
A Generic Approach for Interfacing VRML Browsers to
Various Input Devices and

Creating Customizable 3D Applications

Frank Althoff∗, Herbert Stocker+, Gregor McGlaun∗ and Manfred K. Lang∗

∗Institute for Human-Machine-Communication, Technical University of Munich,
Arcisstr. 16, 80290 Munich, Germany

+blaxxun interactive, Elsenheimerstr. 61-63, 80687 Munich, Germany

althoff@ei.tum.de, herbert@blaxxun.de, mcglaun@ei.tum.de, lang@ei.tum.de

ABSTRACT
In this work we present a generic architecture for interfacing
various input devices to VRML browsers. Concentrating on
the aspect of navigation, our system supports the full range
of potential input devices from conventional haptic devices
like keyboard and mouse over special Virtual-Reality devices
like spacemouse and joystick to, as a special feature, seman-
tically higher level input like speech and gesture recognition.
The communication between the individual components of
the system is based on a context free grammar, allowing ab-
stract modeling of the various devices and handling both dis-
crete and continuous navigation information. Two new node
extensions support the VRML author in creating highly cus-
tomizable 3D applications: The DeviceSensor node allows
grabbing arbitrary user input in a systematic way and the
Camera node gives full control over the scene view by speci-
fying velocity vectors and thus enabling arbitrary navigation
modes. Finally, the proof of concept is given by a prototyp-
ical implementation in VRML.

Categories and Subject Descriptors
H.5.1 [Information Interfaces and Presentation]: Mul-
timedia Information Systems; I.3.6 [Computer Graphics]:
Methodology and Techniques

1. INTRODUCTION
In the course of time the development of user interfaces

(UIs) has become a significant factor in the software de-
sign process, as growing functional complexity, restriction to
mostly haptic interaction and extensive learning periods lead
to increased user frustration. Therefore, various interface
types and interaction paradigms have been introduced[10].
Virtual-Reality (VR) interfaces currently resemble the latest

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Web3D’02,February 24-28, 2002, Tempe, Arizona, USA.
Copyright 2002 ACM 1-58113-468-1/02/0002 ...$5.00.

step in the development of man-machine interfaces, provid-
ing a highly intuitive system approach. Particularly inter-
esting for the average computer user, 3D interfaces can be
worked with effectively and intuitively.

A fundamental task in designing VR systems is handling
the problem of orientation, navigation and manipulation
tasks in 3D space. In this way, our work especially concen-
trates on the aspect of navigating in arbitrary VRML worlds.
The framework includes mechanisms for implementing vari-
ous navigation modes based on the standard modes WALK,
FLY and EXAMINE. From our experience with 3D applica-
tions we can derive the requirements of a UI framework to
design customizable UIs. On the low end, this toolkit has
to deal with primitive browser-intrinsic navigation features
and on the cutting edge, it must be able to handle the inte-
gration and coordination of several complex applications.

In general, multimodal system access provides the user
with more naturalness and flexibility, and it makes the sys-
tem working more error-robust (e.g. see [11][6]). Both ex-
perts and normal computer users highly enjoy having the
possibility to freely choose among multiple input devices
and work with the system according to their personal in-
teraction styles as found out in [1]. Therefore, our system
supports a wide range of potential input devices in a generic
way, facilitating interaction by both conventional haptic de-
vices like mouse and keyboard and special VR hardware like
joystick and spacemouse, and, as a special feature, semanti-
cally higher level modalities (SHM) like natural speech and
dynamic hand and head gestures. Finally, the mechanisms
introduced in this work are easy to use without having to
deal with 3D math into depth.

2. SYSTEM ARCHITECTURE
The framework that we describe in this paper defines a set

of modules that allow the user to freely select amongst var-
ious ways of communicating with the VRML browser. Al-
though we primarily concentrate on the navigation task, our
framework can be extended to other interaction paradigms.
An overview of the underlying system architecture is given
in figure 1. A series of input modules interprets input of the
semantically higher level modalities and manipulations of
the haptic devices. The discrete integrator handles the com-
mands received from the various input modules and resolves

Figure 1: Overview of the system architecture for integrating user input

redundant, complementary and competing multimodal in-
formation contents. Converted to navigation commands, the
information is transmitted to the navigator. Besides execut-
ing these commands, the navigator unit maintains the indi-
vidual parameters that characterize navigation and browser
status and informs both the input modules and the discrete
integrator of any changes. Finally, the continuous integrator
sums up the speed values of all inputs and passes the sum
to the limiter that performs collision detection and gravity
simulation. If the system is to be extended to an additional
new input device, this can easily be done by adding a new
input module to the framework. In selective cases, the logic
of the discrete integrator component may additionally be
subject to some changes to take into account the specific
features of the new input source.

2.1 Input Modules
In general, the input modules can be divided into two

groups: On the one side, the SHM modules interpret se-
mantically higher level input like the output of speech and
gesture recognition units. One the other side, the haptic
modules represent the front-end for both conventional hap-
tic input devices like mouse and keyboard and special VR
hardware like spacemouse and joystick.

SHM modules typically do not send velocity vectors to
the continuous navigator, but instead generate commands
that represent, as the name indicates, semantically higher
level user intentions. In most cases, these commands are in-
complete and either have to be interpreted in the navigation
context of previous commands or rely on additional informa-

tion provided by another modality. An SHM module does
not receive and evaluate status updates. Interpreting this
information is directly handled in the discrete integrator.
Details on SHM modules are given in [2], [12] and [9].

Haptic modules, in turn, typically generate velocity vec-
tors that describe navigation movements. While SHM mod-
ules mainly output abstract user expressions, haptic mod-
ules completely interpret manipulations of the input devices:
The binding of device manipulations to velocities depends on
the current state of the navigator, which is mainly character-
ized by the navigation mode and speed. The haptic modules
receive status updates from the navigator and adapt the in-
terpretation process to these changes. In EXAMINE mode,
the modules primarily generate a rotational vector, whereas
in WALK/FLY mode a translatory vector with a mostly for-
ward oriented direction is generated. The magnitude of the
movements depends on the instantaneous navigation speed.

Besides sending velocities to the continuous integrator,
haptic modules can send the full spectrum of available com-
mands to the discrete integrator component. Thus, they
can issue mode and stepsize changes, as well as initiating
discrete movements, which are typical for a key pad device.
The status information contained in the navigator unit can
be used externally, too. Sending it back to the associated
devices offers an interesting opportunity of providing direct
system feedback to the user. A possible application could be
the implementation of a force feedback effect that is initiated
when a collision with geometry is detected. Moreover, the
navigation mode could be shown on the screen or announced
via the loudspeaker system.

Figure 2: Structure of the navigator component

2.2 Discrete Integrator
The discrete integrator module resolves and combines the

incoming multimodal information stream of the various SHM
and haptic modules as well as the status updates provided
by the navigator component. As a result of this integra-
tion process, a set of browser commands is generated that
can directly be executed by the navigator. A context free
grammar (CFG) serves as the communication basis for co-
ordinating the individual information sources. By applying
specific look-up tables, both the output of the individual in-
put modules and the status updates are transformed to the
grammar formalism. For example, the semantic meaning of
a recognized word chain is mapped on the appropriate CFG
elements by a separate unit, interpreting the results of the
word processor.

To integrate the pieces of multimodal information in real-
time, we mainly use a classical straight-forward, rule-based
approach, that is well established in various research appli-
cations (e.g. [5][8][13]). Thereby, the semantic unification
process is carried out with reference to our CFG, i.e. tak-
ing into account context sensitive timing windows, individ-
ual grammar elements are combined in a meaningful way to
correspond to the users primary intention. Additionally, we
are experimenting with statistical methods based on evolu-
tionary computation. While the communication formalism
is extensively discussed in section 3, the precise details of
the integration algorithm are described in [2].

2.3 Navigator
The navigator component receives the resolved commands

from the discrete integrator and executes them. It performs
actions like viewpoint animation or step based movements.
Additionally, this unit maintains diverse status information
like the currently active navigation mode, the navigation
speed, the position in the viewpoint stack or potential colli-
sion events. Each time, one of these status flags changes, the
navigator notifies both the haptic modules and the discrete
integrator of these events.

To allow for an undo command, the navigator provides an
n-stage undo buffer. Before executing a command, it saves
the current state (the current viewpoint position for move-
ment commands, the navigation mode for mode switching
commands, etc.) to the buffer. When the undo command
is received, the last stored state is read in LIFO order and
properly restored.

For movement commands, the navigator contains a sub-
module, entitled discrete movements, that generates ve-
locity vectors and sends them to the continuous integra-

tor. For step based commands, it generates the velocities
only for a limited amount of time, but with a magnitude
that is proportional to the navigation speed. For contin-
uous commands these movements are generated until the
stop command or another, conflicting command is received.
A detailed view of the navigator unit is shown in figure 2.

2.4 Continuous Integrator
The continuous integrator module consists of two sub-

modules. The adder sums up the velocities that it receives
from the haptic modules. Afterwards, this sum is passed
to the limiter. To restrict user movements with regard to
the given world geometry, this unit performs collision detec-
tion and gravity simulation. Before routed to the limiter,
the individual velocity components are combined, resulting
in a mathematically precise notation of movements in 3D
that are entirely described by the six degrees of freedom.
To implement restricted navigation modes, several of these
degrees can be blocked and then the adder only performs
the summation in the allowed directions.

3. COMMUNICATION FORMALISM
For communicating information between the individual

modules of the system, we make use of an adapted and
massively extended context-free grammar that is based on
a formalism first introduced in [3]. Completely describing
the functionality vocabulary of the browser, the grammar
model facilitates the abstract representation of domain- and
device independent multimodal information contents. Thus
for example, both natural speech utterances, hand gestures
and spacemouse interaction can be described in the same
formalism. In a classical client-server approach pieces of
multimodal information are exchanged in the form of simple
string messages over TCP/IP sockets. Each of these mes-
sages is prefixed by two unique identifiers. While the first
ID specifies the target destination (e.g. a certain integrator
or application module), the second ID indicates the message
source, i.e. the device, modality or internal system module,
the command comes from. The formal language defined by
the grammar represents the multitude of all theoretically
possible system interactions. A word of the grammar corre-
sponds to a command, subcommand or a status message of
the interface. Multiple words form a sentence describing a
sequence of events and actions. The initial sequences of the
grammar are given in Backus-Naur Form (BNF) below.

<S> ::= <CSEQ>

<CSEQ> ::= <CMD> | <CMD> <CSEQ> | <>

<CMD> ::= <MOV> | <POS> | <CTRL>

The class of user input commands that are communicated
between the input modules and the discrete integrator de-
note the users intention. While the CFG model is mainly
used for transferring discrete navigation commands, the con-
tinuous velocities, resulting from haptic interactions, are a
set of periodically updated floating point values, one for each
degree of freedom. The set of user input commands can
further be divided in various command clusters. In general,
three major information blocks can be identified. Movement
commands (MOV) indicate direct navigation information, po-
sition oriented commands (POS) denote movements to spe-
cific locations and finally control commands (CTRL) describe
changes of the browser parameters and the feedback flow.
The grammar blocks are discussed in more detail.

3.1 Movement Commands
The group of movement commands describes navigation

information, resulting in movements of the scene view in the
following form: <mode> <type> <direction> and can
optionally be prefixed with start. The <mode> slot de-
notes the specific navigation mode, in which the movement
should be performed. This mode is sent to the haptic mod-
ules which interpret future manipulations on their devices
in this mode. Without the start prefix, the commands
express a movement in form of a single step. The length
of such a step is controlled by a set of control stepsize

commands. If the start prefix is present, the movement in
the currently given direction infinitely continues until the
stop command or a command denoting another movement
is received. Some of the continuous commands (e.g. start

walk trans forward) are predestinated to be used simul-
taneously in combination with haptic devices. In this case,
the haptic devices would then change the direction of move-
ments. The following BNF represents the set of potential
navigation movements.

<MOV> ::= start <MCMD> | <MCMD> | stop

<MCMD> ::= walk <WLK> | fly <FLY> | examine <EXM>

<WLK> ::= trans <ADIR> | rot <LR>

<FLY> ::= trans <ADIR> | rot <LRUD> | roll <LR>

<EXM> ::= trans <MDIR> | rot <LRUD> | roll <LR>

<ADIR> ::= <MDIR> | <DIAG>

<MDIR> ::= left | right | up | down |

forward | backward

<DIAG> ::= lfwd | rfwd | lbwd | rbwd

<LRUD> ::= left | right | up | down

<LR> ::= left | right

Sometimes, the CFG transcription of an isolated user ar-
ticulation can be ambiguous, representing an incomplete
command that does not correspond to the exact syntax of
the formal grammar model. To cope with this problem, the
discrete integrator unit also accepts subsets of the grammar
and combines them with context information of previous
commands. Thus, for example, a rot left or even only a
single direction can be interpreted by the discrete integrator
component.

3.2 Position Oriented Commands
Purely position oriented commands denote movements to

specific positions. An overview of the corresponding BNF
notation is given in figure 3. In that syntax, ”f” is used as a
short form for <float> and ”#” denotes comments, shortly
explaining the meaning of the corresponding grammar entry.

Some of the position oriented commands (gothere, lookat

and exacenter) need an additional, indicated command
to be interpreted as a valid navigation command. Thereby,
indicated commands express e.g. gestures that convey some
relevant position and/or orientation in 3D space. A special
set of commands (orientto, moveto and beamto) express
the users wish to be oriented or moved to a specified po-
sition. Orientations can either exactly be described by the
axis of rotation and the rotation angle (like transformations
in VRML) or by specifying a point in 3D space where the
optical axis of the scene camera is to be rotated to (offering
one additional degree of freedom around that axis that has
to be handled explicitely). Moreover, the grammar provides
a beamto nearpos command which moves the user close to
a given position. Thereby, the interpretation of the exact
location can be handled according to currently given ge-
ometrical constraints. This command may be equivalent
to a gothere (provided by an SHM input) and indicated

geometry (given by a haptic module). The effect is that
the scene view is changed in a way, that the user looks at
the specified position and the avatar is moved to a location
nearby, taking into account the geometrical constraints of
the surrounding area.

3.3 Control Commands
In addition to the individual movement commands, the

grammar contains a section for describing and manipulat-
ing the various status parameters of the VRML browser,
e.g. the handling of lighting conditions, viewpoints, colli-
sion detection and gravity flags as well as changing the ba-
sic navigation modes. A detailed description is given by the
following BNF.

<CTRL> ::= ctrl <CCMD> | repeat | undo | quit

<CCMD> ::= mode <SMOD> | stepsize <SPS> |

viewpoint <VIP> | sendstatus <SVAR>

<CCMD> ::= light <OOT> | collision <OOT> |

gravity <OOT> | straighten | balance

<SMOD> ::= set <MVAR> |

restrict <x y z yaw pitch roll>

<MVAR> ::= walk | fly | examine

<SPS> ::= inc | dec | reset | set <float>

<VIP> ::= prev | next | reset | set <float>

<OOT> ::= on | off | toggle

<SVAR> ::= all | sstepsize | smode | slight |

scollision | sgravity

The output of the integrator is a subset of the commands
of the grammar discussed in the sections above. Each of
these commands describes one action to be performed in-
dependently from previous or following commands. Thus,
the integrator works as a kind of context sensitive integra-
tion unit, maintaining its own state machine for the history
of previous commands, but the commands emitted to the
navigator are full words with regard to the formal language
model of the context free grammar.

3.4 Status Feedback
In addition to the command stream, the system provides a

feedback stream that selectively reports the current naviga-
tion mode and the status of the various system parameters.
The information can be triggered on demand by external
modules attached to the system. Moreover, it can either be
sent automatically each time, the appropriate state value

<POS> ::= gothere # moves to a specified position

<POS> ::= lookat # orients to a specified position

<POS> ::= exacenter # sets the position as the examine center

<POS> ::= indicated geometry f f f # denotes a position on a geometry

<POS> ::= indicated pos f f f # denotes a position

<POS> ::= indicated posori f f f f f f f # denotes position and orientation

<POS> ::= indicated ori f f f f # denotes an orientation

<POS> ::= orientto pos f f f # orients to a given position

<POS> ::= moveto pos f f f # moves to a given position (exact)

<POS> ::= moveto nearpos f f f # moves near to a given position

<POS> ::= moveto ori f f f f # rotates to a given orientation

<POS> ::= moveto posori f f f f f f f # changes to a position and orientation

<POS> ::= beamto pos f f f # moves and orients to a position (exact)

<POS> ::= beamto nearpos f f f # moves and orients near to a position

Figure 3: BNF notation of position related commands

changes or it is sent in a fixed periodic feedback cycle. As
the exact definition of the BNF defining the feedback gram-
mar is similar to that of the control commands, it is not
explicitly given here, but instead only the differences are
pointed out. The stepsize feedback reports a parameter
in form of a floating point value, that specifies a factor to
be multiplied with the default navigation speed or current
step size. The viewpoint value informs about the index of
the currently bound viewpoint in the list of all viewpoints,
the size of this list - which may change over time - and an
associated name of that viewpoint, given as a string. At the
start of a viewpoint transition, an isbeaming flag is sent,
which serves as an indicator for the input modules to im-
mediately stop any kind of movements that are not directly
user initiated. This mechanism is of essential importance for
the navigator whenever it generates movements for about a
second after a user interaction. Those movements should
not interfere with the viewpoint animations or even outlast
them. The undoing flag informs the other modules either
about the kind of action that has been undone or about
the fact that the undo buffer is empty. This flag is most
essential for both implementing user feedback behavior and
maintaining an external context sensitive control unit.

4. IMPLEMENTATION DETAILS
VRML content becomes independent of available input

hardware if the framework is a fixed part of the browser. But
applications definitely need a possibility to adopt the behav-
ior of input devices to their particular needs, or to implement
special navigation paradigms for a certain type of audience.
In the framework described in this paper, we use the mech-
anism of ROUTEs to break up the rigid event routing of
conventional browser implementations. Additional devices
can plug in the event dispatcher module of the browser and
dispatch their input to a DeviceSensor node in the VRML
scene graph, thereby giving the author full access to all kinds
of conceivable user input and output. The Camera node fa-
cilitates the control of the navigation: By setting velocity
vectors, the VRML author can animate the user position.
A Script node connects both nodes, transforming user input
to velocities. These nodes have already been implemented
in the blaxxun Contact browser, allowing us to realize most
parts of our framework in VRML. Both nodes are now dis-
cussed in the following two sections.

4.1 DeviceSensor Node
Based on the PROTO mechanism, the DeviceSensor node

offers an elegant possibility to represent arbitrary input de-
vices in VRML. Therefore, without any further requirements
for additional syntax in VRML parsers, devices can be mod-
eled in VRML as they are, not just as a flat array of floats.
The DeviceSensor is not limited to input devices, even feed-
back can be routed to eventIns on the PROTO and thus
to the device. One DeviceSensor node instance suffices to
represent the complete input device, giving full access to the
individual input elements. Due to the usage of the PROTO
mechanism, parsers are independent of supported devices
and browser vendors can create an extensible architecture
that allows independent programmers to add support for
further devices. The node definition is given below.

DeviceSensor {

exposedField SFBool enabled TRUE

exposedField SFString device ""

exposedField SFString eventType ""

exposedField SFNode event NULL

eventOut SFBool isActive

}

The device field names the device that should be repre-
sented by the DeviceSensor node, e.g. ”JOYSTICK”. An
optional number allows to distinguish between multiple de-
vices of the same type. The event field refers to a PROTO
instance with the device specific fields. Data can be routed
to or from fields on that PROTO instance, but, addition-
ally, event can also act as an eventOut, emitting the whole
node when some fields on it are subject to changes. More-
over, eventType provides some means to pass initialization
parameters to the device support and the enabled flag is
used to enable the DeviceSensor. Related to this flag, the
isActive flag evaluates to true if the following three condi-
tions hold: the enabled flag is set, the device is supported
by the browser and the device is physically present. Using
the DeviceSensor in VRML is done in two steps:

The first step is to declare the PROTO for the device.

PROTO JoyStick [

eventOut SFVec2f stick

eventOut SFBool button1

eventOut SFBool button2

] {}

In the example given above, a typical joystick with two
buttons is described. The definition part of the PROTO is
empty because it is supplied by the browser. It is impor-
tant that the fields of the PROTO and its association to
a device name must be standardized for a device to allow
interoperability between browsers (e.g. one for ”MOUSE”,
one for ”SPACEMOUSE”, etc.), but browsers can support
their own proprietary or experimental devices. If browsers
do not force VRML content to declare all the standardized
fields of the PROTO, the specification for a device can be
extended. Thus, new content can still run on old browsers,
and vice versa. For example, in the content definition, force
feedback information could be routed to an eventIn SFVec2f
force field and the class of browsers that support this feature
would pass it to the joystick.

The second step is to define the DeviceSensor and asso-
ciate an instance of the PROTO to its event field.

DEF DS DeviceSensor {

device "JOYSTICK"

event DEF JS JoyStick {}

}

This instructs the browser that the event node (the node
that is assigned to event) is associated with the ”JOYSTICK”
device. If the browser supports joysticks, it sets the isActive
flag to true, reads the joysticks status and supplies it to the
fields on the event node. The content reads joystick data by
routing the fields of the event node away, either individually
or the complete event node at once from the event field of
the DeviceSensor. In order to allow a modular design, the
DeviceSensor is not a bindable node. Thus, multiple De-
viceSensor nodes in different PROTOs can query the same
device, e.g. one PROTO queries the joystick buttons to fire
weapons or select objects, while another PROTO queries
the stick for navigation.

4.2 Camera Node
The Camera node allows VRML content to directly com-

municate with the internal navigation modules of the browser.
In a traditional browser, mouse and keyboard input is inter-
preted and directly routed to the navigation module. With
the Camera node, this strict routing is broken up. In con-
trast to the Viewpoint node, the author can move the user
on non-predefined paths through the virtual world without
any deep knowledge of 3D mathematics. Additionally, the
author can control the collision detection, the center of ro-
tation for examine mode, the third person view, and various
other parameters. The node definition is given below.

Camera {

eventIn SFVec3f xyz

eventIn SFVec3f ypr

eventIn SFVec3f opr

exposedField SFBool collide TRUE

exposedField SFBool gravity TRUE

exposedField SFVec3f examineCenter 0 0 0

eventIn SFVec3f moveTo

eventIn SFVec3f orientTo

eventIn SFVec3f beamTo

exposedField SFFloat duration 2

exposedField SFVec3f offset 0 0 0

exposedField SFBool enabled

exposedField SFBool disableDefault

}

Typically, the content will gain user input from an input
device through a DeviceSensor, transform it in a Script node
and then supply velocities and other commands to a Camera
node. Coordinates routed to the Camera node are always
interpreted relative to the currently bound viewpoint, since
this is essential for navigation. In the following, we briefly
explain the individual events and fields of the Camera node.
For more details on the implementation, please refer to [7].

xyz, ypr, opr: Values routed to these eventIns are inter-
preted as velocity components in various directions. Thereby,
xyz specifies translatory velocities to the right, up and back-
wards. While the components of ypr represent angular ve-
locities around the y-, x-, and z-axis (yaw, pitch, roll), opr,
in turn, denotes movements for the EXAMINE mode. This
mode can be described as a rotation of the viewpoint around
an examine center. Components of opr specify angular ve-
locities around the x axis, y axis and viewing axis (the con-
nection of view point and examine center).

collide, gravity: These boolean values are used to con-
trol the currently active status of the collision detection as
well as the gravity simulation.

examineCenter: The component examineCenter allows
the content author to set the center of rotation in the EX-
AMINE mode, which is a long missing feature in VRML.

moveTo, orientTo: Independent of the currently ac-
tive navigation mode, when a position is routed to moveTo,
the browser starts a viewpoint animation that moves the
viewpoint to that position without any kind of rotation. A
position routed to orientTo starts an animation that only
rotates the user to look at the received point.

beamTo: Based on these two types of movement events,
beamTo is a combination of translational and rotational move-
ments with regard to the specified position. The browser
must find a suitable position and orientation to transform
the current viewpoint, i.e. a location from which the refer-
enced object can be well seen and interacted with. If the
target object of the beamTo movement is a picture on a vir-
tual wall, it does not make much sense to move the avatar
directly into the picture, but, instead, position him in a way
that the complete picture is within the current field of view.

duration: The duration of the respective translational
and rotational movements are controlled by the duration

field. Thereby, the values are given in seconds.
offset: This field allows for third person view by utiliz-

ing the metaphor of moving the virtual camera out of the
users body. When this value is nonzero, browsers that sup-
port offset move the camera away from the position of the
user and insert an avatar into the scene. The scene is still
influenced by the unmodified position, e.g. with Proximi-
tySensor or collision detection, only the perspective of the
scene view is changed. The virtual camera is always oriented
to bring the avatar’s head to the center of the screen. While
the first value of offset defines its distance to the avatar,
the others are two angles defining the direction from which
the avatar is seen.

enable, disableDefault: If the enabled flag is FALSE,
all fields on the Camera node are ignored. Velocities of each
enabled Camera node are added to the movements of the
built-in navigation module. For other eventIns on multiple
enabled Camera nodes, the same rules apply as if the fields
were on the same node. By setting the flag disableDefault

in an enabled Camera node, the built-in navigation of the
browser will be deactivated.

Figure 4: Structural elements for customizable applications

5. CUSTOMIZABLE APPLICATION
As a proof of concept for the developed system architec-

ture and the interaction mechanisms, we have implemented
a prototypical application in the proposed framework. Both
the SHM modules and the integrator are not described here,
since they are extensively discussed in [2]. This section con-
centrates on setting up a software framework for the browser
front-end to create an application specific navigation han-
dling. We make use of the VRML browser blaxxun Con-
tact[7] because it has already implemented and successfully
tested the Camera and DeviceSensor nodes described above.

5.1 Sample Implementation in VRML
The navigator module, containing undo buffer and dis-

crete movements, as well as the haptic input modules have
been implemented as VRML content, which gives us high
flexibility to adopt things. In the case of the Interpreter,
this VRML content can mainly rely on navigation features
in standard VRML. In some selected cases, it additionally
needs some special extensions of the blaxxun browser, e.g.
an eventOut type list of the all Viewpoint nodes. The
VRML content of the discrete integrator is represented, like
any other module, as an EXTERNPROTO. Internally, it
utilizes a DeviceSensor that loads a TCP plug-in to connect
to the real integrator, running on another machine. The
command language is represented as MFString events con-
taining one terminal symbol in every array element. Thus,
parsing the formalism in EcmaScript becomes rather simple.

5.2 Usage of DeviceSensor and Camera Node
We want to show the structure of a haptic input module

in more detail because it demonstrates the typical usage of
the DeviceSensor and the Camera nodes. The adder in the
continuous integrator is part of the Camera node implemen-
tation, and the subsequent collision and ground detection
are part of the VRML Browser. Therefore, the haptic input
modules route their velocities to a Camera node. A Device-
Sensor identifies the device and reads the appropriate input
data. A Script node interprets the user input according to
the state information that it receives from the interpreter.
It either sends continuous movements to the Camera node
as velocities, or commands to the discrete integrator. Figure
4 shows the major structural elements, needed in VRML to
create customizable applications.

5.3 Application Scenarios
The framework introduced in this paper is currently used

in two totally different applications. In the first scenario, the
VRML browser is integrated in a HTML frameset used for

interactively exploring a virtual model of our institute. In
addition to the 3D area, the interface provides a 2D overview
and several text areas. The user can walk through the rooms
and different laboratories, access multimedia documents and
communicate with the various professors and researchers.

In the second scenario, the framework is used as the vi-
sual 3D front-end for a multimodal interface to operate var-
ious comfort devices (radio, cd-player, telephone, etc.) in
an automotive environment. Thereby, the conventional 2D
display paradigm is broken up. Presented on a standard
touschscreen, the interface extensively makes use of the ad-
ditional dimension by providing alternative information ar-
rangements and intuitive interaction techniques.

6. POTENTIAL EXTENSIONS
In this section, we briefly outline some potential exten-

sions to our framework, that we are currently working on.
Thereby, we concentrate on the integration of new input
sources and adapting the concept of our system architecture
to handle other interaction paradigms besides navigation.

6.1 Positional Devices
In the current form, our framework handles haptic input

devices that generate data in the sense of velocities. An-
other way of gaining navigation input from users is to di-
rectly measure positions and orientations, e.g. by trackers
that sense the position of the users head or hands. An ex-
tension to such devices involves allowing input modules to
generate positions in addition to velocities. The continuous
integrator would combine these movements additively to the
velocities. The output of a positional input device can be ex-
pressed as a series of delta movements. These can be trans-
mitted in an additional communication channel parallel to
the one for velocities. In a simulation loop based implemen-
tation, the delta movement during each frame is relevant.
On the other hand, velocities when multiplied with the cur-
rent frame time (1/frame rate) also result in a delta move-
ment for each frame. Since the collision detection module
would probably need such deltas anyway, adding the deltas
based on velocity to the deltas based on positions would
combine both types of input.

6.2 Adding Communication Formalism to the
Camera Node

Navigation in 3D space is a complex task, especially when
it comes to give content designers a way to design their own
user interface. Standardizing the formalism that is sent to
the navigator module and providing an eventIn on the Cam-
era node would give the content author a simple, yet power-

ful way to design user interfaces or to control the navigation
through a world. EAI could give access to navigation for
Java applets or other applications, that use the browser as a
render engine. The beamto commands in combination with
an EcmaScript function, that is fed by the mouse cursor po-
sition from the DeviceSensor and returns the 3D position
under the cursor, could give finer control to custom beamto
navigation in comparison to a simple SFVec3f typed eventIn.
Profiles as used in conjunction with X3D could specify the
set of supported browser commands. Such profiles could be
the empty command set, the one sent to the navigator or
the whole command set allowing the author to implement
a complete input module. Similar to input, the formalism
used for status updates could be provided as an eventOut
on the Camera node and would allow the content to react
on states and events in the navigation module, e.g. mode
changes or collision events while navigating. A potential
definition is given below.

Camera {

eventIn MFString command

eventOut MFString event

}

In this way, the command would accept words or sub-
words of the formal grammar model like ctrl, viewpoint

or next. On the contrary event would send status messages
like colliding or true according to a separately defined for-
mal grammar.

6.3 Extension to the Manipulation Paradigm
Navigation in 3D applications is very important, but inter-

acting with the scene inheres at least the same importance.
We briefly describe what will be necessary to extend our
system to manipulation. The most important thing in ma-
nipulation is moving objects, either as a piece of the world
e.g. in a furnishing application or as an abstract thing, e.g.
the knob on a slider control. Another type of manipulation
is activating things, the domain of the TouchSensor. Both
need some way of selecting objects. Pointing devices like the
conventional 2D mouse are capable of this, but others like
the joystick cannot, unless they simulate a pointing device
by moving a 2D or 3D cursor. A new select command, com-
bined with an indicated geometry would express the gesture
of selecting an object for manipulation. An activate com-
mand would issue the touchTime event on a TouchSensor,
or connect the velocities of input modules with a drag sen-
sor. A deselect command would reconnect the modules to
navigation. Existing drag sensors do not cover the full range
of movements in 3D space, as they are designed for 2D de-
vices. We think that a general MoveSensor should cover all
six degrees of freedom and it should have a field that defines
which of these degrees are active. This would make existing
drag sensors special cases of the MoveSensor. A Collision-
Sensor node as proposed in [4] would allow to move objects
in complex geometry like in the furnishing example.

Our frame set should be extended by a manipulator mod-
ule that executes manipulation commands in a similar way
as the navigator does for navigation. Similarly, the con-
tinuous integrator would contain a corresponding module
for manipulation. To allow authors to override the browser
built-in behavior of input devices and modalities, the Move-
Sensor node should have velocity eventIns similar to those

of the Camera node. This would allow to control specific ob-
jects. To override the behavior for all movable objects, an
ObjectMover node could accept velocities, and supply them
to the currently selected object. The structure DeviceSensor
→ Script → Camera or ObjectMover repeats.

7. CONCLUSION
In this work we presented a software architecture to sup-

port generic navigation devices in VRML browsers, cover-
ing conventional haptic input, special VR devices as well as
advanced input modalities like speech and gestures. Both
discrete and continuous navigation information is handled
in the system. We introduced a DeviceSensor for grabbing
arbitrary input and a Camera node to control the scene view
and implemented both constructs in blaxxun Contact. By
tailoring applications to user profiles as shown in the pro-
totypical implementation, we can enable a broader use of
VRML 3D applications. Finally, we identified potential ex-
tensions to our system to facilitate other interaction styles
and support the VRML author in creating highly customiz-
able applications.

8. REFERENCES
[1] F. Althoff, G. McGlaun, and M. Lang. Combining

multiple input modalities for VR navigation - A user
study. In 9.th Int. Conf. on HCI, August 2001.

[2] F. Althoff, G. McGlaun, and M. Lang. Using multi-
modal interaction to navigate in arbitrary virtual
VRML worlds. In Workshop on Perceptual User
Interfaces (PUI 2001), Orlando, Nov. 2001.

[3] F. Althoff, T. Volk, G. McGlaun, and M. Lang. A
generic user interface framework for VR applications.
In 9.th Int. Conf. on HCI, New Orleans, August 2001.

[4] M. Brelot and J. Dufourd. Ideas for new BIFS sensors
and applications. At 50th. MPEG meeting, Dec. 1999.

[5] A. Cheyer and L. Julia. Designing, developing and
evaluating multimodal applications. In WS on
Pen/Voice Interfaces (CHI 99), Pittsburgh 1999.

[6] K.-H. Engelmeier et al. Virtual reality and multimedia
human-computer interaction in medicine. IEEE WS
on Multimedia Signal Processing, pages 88–97, Los
Angeles, December 1998.

[7] Developer site of blaxxun interactive (Jan 2002).
http://www.blaxxun.com/developer/index.html.

[8] M. Latoschik et al. Multimodale Interaktion mit
einem System zur Virtuellen Konstruktion. Informatik
’99, 29. Jahrestagung der Gesellschaft für Informatik,
Paderborn, pages 88–97, October 1999.

[9] P. Morguet et al. Comparison of approaches to
continuous hand gesture recognition for a visual dialog
system. Proc. of ICASSP 99, pages 3549–3552, 1999.

[10] J. Nielsen. Usability Engineering. Morgan Kaufmann
Publishers Inc., 1993.

[11] S. L. Oviatt. Multimodal interface research: A science
without borders. Proc. of 6th Int. Conference on
Spoken Language Processing (ICSLP 2000), 2000.

[12] B. Schuller, F. Althoff, G. McGlaun, and M. Lang.
Navigating in virtual worlds via natural speech. In
9.th Int. Conf. on HCI, New Orleans, August 2001.

[13] A. Waibel, M. T. Vo, P. Duchnowski, and S. Manke.
Multimodal interfaces. Artificial Intelligence Review,
10(3-4):299–319, August 1995.

