
USER APPROPRIATE PLAN RECOGNITION
FOR ADAPTIVE INTERFACES

Marc Hofmann and Manfred Lang

Institute for Human-Machine Communication

Technical University of Munich, D-80290 Munich, Germany
{ hofmann, lang} @ei.tum.de

ABSTRACT
Adaptive user interfaces are often based on plan recognizers, which consider just optimal action sequences to reach
a goal. The algorithm we present is an approach towards user appropriate plan recognition, i.e. it stays abreast of the
fact that in complex domains users often behave sub-optimal to achieve their goal because of a lack of knowledge
about the domain and about its commands. Furthermore our algorithm is able to deal with goals with various ways
to achieve.

1. INTRODUCTION
User assistance systems usually have a component, which models the user’s potential goal for controlling an
adaptive interface. In this paper we describe a plan recognizer to infer the user’s goal regarding previously observed
user actions. Our domain is a Unix file system with a standard Unix shell for entering commands. We refer to files
and directories as objects the user may manipulate by operators. Operators can be interpreted as sub-plans; usually
they are Unix commands or groups of Unix commands. For plan recognition we interpret a Unix plan as a vector of
operators for manipulating a number of objects:

 plan = operator(object) (1)

As mathematical basis for the plan recognition algorithm we make use of Bayesian belief networks [Pea88].
Charniak and Goldman first have used Belief networks for plan recognition [Cha92]. The main feature of our plan
recognizer is its abil ity to exploit optimal and also sub-optimal user behaviour, i.e. the plan recognition process is
user appropriate. Hence our networks differ in the topologies and probabil ity tables from the networks of the authors
mentioned. We introduced a hierarchical structuring of plan networks in four layers for an user adequate
representation of plans.

2. METHODOLOGY

2.1 Requirements
To gather knowledge about typical user acting in the Unix environment and to gather training data for the plan
recognizer, experimental subjects have been given various Unix tasks. Analyzing the resulting plans lead to
conclusions, which lead to a number of requirements for our plan recognizer.
In our test plans, all users acted sub-optimal, i.e. they made use of commands, which are irrelevant for achieving the
goal. Nevertheless these actions can be interpreted as characteristic action patterns for certain plans, which can be
ascribed to a lack of knowledge of the domain and its commands. Wrong usage of commands and mistyping are also
frequently made mistakes. Furthermore each user seems to have an individual approach to plan completion.
Finally our goal was to build a plan recognizer that stays abreast of imperfect acting of users and which also exploits
information apart from the optimal sequence of actions for classification of plans. For an appropriate weighting of
actions and sub-plans, we decided for a probabili stic mathematical fundament, namely Bayesian belief networks.

2.2 Basic structure
For the basic structure of our algorithm, refer to Fig. 1. The user has a certain goal he wants to achieve. Therefore he
needs a solution for his problem, a sequence of actions leading to that goal. This sequence is defined as plan. The
task of the plan recognition system is inferring the user’s plan by means of previously observed actions. Therefore
the plan recognizer is fitted with a plan library, a database containing all potential plans to reason about. For each

gue
Textfeld
From: Proc. HCI 2001
Lawrence Erlbaum Ass., NJ

plan a plan model is generated as basis for the plan evaluation. As this plan model is a Bayesian belief network, we
refer to the networks as plan model networks. With every new user action all potential plans of the plan library have
to be evaluated, given the current and previous user actions as observations. For each plan hypothesis an evaluation
measure EM is calculated, which reflects the belief that the observed actions are part of that plan. The plan with the
maximum evaluation measure is the result of the plan recognition process.

plan m

.

.

.

plan 2

plan model 1

.

.

.

M
A
X

EM1

EMm

EM2

plan

observed actions plan

action2action1 action naction3 action4

t=0

. . .

goal ⇒ plan:
action1,action2,...

action5

future actions

plan
library

plan
models

plan
evaluation

plan model 2

plan model m

plan 1

application

Figure 1: Basic structure of the plan recognition system

2.3 Plan model networks
When using Bayesian belief networks the main task is to find an adequate topology for the network and choosing the
proper conditional probabili ty tables for modeling a certain problem. A plan model network is structured
hierarchically in four layers, which will now be described in detail.

Plan hypothesis layer
The plan hypothesis layer is the top layer of a plan model network. It allows direct inference of the belief that the
observed user actions are part of that plan. Therefore the confidence of a plan is modeled by one discrete, Boolean
state variable. At the beginning it is assigned a neutral probabil ity distribution as a priori probabili ty P(plan), i.e.
both states are equally likely. We refer to this node as plan node. As we interpret a plan as the manipulation of
objects, we represent each object to manipulate by a Boolean state variable, which is linked with the plan node by an
arc. Moreover the object nodes are linked among each other. Fig. 2 shows the topology of the network.

plan

object3

object2

object1

Figure 2: Topology of the plan hypothesis layer for a plan for manipulation of three objects

The structure of the belief network and appropriate conditional probabil ity tables of the object nodes enable
modeling the following logical AND-function:

 ...321 objectobjectobjectplan ∧∧= (2)

Equ. 1 reflects the fact that a plan is only completed if the user manipulated all relevant objects in the way the plan
is meant for. The a posteriori probabili ty of the plan node P(plan | object1, object2, ...) allows inferring the
completion of the plan only if the corresponding objects are manipulated correctly and completely.

Object layer
The object layer models how objects are manipulated. It provides one Boolean node for each operator an object has
to be manipulated with. For the conditional probabilities we again have a logical AND-function of the object node
with operator nodes as parameters. In analogy to the plan hypothesis layer the manipulation of one object is only
completed if all necessary operators have been used on that object. This part of the network reflects optimal
behaviour, only the essential operators to achieve a goal:

 ...21 ∧∧= operatoroperatorobject (3)

Now operator nodes, which reflect sub-optimal actions, but nevertheless for that plan characteristic action patterns,
are linked to the object node. We refer to these operators as optional operators, which may support the belief in a
particular plan when observed, but the object may be also manipulated correctly and completely without using these
operators. For training the conditional probabil ities we gathered training data by giving a number of Unix tasks to
various experimental subjects. The emerging plans are used for weighting the contribution of optional operators to
plan completion. This is a task of training with complete knowledge, so the probabili ties can be determined
according to the frequencies of occurrence of optional operators. For weighting the contribution in that way that
observing an optional operator supports the belief in a plan, only conditional probabili ty values between 0.5 and 1
are of interest. Therefore we map the division of the number of optional operators observed in the training data (nopt

op) and the number of interesting manipulations of a particular object (nobj) on the range from 0.5 to 1 for the “yes”-
state. This results in the following equations:

 









+===

obj

opopt

n

n
yobjectyoperatoroptP 1

2

1
)|(










−===

obj

opopt

n

n
yobjectnoperatoroptP 1

2

1
)|((4)

The conditional probabil ity values reflecting the contribution of an optional operator to other plans are chosen
neutral, because we treat each plan individually and independent of other plans. This fact and equ. 3 enable even
very rarely observed optional operators to contribute to the belief in a plan.
Fig. 3 shows the topology of a typical object layer consisting of two operators and n optional operators.

optional
operator1

optional
operatorn

operator1 operator2optional
operator2

. . .

object

Figure 3: Topology of the object layer with two operators and n optional operators

Operator layer
The operator layer models the way an operator is created by a number of user actions. It provides one Boolean node
for representing an operator and one Boolean for each user action. This layer also combines optimal and sub-optimal
usage of actions. Fig. 4 shows the topology with n optional actions and a few actions for modeling optimal
behaviour. As the structure shows, it’ s possible to model different approaches to that operator. Hence synonymous
actions with different commands, different options and parameters, but with equal effect can be modeled. In Fig.4
the combination of action1 and action2 has the same effect as action3. In the case of two or more actions to create
the operator, the structure and the conditional probabili ties are chosen according to a logical AND.

. . .optional
action1

action1optional
actionn

action3action2

operator

Figure 4: Topology of the action layer with m optimal actions and n optional actions

The conditional probabili ties of the optional action nodes are chosen in analogy to the object layer.

Action layer
The action layer consists of nodes directly representing user actions. Each node is related to various mapping
information to ensure the action is mapped on the right node as new information. For modeling an action it is
decomposed according to its syntax. Fig. 5 pictures the topology of an action with the syntax pattern <command>
<options> <object1> <object2>. The decomposition enables the plan recognizer to deal with mistyping, i.e. in case
of a wrong syntax component we only map the observation of right components on the action layer’s nodes. The
arcs and conditional probabilit ies again are chosen according to the following logical AND-functions.

options

object2

object1

command

action

Figure 5: Topology of the action layer for an action with the syntax <command> <options> <object1> <object2>

The decomposition of actions does not apply to optional action in order to put not too much emphasis on them.
Hence each optional action is represented by one single node.

2.4. Plan evaluation
After creating a plan model network for each plan of the plan library, the plan evaluation process can start. Fig. 6
pictures an excerpt of a plan model network, which takes a number of optional operators and optional actions into
account. Below the structure user actions and their corresponding directory information are listed. Every new user
action is compared with the commands, directories and objects, which are assigned to nodes. If the action matches
with a node, that state variable is given the state “yes”, i.e. it is instantiated and represents the observation of that
user action. This information is propagated through the whole network to support the belief in that plan. User actions
that are not represented by any nodes are not considered for the plan evaluation.
Commands for changing the directory (“cd”) are treated in a special way. Not the command itself will be mapped on
the plan model network, but the current directory. If the user changes into a certain directory, the state variable
representing that directory will be instantiated. Leaving that directory results in some kind of backtracking, the
instantiation of the corresponding state variable will be revoked.

file3.zip
/d1/d2

file2.gz
/d1/d2

file1.Z
/d1/d2

directory:
d1/d2

info
d1/d2

decompress print

directory:
d1

ls -l
/

ls -l
/d1

ls -l
/d1/d2

man zip

uncompress

man
uncompress

gunzip

gunzip
file2.gz

file2.gz
/d1/d2

lp
file2

lpstat

file2
/d1/d2

lp

user actions: cd d1 ls -l pwd cd d2 ls -l uncompress file2.gz gunzip fil2 gunzip file2.gz . . .
directory: / /d1 /d1 /d1 /d1/d2 /d1/d2 /d1/d2 /d1/d2

P(plan=y | user actions=y)
plan

Plan: „ Decompress and print all files of the directory /d1/d2“

Figure 6: Excerpt of a plan model network and a stream of user actions

If an object has been manipulated completely by using the correct operators, the statistical dependency between the
plan node and optional operators or actions for manipulating that object, is blocked, as the object node is
instantiated. That means further mapping will not affect the belief in that plan. In this case we make use of the
Bayesian belief network’s phenomena of “d-separation” [1].
All plan hypotheses have to be treated in the same way. To compare each plan hypothesis with each other, we first
calculate the belief in a plan, given the observations of previous user actions. Inferring the belief Bel(plan) for k
observed actions can be done according to the following equation:

),...,2,1|()(ykactionyactionyactionyplanPyplanBel ====== (5)

The belief has to be calculated for all plans to reason about. To be able to compare all plans, we use the belief
Bel(plan) to determine the percentage of how complete a plan is modeled by the observed actions. As plans may
consist of different numbers of objects to manipulate, we have to multiply the number of objects no of the plan and
divide it by the maximum number of objects nmax a plan can have. The result is the following equation for the
evaluation measure EM:

maxmax

)5.0),...,2,1|(()5.0)((
n

n
ykactionyactionyactionyplanP

n

n
yplanBelEM oo −=====−== (6)

The evaluation measures of all plans have to be calculated. The plan with the maximal evaluation measure is the
plan to decide for.

3. RESULTS
Evaluating a plan recognizer quantitatively is always a crucial task, because the recognition rate heavily depends on
the degree of completion of the plan. As the main feature of our algorithm is the user appropriate plan evaluation,
we tested the algorithm as the main component of a user assistance system [Hof01]. A number of experimental
subjects with different Unix-skills have been given a number of tasks with the assistance system offering partial task
completion on the basis of the plan recognizer’s output. The plan library consisted of 20 plans. Figure 7 proves the
acceptance of the whole assistance system with the plan recognizer as the central component. The target group, users
with little or medium Unix experience judged the assistance system it to be helpful. It has been expected that Unix
experts didn’t accept the assistance as the system hasn’ t been created to cope with their needs.

not helpful
little helpful

quite helpful
very helpful

beginner

medium

expert

0

10

20

30

40

50

60

70

80

90

100

%

Figure7: Result of an investigation on the acceptance of the plan recognizer based assistance system

4. CONCLUSIONS
Our plan recognizer proved to work well, especially its main feature, the abili ty to make use of optimal as well as
sub-optimal user acting proved to be the key for plan recognition for user assistance systems. Future work wil l be
left to the automatic and dynamic generation of the plan library.

REFERENCES
[Pea88] Pearl, J.: “Probabili stic Reasoning in Intelligent Systems: Networks of Plausible Inference”, Morgan

Kaufmann, California, 1988

[Cha92] Charniak, E. and Goldman, R.B.: “A Bayesian Model of Plan Recognition”, Artificial Intelligence, 64(1),
1992, 53-79

[Hof01] Hofmann, M. and Lang, M.: ”A Dialog Model for Offering Task Completion for complex Domains“, Poster

Proceedings HCII 2001 (New Orleans, Lousiana, USA), (this conference)

