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Abstract

Distributed speech recognition (DSR) where the recognizer is split up into two parts
and connected via a transmission channel offers new perspectives for improving the
speech recognition performance in mobile environments. In this work, we present the
integration of hybrid acoustic models using tied posteriors in a distributed environ-
ment. A comparison with standard Gaussian models is performed on the AURORA2
task and the WSJ0 task. Word-based HMMs and phoneme-based HMMs are trained
for distributed and non-distributed recognition using either MFCC or RASTA-PLP
features. The results show that hybrid modeling techniques can outperform stan-
dard continuous systems on this task. Especially the tied-posteriors approach is
shown to be usable for DSR in a very flexible way since the client can be modified
without a change at the server site and vice versa.

Key words: Distributed speech recognition, Tied-posteriors, Hybrid Speech
recognition

1 Introduction

Distributed speech recognition (DSR) is a relatively new approach to integrate
speech recognition technology in small, mobile devices (thin clients), such as
cellular phones or personal digital assistants (PDAs). The advantage of this
approach is that the speech recognition task is split up into two parts: One
part that needs large memory capacities and high computation power stays on
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a big server whereas the front end with only medium requirements for storage
and computation power is integrated into the client device. Both parts are
connected over a (wireless) channel with limited bandwidth.
The availability of distributed large vocabulary continuous speech recognition
opens a new era of human-machine communication. For instance, dictating a
short message to a mobile phone instead of using the numerical keypad sim-
plifies the SMS handling dramatically.
Other services like automatic dialogue systems could also benefit from the
distribution of the speech recognition technology especially in the wireless do-
main because of the (already mentioned) low performance of the GSM speech
coder in speech recognition scenarios. With the same reasoning multi-modal
access to databases (as presented in the European project CATCH2004 [3]) or
information retrieval (as presented in the European project ALERT [4]) over
wireless devices could be improved because the transmission of compressed
features takes much less channel capacity than the transmission of the speech
signal itself. A second branch of operational areas for DSR is the integration
of speech recognition in multi-modal applications such as a speech-controlled
browser or a combination of touch-screen pointing and speech interaction.
Here, we can only afford a very low bit rate for the speech recognition since
the overall channel bit rate must be divided between the different modalities.
The DSR technology is able to cope with low bit rates, especially if hybrid
approaches are used.
Thus, the DSR technology is very advantegous and necessary for the above
mentioned mobile scenarios. This becomes obvious if one thinks about the pos-
sible alternatives: Of course, the preferred alternative is to not separate the
speech recognition system at all and transmit the audio data itself over the
channel, if the channel bandwidth is large enough e.g. on a fixed telephone line
(see for example [1] for speech recognition over telephone lines). Preprocess-
ing, feature extraction and recognition is then performed entirely at the server
site. But if the channel bandwidth gets narrower – e.g. on the GSM channel –
the loss of information in the speech channel coder becomes too high. An in-
vestigation of speech recognition with the GSM speech coder in comparison to
the recognition of MPEG coded speech data (MPEG 1, layer 3) has shown the
insufficient performance of the GSM coder regarding speech recognition [2].
Another option would be to implement the entire speech recognition tech-
nology on the thin client. Progress in hardware development, especially in the
area of storage and signal processor technology, has made this option a realistic
technology, but we believe that for the next years, such systems implemented
on the client site will be only feasible for medium vocabulary speech recog-
nition. Especially large n-gram language models for large vocabularies (larger
than 30K words) require hundreds of megabytes of memory, which could be
made available on portable devices, but would make such devices much more
expensive and thus would make speech recognition a relatively unattractive
add-on for most users. Furthermore, it would be extremely difficult to update
the lexicon or adapt the language model in such cases.
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Therefore, the vision of having a very large server which could possibly handle
many speech recognition requests from thin clients in parallel by receiving the
appropriate feature streams over wireless channels and using complex acous-
tic as well as extensive language models, seems to be very attractive. The
lexica and language models on such a server can be efficiently updated and
special language models could be even deployed for different domains. Multi-
recognition systems could be combined in order to further reduce the error
rate. In order to realize such a vision of separated modules for speech recogni-
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Fig. 1. Using a standard speech recognizer in DSR

tion, we have to augment current state-of-the-art speech recognition systems
by adding a channel coder/decoder that converts the data to meet the channel
specification while preserving as much information in the data as possible. An
important question to answer is where to separate the front-end modules from
the server-site speech recognizer. Figure 1 shows the basic elements of a tradi-
tional speech recognizer. From above it is known that the hidden Markov model
(HMM) recognition engine with language model and dictionary requires a lot

3



more computation power and memory capacity than the feature extraction.
Thus, most current approaches for distributed speech recognition are con-
cerned with the efficient distribution of the speech recognition task between
the feature extraction module on the client site and the recognition part on
the server site. In this case, the crucial point is the choice of the best possible
system architecture, including the computation of the most suitable features
and their transmission over the wireless channel, so that the information loss
of these features is as low as possible, resulting into a recognition rate that
comes close to the rate obtained if the speech is fed directly into the system.
In this contribution, the authors aim to demonstrate that hybrid speech recog-
nition methods, consisting of a combination of hidden Markov models and
neural networks (NNs) have specific advantages over traditional systems, that
make them especially suitable for distributed speech recognition. The major
reason for this is the fact that hybrid systems allow the direct transmission of
neural excitations over the wireless channel, which could be interpreted either
as firing neuron streams or directly as probabilities. While traditional systems
would mainly attempt to transmit features over the wireless channel, it will
be shown that the neuron streams or probabilities delivered by hybrid systems
can contain more information relevant for recognition than the pure features
of traditional systems and additionally are easier to be transmitted over wire-
less channels.
The paper is organized as follows: This Section introduces the topic and shows
possible scenarios for DSR, section 2 leads into the basic architecture, sections
3 and 4 present a feature vector quantization approach and the HMM topolo-
gies investigated in this work. Continuous Gaussian HMMs are presented in
section 5, hybrid NN/HMM acoustic models are introduced in section 6 to-
gether with a quantization scheme for posterior probabilities. Finally section
7 deals with the evaluation of the presented models and section 8 concludes
the paper.

2 General system architecture for distributed speech recognition

As already mentioned, the need for distributed speech recognition (DSR) is
evident. In a DSR system the standard speech recognizer is divided into the
feature extraction and the feature classifier. As shown in figure 1, the extracted
features are transmitted over the (wireless) channel to a large server, where
the classifier is implemented. Here, the back-end consists of HMMs, language
models and dictionaries. If Gaussian acoustic models are used the front-end
transmits indices representing a quantized feature vector to be reconstructed
at the server site. This paradigm is compared to the recently introduced tied-
posteriors acoustic models [5, 6]: A class posterior estimator is added to the
front-end using mel-cepstrum (MFCC) or RASTA-PLP features [7] and the
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quantized probability values are sent to the server, where the recognition takes
place. In this case the client is able to freely choose the features, their dimen-
sions and the amount of context used for its classification at the cost of more
computational and memory requirements. The feature extraction produces 13
mel-cepstrum coefficients (c0, . . . , c12) or 9 RASTA-PLP coefficients plus the
logarithmic frame energy E. Optionally it is possible to compute delta and
acceleration coefficients. One major issue in DSR is the transmission chan-
nel that possesses only a limited bandwidth but is otherwise considered ideal
(appropriate channel coding can protect the data in real environments). For
details about dealing with lost frames or packets see [8]. The net bit rate of
our channel is 4.4 kbit/s (with channel coding and header the bit rate is 4.8
kbit/s which is half of the standard GSM bit rate for data transmissions and
the desired rate for the AURORA framework [9, 10])

3 Vector quantization of continuous feature vectors

The base-system’s feature extraction component generates 13 mel-frequency
cepstral coefficients (MFCC) per frame (including the 0th coefficient). All
coefficients together with the frame energy form the frame’s feature vector:
~f = (c0, c1, . . . , c12, E)T . Since all coefficients are float values that – in general
– occupy 4 bytes per value we would obtain a bit rate of

BRcont =
4 · 14 · 8bits

10ms
= 44.8kbit/s (1)

which exceeds the desired bit rate roughly by a factor of 10. One solution to
reduce the bit rate is to introduce a vector quantization (VQ) process. The
first option is then to use discrete HMMs at the server site which directly pro-
cess the VQ-labels in order to compute state emission probabilities. In [11] it
is shown that discrete acoustic models cannot compete with continuous mod-
els on the AURORA2 task. The second possibility is to convert the VQ-labels
back to continuous values (see section 5) and use continuous mixture HMMs
for recognition on the server.
To reduce the above computed bit rate a VQ based on the k-means clustering
algorithm with an Euclidean distance measure is used. We adopt a quanti-
zation scheme taken from the ETSI standard [9]. This scheme composes two
components from the original feature vector into a new vector that is then
quantized. The quantization scheme with the number of codebook entries for
each sub-vector is shown in figure 2. The encoding of the sub-vectors’ indices
that are then transmitted requires 6 bit for ~v1, . . . , ~v6 and 8 bit for ~v7 resulting
in a bit rate of

BRV Q =
6 · 6 bits + 8 bits

10ms
= 4.4 kbit/s (2)
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Fig. 2. Codebook generation using 7 two-dimensional VQs

4 HMM topology

For the AURORA2 recognition task (recognizing spoken digits, see section
7) we use whole word models plus two silence models for interword silence
(sp) and sentence start/end silence (sil), respectively. The exact topology is
depicted in figure 3. The word models for the number words one,...,nine, oh,
zero have 16 states, the silence model sil 3 states and the sp model has one
state [10].
Alternatively, standard phoneme HMMs with 3 states are used to model the
number words (see figure 4). The complete phoneme set consists of 45 phoneme
models and the two above mentioned silence models (only 20 phonemes are
needed to compose the number words). Since parts of number words are
very similar (e.g. one, nine) some loss in performance especially under noisy
conditions is expected [12]. On the other hand, phoneme models are more
flexible and larger vocabularies can be implemented easily as shown in section
7 for the WSJ0-task with a vocabulary size of 5000 words.
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Fig. 3. Whole-word models for number words and start/end silence model
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Fig. 4. Phoneme models for the number word eight
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5 The continuous HMM system

The continuous HMM uses Gaussian mixture probability density functions
(pdf) to model the output pdf of the feature vector given the HMM state.
Since we receive only VQ indices from the client, we have to decode the data
by replacing the VQ label with the corresponding codebook vector on the
server (this assumes that the codebook vectors are known at the server site).
Having reconstructed the continuous feature vector we can then compute ad-
ditional delta and acceleration coefficients to further improve the recognition
result. The final feature vector consists of 39 elements (13 “original” compo-
nents plus delta coefficients plus acceleration coefficients). The 0th cepstral
coefficient is discarded after re-building the feature vector.
Gaussian acoustic models with RASTA-PLP features are only built in a non-
distributed environment with a base feature vector consisting of 10 compo-
nents plus delta and acceleration coefficients (30 components in total). In a
distributed environment a complete change of client, server and transmission
scheme would be necessary since the VQ set-up from [9] does not match a
RASTA feature vector with 10 components. If tied-posteriors acoustic models
are used (see section 6) RASTA features can be incorporated only by changing
the client. The mixture setting and training scheme for the AURORA2 task
is adopted from [10]. We use 3 mixtures per state for the whole word models
and 6 mixtures per state for the silence model. In case of phoneme models 5
mixtures per state are used for all HMMs trained on the AURORA2 data. The
number of mixtures for HMMs trained on the WSJ0 task is stated in section
7.

6 Tied posteriors systems using neural networks

6.1 Tied-posteriors acoustic models (TP-HMM)

In recent experiments [13, 14] tied-posteriors acoustic models have proven to
be superior to standard Gaussian systems in terms of flexibility and perfor-
mance. We will show here that tied-posteriors are also very favorable for DSR.
The tied-posteriors recognizer uses a neural network (NN) to estimate poste-
rior probabilities Pr(j|~x) for certain classes given a feature vector. Here the
idea is to transmit the most important posterior probabilities over the wire-
less channel instead of coded feature values. Weighted sums of these posteriors
are then computed in order to form state-conditional probabilities [15] at the
server site. Possible neural networks are multi-layer perceptrons (MLP) or re-
current neural networks - these networks can be trained to estimate posterior
probabilities [16, 17].
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The classes’ set-up for which the posteriors are computed is adjustable ac-
cording to the given problem. Two possibilities are explored:

• Phoneme classes used for complex tasks with a large vocabulary size
• Pseudo-phonemes composed from whole-word models used for small vocab-

ularies with a robust recognition

If a phoneme-based system is to be built it is suitable to train the NN on
phoneme targets that is one neuron corresponds to the posterior probabil-
ity of observing one phoneme and target values are obtained by aligning the
training data (additionally this scheme can be extended to the HMM-state
level [13]). In case of word-based HMMs different target values are chosen:
Pseudo-phonemes are formed from the whole-word models by grouping 4
HMM states of the word model to one new unit (see figure 5). Then, one
neuron computes the posterior probability of this pseudo-phoneme. This spe-
cialized pseudo-phoneme-NN has been created to do a fair comparison with the
word-based Gaussian systems. The tied-posteriors approach allows to combine
phoneme-based NNs with word-based HMMs as well, but only with a notice-
able loss in performance compared to the above mentioned approach. Thus,
we have a resulting number of 48 pseudo-phonemes (4 · 11 units from the
whole word models plus 4 from the silence models, where each state is han-
dled separately). The input layer of the neural net consists of the feature

1 43 1413 15 162

one4one1

one

. . . 

. . . 

Fig. 5. Composing pseudo-phonemes from whole word HMM “one”

vector ~f with delta and acceleration coefficients computed on the client site
from the current frame t. The MLP extends the frame’s time context by 2m
neighboring frames (in our experiments m = 3) obtaining an input vector

~x = (~f(t − m), . . . , ~f(t), . . . , ~f(t + m))T . With the feature vectors described
in section 5 the NN’s input layer consists of 273 (MFCC) and 210 (RASTA)
nodes, respectively. The MLP’s hidden layer varies according to the task be-
tween 500 nodes (AURORA2 test) and 1000 nodes (WSJ0 test).
On the server site we have a tied-posteriors HMM recognizer that uses the
NN’s outputs as tied probabilities for all HMM states. The equation of the
HMM output density function is derived as follows: We first express the HMM
output pdf as a sum of mixture densities:

p(~x|Si) =
J∑

j=1

cij · p(~x|j) (3)
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where Si is the HMM state, cij are the mixture coefficients and J is the num-
ber of classes (phonemes, pseudo-phonemes or HMM states). The probability
density p(~x|j) can now be expressed by the posterior probability Pr(j|~x) that
is retrieved from the MLP by using Bayes’ rule:

p(~x|j) =
Pr(j|~x)p(~x)

Pr(j)
(4)

Hence we obtain

p(~x|Si) =
J∑

j=1

cij ·
Pr(j|~x)p(~x)

Pr(j)
(5)

Since p(~x) is independent of the HMM state Si it can be omitted and (5)
becomes

p(~x|Si) ∝
J∑

j=1

cij ·
Pr(j|~x)

Pr(j)
(6)

The posterior probability Pr(j|~x) is estimated by the NN, the a priori proba-
bility Pr(j) is approximated by the classes’ relative frequencies in the training
data and the mixture weights cij are trained using the standard Baum-Welch
algorithm.

6.2 Quantizing posterior probabilities

Transmitting all float probability values over the channel for each frame
would by far exceed the allowed bit rate. Fortunately it is sufficient to know
the np highest probabilities and skip the other ones. In [15] it is reported that
only a few output classes have high probabilities while the other ones are neg-
ligible.
The motivation for using this approach for DSR can be explained as follows:
If we transmit the quantized neuron activities instead of the quantized fea-
tures, we are able to transfer a much higher information content that already
includes a part of the classification information and can even accumulate the
influence of multiple features (presented to the NN input layer). The amount
of transmitted data is independent of the input layer size. So we can add more
context frames or introduce another feature extraction method (e.g. RASTA-
PLP features to better cope with noisy data [14]) by simply extending the
input layer without changing the output layer size. An overview of the client
site is given in figure 6. From this figure it can be seen that the amount of
data to be transmitted over the channel is only dependent on the number of
probabilities np that are selected for transmission. If the input to the quantizer
is specified (e.g. using phoneme posterior probabilities) arbitrary feature vec-
tors, classifiers and arbitrary HMM topologies are possible without changing
the bit rate on the channel. To meet the bit rate requirement each of the np
probability values is quantized with the characteristic curve [a · exp(bx− c)]
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([.] denotes the ceiling function, a and b are user-definable parameters). The
curve used in this work is presented in figure 7. Based on the assumption that
only a few output neurons produce a high probability value the parameters a
and b are set empirically. With this quantizer the error in equation (6) caused
by the quantization is kept small to keep as much information as possible
in the likelihood computation. Transmitting the np = 4 highest probabilities
quantized with bnp = 5 bits each (plus 6 bits for the probability’s index) results
in the required ETSI bit rate:

BRTPq =
4 · (5 + 6) bits

10 ms
= 4.4 kbit/s (7)

State-dependent likelihoods are calculated using eq. (6), with the tied-
posterior weights cij from the HMMs and the received and reconstruced prob-

ability values P̂r(j|~x). The recognition is performed using the resulting likeli-
hood values. Figure 8 shows the reconstruction of probabilities at the server
site. It should be pointed out here, that the standard hybrid posterior ap-
proach from [18] cannot be used in a similar manner for DSR as described
above. In this classic hybrid approach the posterior probability Pr(i|~x) is di-
rectly connected to the HMM state i. The number of HMMs is then identical
to the NN’s output layer size. Since only np = 4 probabilities are transmitted,
a lot of HMM emissions are 0 which leads to disastrous results (see section 7).
In contrast to that, the tied-posterior algorithm can compute all HMM densi-
ties even if only np probabilities are received because of additional use of the
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Fig. 8. Probabilities received at the server site using a distributed hybrid acoustic
models

weights cij to compute these values. Therefore, the tied-posterior approach is
an ideal hybrid paradigm for DSR.

7 Results

The evaluation of the presented algorithms is performed on the AURORA2
database [10]. This database contains a subset of sentences taken from the TI
digits database with additive real noise at different SNRs. The samples are
filtered to simulate various channel characteristics and are downsampled to a
frequency of 8 kHz. Example noise types are airport noise, babble noise or car
noise. The test sets contain known and unknown noise types at SNR values
ranging from 20 dB to 0 dB. Test set A includes the same noise types during
training and testing, test set B contains unknown noise and test C consists of
a different channel with known and unknown noise types [10]. There are two
different training sets: One consists of clean speech only whereas the other one
contains various noise types as well as clean speech (multi-condition training).
The word error rates of the evaluation (WER = 1−Accuracy) are mean values
for the different SNRs (0 dB, 5 dB, 10 dB, 15 dB, 20 dB). Here, each acoustic
model is trained using the multi-condition training set.
Additionally, the WSJ0 database [19] is used to evaluate DSR on a task with
a larger vocabulary size. Gaussian acoustic models and TP-HMMs are trained
on 7240 sentences of the speaker independent training set si-84. The WSJ0
speaker independent test set si-05 has a closed vocabulary of 5000 words. The
WER is computed using the test set’s bigram language model with 47 context
independent HMMs and context dependent triphones, respectively. Since the
WSJ test consists of clean data, only MFCC features have been calculated in
this case.

Table 1 presents the AURORA2 reference results (AURORA2 ref.) together
with our standard Gaussian acoustic models in a non-distributed environment.
Since the AURORA2 evaluation in [10] does not contain phoneme baseline
models we take our Gaussian MFCC models (MFC42 Gauss ref.) as the base-
line result for further experiments with phoneme models. Results marked in
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client recognizer Test A Test B Test C mean

AURORA2 ref. whole-word 12.18% 13.73% 16.22% 13.61%

MFC42 Gauss whole-word 11.63% 14.07% 16.55% 13.59%

RASTA30 Gauss whole-word 13.44% 14.79% 14.73% 14.24%

MFC42 Gauss ref. phoneme 16.69% 25.23% 21.94% 21.16%∗

RASTA30 Gauss phoneme 18.83% 20.96% 21.18% 19.94%

Table 1
Results (WER) on the AURORA2 test sets using Gauss models (multicondition
training)

client recognizer Test A Test B Test C mean

MFC42 Gauss whole-word 13.31% 15.56% 18.02% 15.15%

MFC42 Gauss phoneme 16.74% 22.63% 23.36% 20.42%∗

Table 2
Results (WER) on the AURORA2 test sets using Gauss models (multicondition
training), bit rate 4.4 kbit/s

bold types denote an improvement over the baseline results.
There are two main conclusions from table 1: The Gaussian phoneme models
perform worse than the word models and RASTA-PLP features are well suited
particularly for channel distortions (test C) as expected. Table 2 shows the re-
sults with the same Gaussian MFCC models, but in a distributed environment
with quantized features according to section 3. Interestingly the distributed
recognizer with phoneme models outperforms the baseline (marked with ’∗’).
Since the RASTA feature vector’s size is different from the MFCC feature
vector the VQ from section 3 (needed for distributed recognition) is not ap-
plicable to the Gaussian HMMs based on RASTA features.

The results in the next two tables 3 and 4 are computed using the tied-
posteriors (TP) acoustic model introduced in section 6. The MFCC TP model
outperforms the Gaussian reference in test A (known noise) even in a dis-
tributed system since the noise can be learned in the net weights. Changing
the client to RASTA-PLP features (no changes to the quantization scheme are
necessary) results in an overall better system compared to the reference. Here,
the (unknown) noise and (unknown) channel are compensated by the more
suitable feature extraction. These statements are true for whole-word models
as well as phoneme HMMs. In contrast to Gaussian models, the advantage of
RASTA-PLP features can be used in a distributed TP system without chang-
ing the transmission or the server.

12



client recognizer Test A Test B Test C mean

MFC42 TP whole-word 8.96% 19.40%∗ 22.45%∗ 15.83%∗

MFC42 FP whole-word 9.21% 19,21% 22.45% 15.86%

RASTA30 TP whole-word 9.29% 12.92% 11.27% 11.14%

RASTA30 FP whole-word 9.24% 13.27% 11.22% 11.25%

MFC42 TP phoneme 12.98% 24.61% 26.70% 20.38%

MFC42 FP phoneme 13.53% 25.16% 28.00% 21.07%

RASTA30 TP phoneme 13.14% 19.58% 15.59% 16.20%

RASTA30 FP phoneme 13.32% 19.84% 15.67% 16.40%

Table 3
Results (WER) on the AURORA2 test sets using TP models (multicondition train-
ing)

client recognizer Test A Test B Test C mean

MFC42 TP whole-word 9.34% 16.87%∗ 20.61%∗ 14.61%∗

MFC42 FP whole-word 97.32% 99.61% 99.57% 98.69%

RASTA30 TP whole-word 9.80% 12.89% 11.96% 11.47%

RASTA30 FP whole-word 83.09% 95.29% 90.88% 89.53%

MFC42 TP phoneme 14.26% 25.87% 27.41% 21.53%

MFC42 FP phoneme 78.62% 96.11% 96.16% 89.12%

RASTA30 TP phoneme 14.47% 21.25% 16.75% 17.64%

RASTA30 FP phoneme 49.98% 63.25% 56.15% 56.52%

Table 4
Results (WER) on the AURORA2 test sets using TP models (multicondition train-
ing), bit rate 4.4 kbit/s

A degradation of the DSR performance is observable compared to the non-
distributed case except for the MFCC word models (marked with ’∗’). Addi-
tionally, a hybrid system with fixed connections (FP - fixed posteriors) between
NN and HMM according to [18] is evaluated. The only difference to the TP
models is the absence of adjustable mixture coefficients i.e. the likelihood of
one HMM state is computed using only one neuron (cjj = 1, all other c’s are
zero, see eq. 6). A slight degradation to the TP models is observable in the
non-distributed case, but in a DSR system the FP models are not usable. The
DSR decoder is not able to find a valid path through the models (pruning is
deactivated) since the majority of HMM emission likelihoods is zero. Summa-
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rizing the results from TP-HMMs and Gaussian HMMs one can state that the
tied-posteriors approach is significantly better than the Gaussian one both in
terms of flexibility and performance. Table 5 compares the results of different

Emission density computation HMM System WER

Gauss - 10 mixtures Mono47 15,28%

Gauss - 12 mixtures Mono47 14,78%

Gauss - 6 mixtures Tri8379 12,54%

Gauss - 12 mixtures Tri8379 13,88%

Tied posteriors (TP) - 47 outputs Mono47 10,20%

Tied posteriors (TP) - 47 outputs Tri10534 9,02%

Fixed Posteriors (FP) - 47 outputs Mono47 90%

Table 5
Results on the si-05 test set of the WSJ0 database, bit rate 4,4 kbit/s

acoustic models on the WSJ0 task in a distributed set-up. To emphasize the
flexibility of the TP models, the phoneme-based TP-HMMs at the server site
are used for the AURORA2 evaluation as well as the WSJ test regardless of
the client (the NN on the client has been changed according to the given task).
The first four rows of table 5 show the results of continuous Gaussian-HMMs
with the given number of mixtures in each state. The basic HMM set consists
of the same 45 phoneme HMMs and two silence models as described in section
4. Based on this set, 10534 triphone models are created that are clustered to
8379 HMMs (30972 mixtures in total) in the Gaussian case. The best result is
obtained with triphone models and 6 mixtures per state, increasing the num-
ber of the triphones’ mixtures increases the WER due to insufficient training
data.
At the server site either 47 monophone HMMs or 10534 triphones are used,
presented in the second half of table 5. The best result is obtained with a NN
trained on the 47 monophones and a triphone-based server. Finally the system
with a fixed connection between NN outputs and HMM states according to [18]
is given in the last row of table 5. Again, most of the state likelihoods are zero
(see section 6.2) and no hypothesis survived during the decoding process in
most sentences.

8 Conclusion

Using TP acoustic models for distributed speech recognition is shown to be an
interesting alternative to standard Gaussian HMMs. The TP-HMMs perform
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generally better than the Gaussian HMMs and allow a very flexible adaptation
to the desired task and condition. The client site can be modified, e.g. by us-
ing different features without touching the server. Apart from task-dependent
word models we have also evaluated task independent phoneme models on
the AURORA2 task (small vocabulary, different background noise conditions)
and the WSJ0 task (medium vocabulary, no background noise). Again TP sys-
tems are superior and client and server of distributed TP recognizers can be
modified easily as long as the amount of data transmitted over the channel is
unchanged. Examples of these modifications include context dependent mod-
els at the server site and NNs with different input features on the client. The
results show that the tied-posterior approach represents the most effective hy-
brid method for DSR in terms of performance and flexibility. An interesting
phenomenon that has been observed is the fact that quantized MFCC fea-
tures perform better on the AURORA2 task under unknown conditions (test
B) than regular ones.

List of Figures

1 Using a standard speech recognizer in DSR 3

2 Codebook generation using 7 two-dimensional VQs 6

3 Whole-word models for number words and start/end silence
model 6

4 Phoneme models for the number word eight 6

5 Composing pseudo-phonemes from whole word HMM “one” 8

6 Client site of a distributed tied-posterior recognizer 10

7 Quantizer with bnp = 5 10

8 Probabilities received at the server site using a distributed
hybrid acoustic models 11

List of Tables

1 Results on the AURORA2 test sets using Gauss models
(multicondition training) 12

15



2 Results on the AURORA2 test sets using Gauss models
(multicondition training), bit rate 4.4 kbit/s 12

3 Results on the AURORA2 test sets using TP models
(multicondition training) 13

4 Results on the AURORA2 test sets using TP models
(multicondition training), bit rate 4.4 kbit/s 13

5 Results on the si-05 test set of the WSJ0 database, bit rate
4,4 kbit/s 14

References

[1] D. Yuk and J. Flanagan, “Telephone speech recognition using neural networks
and hidden markov models,” in IEEE Int. Conference on Acoustics, Speech,
and Signal Processing (ICASSP), 1999.

[2] C. Barras, L. Lamel, and J. Gauvain, “Automatic transcription of compressed
broadcast audio,” in IEEE Int. Conference on Acoustics, Speech, and Signal
Processing (ICASSP), Salt Lake City, Utah, USA, 2001.

[3] Henrik Schulz, Marion Mast, Thomas Ross, Heli Harrikari, Jan Stadermann,
Vasiliki Demesticha, Yannis Vamvakoulas, and Lazaros Polymenakos, “A
Conversational Natural Language Understanding Information System for
Multiple Languages,” in 6th International Workshop on Applications of Natural
Language for Information Systems, Madrid, Spain, June 2001.

[4] Alert system for selective dissemination of multimedia information,
http://alert.uni-duisburg.de.

[5] Jörg Rottland and Gerhard Rigoll, “Tied Posteriors: An Approach for Effective
Introduction of Context Dependency in Hybrid NN/HMM LVCSR,” in
IEEE Int. Conference on Acoustics, Speech, and Signal Processing (ICASSP),
Istanbul, Turkey, June 2000.

[6] Jan Stadermann, Ralf Meermeier, and Gerhard Rigoll, “Distributed Speech
Recognition using Traditional and Hybrid Modeling Techniques,” in European
Conference on Speech Communication and Technology, Aalborg, Denmark,
Sept. 2001.

[7] Hynek Hermansky and Nelson Morgan, “RASTA Processing of Speech,” IEEE
Transactions on Speech and Audio Processing, vol. 2, no. 4, pp. 578–589, 1994.
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