
Abstract — Affective Computing has grown an important 

field in today’s man-machine-interaction, and the acoustic 

speech signal is very popular as basis for an automatic 

classification at the moment. However, recognition 

performances reported today are mostly not sufficient for a 

real usage within working systems. Therefore we want to 

improve on this challenge by evolutionary programming. As 

a starting point we use prosodic, voice quality and 

articulatory feature contours. We next propose systematic 

derivation of functionals by means of descriptive statistics. In 

order to analyze cross-feature information and feature 

permutations we use Genetic Algorithms, as a complete 

coverage of possible alterations is NP-hard. The final 

attribute set is at the same time optimized by reduction to the 

most relevant information in order to reduce complexity for 

the classifier and ensure real-time capability during 

extraction process. Classification is fulfilled by diverse 

machine learning methods for utmost discrimination power. 

We decided for two public databases, namely the Berlin 

Emotional Speech Database, and the Danish Emotional 

Speech Corpus for test-runs. These clearly show the high 

effectiveness of the suggested approach. 

Keywords — Affective Computing, Emotion Recognition, 

Speech Processing, Genetic Feature Generation 

I. INTRODUCTION

FFECTIVE COMPUTING has grown an important field of 
research in today’s man machine interaction and 

multimedia retrieval [1]. Applications reach from 
surveillance in public transport to emotion aware board 
computers in cars. Speech analysis is among the most 
promising information sources considering automatic 
emotion recognition besides mimic, physiological or 
context data analysis. While performance obtained by 
automatic systems based on this channel are among most 
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reliable ones, it is still not sufficient for usage in real-life 
scenarios [1, 2]. We therefore strive to bridge the gap 
between the commercially highly interesting multiplicity 
of potential applications and current accuracies [1, 2, 3, 4].

In our previous work we demonstrated that inclusion of 
linguistic analysis of the spoken content helps to improve 
overall performance [5]. However, within this work we 
want to focus on the analysis of the acoustic signal, to 
demonstrate genetic feature generation and selection to 
improve on this stream. One advantage thereby is that no 
speech recognition engine is necessary in the latter usage. 
The optimal set of acoustic features is largely discussed 
[1]. Still, it seems mostly agreed that static features 
perform better than dynamic classification of multivariate 
time-series, as shown in our explicit comparison [6]. The 
basis of most works is formed by pitch, energy, and 
durations. Some works also include spectral information 
or formants. In [3,4,5] large feature sets are introduced 
and reduced by diverse means of feature selection as 
floating search methods and principal component based 
reduction. While feature selection is a reasonable starting 
point, we feel that a systematic generation of features 
helps to form a broader basis to start from. Deterministic 
generation comes to its limits, if we aim at cross-feature 
relations and novel permutations not considered, yet. In 
this respect we suggest an evolutionary approach to this 
problem. Genetic Algorithms (GA) have already been 
shown successful in the field of Music Information 
Retrieval [7]. In this work we therefore want to transfer 
this powerful tool. 

Most recognition performances are reported on 
individual databases and emotion sets. However, there are 
public corpora evolving at the time. We therefore want to 
demonstrate the effectiveness of our suggestions on such. 
As the right choice of classifiers and effect of emotion set 
reduction is also of interest, we provide results in this 
respect on the chosen public databases, of which one has 
been proposed in a comparison of 31 corpora in [3]. 

The paper is structured as follows: Section II deals with 
basic contour extraction, section III with the systematic 
generation of functionals, and section IV with the genetic 
extension of this idea. In section V we discuss optimal 
classification. In sections VI and VII the databases are 
described in detail and results are presented. Finally we 
draw conclusions and refer to future research activity. 
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II. LOW-LEVEL-DESCRIPTORS

As a basis for feature generation we extract low-level 
contours of a whole phrase. Such global phrase-wise view 
is obligatory due to database annotations available. We 
use state-of-the-art preprocessing of the audio signal: a 
Hanning windowing is used for contours in the time 
domain, Hamming for spectral analysis. 20 ms frames are 
analyzed every 10 ms. 

For prosodic information we extract the contours of 
elongation, intensity, and intonation. We furthermore 
estimate durations of pauses and syllables. Out of the 
elongation we calculate the zero-crossing-rate. We use 
standard frame energy to include intensity information 
based on physical relations. Intonation is respected by 
auto-correlation-based pitch estimation. We thereby divide 
the speech signal correlation function by the normalized 
correlation function of the window function and search for 
local maxima besides the origin. Dynamic programming is 
used to back-track the pitch contour in order to avoid 
inconsistencies and reduce error form a global point of 
view. Finally, the named durations are estimated based on 
intensity considering pause duration, and voiced/unvoiced 
parts duration for syllable length based on intonation. 

In order to include voice quality information we also 
integrate the location and bandwidth of formants one to 
seven, harmonics-to-noise-ratio (HNR), MFCC 
coefficients well known in speech processing, and the FFT 
spectrum as basis for low-band energies -250 Hz and -650 
Hz, spectral roll-off-point, and spectral flux. Formant 
location and bandwidth estimation is based on resonance 
frequencies in the LPC-spectrum of the order 18. Back-
tracking is used here, as well. The HNR is calculated as 
logHNR to better model human perception. It also bases 
on the auto correlation of the input signal. The usage of 
MFCC is highly discussed, as these tend to depend too 
strongly on the spoken content. This seems a drawback, as 
we want to recognize emotion independently of the 
content. However, they have been proven successful, yet, 
and form a very good basis for genetic generation, as 
thereby inter-band-relations will be analyzed. The further 
spectral features are often used in Music Retrieval, and are 
included to observe their relevance within this task.  

Finally, as articulatory features we use the spectral 
centroid. It should be mentioned that part of these 
contours are comprised within the novel MPEG-7 LLD 
standard. Likewise, the following methods can be partly 
transferred in order to recognize emotion basing on 
MPEG-7. 

III. SYSTEMATIC FUNCTIONAL GENERATION

In former works we showed the higher performance of 
derived functionals instead of full-blown contour 
classification [4]. We therefore use systematic generation 
of functionals f  out of time-series F  by means of 
descriptive statistics: 

:f F  (1) 

First of all the contours are smoothed by symmetrical 

moving average filtering with a window size of three. 
Likewise we are less prone to noise in the calculation. 
Successively, speed ( ) and acceleration ( 2 ) are
calculated for each basic contour described in section II. 
Afterwards we compute linear momentums of the first 
four orders, namely mean, Centroid, standard deviation, 
Skewness and Kurtosis, as well as extrema, turning points 
and ranges. In order to keep dimensionality within range 
we decide by expert knowledge which functionals to 
calculate. The following table 1 gives an overview. 

TABLE 1: OVERVIEW DERIVED FEATURES.
Number [#] F 2,F f
Elongation 1 1 3 
Intensity 1 3 11 
Intonation 1 3 12 
Duration (2) (2) 5 
Formants 14 28 105 
MFCC 15 45 120 
HNR 1 1 3 
FFT based 5 7 17 
Total 38 88 276 

IV. GENETIC FEATURE GENERATION

So far we only considered features based on single 
contours. By association of these we can obtain a high 
number of new information as the named inter-band 
dependency. As a deterministic and systematic generation 
comes to its limits if we aim at full blown search - already 
with a limited number of allowed operations - we decided 
for GA based search through the possible feature space. 
Thereby further more alteration of attributes by 
mathematical operations can be performed and may lead 
to better representations of these. Consider here fore the 
standard use of logarithm for HNR representation. Also, 
such feature permutation can be seen similar to the 
Kernel-trick in Support Vector classification (see section 
V). However, while an optimal Kernel has to be selected 
empirically, genetic generation is a self-learning approach 
to feature space transformation based on random injection.  

Still, if we increase the total number of attributes most 
classifiers suffer under complexity problems. This is 
especially true for sparse data, as the aimed at emotional 
data. A parallel selection of most relevant information and 
reduction to it is therefore mandatory. Feature selection is 
also fulfilled by GA based search. 

GA form a very powerful bioanalog method basing on 
Darwin’s survival-of-the-fittest principle of mutation and 
selection [10]. Following Neo-Darwinists, we also include 
crossing of parental DNA information - in our case feature 
crossing. GA are computationally expensive, but they can 
be parallelized to a high degree. Calculation is only 
needed once prior to find the optimal feature set. 

The precondition is to have a start-set of effectually 
different individuals that represent possible solutions to 
the problem. In our respect these are acoustic features 
carrying information about the underlying emotion. We 
have accomplished this step in section III. A cyclic run is 
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afterwards executed until an optimal set is found, which 
resembles a local maximum of a problem. By an 
initialization probability, set to 0.8 in our case, it is 
randomly decided which original features are chosen for 
one step of genetic generation. We here fore decided to 
have a population size of 20 features at a time. Next a 
fitness function is needed in order to decide which 
individuals survive. Thereby the aimed at classifier forms 
a reasonable basis in view of wrapper based set 
optimization. As a selection algorithm we chose Roulette 
Wheel, which gives a higher probability for individuals 
with high fitness to be chosen. However, we always 
additionally ensure to keep the best feature within a cycle. 
From a population size of N we make a bootstrap sample 
of the same size N. Thereby multiple instances of the same 
individual may be contained in a so called Mating Pool.
Out of this pool we randomly take N/2 individuals for 
single-point-crossing with a given cross-over probability 
set to 0.6 in our case. The mentioned fitness is also used to 
decide how many children may be produced by a pair. The 
next phase is mutation, again by a certain probability, 0.6 
in this case. We chose reciprocal value, addition,
subtraction, multiplication and division as mathematical 
operations for this purpose. After mutation an iterative 
jump to population generation takes place, until an 
abruption criterion is fulfilled. We decided for a maximum 
of 50 generations, and 40 of them without improvement. 

Figure 1 gives an overview of the principle of iterative 
genetic generation and genetic selection until maximum 
accuracy is reached. These parts have to be executed only 
during the training phase. It has to be mentioned that the 
final sets selected are influenced by the learning set. 
Within the recognition phase the system resembles a 
conventional pattern recognition engine. 
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 Fig. 1. Overview of the iterative generation principle 

V. AUTOMATIC CLASSIFICATION

The optimal classifier is broadly discussed [1,2]. In [5] 
we made an extensive comparison including Naïve Bayes, 
k-Nearest Neighbor classifier, Support Vector Machines 
(SVM), Decision Trees, and Neural Nets. The major 
drawbacks of the firstly named well known statistical 
model-based Naïve-Bayes (NB) classifier is its basing 
assumption that features are independent given class, and 
no latent features influence the result. Another rather 
trivial variant is a memory-based classifier using 
Euclidean distance. If a majority vote among the k nearest 
neighbor (kNN) reference instances is fulfilled this 
classifier also resembles a statistical approach. Support 
Vector Machines (SVM) can be seen as an analogon to 
electrostatics. Thereby a training sample corresponds to a 

charged conductor at a certain space, the decision function 
an electrostatic potential function, and the learning target 
function the Coulomb energy. SVM show a high 
generalization capability due to a structural risk 
minimization oriented training. In this evaluation we use a 
couple-wise decision for multi-class discrimination and a 
polynomial kernel. As for Decision Trees we chose C4.5. 
In general these are a simple structure where non-terminal 
nodes represent tests on features and terminal nodes 
reflect decision outcomes. Finally, Neural Nets are a 
standard procedure in pattern classification. We chose 
them in order to show a wholly bioanalog variant 
combining the power of genetic algorithms and neural 
nets. They are renowned for their non-linear transfer 
functions, their self-contained feature weighting 
capabilities and discriminative training. We use a Multi-
Layer Perceptron (MLP) having one hidden with sigmoid 
transfer functions, and softmax outputs. Further more we 
demonstrate how more powerful classifiers can be 
constructed by means of meta-classification as 
MultiBoosting or Stacking. However, we focus on base 
classifier herein. For more details on classifiers refer to 
[11]. 

VI. DATABASES

In order to provide results on a public corpus we 
decided for the Berlin Emotional Speech database (EMO-
DB) [8], which consists of 816 phrases in total. The 
emotion set resembles the MPEG-4 standard consisting of 
anger, disgust, fear, joy, sadness and surprise, besides an 
exchange of surprise in favor of boredom and added 
neutrality. 10 German sentences of emotionally undefined 
content have been acted in these emotions by 10 
professional actors, 5 of them female. Throughout 
perception tests by 20 probands 488 phrases have been 
chosen that were classified as more than 60% natural and 
more than 80% clearly assignable. The database is 
recorded in 16 bit, 16 kHz under studio noise conditions. 

For further results on another dataset we also chose the 
Danish Emotional Speech Corpus (DES) [9]. In this 
database the four emotions anger, joy, sadness, and 
surprise of the MPEG-4 set plus neutrality are contained. 
Four professional Danish actors, two of them female, 
simulated the word yes and no, 9 sentences and two text 
passages in each emotion. We split the text passages into 
single sentences and thereby obtained 414 phrases in total. 
The set was recorded in 16 bit, 20 kHz PCM-coding in a 
sound studio. 20 test-persons, 10 of them female, 
reclassified the samples in a perception test. Their 
recognition rate was between 59% and 80% with an 
average resembling 67.32%. 

VII. RESULTS AND CONCLUSIONS

Within this section we present results obtained by test 
runs on the described databases. As a general mean of 
evaluation we use ten-fold stratified cross-validation. 

In order to verify our former results [6] considering 
direct time series-classification versus functional 
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approaches, we used standard Hidden-Markov-Models to 
classify the contours of intensity, intonation, MFCC and 
their derivatives. A test-run was performed on the EMO-
DB corpus. 50.79% maximum accuracy could be reached 
compared to 74.39% by use of functionals basing on the 
same contours, and SVM classification. 

In table 2 the performance based on single feature 
groups is shown. It can be clearly seen, that the compound 
of all systematically generated features outperforms each 
individual group. However, genetic generation (gen.) and 
selection (sel.) leads to far better results, especially in the 
case of DES. The final optimal feature vector consisted of 
101 features for EMO-DB and 75 for DES.  

TABLE 2: RECOGNITION ACCURACIES BY FEATURE GROUPS.
Accuracy [%] EMO-DB DES 

Duration 27.46 19.08 
HNR 30.33 25.60 
Elongation 33.40 36.23 
Intensity 48.16 39.61 
Intonation 62.09 32.85 
Formants 63.73 41.79 
FFT Spectrum 70.70 39.86 
MFCC 77.25 57.97 
All Features 84.84 65.94 
Genetic Gen. + Sel. 87.70  75.36 

The next table 3 gives an overview of classifier 
comparison. We always chose the optimal classifier 
configuration and feature set as shown in table 2. SVM are 
first choice on both datasets, but MLP follow close. 

TABLE 3: RECOGNITION ACCURACIES BY CLASSIFIERS.
Accuracy [ %] EMO-DB DES 

NB 73.98 52.42 
1NN 75.82 31.16 
kNN 78.89 50.73 
SVM 87.70 74.15 

C4.5 61.48 51.69 
MLP 86.48 71.98 

Figure 2 and 3 demonstrate the effect of emotion set 
reduction. A sliding window technique over classes was 
used to estimate the 120 permutations for the 7 emotions 
contained in EMO-DB by 42 runs in total. On DES we 
calculated all 26 variants of the 5 emotions. 
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Fig. 2. Influence of the emotion-set size, EMO-DB. 
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Fig. 3.Influence of the emotion set-size, DES. 

The final table demonstrates the effectiveness of our 
suggested approach. It provides human perception 
accuracy as reported in [8, 9] and maximal automatic 
classification performance as reported in [3, 4]. Finally 
our best results with and without genetic generation and 
optimization are shown. 

TABLE 4: COMPARISON RECOGNITION ACCURACIES.
Accuracy [%] EMO-DB DES 

Human 84.25 67.32 
Other works 77.4 [4] 51.6 [3] 
Deterministic set 84.84 65.94 
Genetic set 87.70 74.15 

Likewise, we showed an effective approach to 
systematic functional derivation and successful cross-
functional analysis and permutation considering by 
Genetic Feature Generation. In future research we aim at 
investigation on the spontaneous AEC database. 
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