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Abstract. Opposing the pre-dominant turn-wise statistics of acoustic Low-
Level-Descriptors followed by static classification we re-investigate dynamic 
modeling directly on the frame-level in speech-based emotion recognition. This 
seems beneficial, as it is well known that important information on temporal 
sub-turn-layers exists. And, most promisingly, we integrate this frame-level 
information within a state-of-the-art large-feature-space emotion recognition 
engine. In order to investigate frame-level processing we employ a typical 
speaker-recognition set-up tailored for the use of emotion classification.  That is 
a GMM for classification and MFCC plus speed and acceleration coefficients as 
features. We thereby also consider use of multiple states, respectively an HMM. 
In order to fuse this information with turn-based modeling, output scores are 
added to a super-vector combined with static acoustic features. Thereby a 
variety of Low-Level-Descriptors and functionals to cover prosodic, speech 
quality, and articulatory aspects are considered. Starting from 1.4k features we 
select optimal configurations including and excluding GMM information. The 
final decision task is realized by use of SVM. Extensive test-runs are carried out 
on two popular public databases, namely EMO-DB and SUSAS, to investigate 
acted and spontaneous data. As we face the current challenge of  speaker-
independent analysis we also discuss benefits arising from speaker 
normalization. The results obtained clearly emphasize the superior power of 
integrated diverse time-levels.  
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1   Introduction 

Apart from a few attempts to classify emotions within speech dynamically [1,2], 
current approaches usually employ static feature vectors derived on a turn or frame 
level. In [2] the latter has also been shown superior to dynamic modeling. This 
derives mostly from the fact, that by (usually statistical) functional application to the 
Low-Level-Descriptors (LLD) as e.g. pitch, energy, or spectral coefficients an 
important information reduction takes place, which avoids phonetic (respectively 
spoken-content) over-modeling. Yet, it is also considered received knowledge that 
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thereby important temporal information is lost due to a high degree of abstraction. 
This led to first successful attempts to integrate information on diverse time levels   
[3-6]. 

Apart from this several works point at the high influence of emotional variability 
within speech on the recognition of speakers [7,8]. We therefore investigate how 
reliably a state-of-the art speaker recognition engine using MFCC, Cepstral Mean 
Substraction (CMS), and Gaussian Mixture Models (GMM) can recognize emotions 
instead of speakers. As such processing operates on a per-frame basis, we finally use 
this to accomplish the initially introduced thought of combining different temporal 
layers for emotion recognition within speech. 

For testing we will use two public databases providing acted and spontaneous 
samples of emotional speech. 

The paper is structured as follows: Section 2 and 3 deal with frame- and turn-level 
analysis of speech with respect to emotion. In section 4 two optimization strategies, 
namely speaker normalization and feature space optimization, are discussed. Section 
5 introduces the fusion of the two approaches. Finally, in the sections 6-8 data, results 
and conclusions are presented. 

2   Frame-level Analysis (FL)  

We consider using a speaker recognition system to recognize emotion from speech in 
the first place. Likewise, instead of the usual task to deduce the most likely speaker 
(from a known speaker set) ωk form a given sequence X of M acoustic observations x 
[9], we will recognize the current emotion. This is usually solved by a stochastic 
approach following eq. 1,  
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where P(X |ω) is called the speaker acoustic model, P(ω) is the prior speaker 
information and ω speaker model given the set  of reference models Ω={ω1, … , ωN}.  

The vectors in a sequence, X, are independent and identically distributed random 
variables. This allows to express P(X |ω) as 

 

.)|()|(
1
∏
=

=
M

t
txpXP ωω

 
(2) 

  
where P(xt|ω) is the likelihood of single frame xt given model ω. This is a 
fundamental equation of statistical theory and is widely used in speech and speaker 
recognition systems using frame level analysis. 

A typical state-of-the-art system uses single state HMMs as speaker acoustic 
model, also known as GMMs. This state is associated with an emission-probability 
P(X|s) which for continuous variables x is replaced with its probability density 
function (PDF). These PDFs are realized using weighted sums of elementary 
Gaussian PDFs (Gaussian Mixtures, which leads to the name GMM).  



A GMM is a weighted sum of N component densities and is given by the form 
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where x is a M-dimensional random vector, bi(x), i=1,...,N, is the component density 
and ci, i = 1,… , N, is the mixture weight. Each component density is a M-variate 
Gaussian function of the form 
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with mean vector μi and covariance matrix Σi. The mixture weights satisfy the 
stochastic constraint that 
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The complete Gaussian mixture model is parameterized by the mean vectors, 
covariance matrices and mixture weights from all component densities. These 
parameters are collectively represented by the notation 
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In our emotion recognition system, each emotion is represented by such a GMM 

and is referred to by its model Ω. 
For a sequence of T test vectors X = x1, x2, · · · , xT, the standard approach is to 

calculate the GMM likelihood as in Eq. (2) which can be written in the log domain as 
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The GMM parameters are estimated by the EM-algorithm using training material 
for other speakers and a number of 1 to 120 Gaussian mixtures to approximate the 
original PDFs [10]. However, we also consider multiple states, herein, as in some 
speaker recognition systems, to better model dynamics. These are trained accordingly. 

Speech input is processed using a 25ms Hamming window, with a frame rate of 
10ms. As in typical speaker recognition we employ a 39 dimensional feature vector 
per each frame consisting of 12 MFCC and log frame energy plus speed and 
acceleration coefficients. Cepstral Mean Substraction (CMS) and variance 
normalization are applied to better cope with channel characteristics. The priors are 
chosen as an equal distribution among emotion classes. 

3   Turn-level Analysis (TL) 

In order to represent a typical state-of-the-art emotion recognition engine operating on 
a turn-level, we use a set of 1,406 acoustic features basing on 37 Low-Level-



Descriptors (LLD) as seen in table 1 and their first order delta coefficients [11]. These 
37x2 LLDs are next smoothened by Low-pass filtering with an SMA-filter.  

Opposing the formerly introduced dynamic modeling, such systems derive 
statistics per speaker turn by a projection of each uni-variate time series, respectively 
LLD, X onto a scalar feature x independent of the length of the turn. This is realized 
by use of a functional F, as depicted in eq. 8. 

1:F X x→ ∈R . (8) 

19 functionals are applied to each contour on the turn-level covering extremes, 
ranges, positions, first four moments and quartiles as seen in table 1. Note, that three 
functionals are related to position, known as duration in traditional phonetic 
terminology, as their physical unit is msec. 

 
Table 1. Overview of applied Low-Level-Descriptors and functionals for turn-wise analysis. 

Low-Level-Descriptors (2x37) Functionals (19) 
Pitch 
Energy 
Envelope 
Formant 1-5 Amplitude 
Formant 1-5 Bandwidth 
Formant 1-5 Frequency 
MFCC Coefficient 1-16 
Harmonics-to-Noise-Ratio HNR 
Shimmer 
Jitter  
Delta Pitch 
Delta Energy 
Delta Envelope 
Delta Formant 1-5 Amplitude 
Delta Formant 1-5 Bandwidth 
Delta Formant 1-5 Frequency 
Delta MFCC Coefficient 1-16 
Delta Harmonics-to-Noise-Ratio  
Delta Shimmer 
Delta Jitter 

Mean 
Standard Deviation 
Zero-Crossing-Rate 
Quartile 1 
Quartile 2 
Quartile 3 
Quartile 1 - Minimum 
Quartile 2 - Quartile 1 
Quartile 3 - Quartile 2 
Maximum - Quartile 3 
Centroid 
Skewness 
Kurtosis 
Maximum Value 
Relative Maximum Position 
Minimum Value 
Relative Minimum Position 
Maximum Minimum Range 
Position of 95% Roll-Off-Point 

 
For classification we use Support Vector Machines (SVM) with linear Kernel and 

1-vs.-1 multi-class discrimination. One could consider the use of GMM here, as well. 
Yet, SVM have proven the preferred choice in many works to best model static 
acoustic feature vectors [11]. 



4   Optimization Strategies 

Next, two optimization strategies are considered: First, speaker normalization (SN) by 
feature normalization with the whole individual speaker context. Second, feature-
space optimization by correlation-based exclusion of highly correlated features (FS). 

We investigate the benefits of speaker normalization, as we intend to analyze 
emotion independent of the speaker, herein. SN is thereby realized by a normalization 
of each feature x by its mean and standard deviation for each speaker individually. 
Thereby the whole speaker context is used. This has to be seen as an upper 
benchmark for ideal situations, where a speaker could be observed with a variety of 
emotions. Yet, it is not necessary to know the actual emotional state of observed 
utterances at this point. 

As a high number of features is used throughout static modeling, feature space 
optimization seems a must in view of performance and real-time-capability. In order 
to optimize a set of features rather than combining attributes of single high relevance, 
we use a correlation-based analysis, herein. Thereby features of high class-correlation 
and low inter-feature correlation are kept [12]. This does not employ the target-
classifier in the loop. Likewise it mostly reduces correlation within the feature space 
rather than evaluation of the benefit of single attributes. Still, this leads to a very 
compact representation of the feature space, which usually leads to an improvement 
of accuracy while reducing feature extraction effort at the same time. 

5   Time-level Combination 

So far the two individual approaches to emotion recognition based on information 
processing directly on the frame-level, or on a higher turn-level, have been 
introduced. In order to fuse these two approaches it seems beneficial to keep utmost 
amounts of information for the final decision process. However, an early feature 
fusion is not feasible, as frame-level processing results in a dynamic number of 
frames. We therefore decided to include final GMM scores within the static acoustic 
feature vector. The process of speaker normalization and feature space optimization is 
extended to the likewise obtained new feature vector x’. Fig. 1 depicts the overall 
processing flow from an input audio file via the two streams to the final result. 
Overall feature selection having the GMM scores within the space reveals their high 
importance, as they are kept among high ranks. 



 
Fig. 1. Processing flow for the combined frame- and turn-level analysis. 

6   Acted and Spontaneous Data 

To demonstrate effectiveness of each single approach and the fusion on acted and 
spontaneous data, we decided first for the popular studio recorded Berlin Emotional 
Speech Database (EMODB) [13], which covers the ‘big six’ emotion set (MPEG-4) 
besides boredom instead of surprise, and added neutrality. 10 (5f) professional actors 
speak 10 German emotionally undefined sentences. 494 phrases are marked as min. 
60% natural and min. 80% assignable by 20 subjects. 84.3% accuracy are reported for 
a human perception test. 

Second, we selected the Speech Under Simulated and Actual Stress (SUSAS) 
database [14] as a reference for spontaneous recordings. As additional challenge 
speech is partly masked by field noise. It consists of five domains, encompassing a 
wide variety of stresses and emotions. We decided for the 3,663 actual stress speech 
samples recorded in subject motion fear and stress tasks, as acted samples are already 
covered by EMODB in this work. 7 speakers, 3 of them female, in roller coaster and 
free fall actual stress situations are contained in this set. Two different stress 
conditions have been collected: medium stress, and high stress. Within the further 
samples also neutral samples, fear during freefall and screaming are contained as 



classes. Likewise a total of five emotions, respectively speaking styles, are covered. 
SUSAS samples are constrained to a 35 words vocabulary of short aircraft 
communication commands. All files are sampled in 8 kHz, 16 bit. The recordings are 
partly overlaid with heavy noise and background over-talk. However, this resembles 
realistic acoustic recording conditions, as also given in many related scenarios of 
interest such as automotive speech interfaces or public transport surveillance. 

7   Experimental Results 

Results are presented for each modeling technique individually (TL and FL), and for 
the combination of these two. Thereby the effects of speaker normalization SN and 
feature space optimization FS as described are shown, too.  

 
Fig. 2. Accuracy depending on the number of mixtures and number of HMM states, LOSO 
evaluation, database EMODB. 

As can be seen in fig. 2. single state HMM show the most stable and robust results. 
For EMODB, we provide results of a leave-one-speaker-out (LOSO) evaluation to 

face the challenge of speaker independence. For SUSAS we decided for 10-fold 
stratified cross validation (SCV), as only 7 speakers are contained in the chosen 
spontaneous subset. On the other hand this is possible, as roughly 500 phrases are 
available per speaker.  



Table 2. Combination of turn level and frame level analysis, databases EMODB with LOSO 
evaluation and speaker dependent 10-fold SCV for SUSAS. TL and FL abbreviate turn and 
frame levels. SN and FS represent speaker adaptation and feature selection. (√) indicates that 
the technique has been applied. 

Accuracy 
[%] 

SN FS EMODB SUSAS 

TL - - 74.9 80.8 
TL √ - 79.6 80.8 
TL √ √ 83.2  83.3 
FL - - 77.1 67.1 
TL+FL √ - 81.6 81.3 
TL+FL √ √ 89.9 83.8 

 
During feature selection the original 1,406 features have been reduced to 76 for 

EMODB. For SUSAS 71 features have been selected on the whole dataset, and 33-
107 features were observed as optimum for the individual speakers. This underlines 
the brute-force nature of the creation of a >1k feature space in order to find a very 
compact robust final set. Tab. 1 shows the summarized results.  

 
Fig. 3. Accuracy depending on the number of mixtures, LOSO evaluation, database EMODB. 

In the following the influence of the chosen number of mixtures for frame-level 
analysis is illustrated in detail for EMODB and SUSAS overall results and for each 
emotional state independently. As can be seen in fig. 3, a surprisingly high number of 
mixtures (>60) compared to the size of the database seems beneficial. Yet, not all 
emotions benefit from increase of mixtures, as e.g. fear. A similar behavior is 
observed for the SUSAS database (fig. 4) 
 



 
Fig. 4. Accuracy depending on the number of mixtures, mean of speaker-dependent 10-fold 
SCV evaluation, database SUSAS. 

where freefall is represented by very few samples and therefore is highly negatively 
influenced by the increase of mixtures. This comes, as classes with sparse data suffer 
from over-adaptation with respect to high accuracy. Also, this derives from the fact 
that no prior information was used in eq. 1. This however allows for more 
comparability between FL and TL modeling. In general ~50 mixtures seem optimal. 

8   Discussion and Future Work 

Within this paper we introduced speaker recognition motivated emotion recognition 
on a frame-level and its fusion with turn-level-based emotion recognition. The results 
presented do not allow for a direct comparison between these two, as a different 
number of LLDs has been used. Still, even using a typical speaker recognition system 
shows surprisingly high performance for the recognition of emotion within speech 
though it should be noted that FL clearly falls behind TL for the SUSAS database. 
When investigating the optimal number of mixtures to be used, it seems favorable to 
provide a minimum of 50 mixtures. However, some emotions may be negatively 
influenced by too high a number of mixtures. Considering dynamical modeling, no 
gain could be observed for use of several HMM states, as long as an adequate number 
of mixtures is provided. 

Speaker normalization and feature space optimization both clearly help to improve 
overall results. Thereby it has to be noted that less than 10% of the original feature 
space suffices to get an optimum performance.  

The highest accuracy is however obtained by the suggested fusion of both 
approaches. This is in particular true for EMODB. For SUSAS it is not too clear, 
whether the extra effort is justified.  

It has to be mentioned that for both databases results in the order of human 
perception can be reported. This is true, even though speaker independence and 
spontaneous data in noisy environment have been faced, yet once at a time.  

In future work we plan to investigate phonetic unit bound HMM models. 
Furthermore, a combination of functional application on syntactical unit motivated 



chunks combined with dynamic modeling capabilities of an HMM seem a promising 
variant. Finally, the findings have to be verified on datasets without limited 
predefined spoken content. 
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