of robots. Since reasoning about robot capabilities is increasingly important in

the areas of cloud robotics and multi-robot scenarios SRDL can also have a considerable

impact in these contexts, too.

Given the wide applicability of the underlying ideas and methods developed in this thesis

we believe that this work can have a broad impact in field of cognition-enabled robotics.

9.4 Future Directions of Research

The goal of this thesis is to advance the state-of-the-art in regards to naive physics and

commonsense reasoning for everyday robot manipulation. And although this work makes

considerable progress in this area, it is still a long way towards cognition-enabled robots

1http://www.roboearth.org
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that competently master everyday manipulation tasks. Given the rich variety of common-

sense reasoning problems this work can be extended in multiple directions. In the following

we discuss some possibilities of future work in each of the main directions covered in this

thesis. But first we outline how the developed methods can be integrated into a real robot

system.

Integration into Real Robot System The integration of the developed methods into a

real robot system would be a logical and important next step to support the findings of this

thesis. A major aspect of this integration is a tight coupling between the robot’s perception

and action routines with its logical abstractions.

The evaluation of the “Making Pancakes” problem in Section 9.2 has already reveled

that a grounding of logical formulas with the robot’s perceptual system is an open issue.

For example, in order to detect that a pancake is ready for flipping the robot should be

able to assess the state of the pancake through its perception. That means that a logical

representation of the pancake’s color, e.g., that it is golden brown, is grounded in the data

structures of the robot’s perception.

Similarly the action plans of the robot should be integrated with the real robot platform.

That is, actions should be both executable in simulation and on the real platform. Within

the simulation probabilistic models of sensors and actuators should account for noise and

failures of the real robot components. Although many control programs we use within the

simulator can be directly employed on the real PR2 platform, we expect that the simulated

and the real outcome would differ to some degree. Therefore, it is important that a feed-

back from the real world is propagated to the simulator whereby it can learn to reflect the

actual behaviors as demonstrated in (Johnston and Williams, 2009).

Envisioning The envisioning framework presented in Chapter 4 and 5 can be extended

and improved in various ways. Here we elaborate on two possibilities, namely the gener-

ality of objects and the selection of parameters values.

Currently the system uses only a fixed set of objects to generate the environment of

a manipulation scenario. To cover a greater variety and further types of objects it would

be possible to utilize CAD models for their generation. Thereby existing repositories of

CAD models such Google’s 3D Warehouse2 could be integrated. Additionally, this interface

would also facilitate the integration with the robot’s perception.

2http://sketchup.google.com/3dwarehouse
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A second possibility in which the system could be extended is the selection of param-

eters and their values in the envisioning process. The current approach simply calculates

the cross-product of all possible parameter assignments in a plan. A better strategy could

already reflect the intermediate results of robot simulations. Generally, the search strat-

egy should make a trade-off between exploitation and exploration of parameter values.

Thereby, the parameter space could evaluated more efficiently.

Learning from Narratives As narratives represent performances of robots (Chapter 4)

and humans (Chapter 6) in the same way, namely using timelines, it seems reasonable

to combine both for learning (Chapter 7). We have already started to determine initial

parameters of robot simulations based on human performances, e.g., the pose for pouring.

However, a tighter integration of both approaches would be desirable. Robots should learn

only from a couple of human demonstrations and then automatically explore the qualitative

parameter space in simulation. How the inner structure of manipulation tasks could be

exploited in imitation learning is another interesting problem.

Furthermore, action models could be learned using first-order representations such as

Markov Logic Networks (MLNs) in a similar way as Biswas et al. (2007). Such represen-

tations could better account for actions, objects and their relationships than propositional

models.

Crowdsourcing from the Web Crowdsourcing has proven to be successful for infor-

mation acquisition in various projects such as Amazon’s Mechanical Turk3, LabelME4,

OMICS (Gupta and Kochenderfer, 2004), and this thesis (Chapter 8). However, the effects

of crowdsourcing could be enhanced if robots are able to upload their own problems that

are to be answered by the crowd. We envision a system where a robot can upload artifi-

cially generated and/or perceived scenes from its environment associated with a particu-

lar question. For example, which tool to use for flipping a pancake whereby a spoon, fork,

and a spatula are shown on a table in a rendered scene. Further, we are interested in how

these models can be learned incrementally as more and more information is continuously

provided by users. Finally, as another future direction of research one could investigate

how to represent and learn context-dependent models of space and actions.

3https://www.mturk.com
4http://labelme.csail.mit.edu
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