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Abstract

Research on biometrical systems and especially
on face recognition systems has become of high
interest. Nowadays several approaches exist to
recognize frontal views of faces. Under cer-
tain constraints the recognition accuracy even for
huge databases seems to be acceptable. How-
ever, it has shown, that the recognition performance
of nearly all state-of-the-art systems dramatically
drops down, when faces rotated in-depth or even
profile views are presented.

In this work we present our actual experiments
and results of neural network based approaches for
face profile recognition systems. One of the main
challenges is to implement a self learning approach
that does not need any direct 3D information. The
key idea of our approaches is to derive the corre-
spondences between head profiles and frontal views
by examples automatically. With this approach we
are able to synthesize profile views of heads by pre-
senting frontal views. The quality of the result-
ing systems can be measured with Hidden Markov
Models (HMM) and an extension to the well-known
Eigenfaces approach. The performances are evalu-
ated on the MUGSHOT and the FERET database.

1 Introduction

Face recognition technology (FERET as introduced
by the US Army Research Laboratory, ARL) has
become increasingly important for several fields of
applications, such as controlling who is entering
a building (access control) or detection of violent
criminals and terrorists in airports or other public
places. Although many different approaches have
been presented for the frontal face recognition prob-
lem [1, 2], it seems not to be solved yet for real
world applications on huge databases, as also stated
in [3] and [4]. Especially the recognition of faces

rotated in depth is not generally solved.

Therefore this paper addresses our actual re-
search on recognizing synthesized faces rotated by
90 degrees in depth with neural and statistical ap-
proaches. When we started our work on this chal-
lenging task, we noticed, that there has not been
done much investigation in this area before. We
found several approaches, which concentrated on
generating synthesized 3D images of faces using
3D data [5, 6]. Other, newer approaches are mainly
based on so called head meshes or wire-frames to
model 3D information into planar images [7, 8].

However, all the approaches above make use of
expensive gathered or labeled 3D-data. Our goal
is to engineer a self-learning approach using suffi-
cient planar training material for the synthesis in-
stead. For this task we deploy a neural network to
learn the rotation process from training examples.
Another property of such an example is that it can
synthesize regions of the profile that were occluded
in the frontal view by the use of learned knowledge
such as the hair behind the ears.

To classify the quality of the profile views, we
examined HMM based classification approaches
and an extension of the well-known Eigenface ap-
proach.

The paper is structured as follows. Two different
approaches for face profile synthesis using neural
networks are introduced in the successive section,
which is followed by the classification techniques
using HMMs and an Eigenmugshots. In the next
section the obeyed databases are briefly introduced.
Hereafter the classification results of the presented
systems are discussed. The paper closes with a sum-
mary and outlook.
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2 Generation of Synthesized Profile
Views

As mentioned above one of the main goals in the
present work is to find neural structures that are able
to derive the relations between the frontal and the
profile view of a face. After the training phase of
such a network we are then able to generate profiles
of unknown persons by presenting the correspond-
ing frontal view. Although it would also be possi-
ble to generate frontal views from given profiles, we
mainly concentrated on the first task. However, we
do not expect major changes in the performances of
such systems.

In the following sections the obeyed neural struc-
tures for the generation of profiles are introduced in
more detail.

2.1 Synthesis Using Neural Networks

The first approach for the rotation process is based
directly on the gray level intensities of the obeyed
image pairs. The simple underlying assumption for
the network structure is the fact that the same point
in two orthogonal images from a rotated head is lo-
cated in the same plane (if they are visible at all).
Figure 1 illustrates this relation.

Figure 1: Orthogonal 2D images from 3D object

From this conclusion we derive MLP-networks
of the following structure: Rows in the 2 dimen-
sional output layer are derived over a hidden layer
from rows in the input layer at the same height (il-
lustrated in figure 2 for a typical image pair with
a dimension of 64 × 64 pixels). Because the right
part of a face has no direct relation the left profile,
this information is not used. In order to train a more

robust MLP against misalignment of image pairs,
information of the neighbored rows are also taken
into account. The layers itself are line wise fully
connected with each other.
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Figure 2: MLP for the generation of a profile view

For the generation of frontal views from given
profiles, analog relations can be used. Here the back
part of the head does not contain relevant informa-
tion to the frontal part of the face.
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Figure 3: MLP for the generation of a frontal view

For the MLPs activation functions sigmoid func-
tions were chosen and for the training of the param-
eters and weights we use the well-known RPROP-
algorithm. Examples for the training phase of the
MLP will be introduced later. However, the func-
tionality of the presented approaches is demon-
strated in the following figure.

Figure 4: Examples from real frontal and profile
views together with synthesized images

The figure shows that parts of the generated im-
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ages are noisy, which inspired us to implement an-
other approach for the synthesis.

2.2 Synthesis with Eigenmugshots

In this second approach we decided to use so-
called Eigenfaces which where first introduced by
Sirovich and Kirby [9] and later extend by Turk and
Pentland to the well known Eigenfaces [10]. As
mentioned above, we try to make the synthesized
images look more naturally using this technique.
We call this extension the Eigenmugshot approach.

The main idea behind this is to project all faces
into an universal Eigenspace using the principal
component analysis. The weights W of the Eigen-
faces can be used to measure the distance between
two given images directly. The following figure
shows the first ten Eigenfaces of each frontal and
profile view.

Figure 5: First ten Eigenmugshots of training mate-
rial

For our purposes this means, that we have to
compute the weights of the given examples for
frontal views and profile views separately. In the
training phase of a single layer MLP the weights of
the projected frontal views are learned together with
the weights of the corresponding profile views. Af-
ter this the network is able to estimate the weights
of unknown Eigenmugshots. The weights of the
Eigenmugshots in the Eigendomain can easily be
projected back into the image-domain again. Some
examples of typical Eigenmugshots are depicted be-
low. A comparison with figure 4 shows that the vi-
sual quality of the second approach is unexpectedly
not as good as that of the first one.

Figure 6: Examples of synthesized Eigenmugshots

3 Classification

To judge the quality of the systems presented above
and to test the usability for face recognition tasks,
we classify the synthesized profiles with the real
ones. For this purpose we studied 4 different clas-
sifiers, which can be divided into HMM-based and
Eigenmugshot-based approaches.

3.1 Face Recognition with HMMs

Hidden Markov Models have shown their excellent
performance in several domains of pattern recogni-
tion such as speech recognition, handwriting recog-
nition and even face recognition [11, 12].

3.1.1 Classical 1D-HMMs

In most HMM recognition approaches, continuous
classical 1-dimensional left to right first order mod-
els as described by Rabiner in [13] are used.

An arbitrary HMM λ is completely described by
• the number of internal emitting states qj given

by J ,
• a state transition matrix

←→
A

• the (continuous) production probability vector
~b, with the elements b1 . . . bJ .

The production probability bj in a certain state
j for a D-dimensional observation ~xj is given by
a multivariate Gaussian distribution consisting of a
mean value vector ~µj and a covariance matrix Σj .

In our case, face-images are represented by a
series of vertical stripes of gray level intensities,
grouped in column vectors X = [~x1 . . . ~xT ]. This
resulting feature sequence X is in a first approxi-
mation piecewise stationary.

Figure 7 summarizes such a 1-dimensional left
to right HMM with J = 3 emitting states as well as
the non emitting (hatched) start and end state.
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Figure 7: 1-dimensional HMM state transitions and
corresponding production probabilities

The unknown HMM parameters
←→
A and ~b have
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to be estimated before recognition using the well-
known Baum-Welch-Estimation procedure. Un-
known images can be classified by a maximum-
likelihood decision using the previously trained pro-
file models λ. The HMM with the highest probabil-
ity score corresponds to the person recognized and
to whom the unknown feature sequence or face will
be assigned.

3.1.2 Pseudo 2D-HMMs

In addition to the above described modeling tech-
nique, we also try to explore the performance of
an extension of this approach, which are the so
called pseudo 2-dimensional HMMs (P2D-HMMs).
These models have been formally introduced in [14]
where they have also been applied successfully to
problems such as face recognition and handwriting
applications. The main difference to 1-dimensional
HMMs is based on the state transition sequence, 2-
dimensional behavior of the observations can be re-
constructed.

������������ ����������������

������������ ������������
	�		�	
�

�
 ������������
�

�

�



�

�

���������
���

���������������
����������
���������������
�����

���������������
����������
���������������
�����

���������
������
���������
���

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������
���������

���������������
�����
���������������
�����

Figure 8: Correspondence of a 1D-HMM, its encap-
sulated representation and linear representation

3.1.3 Joint-ANN/HMM parameter estimation

In this subsection we present a third HMM based
recognition approach. The difference to the systems
above is, that we do not need generated synthesized
profiles. The HMMs are directly estimated from a
given frontal view. For this task we use similar neu-
ral structures as described above. But now the tar-
get values (outputs) of the MLPs are the mean val-
ues ~µj of the production probabilities used by the
1D-HMMs. These are typically the most relevant
parameters in the recognition phase.

For this purpose we have to generate appropri-
ate training-material, which is done by the deriva-
tion of the feature vector sequences X as described
above for each person contained in DB-1 in a first

step. Then a common HMM-model λp for face pro-
files is estimated. Hereafter the re-estimation of the
mean values ~µJ for each individual follows. These
computed mean values are further used as the target
values of the MLP output as depicted in figure 9.
The arrows in the network topology indicate again,
that the sub-nets are fully connected. The network
architecture is basically the same as in the structure
presented before.
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Figure 9: Subnets for the generation of a profile
model

In the recognition phase of the system, the mod-
els for the unknown individuals are assembled by
using the earlier trained common prototype model
λp and the computed mean values of the MLP with-
out an additional retraining. The recognition proce-
dure is again the same as the one presented for the
synthesized profiles. The whole setup is summa-
rized in figure 10.
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Figure 10: Overview of a recognition system using
joint parameter estimation

The advantage of this second structure is the fact,
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that the computed means need only to be inserted
into the previously computed prototype HMMs be-
fore the recognition can start. There is no necessity
for a complete re-modeling of the synthesized im-
ages. This vastly improves computation speed.

3.2 Face Recognition with Eigenmugshots

As mentioned earlier, Eigenmugshots can be classi-
fied by using the distance of the weights. For this
task a simple Euclidian distance is used. In con-
trast to the statistical approaches above, this classi-
fier is extremely fast. For the recognition, all dis-
tances between the unknown and all known profiles
are computed. The recognized person is that with
the smallest distance.

4 Description of the obeyed Databases

For the training of the MLPs and testing using
HMMs we need well defined sets of image pairs.
For this purpose we decided to make use of two
publicly available databases called the MUGSHOT
and the FERET database to facilitate possible fu-
ture comparisons. These databases are introduced
in more detail in the next two subsections.

4.1 Description of the MUGSHOT
database

In the training- and test phase of the systems,
we obeyed two disjoint sub-sets of the so-called
MUGSHOT-database. The NIST Special Database
18: Mugshot Identification Data is available from
the National Institute of Standards and Technology
(NIST) [15].

The MUGSHOT database contains images of
1573 cases, where most individuals are usually rep-
resented by only two photographs: one showing the
frontal view of the person’s face and the other show-
ing the person’s profile. The database contains pairs
of mainly male but also female cases at several ages
and representatives of various ethnic groups, peo-
ple with and without glasses or beards and many
different hairstyles. The lighting conditions and the
background of the photographs also change. The
photographs are provided from archives by the FBI.
The pictures contained in the database are stored as
8-bit gray scale images with different sizes. Al-
most all images were scanned at 500 DPI with a

Kodak MegaPixel camera. It turns out that a consid-
erable number of images are of bad quality. Images
are distorted, contain numbers printed in the back-
ground or are severely under-exposure. Such im-
ages are excluded from the further processing steps.
Figure 11 contains some original examples.

Figure 11: Examples of image pairs from the
MUGSHOT database

More information and examples
from the MUGSHOT database are
available in the World Wide Web at
http://www.nist.gov/srd/nistsd18.htm.

4.2 Description of the FERET database

The obeyed subset of the FERET database has been
assembled between 1993 and 1997 by the US De-
partment of Defense’s Counterdrug Technology De-
velopment Program through the Defense Advanced
Research Agency (DARPA) for performance evalu-
ations of face recognition systems. The final release
of the publicly available corpus consists of 14051
eight-bit gray-scale images of human heads with
views ranging from frontal to left and right profiles.
The images were taken at different locations and
times with different lighting conditions and cam-
eras.

Figure 12: Examples of image pairs from the
FERET database

A more detailed description of the FERET
database is given in [16] and in the World Wide Web
at http://www.nist.gov/humanid/feret.

4.3 Pre-processing and Subset-Selection

As previously mentioned, our system deploys artifi-
cial neural networks to synthesize the rotation pro-
cess of a given frontal view to a profile view. To
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estimate the parameters of the MLPs and of the cor-
responding HMMs, we define several data sets for
training and testing purposes.

Therefore the images are semi-automatically pre-
selected and pre-processed in the following way:
Photographs with unusually high distortions, per-
turbations or under-exposure are discarded. Each
image included in the experimental database is
manually labeled, so that all faces appear in the cen-
ter of an image with a moderate amount of back-
ground and with similar size of the faces. All re-
sulting images are re-scaled to a size of 64 × 64
pixels. Although the images are pre-processed, they
still show minor changes concerning the pose and
the tilting of about ± 5 degrees. They are also
not normalized regarding contrast or lighting con-
ditions. By this fact the transformation will become
more robust and less vulnerable against variations.
Preprocessed examples are given in Figure 13.

After the pre-processing the test and training sets
are defined. The first set of image pairs is called
DB-1 and is exclusively reserved for the training of
the neural structures. It consists of 600 image pairs
taken from the MUGSHOT database.

Then we select another 100 image pairs from in-
dividuals in the MUGSHOT database to form a sep-
arate sub-set we call DB-2. The third set called DB-
3 is taken from the FERET database and consists
also of 100 images. Finally we form DB-4, which
consists of DB-2 and DB-3 having 200 images. The
sets DB-2 to DB-4 are later required as test corpora
in the evaluation experiments.

Figure 13: Examples of pre-processed images

5 Results and Discussion

In the first test-row the performance of a system us-
ing synthesized images and a 1D-HMM classifier
is evaluated. During the training of the MLP with
DB-1, all net parameters are stored after every 5th
iteration. This enables us to evaluate the recognition

performance for the test-sets at different progresses
during the training phase.

As can be seen, our highest score is 60% using
synthesized profile views for DB-2, which consists
of 100 images. The performance for DB-3 is al-
ways worse than the performance of DB-2 and has
a maximum peak of 40%. For DB-4 we can mea-
sure a performance that lies between DB-2 and DB-
3 and has a peak of 42.5%. The lower recogni-
tion rates for the test-set DB-3 can be explained by
the fact that the images are from another database
(FERET) and may differ more from the training ex-
amples. The results of DB-4 furthermore depend
on the higher confusion in this set (200 examples).
As a 3 best list of the recognition scores of this sys-
tem shows, already now there are about 80% correct
among the top 3 candidates. The results are compa-
rable to a system that uses traditionally generated
profile views as presented in [5].
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Figure 14: Recognition scores in % for 1D-HMMs

Beside the modeling with 1D-HMMs, we also
evaluated the performance using P2D-HMMs for
the same images. However, because we just mea-
sured approximately one fourth of the recognition
rates (correctness) of the 1D-HMMs, this approach
was not further prosecuted. The reason for the
lower performance is probably relied on the fact that
the generated images are too noisy. This confuses
the warping capabilities of the P2DHMMs. The
noisy pictures violate the assumption of an at least
piecewise stationary signal.

The second test-row uses the joint parameter es-
timation idea. Figure 15 contains the recognition
rates of this joint system. As can be seen, the
highest score is 49% using the directly estimated
HMMs. This lower recognition rates may be ex-
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plained by the fact that the variances of the com-
mon model are not sufficient for a proper profile
model. Furthermore, the different training criteria
(error minimization of the MLP and maximum like-
lihood for the HMM) could be a problem.
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Figure 15: Recognition scores in % of both systems
for DB-2

In contrast to the observations of the first system
regarding the location of the training minimum er-
ror of the MLP and the maximum recognition score
for DB-2, both extremes are around iteration 100
for this second approach. This indicates, that the
MLP generalizes the HMM’s mean values in an op-
timal way. In table 1 the 1D-HMM based results are
summarized for a better overview.

data- no. of from highest highest
set pairs database score score

DB-1 600 MUGSHOT - -
DB-2 100 MUGSHOT 60% 49%
DB-3 100 FERET 40% -
DB-4 200 DB-{2+3} 42.5% -

Table 1: Overview of the results

Analog to the experiments above, we trained
neural structures for the generation of the Eigen-
mugshots. Here we again stored the outputs of the
MLPs at every fifth training iteration. After this we
classified the retransformed images using Euclidian
distances as well as 1D-HMMs.

The results from these experiments show, that
the simple Euclidian distance approach outperforms
the HMMs based classifier. Recognition scores of
50% for the Euclidian and poor 24% correct for the
HMMs were measured. We conclude, that slight

variations of the weights have a critical impact on
the retransformed image. The quality of the images
seems to be essential on the success of the HMM
based approach. The still lower performance can be
explained by the fact that the obeyed NN-topologies
are not as mature as those of the first systems yet.

As mentioned by Maurer in [17] the recognition
rates for the task to recognize unknown faces ro-
tated by 90, will not rise close to 100%. However,
the achieved score of 60% for 100 unfamiliar in-
dividuals is not too far away from the recognition
performance of human beings for this special task.
A comparison with other psychophysical studies in
a related work [18] has shown that even human be-
ings will not come even close to the perfect recog-
nition score. Some preliminary tests in our labo-
ratory confirmed such a human recognition rate of
70%-80% with several test under comparable test-
conditions. Considering this fact, we strongly be-
lieve that the rates we currently obtain already rep-
resent a respectable result and that we can obtain
further improvements in the future.

6 Conclusions And Outlook

In the presented work we introduced different ap-
proaches to recognize profiles of people, just us-
ing their frontal views. For this task no additional
3D-information was used. We reported recognition
scores of up to 60% for a test set of 100 people in
the MUGSHOT database, up to 40% of a test-set of
100 individuals from the FERET database and up to
42.5% correct for a test-set consisting of 200 indi-
viduals using synthesized profile views.

Furthermore, a stronger MLP/HMM combina-
tion was introduced using jointly estimated param-
eters. Although the computation speed was dras-
tically increased, we obtained lower recognition
scores of just up to 49% were obtained.

An Eigenmugshot approach was introduced,
which resulted in first recognition scores of up to
50%.

The performance of the profile recognition sys-
tems we presented competes with the systems pre-
viously presented in the literature. To obtain similar
or even better recognition rates than with our first
approach, alternative and improved network struc-
tures have to be examined. In the future we will use
connectionist approaches, which will also estimate
the variances of the models.
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