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ABSTRACT

In this work we present a novel multi-modal mixed-state
dynamic Bayesian network (DBN) for robust meeting event
classification. The model uses information from lapel mi-
crophones, a microphone array and visual information to
structure meetings into segments. Within the DBN a multi-
stream hidden Markov model (HMM) is coupled with a lin-
ear dynamical system (LDS) to compensate disturbances in
the data. Thereby the HMM is used as driving input for
the LDS. The model can handle noise and occlusions in all
channels. Experimental results on real meeting data show
that the new model is highly preferable to all single-stream
approaches. Compared to a baseline multi-modal early fu-
sion HMM, the new DBN is more than 2.5%, respectively
1.5% better for clear and disturbed data, this corresponds to
a relative error reduction of 17%, respectively 9%.

1. INTRODUCTION

Meetings are social events, were people exchange informa-
tion. Often a summarization of the meeting is necessary, for
example for people not attending the meeting or to fix deci-
sions. Nowadays these summarizations are mainly written
by a person attending the meeting. This process is both time
demanding and error-prone.

Thus it would be good, if meetings could be summarized
automatically. Projects like the ICSI meeting project [1] and
”Augmented Multi-party Interaction (AMI)” deal with this
topic of automatic speech transcription, analysis of videos,
and summarization of meetings.

A first step for the automatic analysis of the meetings is
a segmentation into meeting group action events like dis-
cussion or presentation [2]. This structuring can then be
used to produce a low level agenda and a summarization
of the meeting. Different approaches for this structuring,
based on hidden Markov models (HMMs) [2, 3] and dy-
namic Bayesian networks (DBNs) [4] have been introduced
for clear data sets.

However, in real meetings the data can be disturbed in
various ways: events like slamming of a door may mask
the audio channel or background babble may appear; the
visual channel can be (partly) masked by persons standing
or walking in front of a camera, or a laptop computer may
stand in front of the persons.

In this work we present a novel multi-modal approach for
meeting event recognition, based on mixed-state DBNs, that
can handle noise and occlusions in all channels.

2. MEETING DATA

The data for this work was collected in the IDIAP smart
meeting room [5]. The corpus consists of 60 videos with a
length of approximately 5 minutes. Each meeting has four
participants and is recorded with three cameras. All partic-
ipants have a lapel microphone attached and a microphone
array is placed on the table. Thus, the corpus provides high
quality audio-visual recording of the meetings.

To investigate the influence of disturbance to the recog-
nition performance, the evaluation data was cluttered: the
video data was occluded with a black bar covering one third
of the image at different positions. The audio data from the
lapel microphones and the microphone array was disturbed
with a background-babble with 10dB SNR.

In this work 30 undisturbed videos were used for the
training of the models. The remaining 30 unknown videos
have been cluttered for the evaluation.

3. GROUP ACTION MEETING EVENTS

In the recorded corpus each meeting has four participants:

S = {S1, S2, S3, S4}

For a first structuring of the meeting the following eight dif-
ferent group actions are widely used [2, 3, 4]:

E = {ED, EM,1, EM,2, EM,3, EM,4, EN , EP , EW }
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where the events Ej are

ED: Two or more persons are talking with each other.
EM,Id: The person Id is talking without being interrupted.
EN : All persons write something down.
EP : One person in front of the room gives a presentation.
EW : One person writes on the whiteboard.

Each meeting can now be modeled as a sequence of these
group actions Ej . In average each meeting in the corpus
consists of five action segments. This sequence of actions
can then be used as a rough structuring of the meeting [2].

4. FEATURES

Feature vectors have been extracted from the audio-visual
stream. In the meeting room the four persons are expected
to be at one of six different locations: one of four chairs, the
whiteboard, or at a presentation position:

L = {C1, C2, C3, C4,W, P}

This information has been used to extract position depen-
dent audio- and visual-features. The signals from the lapel-
microphones have been used to add speaker dependent au-
dio features. Altogether 68 features from three modalities:
microphone array, lapel microphone, and visual information
have been used.

4.1. Audio features

For each of the speakers four MFC coefficients and the en-
ergy were extracted from the lapel-microphones. This re-
sults in a 20-dimensional vector ~xS(t) containing speaker-
dependent information. A binary speech and silence seg-
mentation (BSP) for each of the six locations in the meeting
room was extracted with the SRP-PHAT measure [3] from
the microphone array. This results in a six-dimensional dis-
crete vector ~xBSP (t) containing position dependent infor-
mation.

4.2. Visual features

For each of the six locations L in the meeting room a differ-
ence image sequence IL

d (x, y) is calculated by subtracting
the pixel values of two subsequent frames from the video
stream. Then seven global motion features [6] are derived
from the image sequence: The center of motion is calculated
for the x- and y-direction according to:

mL
x (t) =

∑

(x,y) x · |IL
d (x, y, t)|

∑

(x,y) |I
L
d (x, y, t)|

and

mL
y (t) =

∑

(x,y) y · |IL
d (x, y, t)|

∑

(x,y) |I
L
d (x, y, t)|

(1)

The changes in motion are used to express the dynamics of
movements:

∆mL
x (t) = mL

x (t) − mL
x (t − 1)

and
∆mL

y (t) = mL
y (t) − mL

y (t − 1) (2)

Furthermore the mean absolute deviation of the pixels rela-
tive to the center of motion is computed:
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Finally the intensity of motion is calculated from the aver-
age absolute value of the motion distribution:

iL(t) =

∑

(x,y) |I
L
d (x, y, t)|

x · y
(4)

These seven features are concatenated for each time step in
the location dependent motion vector

~xL(t) = [mL
x ,mL

y ,∆mL
x ,∆mL

y , σL
x , σL

y , iL]T (5)

With this motion vector the high dimensional video stream
is reduced to a seven dimensional vector, but it preserves
the major characteristics of the currently observed motion.
Concatenating the motion vectors from each of the six po-
sitions ~xL(t) leads to the final visual feature vector

~xV (t) = [~xC1 , ~xC2 , ~xC3 , ~xC4 , ~xW , ~xP ]T (6)

that describes the overall motion in the meeting room with
42 features.

5. DYNAMIC BAYESIAN NETWORK MODEL

A Bayesian network (BN) is a graphical model that de-
scribes statistical dependencies between a set of variables.
The variables are marked as nodes and the dependencies
between them with edges. Dynamic Bayesian networks
(DBNs) are a generalization of BNs, they are used to de-
scribe time series: One BN represents one time slice. Ad-
ditionally edges describe the dependencies of variables be-
tween subsequent time slices. For a given observation O

with length T the DBN is ”unrolled”: The time slices are
repeated T-times and connect through their inter-edges. Dif-
ferent learning and inference methods are known for DBNs.
Well known models, like Hidden Markov Models (HMMs)
or linear dynamical systems (LDS) [7] can be described
within the DBN-framework.
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Fig. 1. Multi-stream mixed-state dynamic Bayesian network model

5.1. A novel multi-stream mixed-state DBN

Mixed-state DBNs are an HMM coupled with a LDS, they
have been introduced and applied to recognizing human
gestures in [8]. Here, this approach is extended to a novel
multi-stream DBN for meeting event recognition.

The model is shown in Fig. 1. Each row represents one
time slice. Arrows pointing down represent the dependen-
cies between subsequent time slices. Arrows pointing to the
right represent dependencies between hidden and observed
variables within one time slice. Hidden variables are white,
observed variables shadowed. Squares mark discrete proba-
bility distributions, circles denote continuous Gaussian dis-
tributions.

Each of the three observed features microphone array
(BSP), lapel microphone (MFCC) and the visual global mo-
tion stream (GM) is modeled in a separate stream. The
streams correspond to a multi-stream HMM, where each
stream has a separate representation for the features. How-
ever, the visual stream is connected to a LDS, resulting in a
mixed-state DBN. The LDS is implemented as four Gaus-
sian nodes, in Fig. 1 represented by the two columns on
the right (XGM

t , OGM
t ). This LDS is a Kalman filter, us-

ing information from all streams as driving input, to smooth
the visual stream. With this filtering, movements are pre-
dicted based on the previous time-slice and on the state of
the multi-stream HMM at the current time. Thus occlusions
can be compensated with the information from all channels.

With the DBN framework, this coupled HMM-LDS sys-
tem can be described by the joint stream probability distri-
butions. Thereby, the probability PM of the lapel micro-
phone stream is:

PM = P (HM
0 )
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the probability PB of the microphone array stream can be
calculated as:
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(8)
and the probability PG of the coupled HMM-LDS-structure
for the global motion stream:
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Each meeting event can now be described by a DBN with
the model parameters

Ej = {HB , HM ,MM , HG, UG, XG}

Given an observation O and the model parameters Ej , the
joint probability of the model is:

P (O,Ej) = PB · PM · PG (10)

The model parameters are learned for each of the eight
event classes j with the EM-algorithm during the training
phase. In [9] an EM-algorithm based on variational infer-
ence was introduced, that can be applied to mixed-state
DBNs [8]. This algorithm can be adapted to the multi-
stream mixed-state DBN.

During the classification an unknown observation O is
presented to all models Ej . Then P (O|Ej) is calculated for
each model and O is assigned to the class with the highest
likelihood:

argmax
Ej∈E

P (O|Ej) (11)

Applying the Viterbi-algorithm to the model, leads to a
meeting event segmentation framework. This is however
not the scope of this work.



Single modal HMMs Multi modal
Audio Array Visual HMM DBN

I Clear test data 83.10% 83.61% 67.24% 85.22% 87.83%
II Lapel microphone disturbed 61.11% 80.87% 86.96%
III Microphone array disturbed 75.41% 83.48% 86.96%
IV Visual stream 1/3 occluded 40.90% 82.61% 83.48%
V All three streams disturbed 80.00% 81.74%

Table 1. Meeting event recognition performance for clear and disturbed data.

6. EXPERIMENTAL RESULTS

The multi-stream mixed-state DBN was evaluated on the
IDIAP meeting corpus (see Sec. 2) and compared to three
single-stream HMMs and a baseline early fusion HMM.
Each single-stream HMM was trained and evaluated with
only one modality. For the early fusion HMM the frame
rates of the three observation streams were adjusted and
concatenated to one large stream.

The models were trained with clear data from 30 videos.
For the evaluation clear and cluttered data from the remain-
ing 30 unknown videos have been used. In the first evalu-
ation set (I) clear data was used. In the second set (II) the
lapel microphone data and in the third set (III) the micro-
phone array was disturbed with a 10dB SNR babble. In the
fourth set (IV) one-third of the visual stream was occluded
with a black bar. The fifth set (V) has all three disturbances.

Table 1 shows the recognition results of all models. It can
be seen, that the two audio streams have a good recognition
rate for clear data. The visual stream alone does not provide
very much information. However after the sensor fusion the
visual stream improves the recognition rate, significantly.
The new DBN reaches a recognition rate of 87.83% for clear
(I), and 81.74% for completely disturbed data (V). Com-
pared to the early fusion HMM, the multi-modal mixed-
state DBN reduces the relative error by 17% (2.61% ab-
solute), respectively 9% (1.74% absolute) for clear (I) and
disturbed (V) data. Thus, the DBN model is highly robust
against noise and occlusions in all channels, and outper-
forms all evaluated HMM approaches.

7. CONCLUSIONS AND FUTURE WORK

In this work a new multi-modal mixed-state DBN for robust
meeting event recognition from clear and disturbed data has
been presented. Three audio and visual modalities are fused
in a multi-stream HMM. Within the graphical model this
HMM is coupled to a LDS. This LDS uses information from
all streams as driving input, to smooth the visual stream.
The model is a mixed-state DBN that is robust against noise
and occlusions in all streams.

The DBN was compared to single-stream HMMs and an
early fusion HMM. The DBN shows a significantly higher

recognition performance than all single-modal HMMs.
Compared to an multi-modal early fusion HMM, the novel
DBN has a relative error reduction of 17% for clear and 9%
for disturbed data. In the future we plan to add higher se-
mantic features, like detected persons to the model.
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