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ABSTRACT 

 
In the search for a standard unit for use in recognition of 
emotion in speech, a whole turn, that is the full section of 
speech by one person in a conversation, is common. Within 
applications such turns often seem favorable. Yet, high 
effectiveness of sub-turn entities is known. In this respect a 
two-stage approach is investigated to provide higher 
temporal resolution by chunking of speech-turns according 
to acoustic properties, and multi-instance learning for turn-
mapping after individual chunk analysis. For chunking fast 
pre-segmentation into emotionally quasi-stationary 
segments by one-pass Viterbi beam search with token 
passing basing on MFCC is used. Chunk analysis is realized 
by brute-force large feature space construction with 
subsequent subset selection, SVM classification, and 
speaker normalization. Extensive tests reveal differences 
compared to one-stage processing. Alternatively, syllables 
are used for chunking. 
 

Index Terms— Emotion Recognition, Affective 
Computing, Segmentation 
 

1. INTRODUCTION 
 
As standard unit for recognition of emotion within speech a 
whole turn can be named [1-4]. From an application point of 
view, this seems appropriate in most cases: a change of 
emotion during a phrase seems to occur seldom enough for 
many applications. However, from a recognition point of 
view, it has often been reported that sub-timing levels seem 
to be advantageous [4,5,6]. Still, apart from a few attempts 
to classify emotions within speech dynamically [1,2], 
current approaches usually employ static feature vectors 
derived on a turn, word, or chunk level [8]. In [2] such static 
modeling has also been shown superior to dynamic 
modeling. This derives mostly from the fact, that by (usually 
statistical) functional application to the Low-Level-
Descriptors (LLD) as e.g. pitch, energy, or spectral 
coefficients an important information reduction takes place, 
which avoids phonetic (respectively spoken-content) over-
modeling. Yet, it is also considered received knowledge that 
thereby important temporal information is lost due to a high 

degree of abstraction. This led to first successful attempts to 
integrate information on diverse time levels [3-6].  

In this paper we therefore investigate a two-stage 
approach to acoustic modeling for the recognition of 
emotion in speech: a first stage segments speech-turns into 
chunks which are individually analyzed in a second stage. 
Subsequently, information from a chunk level is mapped on 
the turn-level. Herein, this step will be realized by multi-
instance learning. Additionally, information from the turn-
level can be considered.  

Alternatively, we will show results for a syntactically 
motivated chunking, that has not been considered in 
recognition of emotion within speech, yet: syllables. 
Likewise, we provide results on a syllable level, 
automatically computed chunk level, and the mapping on 
the turn-level. 

The paper is structured as follows: in sect. 2 we 
introduce the automatic chunking of speech turns into 
acoustically quasi-stationary units from an emotion point of 
view. In sect. 3 we introduce the feature set for chunk 
analysis. Sect. 4 discusses the combined processing within 
two stages. Subsequently, we introduce optimization 
strategies in sect. 5. In sect. 6 and sect. 7 we introduce 
extensive experimental results and discussion. 
 

2. AUTOMATIC CHUNKING 
 
This article describes a simple conceptual model of dynamic 
emotional state recognition. Time-synchronous one-pass 
Viterbi-beam search and the token passing algorithm with 
direct context free grammar are used for decoding [7]. To 
apply context free grammar as constraints within the token 
passing scheme, these grammar rules are compiled into a set 
of linked syntax networks of the form illustrated by fig. 1. 

The nodes of each syntax network are of three types: 
links, terminals and non-terminals. Link nodes are used to 
store tokens and are the points where recognition decisions 
are recorded. Terminal nodes correspond to emotion 
acoustic models and non-terminal nodes refer to separate 
sub-syntax networks representing the RHS of the 
corresponding grammar rule. In our case we did not use 
non-terminal nodes.  
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The three types of node are combined in such a way that 
every arc connects either a terminal or a non-terminal to a 
link node, or vice versa. Each syntax network has exactly 
one entry, one exit and zero or more internal link nodes. 
Every terminal and non-terminal node has exactly one arc 
leading into it, whereas each link node may have any 
number. Link nodes can thus be viewed as filters, which 
remove all but the best (i.e. lowest cost) tokens passing 
through them. 
 

 

 
 
Figure 1. Stage 1: automatic chunking by acoustic 
properties and one-pass Viterbi beam search with token 
passing. 
 

The main idea is that tokens propagate through the 
networks just as in the finite state case: when a token node 
enters a terminal node, it is transferred to the entry node of 
the corresponding emotional state model. 

Speech input is thereby processed using a 25 msec 
Hamming window, with a frame rate of 10 msec. As in 
typical speaker or speech recognition tasks we employ a 39 
dimensional feature vector per each frame consisting of 12 
MFCC and log frame energy plus speed and acceleration 
coefficients. CMS and variance normalization are applied to 
better cope with channel characteristics. 

Now for the chunking we train the models in a speaker-
independent manner using Baum-Welch re-estimation and 
50 mixtures. Afterwards each original turn is chunked by 
application of the beam-search as described. For the latter 
processing, only the obtained segment boundaries are used 
from this stage. The motivation behind this processing is to 
find an acoustically motivated sub-turn splitting. 

After chunking - either using the proposed automatic 
chunking by acoustic properties or annotation based syllable 
chunking - each chunk is assigned the emotion of the turn it 
originates from.  

 
3. CHUNK-LEVEL FEATURE EXTRACTION 

 
In order to represent a typical state-of-the-art emotion 

recognition engine operating on a turn-level, we use a set of 
1,406 acoustic features basing on 37 Low-Level-Descriptors 
(LLD) as seen in table 1 and their first order delta 

coefficients [8]. These 37x2 LLDs are next smoothed by 
Low-pass filtering with an SMA-filter.  

As opposed to formerly introduced dynamic modeling, 
such systems derive statistics per speaker turn by a 
projection of each uni-variate time series, respectively LLD, 
X onto a scalar feature x independent of the length of the 
turn. This is realized by use of a functional F, as depicted: 

  
1:F X x→ ∈R  (1) 

 
19 functionals are applied to each contour on the turn-

level covering extremes, ranges, positions, first four 
moments and quartiles as seen in table 1. Note that three 
functionals are related to position, known as duration in 
traditional phonetic terminology, as their physical unit is 
msec. 

For classification we use Support Vector Machines 
(SVM) with linear Kernel and 1-vs.-1 multi-class 
discrimination. One could consider the use of GMM here, as 
well. Yet, SVM have proven the preferred choice in many 
works to best model static acoustic feature vectors [8]. 

Table 1. Stage 2: overview of Low-Level-Descriptors and 
functionals for chunk-level analysis. 

Low-Level-Descriptors (2x37) Functionals (19) 
Pitch 
Energy 
Envelope 
Formant 1-5 Amplitude 
Formant 1-5 Bandwidth 
Formant 1-5 Frequency 
MFCC Coefficient 1-16 
Harmonics-to-Noise-Ratio 
Shimmer 
Jitter  

Mean 
Standard Deviation 
Zero-Crossing-Rate 
Quartile 1 
Quartile 2 
Quartile 3 
Quartile 1 - Minimum 
Quartile 2 - Quartile 1 
Quartile 3 - Quartile 2 
Maximum - Quartile 3 
Centroid 
Skewness 
Kurtosis 
Maximum Value 
Relative Maximum Position 
Minimum Value 
Relative Minimum Position 
Maximum Minimum Range 
Position of 95% Roll-Off-Point 

Delta Pitch 
Delta Energy 
Delta Envelope 
Delta Formant 1-5 Amplitude 
Delta Formant 1-5 Bandwidth 
Delta Formant 1-5 Frequency 
Delta MFCC Coefficient 1-16 
Delta Harmonics-to-Noise-Ratio  
Delta Shimmer 
Delta Jitter
 

4. TWO-STAGE PROCESSING 
 
In order to map the results of each chunk onto the turn-level, 
we consider three strategies known from multi instance 
learning for each chunk:  
 

• an un-weighted majority vote (MV),  
• a maximum length vote (ML),  
• and maximum classifier prediction score multiplied 

with the length vote (MSL). 
 

anger 

boredom 

disgust 

joy 

fear 

neutral 

sadness 

Start End 



Likewise, we compute the majority label of each turn 
basing on either the syllable or acoustic chunk level. Note 
that these levels could be combined to consider information 
from diverse time levels. Also, information from turn level 
features can easily be added. In the case of weighted vote, 
the length in frames is used as multiplicative weighting 
function. In the MSL case we also use the classifier 
prediction score for each class as additional weight. Note 
that in case of un-weighted majority vote turns may occur 
that cannot be uniquely assigned to a class. This happens, if 
two or more classes, which are the majority classes, have the 
same number of chunks. This case will be separately 
denoted in the ongoing. In the case of time-based weighting 
this case can almost be ignored, as the majority classes – if 
there are several – will seldom have the exact same number 
of frames. This is even truer, if length and prediction score 
are used for weighting (MSL). As a drawback it has to be 
mentioned that temporal information is thereby lost. 
Alternatively, the duration of each chunk can be used as 
weight. Also, the order of chunks is lost. However, we 
believe that this information can be neglected under the 
precondition of constant emotion throughout a turn. 

Employing majority voting we can consider three cases: 
turns that are clearly assignable, and such that have two or 
more emotions assigned due to a draw. In the second case a 
further distinction can be considered: turns that have the 
correct emotion among the majority classes, and such that 
are simply wrongly assigned. 
 

5. OPTIMIZATION 
 

Next, two optimization strategies are considered: First, 
speaker normalization (SN) by feature normalization with 
the whole individual speaker context. Second, feature-space 
optimization by correlation-based exclusion of highly 
correlated features (FS) is proposed. 

We investigate the benefits of speaker normalization, as 
we intend to analyze emotion independent of the speaker, 
herein. SN is thereby realized by a normalization of each 
feature x by its mean and standard deviation for each 
speaker individually. Thereby the whole speaker context is 
used. This has to be seen as an upper benchmark for ideal 
situations, where a speaker could be observed with a variety 
of emotions. Yet, it is not necessary to know the actual 
emotional state of observed utterances at this point. 

As a high number of features is used throughout static 
modeling, feature space optimization seems a must in view 
of performance and real-time-capability. In order to 
optimize a set of features rather than combining attributes of 
single high relevance, we use a correlation-based analysis, 
herein. Thereby features of high class-correlation and low 
inter-feature correlation are kept [9]. This does not employ 
the target-classifier in the loop. Likewise it mostly reduces 
correlation within the feature space rather than evaluation of 
the benefit of single attributes. Still, this helps to obtain a 
very compact representation of the feature space, which 

usually leads to an improvement of accuracy while reducing 
feature extraction effort at the same time. 
 

6. DATABASE 
 
To demonstrate effectiveness of each chunking and the 
fusion on the turn-level, we decided for the popular studio 
recorded Berlin Emotional Speech Database (EMODB) 
[10], which covers the ‘big six’ emotion set (MPEG-4) 
besides boredom instead of surprise, and added neutrality. 
This database contains acted samples of an emotionally 
undefined predefined spoken content. However, to our best 
knowledge this is the only public emotional speech database 
that provides accurate syllable boundaries. Also, these 
results allow for comparison with the results presented in 
[6]. 10 (5f) professional actors speak 10 German 
emotionally undefined sentences. 494 phrases are marked as 
min. 60% natural and min. 80% assignable by 20 subjects. 
84.3% accuracy is reported for a human perception test. 
 

7. EXPERIMENTAL RESULTS 
 
Within this section we present a number of results carried 
out on EMO-DB. Test-runs are done in Leave-One-Speaker-
Out (LOSO) manner for speaker-independent tests, and in j-
fold Stratified-Cross-Validation (SCV) for speaker-
dependent tests. Table 2 first depicts the baseline results for 
speaker-independent classification on the turn-level 
employing standard turn-wise derived acoustic features. The 
table also shows diverse optimization strategies as described 
in sect. 5. As can be seen, both speaker normalization, and 
feature selection help to improve overall performance. Note 
that features are thereby optimized over all speakers, as this 
is a speaker-independent task. Table 3 shows baseline 
results for speaker-dependent analysis. Speaker 
normalization is hereby superfluous and likewise omitted. 

Table 2. Baseline results by turn-level analysis skipping 
stage 1. Accuracies for EMO-DB, turn-wise feature 
extraction, considering speaker-normalization (SN), and 
feature selection (FS) for optimization, speaker-independent 
(SI) LOSO evaluation with SVM. 

SI Accuracy [%] SN FS EMODB 
Turn - - 74.9 
Turn √ - 79.6 
Turn √ √ 83.2  

 

Table 3. Baseline results by turn-level analysis skipping 
stage 1. Accuracies for EMO-DB, turn-wise feature 
extraction, considering full set and feature selection (FS) for 
optimization, speaker-dependent (SD) evaluation with SVM. 

SD Accuracy [%] FS EMODB 
Turn - 80.0 
Turn √ 95.1  



Here again, a significant boost is obtained by feature 
space optimization. This time however, this step is carried 
out for each speaker individually resulting in very high 
mean accuracy. The mean optimal number of features is 57 
with 42 as minimum and 86 as maximum. The comparison 
of table 2 and table 3 clearly show the difference between 
speaker-dependent and independent analysis. 

Next, table 4 provides detailed number of chunks and 
syllables per emotion obtained by the chunking as described 
in sect. 2. Note that an almost constant factor of chunks per 
emotion resembling 3 is obtained. Disgust however shows a 
slightly different behavior. 

Table 4. Distribution among emotions, database EMO-DB. 
Considered are turns, automatically extracted chunks and 
syllables. 

[#] Turns Chunks Syllables 
Anger 127 269 1843 

Boredom 79 225 1151 
Disgust 38 173 516 

Fear 55 160 794 
Joy 64 179 927 

Neutral 78 213 1093 
Sadness 53 143 823 

Sum 494 1362 7147 
 

Apart from the mean number of chunks and syllables per 
emotion, table 5 depicts their frequencies in more detail. As 
can be seen, roughly a third of the turns is not chunked, but 
kept as turn. 

Table 5. Distribution among emotions, database EMO-DB. 
Considered are turns, automatically extracted chunks and 
syllables. 

[#] Chunks Syllables 
1 167 - 
2 86 - 
3 95 - 
4 65 - 

5-9 78 94 
10-14 3 135 
15-19 - 156 
20-29 - 109 

 
The next table 6 shows first classification results for the 

aimed at sub-turn entities chunks and syllables as introduced 
in sect. 4. As for the base-line turn-level features, speaker 
normalization and feature space optimization are considered 
for optimization. In table 7 the same results as in table 6 are 
shown for the speaker-dependent case. Finally, we show 
results for the mapping of chunks or syllables onto turns by 
the diverse strategies introduced in sect. 4. Thereby only the 
optimal cases with speaker normalization and feature space 
optimization are considered, as chunk-level accuracy is 
crucial for the overall success. First, we investigate the 

speaker-independent-case in table 8. Thereby the three 
strategies majority vote (MV), maximum length (ML) and 
maximum length times prediction score (MLS) are 
considered. 

Table 6. Results by chunk-level analysis. Accuracies for 
EMO-DB, chunk-wise feature extraction, considering 
speaker-normalization (SN), and feature selection (FS) for 
optimization, speaker-independent LOSO evaluation with 
SVM. 

SI Accuracy [%] SN FS EMODB 
Chunk - - 42.6 
Chunk √ - 46.7 
Chunk √ √ 51.4  

Syllable - - 42.1 
Syllable √ - 44.6 
Syllable √ √  47.6 

 

Table 7. Results by chunk-level analysis. Accuracies for 
EMO-DB, chunk-wise feature extraction, considering 
feature selection (FS) for optimization, speaker-dependent 
10-fold SCV evaluation with SVM. 

SD Accuracy [%] FS EMODB 
Chunk - 58.2 
Chunk √ 66.6  

Syllable - 58.6 
Syllable √  59.5 

 

Table 8. Results by turn-level mapping. Accuracies for 
EMO-DB, chunk-wise features with speaker-normalization 
and feature selection, considering correct and correct* 
cases, by addition of non-unique winning-classes, speaker-
independent (SI) LOSO evaluation with SVM. 

SI Acc. [%] Strategy Correct Correct* 
Chunk MV 45.3 64.2

 ML 60.1 64.2 
 MLS 70.6 70.6 

Syllable MV 42.8 60.1 
 ML 56.9 60.1 
 MLS 67.8 67.8 

 
As can be seen, we discriminate between correct 

assignment, and cases, where the correct class has been the 
winner class among one or more other classes. Second, the 
same results are observed in the speaker-dependent case in 
table 9. Apparently, the chunk level accuracy is crucial for 
the mapping on the turn level: in the speaker-independent 
case roughly every second chunk is correct. Likewise, 
mapping cannot “repair” too many cases. This differs for the 
case of speaker dependent analysis, where around 2 out of 3 
chunks are correct. Here, the mapping is closer to the 
accuracy obtained by turn-level features. 



Table 9. Results by turn-level mapping. Accuracies for 
EMO-DB, chunk-wise features with speaker-normalization 
and feature selection, considering correct and correct* 
cases, by addition of non-unique winning-classes, speaker-
dependent (SD) LOSO evaluation with SVM. 

SD Acc. [%] Strategy Correct Correct* 
Chunk MV 69.9 79.8 

 ML 78.2 79.8 
 MLS 88.4 88.4 

Syllable MV 66.3 80.0 
 ML 79.9 80.0 
 MLS 87.5 87.5 

 
The main outcomes of these results are that the proposed 

chunking seems superior to annotation-based syllable 
chunking. However, turn-level features cannot be reached. 
This holds even after mapping on the turn-level by the 
investigated three different strategies. 
 

8. DISCUSSION 
 
In this work we analyzed emotion recognition within speech 
by sub-turn entities. An automatic chunking was introduced 
as opposed to annotation-based syllable chunking. The 
introduced approach was superior to syllables both for 
speaker-dependent, as well as for independent analysis. This 
may be due to the fact that it produces roughly 5 times 
longer segments, though at the same time 5 times fewer 
instances are obtained for robust training. However, both 
these sub-turn entities clearly fall behind turn-level analysis. 

We secondly investigated mapping of these chunks on 
the turn-level by multi-instance learning. Yet, as a result for 
the used data-base no advantage over direct turn-level 
feature extraction can be reported. However, no turn-level 
feature information was integrated, which may lead to an 
advantage as in our former related experiments reported in 
[6], where chunk- and turn-level features were integrated in 
one super-vector. However, on databases as the AIBO set 
[8] changes of emotion are observed within a turn. At this 
point chunking may reveal its advantage. 

Apart from these findings speaker normalization and 
correlation-based feature space optimization could be 
proven highly beneficial. Furthermore significant 
improvement of speaker-dependent over independent 
analysis was demonstrated.  

In future works we aim at modeling of the chunk order, 
e.g. by means of dynamic modeling as Dynamic Bayesian 
Nets. Also, diverse training strategies as combined chunk 
learning or turn-level features learning independent of the 
unit may reveal facts about potential performance boost and 
incremental processing. Also analysis on further data-sets as 
SUSAS, DES, eNTERFACE, or SMARTKOM may show 
different potential of the investigated 2-stage processing. 
Finally we aim at investigation of the benefit that can be 
obtained by training of syllable-dependent models. 
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