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ABSTRACT

We present a novel approach towards a multimodal analysis of
natural speech and handwriting input for entering mathemati-
cal expressions into a computer. It utili zes an integrated, multi-
level probabili stic architecture with a joint semantic and two
distinct syntactic models describing speech and script proper-
ties, respectively. Compared to classical multi stage solutions
our single-stage strategy benefits from an impli cit transfer of
higher level contextual information into the lower level seg-
mentation and pattern recognition processes involved. For visu-
ali zation and postprocessing purposes, a transformation into
Adobe® FrameMaker® documents is performed.

Full y spoken or handwritten reali stic formulas were examined,
yielding a structural recognition accuracy of 61.1 % for speech
(speaker independent) and 83.3 % for handwriting (writer de-
pendent).

1. INTRODUCTION

Electronic acquisiti on of mathematical formulas via conventio-
nal tools is a time consuming and compli cated task. Therefore
it is essential to exploit the capabiliti es of natural, especiall y
speech and handwriting interaction, both being the fastest and
most intuiti ve channels for registering mathematical expressi-
ons [1]. In order to facilit ate future data fusion techniques and
for uniformity reasons, it makes sense to use common semantic
and syntactic representation formali sms for both modaliti es
which may be integrated into a generali zed input parsing me-
chanism. Our context free grammar implementation via proba-
bili stic network structures in conjunction with an extended
Earley-type top-down chart parser fulfill s these requirements.
Fig. 1 shows an overview of the current system components on
the different abstraction levels. The following section gives an
outline of the applied system architecture.

2. SYSTEM OUTLINE

2.1 Grammar

The syntactic-semantic attributes of spoken and handwritten
mathematical formulas are represented by the parameters of a
so-called Multimodal Probabilistic Grammar. It combines
properties of context free phrase structure grammars with those
of graph grammars by allowing for word-type, symbol-type,
and position-type terminals. Formall y, it is defined by a Chom-

sky set G V T P= Σ, , ,  including a start symbol Σ, a set of va-

riables V, a set of terminals T, and a set of context free produc-
tion rules P [2]. All the production rules are associated with
statistical weights obtained from authentic spoken or
handwritten training corpora, respectively.
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Figure 1: System overview. The top-down probabili stic se-
mantic decoder derives a recognized semantic representation SE

from a preprocessed observation sequence O. The result is
transformed to a formal mathematical description language to
be fed into a conventional formula editor.

2.2 Semantic Representation

The grammar is implemented into a single stage semantic de-
coder by means of a compact semantic representation called
Semantic Structure S [3]. It is given by an N-fold hierarchi-
call y structured combination out of a predefined inventory of
semuns s (semantic units) with corresponding types t, values
ν, and successor attributes, every unit referring to a certain ma-
thematical operator or operand [1]:

S s n N s t X t Xn n= ≤ ≤ = ≥
­ ® ¯ °± ²

, ; , , ,1 1ν  , (2)

where X(t) denotes the type specific semantic valence, i.e. the
number of successor semuns.

The probabili stic nature of this semantic representation  is in-
corporated by three types of statistical weights:
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• root probabilities  η0 1= P s t.
³ ´

(3)

assigned to every occurring root semun type t
(note: henceforth, the notation a.b identifies a
property b of the entity a),

• value probabilities ε νn n nP s s t= . .
µ ¶

(4)

assigned to every existing semantic value ν of a
given semun type t, and

• successor probabilities ηn n nP r s s t= · ¸¹ º
. (5)

assigned to every allowed combination r of suc-
cessor semun types.

Further detail s of the semantic formali sm may be found in [4].

2.3 Syntactic Representation

On the syntactic level every semun of a given semantic hypo-
thesis is assigned to a so-called Syntactic Module SM. It con-
sists of an advanced transition network which enables two dis-
tinct stochastic processes: 1) transitions from one node to ano-
ther and 2) emissions of elements (i.e. spoken words or hand-
written symbols) or local offsets between associated symbols
or symbol groups. Transitions are responsible for modeling
speaking and writing order, whereas emissions account for va-
rying word, symbol, or position choice, respectively. All the
SMs belonging to a complete Semantic Structure form an inter-
connected so-called Syntactic Network SN which is constitu-
ted as follows:

SN SM n N

SM St E A A B B C

n

n n n n nX n nY n

= ≤ ≤

=

» ¼
½ ¼, ;

, , ,..., , ,..., ,

1

1 1

(6)

Every SM is opened via its start node St and closed via its end
node E. Successor SMs are connected to their parent SM via X
individual A nodes (also called successor nodes), so that the
hierarchy of the corresponding Semantic Structure is mapped to
the SN. These A nodes are also responsible for emitting pairwi-
se positional offset vectors ¾o between all the handwritten sym-
bols or symbol groups belonging to the SN subbranches con-
nected to them (see below). Further, there is a type specific
number Y(t) ≥ 0 of B nodes, each emitting one significant ele-
ment e+ of the total input. In case of speech these elements re-
present spoken words, in case of script they correspond to
handwritten symbols. Optionall y, a single C node is entered
which emits an insignificant element e-. This feature is especi-
all y used to model expletive spoken phrases, whereas usuall y
no insignificant elements are found on the syntactic level of
handwritten input.

The following three types of probabili stic parameters are nee-
ded for a statistical rating of the syntactic contribution to an
overall hypothesis score:

• Different paths through a given SMn are statisti-
call y weighted by means of matrices of transi-
tion probabilities

∆n n
ij

n nP i j s t i i j SM= = → ∈δ . , , ,
¿ À

 , (7)

where i j→  denotes any allowed transition
from node i to j. Additionall y, every single SM
node must be passed exactly once – except for
the optional C node – before the end node is
reached.

• The type specific offset emission probabilities
α nk nk nP A o s t k X= → ≤ ≤

ÁÂ ÃÄ Å
. , 1  (8)

model the statistical weight for the emission of
a set of offset vectors covering the positional re-
lations between all the elements emitted inside
the SN subbranch connected to node Ank. Since
this procedure is performed recursively every ti-
me a successor SM is closed by returning to the
next higher SM’ s A node, a complete pairwise
rating of every symbol’s position relative to all
its syntactic-semantic predecessor symbols is
guaranteed. The pairwise offset definiti on for
two consecutive elements is ill ustrated in Fig.2.

• The so-called element emission probabilities
β νnl nl n nP B e s t s l Y= → ≤ ≤+ . , . ,

Æ Ç
1  (9)

 γ n n nP C e s t= → − .
È Ç

 (10)

account for a statistical rating of significant
(type and value specific) or insignificant (type
specific) element emissions, respectively. For
consistency reasons, γn is set to unity if the cor-
responding C node is not passed.

All t ransition and emission probabiliti es as well as semantic
root, value, and successor probabiliti es were estimated from
training corpora obtained from separate speech and handwri-
ting usabilit y tests (cf. section 2.8). As a summary, a schematic
view of a general Syntactic Module with all it s attributes is dis-
played in Fig. 3.
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Figure 2: Offset vector calculation based on surrounding rect-
angles. In this example the position of a single handwritten
symbol belonging to SMn+1 is charged against that of another
single symbol belonging to the predecessor SMn. The type spe-
cific weighting factors gx,y account for special constraints due to
handwriting conventions.
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Figure 3: Generali zed Syntactic Module. The different types
of nodes, transitions, emissions, and the corresponding proba-
bili ties are annotated according to section 2.3.

2.4 Morphologic Representation

A phonetic lexicon holds phonetic transcriptions for every spo-
ken word that was found in the acoustic training corpus; accor-
dingly, every word is represented by a chain of its respective
phoneme models (cf. section 2.5).

Likewise, every handwritten mathematical symbol included in
the graphic training corpus is made up of a varying number of
graphemes which are naturall y equivalent to continuous hand-
writing strokes, i.e. sequences of pen movements between a
pen-down and a pen-up event. The according graphemic repre-
sentation is an impli cit part of the applied pattern recognition
technique and the attached handwriting sample database (cf.
section 2.5).

2.5 Signal Representation

On the signal near levels the preprocessed speech or handwri-
ting input sequences are rated using 30-dimensional phoneme
based semi-continuous HMMs (Hidden Markov Models) [5]
or 7-dimensional DTW (Dynamic Time Warping) matching
[6], respectively.

Handwritten input is acquired via a WACOM â  PL-400â  LCD
digiti zing tablet. Pen trajectories are sampled at 60 Hz and pre-
processed via length equidistant resampling, smoothing due to
low pass filt ering, and size normali zation. Euclidian distance
minimization against all the samples inside a reference symbol
database is then performed on the basis of feature vectors in-
cluding horizontal and vertical positions, their first and second
derivates, and binary pen-up/down values. The applied prepro-
cessing and feature extraction methods were adopted from [7]
and [8].

2.6 Classification

An extended Earley-type top-down chart parser performs a
MAP (maximum a-posteriori) classification across all abstracti-
on levels:

S P O P P S P SE
S

= argmax max max ( | ) ( | ) ( | ) ( )
Ξ Φ

Φ Φ Ξ Ξ (11)

The above equation indicates how an audio-visual observation
sequence O is classified to a certain Semantic Structure SE by
maximizing over all possible speech/handwriting expressions
Ξ and phoneme/viseme sequences Φ. In a one pass search algo-
rithm all possible semantic hypotheses are successively tested
until the best overall semantic representation of a given input
is found. While P O( | )Φ  and P( | )Φ Ξ  are calculated successi-
vely every time the chart parser sends a request to the
HMM/DTW classification layer, P S( | )Ξ  and P S( )  are
obtained by incrementall y multiplying semantic or syntactic
probabiliti es as li sted in sections 2.2 or 2.3, respectively, over
all the semuns sn belonging to a given Semantic Structure S.

One of the most prominent advantages of our single-stage top-
down parsing mechanism lies in the fact that – especiall y for
handwriting – no more isolated symbol segmentation rules or
mechanisms are needed: In consideration of the local syntactic-
semantic context per examined hypothesis, the optimum com-
bination of handwriting strokes for matching a particular ex-
pected symbol is determined simultaneously with the pattern
recognition process itself.

Due to a breadth-first search strategy, inline first-last proces-
sing is enabled.

2.7 Transformation

In order to achieve a uniform semantic representation for post-
processing and future data fusion purposes, our concept relies
on a single, modalit y independent semantic model. In the cour-
se of generali zing our syntactic-semantic formali sm as well as
the applied chart parsing mechanism from speech to handwri-
ting needs we worked out such a revised semantic model.

Therefore our transformation module MTrans which transforms
the hierarchically organized data of a recognized semantic
structure into a formal mathematical description syntax [1] had
to be updated. In addition, we implemented a back transforma-
tion module which will enable the user to switch freely be-
tween natural and classical input modes (e.g. during correcti-
ons or modifications) in the future.

2.8 Training

The current system implementation is based on two detached
parameter sets obtained from separate speech and handwriting
interaction usabilit y studies. A specification of the speech cor-
pus is given in [1].

As a next step we acquired a limited handwriting training cor-
pus consisting of 85 reali stic full formula samples, each contai-
ning about 50 symbols on average. A writer dependent set of
probabili stic syntactic-semantic parameters (cf. sections 2.2
and 2.3) as well as a compressed database of DTW reference



patterns were derived from this corpus by means of our inci-
dence based iterative training algorithms. We substantiall y re-
duced preparative efforts such as manual symbol segmentation
and syntactic-semantic annotation by implementing a novel
graphical analyzing environment called StrokeTool with a uni-
versal pen gesture based interface.

The positional parameters (eq. (8)) were estimated by calcula-
ting type specific two-dimensional Gaussians over all occurring
pairwise symbol (or symbol group) offset vectors. Since only
first order dependencies are considered in our approach, any
successor semun subbranch was handled as an entity with a
unified surrounding rectangle. However, every individual sym-
bol position is included in the resulting parameter set due to re-
cursive processing.

After refining our present position analysis technique, the
handwriting knowledge bases will be enlarged in order to im-
prove their statistical significance and to achieve writer inde-
pendence.

3. RESULTS & CONCLUSIONS

For evaluation purposes we performed independent test classi-
fications in either modalit y. The results for full y spoken or
handwritten reali stic formulas are summarized in Table 1. Sin-
ce the positional part of our syntactic model (cf. section 2.8)
has not yet been extended to the full range of supported mathe-
matical functions [1], its contribution was neglected in this stu-
dy. We will present the final recognition results in a subse-
quent paper.

Recognition Accuracy

Speech Handwriting

Training Corpus
Reclassification

76.2 % 87.5 %

Independent Test
Classification

61.1 % 83.3 %

Table 1: Recognition results. The numbers refer to full formu-
la structural correctness under toleration of mere character con-
fusions.

For the future we wish to support freely interfering speech and
handwriting interactions including mutual coreferencing due to
deictic wording and pen gesturing. To this end, the use of
speech will presumably be focussed to subterm input and error
corrections so that we anticipate a robust and approximately
realtime forthcoming system performance.
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