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Abstract

We present an approach to explicit, statistical, lexical-level
out-of-vocabulary (OOV) word modeling for direct integration
into the search space of a one-stage speech interpretation sys-
tem. For this purpose, a generic pronunciation model for un-
known words is derived from large pronunciation lexica and,
optionally, word frequency knowledge. Known statistical lan-
guage modeling (LM) methods are utilized to estimate different
phoneme LM and apply different smoothing techniques. The
resulting OOV word models are integrated with the hierarchical
language model of our uniform modeling framework by declar-
ing semantically irrelevant parts of the training utterances as un-
known. Experiments were conducted with two different OOV
training lexica on an airport information dialogue application,
evaluating the results with both in-vocabulary (IV) and OOV-
related metrics. Results for various OOV model configurations
are presented, showing that OOV detection rates of 60-70% can
be achieved with 1-2% falsely accepted IV words, simultane-
ously improving accuracy on the semantic representation.

1. Introduction
In closed-vocabulary speech recognition and understanding sys-
tems, out-of-vocabulary (OOV) words inevitably cause recog-
nition errors because they are silently misrecognized as in-
vocabulary (IV) words. Even worse, surrounding words are
often also affected because of erroneous segmentation of the
misrecognized OOV word. In experiments reported in [1], an
OOV word caused about two misrecognized words on average.
Hence, the suitability of a closed-vocabulary approach largely
depends on the question if the OOV rates of the target applica-
tion and the caused errors are acceptable. Due to the difficulty
of the task of speech understanding, most of these systems to-
day typically operate in narrow application domains with lim-
ited vocabulary size. In these circumstances, high rates ofOOV
words must be expected if users talk freely to the system. This
can be the case even if great effort is taken to make all seman-
tically relevant lexical items known to the system, if usersare
oblivious to domain limitations and many out-of-domain utter-
ances occur. Moreover, the ability to detect OOV words can be
vital for a spoken dialogue system in order to purposefully ask
the user to rephrase parts of his utterance, instead of continuing
with the misrecognized words.

In [2] we introduced our One-stage Decoder for Interpre-
tation of Natural Speech (ODINS), which tightly integratesau-
tomatic speech recognition and natural language understanding
techniques in a one-stage decoding process. As we expect high
rates of unknown words for the target application fields, ODINS
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should be able to detect OOV words and also avoid errors at
surrounding words. Therefore, explicit knowledge of OOV
words should be integrated directly into the decoding process
of ODINS. ODINS decodes meaning representations directly
from speech with the aid of weighted transition network hier-
archies (WTNH). WTNH unify acoustic-phonetic, lexical and
syntactic-semantic modeling in a single modeling framework.
Hence, we need to convert explicit OOV models to weighted
transition networks in order to represent them within WTNH.

The explicit OOV model can be built on the acoustic level
or on the lexical level. For an acoustic-level OOV model as in
[1], one or several HMM models for OOV words are trained,
so that a considerable amount of acoustic training data for
OOV words needs to be available as an additional knowledge
source. For a lexical OOV model, existing phoneme HMM
are combined in a suitable way, e.g. by deriving a pronunci-
ation model from large pronunciation lexica. A lexical OOV
modeling approach similar to [3] was considered most suitable
for our task. Firstly, because the OOV words occurring in the
limited-domain applications for ODINS are mostly common
words of the target language, and therefore are not expected
to have substantially different acoustic-phonetic properties than
the modeled IV words. Secondly, because large pronunciation
lexica are meanwhile available for many languages, whereas
it can be more difficult to obtain the knowledge source for
acoustic-phonetic OOV modeling, i.e. acoustic training data.
As discussed in [1], the main drawbacks of lexical OOV mod-
eling are a tendency for over-generation and the resulting need
for OOV model penalization, and high computational require-
ments. Whereas we address the former issue by examining the
sensitivity of OOV models against penalty variations, analysis
of run-time performance was not a focus of this work. Yet, some
results on OOV model accuracy for reduced OOV model sizes
are reported.

This work is structured as follows: Different methods to
estimate lexical OOV word models from large pronunciation
lexica are presented in Section 2. The integration of the result-
ing OOV models with our hierarchical language model [4] is
discussed in Section 3. Section 4 presents suitable evaluation
metrics to describe the effects of OOV modeling on system per-
formance. In Section 5, experimental results for various system
configurations are presented.

2. Phoneme Language Models
Similar to [3], we consider OOV words by a generic pronunci-
ation model for arbitrary words. We use two main knowledge
sources for model estimation, namely pronunciation lexicaand
word frequency lists. From these knowledge sources, statisti-
cal ‘language models’ (LM) of phoneme sequences for word
pronunciations can be generated using standard techniques. We

gue
Textfeld
From: Interspeech 2005, Lisboa, ISCA



examine two different types of phoneme LM, namelyn-gram
LM (as in [3]) and so-called exact LM. In ann-gram LM, only
the previousn − 1 symbols are considered to determine the
likelihood of the current symbol. Through this, ann-gram LM
is able to cover arbitrary-length sequences, and to generalize
from the data ‘seen’ during training to new, ‘unseen’ symbol
sequences. This especially includes cutoff words which canoc-
cur frequently in natural speech. In contrast, exact LM exactly
cover the symbol sequences seen during training, i.e. they are
not able to generalize.

Typically, the basic LM weights are maximum-likelihood
estimates, i.e. normalized counts of events from a trainingcor-
pus. In data sparsity, these counts are assumed to be unreliable,
and hence smoothed by reducing and re-distributing probability
mass. A comparative study of a number of smoothing tech-
niques forn-gram LM is given in [5]. Further generalization
of n-gram LM is achieved by combination with lower-ordern-
grams through backoff. Here, we use ‘canonical’ Katz back-
off smoothing, and modified Kneser-Ney smoothing as pro-
posed in [5]. n-Gram LM and their transition network rep-
resentations are computed with the SRILM Toolkit [6]. As
context-dependent triphone HMM are used as acoustic models,
phonemes must be traversed in the right order, i.e. with match-
ing right and left contexts. In order to ensure this, unigram
backoff is disallowed. We also examine removal of higher-order
backoff from phonemen-gram LM. Furthermore, we tested if
discrimination between OOV and IV words can be improved by
excluding IV words from the OOV training lexicon.

For exact LM, additive discounting and Good-Turing dis-
counting (see e.g. [5]) are applied directly on the network level,
i.e. we use network transitions as the basic events. Transition
networks of exact LM are generated by representing the train-
ing phoneme sequences as a list of regular expressions, which
is then compiled into a finite-state automaton and minimizedby
use of the Lextools and FSM Library toolkits [7, 8].

The German Phonolex [9] and Celex [10] pronunciation
lexica were utilized as knowledge sources for phoneme LM es-
timation. From Phonolex, the manually checked ‘core’ pronun-
ciations of 22k inflected words were used. As the phoneme
sets of Phonolex and ODINS are both similar to the Verbmobil
[11] definitions, only few phoneme mappings had to be per-
formed. The German Celex database contains 52k lemmata
with 366k corresponding wordforms. Phoneme set adaptation
was more difficult than for Phonolex. Wordforms containing
unknown phonemes were removed, leaving 314k pronuncia-
tions for OOV model estimation. Celex also contains word
frequency information from different sources including sponta-
neous speech transcriptions. This was optionally used to weight
the pronunciations accordingly. Weighting is performed byesti-
mating phoneme LM from a modified pronunciation list, which
contains as many copies of each word pronunciation as the word
frequency value suggests.

3. Integration with HLM
Currently, our speech interpretation approach utilizes noex-
plicit syntactic or morphologic knowledge, but the semantic
analysis is performed directly on the word level with the aidof
the so-called hierarchical language model (HLM) [4]. There-
fore, the OOV word model needs to be integrated with the
HLM, i.e. it must be defined at what positions OOV words may
occur in utterances and which likelihood is assigned to them.
For this purpose, we augment the existing symbol set with a
new word symbol ‘OOV’. Then, we add OOV word annotations

to the speech corpus by declaring some of the previously known
words as unknown, replacing their word symbol by ‘OOV’. We
denote these words asknown OOV words, in contrast to the
’real’ unknown words that never occur in the training set. After
these steps, the HLM building process can be applied as before
[4]. Later on, the generated OOV pronunciation model is added
to the WTNH.

In general, candidates for known OOV words are all seman-
tically irrelevant words within the given domain. It may never-
theless be desirable to keep some of the semantically irrelevant
words in the vocabulary, because they have syntactic relevance
or because their effect on confusability is larger as OOV word
than as IV word. In this work, we examine two different sets of
OOV word annotations on a speech corpus, yielding OOV rates
of 23% and8% on the evaluation data. In the23%-set, all sur-
face words (not contained in a word class or semantic concept)
are declared unknown, whereas in the8%-set, some of the most
frequent syntactically relevant surface words are not declared
unknown. Hence, most known OOV words appear between se-
mantic categories, only few known OOV words occur within
them. Purposefully integrating more OOV words into semantic
concepts may further increase speech interpretation robustness,
e.g. in order to explicitly provide for unknown word class mem-
bers, but was not examined here.

Please note that we combine consecutive OOV words into a
single OOV symbol. Through this, a more robust estimation of
OOV model likelihood within HLM can be achieved. Further-
more, we require the OOV model to correctly detect OOV word
occurrences, but not to correctly detecthow manyOOV words
were uttered consecutively, and how to segment them. This sim-
plification is performed as even humans have difficulties to cor-
rectly segment sequences of spoken words that are unknown
to them. Consequently, consecutive OOV word sequences are
used as the basic unit for evaluation of the OOV pronunciation
model’s performance. For simplicity, we still denote thosese-
quences as OOV words in the following. In order to balance the
relative weighting and thereby occurrence likelihood of IVand
OOV words, penalization of OOV models is examined with two
different parameters. The additive log-likelihood offsetpin

oov is
applied at entering the OOV word model. The log-likelihood
scaling factorλoov is applied multiplicatively to all transition
scores within the OOV network, i.e. afterpin

oov.

4. Evaluation Metrics
One notion of the OOV problem is the task of detecting OOV
words within IV word sequences. In this context, the detection
of an OOV word is denoted as acceptance (of the OOV word),
whereas an IV word is viewed as rejection. Detection tasks
are evaluated by creating areceiver-operating-characteristic
(ROC) from various operating points. Such a diagram shows
the two types of errors that the OOV word detector can make,
namely false acceptances (FA) and false rejections (FR). FA

denotes an IV word wrongly hypothesized as OOV word,FR

an OOV word wrongly hypothesized as IV word. The two types
of correct operations are called correct acceptance (CA) and
correct rejection (CR). The counts ofFA, FR, CA andCR

are computed from the mappings between reference transcrip-
tions and hypotheses of a test set. As the evaluation of ODINS
is based on the semantic tree matching scheme of [12], the
OOV/IV word mappings are taken from the word level of the
semantic tree match. In addition to mappings between OOV/IV
words, the tree match contains insertions and deletions, i.e. an
empty symbolε in either reference or hypothesis. In order to
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Figure 1:Total tree node accuracy for different OOV penalties.

consider these kinds of errors for OOV model evaluation,ε is
treated as an IV symbol. Our ROC curves are plots of false ac-
ceptance rate (FAR) against false rejection rate (FRR), defined
as:

FAR =
FA

CR + FA
FRR =

FR

CA + FR
(1)

In order to capture the course of an ROC curve in a single
metric, a figure-of-merit (FOM ) is computed as the area over
the curve. For a practical speech interpretation application,
one usually tries to avoid that IV words are misinterpreted as
OOV words, hence theFAR should be small. To focus the
OOV model evaluation accordingly, theFOM is limited, simi-
lar to [3], to a region of interest by computing the area between
0% ≤ FAR ≤ 5%. This area is normalized to yield a constant
value range between0 and1, yielding the so-called5%-FOM .

The detection of OOV words also affects the recognition
of IV words, since one or several IV words (or parts of IV
words) can be mistakenly recognized as OOV words or vice
versa. Therefore, it is essential to include an evaluation of the
IV words in an OOV model evaluation. Moreover, as we use the
OOV model within a speech interpretation system, the whole
semantic representation can be influenced, so that the seman-
tic tree node accuracyAccn (as defined in [12]) must be taken
into account instead of only the word accuracy. For a simulta-
neous analysis of both evaluation metrics, they are combined in
a single diagram by using a common abscissa but two different
ordinate axes. While the ROC curve (which only regards words)
is plotted as usual withFAR on the abscissa andFRR on the
ordinate, the tree node accuracyAccn (regarding all semantic
symbols) is plotted on a second ordinate, which resides on the
right border of the plot.

5. Experimental Results
Experiments were conducted on a corpus of spontaneous speech
utterances collected by simulating an airport informationdia-
logue system through a wizard-of-oz setup. The corpus is an
extended version of the one used in [2, 12], containing about
2700 utterances with15000 words from32 subjects in total.
HLM were trained on a subset of20 subjects, evaluation and
cross-validation were performed on6 subjects’ utterances each.
HLM consisting of 4 hierarchy levels, namely words, word
classes and2 concept levels, were generated using a mixture of
data-driven and rule-based LM techniques, as described in [4].
The acoustic models consist of the same speaker-independent
tied intra-word triphone HMM with about 25k Gaussian mix-
ture components as described in [2]. The word class level con-
tains10, the concept levels40 unique symbols. As the speech
corpus does not completely contain the word class contents rel-
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Figure 2:Exact vs.n-gram phoneme language model.

evant for the example application, the missing words (around
30) were added manually.

The ‘real’ OOV word rate is2.2% and 1.5% on evalua-
tion and cross-validation set. The word level of the baseline
annotations, i.e. without explicit OOV word annotations, con-
tains about580 words. As explained in Section 3, two differ-
ent sets of OOV word annotations are used to examine how the
system reacts to varying OOV rates. For the so-called8%-
set, the known OOV word rates are(8.6%, 4.7%, 7.2%) on
the training, cross-validation and evaluation sets, respectively.
The second annotation set has(25.2%, 16.1%, 21.6%) known
OOV words in training, cross-validation and evaluation, and
is referred to as the23%-set. From the580 IV words of the
baseline system without OOV modeling,400 IV words remain
for the 8%-set and380 IV words for the23%-set. The tested
value ranges of OOV scaling and penalty parameters were al-
wayspin

oov = −7 . . . 0 andλoov = 0.5 . . . 20 in order to ensure
comparability. Figure 1 showsAccn in dependency ofpin

oov for
different λoov with an additively smoothed exact OOV model
on the cross-validation set. For this setup, the maximum accu-
racy of 85.8% is achieved at(pin

oov, λoov) = (−3, 5). After
determining the penalty parameter setting yielding maximum
accuracy for an OOV model on the cross-validation set, this
setting is used to determine the accuracy on the evaluation set.

Figure 2 depicts a combined ROC-accuracy plot for two
Phonolex-based OOV models using different phoneme LM
techniques, namely exact and3-gram LM. Please note that left
and righty axes are scaled differently. Since cross-validation
experiments showed that additive discounting yields slightly
better results on exact phoneme LM than Good-Turing dis-
counting, and that modified Kneser-Ney smoothing performs
better than Katz smoothing onn-gram phoneme LM, we used
those techniques for further experiments. The3-gram OOV
model of Figure 2 shows advantages in both maximum accu-
racy (87.4% vs. 87.2%) and 5%-FOM (66.8% vs. 61.5%)
over the exact model. However, the accuracy curves reveal that
the3-gram model is rather sensitive to changes of the penalty
parameters, whereas the exact model behaves more stable with
respect to accuracy. Such stability differences were generally
observed between exact andn-gram phoneme LM. The OOV
detection performance of the3-gram model consistently wins
over the whole displayed range of the ROC curve, whereby the
differences are rather small around the operating points with
maximum accuracy (FAR ≈ 1%).

Table 1 summarizes evaluation set accuracies and figures-
of-merit of a number of different OOV model configurations,
along with the baseline accuracies of the closed-vocabulary sys-



tem. The results reveal that the baseline accuracies on both8%-
and23%-sets can be outperformed clearly by both exact and
n-gram phoneme LM. Although the2%-system (i.e. the sys-
tem without known OOV word annotations) seems to achieve
marginally better accuracy than the best open-vocabulary sys-
tems (87.8% vs. 87.4%), comparison of these values is strictly
speaking not possible due to the underlying differences in IV
vocabulary size. Moreover, significant performance drops must
be expected if effective OOV rates exceed2%.

Furthermore, we tested the effects of word frequency
weighting and exclusion of IV words on both exact and3-gram
phoneme LM for the8%-set Phonolex configuration. In terms
of accuracy, the models with word frequency weighting consis-
tently outperform those without. For the exact phoneme LM,
the 5%-FOM performs slightly better if no word frequency
weighting is carried out. The exclusion of IV words consis-
tently degrades both accuracy andFOM . At first, this seems
surprising because it aims at clearer discriminating OOV and
IV word models. Yet it can be explained with the fact that some
of the known OOV words also appear as IV words within se-
mantic concepts, so that their exclusion from the OOV training
lexicon prevents their detection as OOV words. Furthermore,
we built an3-gram phoneme LM with2-gram backoff (denoted
as3/2-gram in Table 1) and a2-gram phoneme LM for the same
Phonolex configuration. Both perform significantly worse than
their3-gram counterpart, but still well above the baseline.

For the23%-set, there is also no clear winner between exact
and3-gram phoneme LM, as for the8%-set of Figure 2. This
time, the difference between5%-FOM values is not that large,
and the exact model displays better maximum accuracy. As ex-
pected, reducing the size of the OOV training lexicon by select-
ing most frequent words generally causes performance degra-
dations, yet maximum accuracy is still well above the baseline
values. The Celex-based OOV models display similar perfor-
mance as the Phonolex-based ones, yet they generally require a
larger number of pronunciations to achieve this. It can alsobe
noted that the 314k-word models cannot clearly outperform the
models estimated from a smaller number of pronunciations.

6. Conclusion
The OOV word problem becomes relevant if OOV rates higher
than a few percent are expected, as is the case when limited-
domain speech interpretation systems are confronted with natu-
ral speech. We presented a statistical, lexical-level approach to
explicitely model OOV words, which is capable of correctly de-
tecting about two thirds of OOV words at low false acceptance
rates, and at the same time avoids segmentation errors affect-
ing IV words. Consequently, semantic tree accuracy is substan-
tially improved over the baseline closed-vocabulary system for
a broad range of model configurations. The evaluations suggest
that while the generalization abilities ofn-gram based OOV
models enable them to outperform exact models, their sensitiv-
ity against changes of the penalty parameters render them un-
suitable for practical applications. Therefore, future work could
aim to find a compromise between the two model types.
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