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Abstract

Gaussian Mixture Models (GMM) have become a popular tool in fields like speaker identification or verification.
In these disciplines they are commonly used to model the general properties of a given speaker. In our paper we
extend the application of GMMs to the assessment of speaking rate. The use of a single GMM layer allows the
estimation of the speaking rate category. By adding a neural network (NN) layer, acting as a mapping function,
a continuous measure for the speaking rate can be provided. Experiments with different types of feature vectors
showed a correlation coefficient of up to 0.74 between the lexical phoneme rate and our estimation based on speech
rate dependent spectral variation. It emerged that major information is contained in the derivative coefficients.
As a spin-off, our approach can be used for simultaneous gender identification.

1 Introduction

Since speaking rate has tremendous influence on
the recognition performance [1], it is necessary to
do some kind of adaptation towards speaking rate
or select an appropriate acoustic model set. A pre-
requisite therefore is to have a measure for the ac-
tual speaking rate.

For the measurement of the rate of speech (ROS)
several criteria have been proposed. Most evident
is the definition via the syllable or the phoneme
rate, which are computed from a phonetic segmen-
tation of the given utterance. Since a segmenta-
tion or a recognition output has to be available,
they are not directly suitable for on-line applica-
tion. Two types of approaches trying to overcome
this problem can be distinguished: the first type
aims at estimating the phonetic content e.g. vowels
[3] or phoneme boundaries [4], whereas the second
type comes up with features which are correlated
with the speaking rate, e.g. energy envelope [2].

As e.g. Kuwabara [5] has shown, speaking rate has
significant influence on the spectral characteristics
of certain phonemes. In this paper we examined
whether these spectral variations in spontaneous
speech can be used to quantify speaking rate. Our
approach is focused on the effects in feature space.
Any speaking rate dependent artifacts on higher
phonetic levels such as more frequent elisions or
assimilations are not considered.

An excellent tool for modeling global properties
without considering the underlying segmentation
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are so-called Gaussian Mixture Models (GMM). In
the next chapter we present two ways how GMMs
can be applied for this task, followed by the experi-
mental results obtained.

2 ROS Estimation

2.1 Gaussian Mixture Models

Gaussian Mixtures Models (GMM) have proven
to be a powerful tool for distinguishing acoustic
sources with different general properties. This abil-
ity is commonly exploited in tasks like speaker ver-
ification or identification [6], where each speaker or
group of speakers is modeled by a GMM. Their ma-
jor advantage lies in the fact, that they do not rely
on any phonetic segmentation of the speech signal.
A fact that makes them ideal for on-line applica-
tion. However, this advantage means at the same
time, that they are usually not suitable for model-
ing temporal dependencies - but this disadvantage
is of minor importance, if the focus lies on the rep-
resentation of global spectral properties.

A Gaussian Mixture Model m is basically a weigh-
ted superposition of K Gaussian densities:

K
p(x|m) = Z CkmN(xv Hkm s Skm )
k=1

For each model m = 1...M the mixture coef-
ficients cg,, have to obey the probabalistic con-
straint:
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K
E Ckm = 1
k=1

During the recognition phase the scores (log. like-
lihoods) are accumulated for a sequence of feature
vectors X = {z1,...,zp}

P
S(X|m) = Zlog(p(rjlm))

Finally the model is chosen yielding the highest
likelihood score.

m = argmax S(X|m)

2.2 Speaking rate category determi-
nation

In speaker identification tasks for example, a GMM
is trained for each speaker. Similar to this setup,
our approach uses one GMM per speaking rate cat-
egory. For the task of rate category determination
different speech rate categories are defined, rang-
ing from very slow to very fast. In the case of 3
categories:

C € {slow, med, fast}
or for 5 categories:
C € {zslow, slow, med, fast,x fast}

In either case each category is represented by an
individual GMM. During the recognition phase all
GMMs are scored in parallel (Figure 1). By the
time of evaluation the frame scores are accumu-
lated. In order to provide continuously a measure
for each incoming speech frame z; the acoustic sig-
nal has to be windowed with window length Ny .
Since only speech frames are necessary to deter-
mine the speaking rate all non-speech frames are
discarded.
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whereby

1 if frame j is speech frame
0xj) = { 0 else

Nw can either be kept constant or - for a more
robust estimation - it can be held dynamic such
that:

which basically means that within an utterance al-
ways a constant number of speech frames is used
for the estimation. Finally the category C., be-
longing to the GMM with the highest accumulated
score S;(X;|m) is selected as speech rate category
hypothesis in frame i.
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Figure 1: Maximum decision in case of 3 parallel
category GMMs.

In order to account for the coarse acoustical differ-
ences caused by gender an approach with gender
dependent GMMs is straightforward. Instead of
one GMM per rate each speaking rate category is
represented by two gender dependent (male/female)
models. The recognition process basically stays
the same: the category yielding the highest accu-
mulated path score is chosen as a rate hypothesis.
As a spin-off, this setup offers the advantage of si-
multaneous gender identification. In case gender is
chosen as category, each gender is represented by 3
(respectively 5) GMMSs. The definition of the cate-
gory changes, now: C' = Cyepder, but the decoding
step stays the same as with speaking rate.

2.3 Speaking rate estimation

A continuous measure might be useful for the adap-
tation of a recognition system towards speech rate.
For this reason we replaced the decision logic by a
deterministic mapping function fqp to calculate
a continuous estimation for the speaking rate:
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Figure 2: Continuous output for ROS, realized by
a NN layer frap-

Hence, as inputs the accumulated and length nor-



malized GMM output scores S are used. As men-
tioned beforehand we were examining an experi-

mental setup with either 3 or 5 speaking rate GMMs.

In case of 3 GMMs:

ROS, = fmap(gslow7 gmedv S’fast)

The mapping function f,qp is realized by means
of a neural network consisting of at least 3 inputs,
a possible hidden layer and an output layer which
consists of a single neuron with linear activation
function. For the input layer a hyperbolic activa-
tion function is chosen.

3 Experimental Results

3.1 Model training

The following experiments were carried out on the
German Verbmobil database: about 11000 utter-
ances of 600 male and female speakers. Each ut-
terance was segmented into spurts, for which the
phoneme rate v = ROSgpy,+ was calculated - lead-
ing to a total of about 33000 spurts. A spurt is
basically a larger part of an utterance enclosed
by non-speech segments. This segmentation seems
necessary since the speech rate - especially in spon-
taneous speech - is often strongly varying over a
complete utterance. For the evaluation we were
using the eval96 test set consisting of 343 utter-
ances (about 830 spurts).
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Figure 3: Histogram of phoneme rates (of spurts)
in the training data.

In case of 3 rate categories C' = C'(v) the category
boundaries are given by p + A:

fast ifuv>p+A
slow fvo<p—A
med  else

C =

where u = pros = 12.765[phonemes/sec] and
A = oros = 3.49[phonemes/sec].

Based on this classification each GMM is trained
with the according data using Maximum-Likelihood
(ML) estimation. In case of 5 different categories
a second boundary at 20ros would leave too few
training data for the “very fast/slow” GMMs, there-
fore we chose A = 2.0.

xfast ifv>p+2A

fast ifu+A<v<=p+2A
C =< slow ifp-20<=v<pu—A

xslow ifv<pu—2A

med else

The inputs for the NN are taken from the outputs
S, of the GMM layer. For each spurt of the train-
ing data the resulting normalized output scores S,,
are calculated and fed into the NN. As targets for
the neural net the actual phoneme (or vowel) rates
are provided. Training itself is performed using the

backpropagation algorithm.

3.2 Speaking rate category determi-
nation

In order to see the influence of preprocessing we
examined 3 different types of feature vectors:

e MFCC42
e MFCC12 and
e MUCG66.

The first feature set consists of MFCCs with 42 di-
mensions: 12 MFCCs, total energy and zero cros-
sing rate together with first and second deriva-
tives. In MFCC12 only the MFCCs themselves
are used. The last feature set is based on 20 lin-
ear, bark scaled features together with total en-
ergy, zero crossing rate and their derivatives.
Using GMMs with 16 mixture components the fol-
lowing classification results for 3 rate categories
were achieved:

features: | corr. [%] | p

MFCC42 60.9 0.47
MFCC12 37.8 0.17
MUC66 35.5 0.43

Table 1: Classification results for 3 speaking rate
categories.

Determining the rate category by a maximum deci-
sion yields a correlation coefficient p & 0.45 for the
features including derivatives - the actual phoneme
rate taken as reference. It can be seen from table 1



that major information contributing to the corre-
lation with speaking rate originates from the delta
coefficients.

features: | corr. [%] | p

MFCC42 35.3 0.58
MFCC12 23.4 0.23
MUCG66 244 0.54

Table 2: Classification results for 5 speaking rate
categories.

Table 2 shows basically the same result, although
the overall correlation is higher, p =~ 0.55 for fea-
tures including delta coefficients.

estimated category

given: | slow | med | fast
slow 75 8 2
med | 196 | 373 69
fast 8 42 59

Table 3: Confusion matrix: actual against esti-
mated speech rate category (MFCC42, 16 Gaus-
sians)

estimated category

given: | xslow | slow | med | fast | xfast

xslow 58 8 5 1 1
slow 27 52 3 4 0
med 37 207 | 124 | 25 36
fast 3 26 59 22 53
xfast 2 6 23 12 38

Table 4: Confusion matrix: actual against esti-
mated speech rate category (MFCC42, 16 Gaus-
sians)

From the confusion matrices (tables 3, 4) we can
see a high confusability between neighboring speech
rate categories, e.g. medium and slow, but very
few confusions between the opposing fast and slow
categories. Considering the training data used for
each category the high confusabilty between neigh-
boring rate categories becomes understandable. As
figure 3 shows, the data used for training are not
separated by clear boundaries - in terms of speech
rate - for the neighboring categories. Using a strict
maximum decision therefore does not allow an ex-
act classification according to the lexical phoneme
rate, but it does of course reflect speech rate quite
well.

Using a segmentation of the training as well as
of the evaluation utterances it can be determined

which phonemes contribute most in discriminating
rate categories.

given: training

slow | /m/, /n/, Je:/, [E:/, [2:/, [i:], [a:/
fast /U/, [aU/, /kl>/7 [4/, [0/, /2]
evaluation

slow /m/, /n/, [e:/, |E:/, [S/, [i:/
fast | /z/, /b/, /d/, /9/, /1], /O], /a/, /U/

Table 5: Phonemes with highest average score dif-
ference.

Table 5 shows for a given fast and slow category
those phonemes which have on average the highest
score difference if evaluated with the same category
GMM and its opposing counterpart. Most of the
phonemes are vowels.

3.3 Speaking rate estimation

Rate of speech (ROS) is commonly seen with re-
spect to the lexical based definitions “phoneme
rate” (ROSpp: phonemes per second) or “vowel
rate” (ROSy: vowels per second), which is strongly
correlated with the lexical syllable rate. We focus
in the following on the use of ROSp;,. Basically
the training of GMMs and the NN can be con-
ducted as well with ROSy, but the performance
is slightly poorer as with ROSpy,. In the following
ROS depicts ROSpy,.

The scatterplot in figure 4 shows the estimated
phoneme rate (ROS,) for each spurt of the evalua-
tion data against the actual phoneme rate (ROS,)
calculated from the segmentation.
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Figure 4: Scatter plot showing actual vs. esti-

mated speaking rate.

Our ROS estimate reaches a correlation coefficient
of p = 0.74 with ROS, (table 6, 7) using 64 Gaus-



sians per GMM. Some spurts have a fairly large
deviation, as can be seen in Figure 4. This effect,
especially in case of ROS,, is primarily caused by
the tradeoff between spurt length and the robust
computation of ROS,.

#Gaussians 1 16 64 256
MFCC42 | 0.624 | 0.745 | 0.745 | 0.738
MFCC12 | 0.080 | 0.308 | 0.305 | 0.340

MUC66 0.629 | 0.725 | 0.734 | 0,743

Table 6: Dependency of correlation coefficient p on
GMM size for 3 categories.

#Gaussians 1 16 64 256
MFCC42 | 0.678 | 0.708 | 0.741 | 0.739
MFCC12 | 0.140 | 0.320 | 0.305 | 0.350

MUC66 0.604 | 0.698 | 0.726 | 0.731

Table 7: Dependency of correlation coefficient p on
GMM size for 5 categories.

Figure 5 presents the distribution of the relative
error € = MQOS“. It has zero mean and a
standard deviation of 0.2.

60

IS
o
T

Frequency

20

mﬂ'm nn nl !TH n
-1.0 -0.5 0.0 0.5
relative error

1.0

Figure 5: Histogram of relative error e.

3.4 Gender identification

If using gender dependent GMMs our approach
can simultaneously be applied for gender identi-
fication. In general, about 100 frames (1 second)
of speech is sufficient to estimate the gender with
high accuracy (table 8). Wrongly classified spurts
are primarily caused by utterances shorter than
100 frames.

Gender recognition rate
first 100 Frames of spurt | 97.0%
entire spurt 99.1%

Table 8: Gender recognition rates.

4 Summary

Our results have shown, that at least slow and fast
speech can clearly be distinguished already on the
feature level. Furthermore the results confirm that
major information about the speaking rate is con-
tained in the delta coefficients. Since all GMMs
are scored in parallel, the handling of our estima-
tor offers various solutions: e.g. scoring during the
speech spurts or a window based scoring scheme.
However, the system relies on a robust speech-
pause detector. Summarizing, our approach is fast,
flexible and allows simultaneous gender identifica-
tion as well.

5 Acknowledgements

This work was partially funded by the “Deutsche
Forschungsgemeinschaft” (DFG).

References

[1] T. Pfau, G. Ruske, ”Creating Hidden Markov
Models for Fast Speech”, Proc. ICSLP 98, pa-
per 255, pp. 205-208

[2] N. Morgan, E. Fosler, N. Mirghafori, ”Speech
Recognition using On-Line Estimation of
Speaking Rate”, Proc. Eurospeech 97, pp.
2079-2082.

[3] T. Pfau, G. Ruske, ”Estimating the Speaking
Rate using Vowel Detection”, Proc. ICASSP
98, pp. 945-948.

[4] J.P. Verhasselt, J.-P. Martens, ” A Fast and Re-
liable Rate of Speech Detector”, Proc. ICSLP
96, pp. 2258-2261.

[5] H. Kuwabara, ” Acoustic and Perceptual Prop-
erties of Phonemes in Continuous Speech as a
Function of Speaking Rate”, Proc. Eurospeech
97, pp. 1003-1006.

[6] D. A. Reynolds, R. C. Rose, "Robust
Text-Independent Speaker Identification Us-
ing Gaussian Mixture Speaker Models”, IEEE
Trans. Speech and Audio Processing, vol. 3, no.
1, pp. 72-83, January 1995.





