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A B S T R A C T

Computational Steering has aimed for long to develop tools for the
convenient setup and control of simulation runs. With such tools at
hand it would be possible to explore changes in the simulation out-
come as response to changes in its various independent variables.
Boundary conditions, physical parameters, or simulation domain ge-
ometry are typically varied and, after triggering new simulation runs
on available computing resources, results are displayed for the user
to evaluate and draw conclusions.

The effectiveness and efficiency of computational steering as an explo-
ration and hypothesis testing tool highly depend on the interactivity
of the whole process and especially that of the simulation. Even on
modern parallel systems many simulation codes cannot deliver sta-
tionary or even single time step solutions within a reaction time that
would easily link the action – parameter change –, to the reaction
– new corresponding simulation state. Thus, for such simulations a
continuous exploration workflow remains challenging.

Mostly targeted at the field of optimization, so called meta, reduced,
or surrogate models have been recently developed as ways to reduce
computational cost in many engineering relevant applications. As
computationally cheaper alternatives to full simulation runs, surro-
gate models have the potential to deliver approximate results at inter-
active rates and thus, suggest their use in exploratory computational
steering.

This work investigates for the first time the use of surrogate models
to augment computational steering approaches. Based on the sparse
grid method, we present a distributed system that is able to deliver
simulation snapshots from a central repository at interactive rates,
even for very large data sets. Combined with visual analytics de-
rived from inherent surrogate model properties, we created a novel
integrated workflow for the fast investigation of parametrized simu-
lations. The suitability of the method is demonstrated with various
applications.
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1
I N T R O D U C T I O N

Real-time computing applications together with real-time visualiza-
tion have been recently seen as a new direction in scientific com-
puting by offering scientists and engineers assistance during design,
construction, manufacturing or production phases, and even guid-
ing medical doctors during surgery or diagnosis. With instant access
to results, simulations depending on many parameters can be faster
understood by deriving sensitivity measures or by visual inspection.
The parameter (design) space might be large but the interactive access
to solutions makes even an exhaustive investigation thinkable.

The main focus of this work is what-if or sensitivity analysis as a
method to increase the understanding of relationships between in-
put and output variables in a system or model. Such an analysis is
typically performed by changing assumptions in the form of param-
eters and inspecting the simulation outcome. After several iterations
of this process, important parameters or parameter ranges are iden-
tified and the gathered knowledge is used to support a future and
faster decision process.

A what-if analysis workflow requires many simulation runs under
the consideration that the computing time needed for a single simu-
lation snapshot can be far from instant. As a consequence, for compu-
tationally expensive applications, the effectiveness of freely exploring
the design space in order to identify parameter behavior is signifi-
cantly limited. This work proposes solutions to this challenge, but
before, some related concepts are presented that frame the current
efforts.

Historically, classical computational steering has been defined as the
interactive control of a running simulation. With focus on how to effi-
ciently steer (change parameters) and move results from the comput-
ing to the visualization system, it can be seen as a natural framework
also for what-if analysis. Latest developments in interactive comput-
ing – viewed as an extension to computational steering – demand
close to real-time results and employ scenarios and codes which are
feasible in this respect. Consequently, we are left with a broad cate-
gory of simulation codes which cannot deliver fast results or would
require significant optimization efforts.

Advances in the field of computational steering have also been joined
by the exploration of new visualization possibilities. Moving away
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2 introduction

from single monitor visualizations, CAVE environments [19] offer
immersive visualizations of high-resolution simulations. Tiled visual-
ization systems [80] aggregate several display units into large visual
surfaces which can either display a single high-resolution dataset or
different linked views of the same data.

Many ideas in this work profited from the fruitful collaboration in
two projects with focus on computational steering. The MAC B8 Com-
putational Steering project fostered different approaches to computa-
tional steering with focus on the full processing pipeline ranging from
scalable data processing workflows to interactive visualization and
human-computer interaction in virtual and augmented reality envi-
ronments. The KAUST-TUM partnership project K2 Virtual Arabia in-
tegrated high-resolution parametrized Computational Fluid Dynamics
(CFD) simulations with interactive visualization requirements. What
both projects had in common was the need to obtain insight in the
behavior of computationally intensive simulations.

Classically, steering and visualization have involved the full simula-
tion model. Luckily, the simulation – also called high fidelity model –
needs not always be evaluated. Techniques for reducing the frequency
or complexity of simulations and implicitly the cost have been ac-
tively pursued in the fields of optimization and uncertainty quantifi-
cation [33]. Low fidelity or surrogate models have been developed for a
number of simulations as low cost equivalents, which raises the ques-
tion if such approaches are viable alternatives or extensions to classi-
cal computational steering. (Fig. 1 sketches the central idea).

In this work, we develop and evaluate surrogate models based on
adaptive sparse grids to support what-if analysis of expensive sim-
ulations. We will consider the simulation as a function, where the
parameters serve as input arguments while the snapshot (e.g., veloc-
ity or pressure field) is the output of the function. As an efficient
multi-dimensional interpolation technique, sparse grids approximate
the simulation function using a moderate number of snapshots. Algo-
rithmically, the construction and interpolation with sparse grid sur-
rogates are well suited for parallel implementation on modern SIMD
architectures. To make use of these properties, we design and imple-
ment a distributed surrogate model which encapsulates construction,
usage, and extension on parallel architectures. The model delivers in-
teractive approximate snapshots to a distributed visualization even
for very large snapshot sizes.

We build surrogate models for four engineering-relevant applications
characterized by different numbers of parameters (2 to 5) and type
(physical, boundary conditions or mesh transformations). All simula-
tions codes solve partial differential equation (PDE) on computational
grids. We investigate
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Figure 1: For a what-if analysis of a particular scenario many simulation
codes are too slow in delivering results. The proposed solution
is to pre-compute a low-fidelity representation, which can deliver
approximate, but interactive results. The achieved fast response
serves as input to a user-steered interactive visualization and ex-
ploration, which supports the analysis.

• a thermal block: heat diffusion in a plate with parametrized ther-
mal regions,

• an acoustic horn: acoustic wave propagation in a narrow horn
with parametrized shape,

• a flow in a building infrastructure model (BIM): fluid dynamics
simulation in an accurate building geometry with parametrized
doors, and

• a reactive flow: premixed hydrogen flame with convection.

For all applications we present the accuracy of the sparse grid low-
fidelity model. In terms of efficiency, a special focus is given to the
evaluation for the BIM surrogate due to its large output snapshots (up
to 1GB). The BIM solution is an architecture-optimized implementa-
tion stemming from a collaboration effort.

As they do not require knowledge of the PDE of the model, sparse
grid surrogates are classified as non-intrusive. We address also intru-
sive surrogates by improving a surrogate model based on the Discrete
Empirical Interpolation Method (DEIM) and apply it to the reactive
flow problem.
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To convey our achievements we structure this work as follows: Chap. 2

considers a formalism for surrogate models and outlines the stan-
dard offline (construction) and online (usage) phases. Guided by the
distinction intrusive/non-intrusive we discuss the computational re-
quirements for a set of popular surrogates in the context of interactive
computing and exploration.

With the surrogate basics in place, Chap. 3 presents the sparse grid
method in its classical version. Our focus will be on interpolation
and the decisive feature of sparse grids, namely their hierarchical
and incremental structure. Fully adaptive sparse grids are used in the
sense that new interpolation points are added to an existing surrogate
to improve the local or overall accuracy.

Chapter 4 reviews the most relevant computational steering environ-
ments and methods. We will see that the high-fidelity model has
usually been the central aspect of most steering approaches. Other
approaches combine different resolutions of the same simulation to
get closer to interactivity. By extending the classical methods with
surrogates, we argue that the exploration workflow is significantly
improved.

The main contribution of this work is laid out in Chap. 5 where sparse
grids are formulated as surrogate models. The hierarchical coeffi-
cients are used to provide additional insight with respect to changes
in the behavior of the simulation. A set of visual analytics tools are
adapted to guide the user to regions of interest. Thus, the surrogate
does not only deliver fast solutions, but also offers exploration in-
dicators. On the intrusive track, we develop the localized DEIM as
a significant improvement to the classical DEIM for problems with
separable non-linearities.

The technical realization of the distributed and parallel surrogate
models is presented in Chap. 6. The notion Repository will be an
abstraction describing a system with a slim interface that delivers
new snapshots to a visualization client. GPU, CPU and hybrid repos-
itory implementations are formulated and evaluated regarding per-
formance.

Chapter 7 demonstrates the applicability of the proposed methods to
our set of four applications. Each application is described with respect
to the overall setup, number and type of parameters, discretization,
output of interest, and specific challenging aspects. For each high-
fidelity model the corresponding surrogate is discussed and the in-
sight indicators are checked against the known behavior. Finally, we
end with concluding remarks in Chap. 8.

The main question now is, can surrogates provide fast insight? The
next chapters will provide a detailed answer.



2
T E C H N I Q U E S F O R R E D U C I N G T H E C O M P L E X I T Y
O F S I M U L AT I O N S

2.1 surrogates for computational simulations

The field of supercomputing follows the trend to ever larger simula-
tions on tera-, peta- or even exascale. Thought as capability comput-
ing, a supercomputer aims to use the maximum computing power to
solve a single large problem in the shortest amount of time.

In contrast, capacity computing is typically thought of as using ef-
ficiently cost-effective computing power to solve a small number of
somewhat large problems or a large number of small problems. Many
engineering applications fall in this second category where a filter-
ing of relevant simulation scenarios or an investigation of parameter
sensitivity will need a potentially large number of computationally
intensive runs with different start parameters. Working with the high-
fidelity model becomes prohibitive, if the total execution time of the
number of simulations needed to reach to goal overshoots the overall
time allocated for this task.

Figure 2 points out two possible ways to reduce the execution time
of a costly simulation. Unlike common speedup techniques, surro-
gates take a different approach. The speedup in fulfilling a task (e.g,
optimization, what-if analysis) is not obtained by parallelism, but by
reducing the frequency or cost of high-fidelity evaluations.

The frequency of high-fidelity model evaluations can be reduced by
using approximations to the input-output relationship. In many cases
the output is an aggregated quantity (e.g. average temperature over
entire domain) and tends to have a much smoother behavior (re-
sponse) than the highly non-linear simulation itself.

A reduction in cost is achieved by taking advantage of data redun-
dancy. Intuitively, a set of simulation snapshots can be seen as a set
of observations of possibly correlated variables. Through an orthog-
onal transformation this set can be converted into a set of values of
linearly uncorrelated variables called principal components V (see
2.5 for the computation). Suppose X be a matrix whose columns are

5
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Simulation Code Interactive Visualization

Common
Speedup

Techniques

Reduced
Order

Models

Fast

Slow

Slow

Fast

Fast

Figure 2: A slow simulation can be made interactive with common speedup
techniques: parallelization or more powerful hardware. The sec-
ond option is to reduce the complexity of the high-fidelity model.

given by two snapshots each with four elements. X can be expressed
with the help of its principal components as follows:


1 2.2

2 4.1

4 8.1

8 16.3


︸ ︷︷ ︸

X

=


−0.1154 0.9440

−0.2180 0.1422

−0.4317 −0.2976

−0.8676 −0.0132


︸ ︷︷ ︸

V

×

[
−9.2193 −18.7869

−0.0680 0.0334

]
︸ ︷︷ ︸

Xr

(1)

Thus, with no loss of information, any linear operations done on X
can also be done on Xr where Xr = VTX. The difference is that Xr is
significantly smaller. After performing computations with the lower-
dimensional Xr the return to the high-dimensional space is done with
VXr. Significant computational reduction is achieved in solving a lin-
ear PDE by using the low-dimensional Xr instead of X.

2.2 classification of surrogate models

Three main categories of surrogates can be distinguished by the way
the reduction in cost is pursued [31].

Hierarchical surrogates are physics-based models in the sense that PDE
are still simulated but in a lower fidelity version. Typical simplifica-
tions are the use of coarser discretizations, weaker convergence tol-
erances, or simpler physics. From the computational steering point
of view, approaches using hierarchical surrogates have been actively
pursued (see [54]). The idea is that a sufficiently coarse discretization
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delivers results at interactive rates. Difficulties might arise when a too
low discretization does not capture simulation behavior which would
be relevant for the understanding of the simulation.

Reduced-order modeling techniques such as proper orthogonal decom-
position in computational fluid dynamics or modal analysis in struc-
tural dynamics also have physics linkage. They solve the PDE system,
but projected on the most important modes of the state space. Or-
ders of magnitude for the reduction can be achieved, if the system
behavior is represented with only very few modes. Their derivation
for a new problem tends to require significant effort, but the achieved
accuracy makes them some of the most successful surrogates.

Data fit surrogates are non-physics-based approximations typically in-
volving interpolation or regression of a set of data generated from
the high-fidelity model. Within data fit models we will focus on the
ones which offer a global approximation. Such techniques [48] de-
liver low-fidelity results over the entire parameter space, which is
needed by a global exploration approach. Some prominent members
of this category are polynomial response surfaces, stochastic collocation,
Kriging [50], neural networks, radial basis functions [69], or spline interpo-
lation.

A further classification of surrogate models is based on the amount of
work needed to construct the surrogate model for a new simulation.
Reduced order surrogates require a transformation of the original
PDE and thus fall in the category of intrusive methods while data fit
surrogates are non-intrusive as only the quantity to be interpolated or
approximated changes.

We will next elaborate on the fundamental concept of a surrogate and
proceed with some intrusive and non-intrusive methods. The chapter
closes with an evaluation of their suitability in an interactive compu-
tational steering setting.

2.3 offline - online pattern

A surrogate model is used instead of the simulation to enable fast
evaluation, obtaining approximate solutions significantly faster than
running the original simulation. This is achieved by investing compu-
tational effort in building the surrogate model offline, which can then
be evaluated very fast during the actual online steering. In this work,
let us denote with u(x,µ), u : Ω × P → RN, the simulation func-
tion we seek to approximate, which depends on the physical 2- or
3-dimensional coordinates x ∈ Ω and the vector µ ∈ P of normalized
d parameters, where

P = {µ | µ ∈ (0, 1)d , d > 1} (2)
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Figure 3: The two phases of the surrogate process: offline and online. For
a particular simulation scenario the relevant parameters and their
ranges are fixed. For each sample point in Ps, the corresponding
simulation is computed. Usually, this is the most time-consuming
part of the offline phase. The low-fidelity model is built from the
precomputed snapshots. Online, this cheaper model is used in an
evaluation loop.

is the relevant parameter space for the simulation. For a fixed µ the
simulation instance is called a snapshot uµ(x) := u(x,µ) and repre-
sents the result of the simulation started with µ as parameter values.
For reasons of simplicity, uµ will be used to denote the entire 2- or
3-dimensional simulation snapshot corresponding to µ. The output
of the surrogate model ũ(x,µ) is also called a snapshot and will be
denoted ũµ(x) := ũ(x,µ), or simply ũµ for the full surrogate solu-
tion.

Figure 3 illustrates the main parts of a surrogate model approach.
The construction of the surrogate model is done offline and starts by
choosing the parameters and their ranges of interest. This is simula-
tion specific, but is also limited by the amount of effort worth invest-
ing in the offline phase, as a larger parameter count and range, while
desirable, will increase the cost of the offline phase. Next, a sampling
is performed within the chosen ranges and for each parameter combi-
nation a full simulation is performed and stored. We will denote the
set of sampling points Ps ⊂ P. A necessary condition is that the sam-
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pling covers a large part of the informational content and behavior of
the simulation itself.

For the chosen sampling Ps all the corresponding simulation snap-
shots are computed. The offline phase ends with a surrogate-model-
specific reduction technique, which constructs for the original prob-
lem u the reduced form ũ, with ũ being more suitable for fast re-
peated evaluation. The actual exploration takes place in the online
phase using ũ, where the user can frequently change parameters, and,
guided by an interactive visualization, study the behavior of the orig-
inal simulation.

2.4 non-intrusive surrogate models

Non-intrusive approaches treat the high-fidelity model as a black
box out of which the sampling Ps is drawn. A new snapshot is con-
structed as a sum of weighted basis functions where one of the two
things is to be computed: (1) the weights (Kriging, polynomial chaos,
radial basis functions) or (2) the basis functions (stochastic colloca-
tion).

2.4.1 Kriging

Kriging [40, 83, 51, 46] belongs to the family of least squares estima-
tion algorithms. The aim of Kriging is to estimate the value of an
unknown real-valued function u(µ) at point µ given some observa-
tions at points µ1, . . . ,µM. A Kriging estimator is said to be linear
because the predicted value ũµ is a linear combination that may be
written as

ũ(µ) =

M∑
i=1

αi(µ)u(µi) (3)

where the weights αi must be chosen to satisfy that ũ: (1) is unbiased
and (2) optimal with respect to the minimum squared error. These
conditions are then expressed as the constrained optimization prob-
lem:

E[u(µ) − ũ(µ)] = 0 (4)

Var[u(µ) − ũ(µ)] is minimum (5)
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The most common type of Kriging is ordinary Kriging which assumes
an unknown but constant mean, E[u] = ū, and requires enough ob-
servations to construct the semivariogram

γ(µi,µj) = E[(u(µi) − u(µj))
2]. (6)

The semivariogram describes the degree of spatial dependence and
thus correlation between the available function evaluations u(µ1),
. . . ,u(µM). If there is spatial dependence, values that are closer to-
gether (in the parameter space) will have small variance and vice
versa. As u(µ) is only known at the sampling points but the semivar-
iogram is needed at all interpolation points, the empirical semivari-
ogram is used:

γ̂(µ1,µ2) = γ̂(µ1−µ2) = γ̂(h) =
1

|D(h)|

∑
(i,j)∈D(h)

|u(µi)−u(µj)|
2 (7)

where D(h) denotes the set of pairs of snapshots i, j corresponding to
a parameter distance |µi − µj| = h, and |D(h)| is the number of pairs
in the set. Based on the semivariogram, for a new parameter µ∗ the
following Kriging system is solved:


α1
...

αM

σ

 =


γ(µ1,µ1) · · · γ(µ1,µM) 1

...
. . .

...
...

γ(µM,µ1) · · · γ(µM,µM) 1

1 · · · 1 0


−1

︸ ︷︷ ︸
offline


γ(µ1,µ∗)

...

γ(µM,µ∗)

1


︸ ︷︷ ︸

online

(8)

where σ is a Lagrange multiplier used to ensure the unbiasedness
condition. The interpolation by ordinary Kriging is then done online
with

ũ(µ∗) =


α1
...

αM


′

︸ ︷︷ ︸
computed


u(µ1)

...

u(µM)


︸ ︷︷ ︸
stored

(9)

The above equations describe Kriging for a function of one variable.
When interpolating a field of size N the costs scale linearly. In order
to perform the linear sum in Eq. 3 the Kriging coefficients αi need to
be computed online (at interpolation time). N sets of coefficients are
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computed, one for each discretization node in the snapshot. While the
matrix inverse in Eq. 8 is precomputed, we still need to perform N

matrix vector products of size M at interpolation time. Furthermore,
in oder to improve the estimator with additional observations all pre-
computed matrix inverses in Eq. 8 need to be recomputed.

2.4.2 Non-Intrusive Polynomial Chaos

Polynomial Chaos (PC) has been successfully used in uncertainty
quantification [29, 30, 43] to compute how uncertainties in the input
of a dynamical system manifest in its outputs. It relies on orthogo-
nal polynomials to construct a response ũ to the parameters µ given
their known input probability distribution function ρ(µ). The output
is thus expressed as the series:

ũ(µ∗) = α(µ0)P0(µ
∗) +α(µ1)P1(µ

∗) +α(µ2)P2(µ
∗) + . . . (10)

The orthogonal polynomials Pk are related to ρ by:

∫
Pj(µ)Pk(µ)ρ(µ)dµ = δj,k (11)

To unknown coefficients αk can be computed by intrusive [97, 98] or
non-intrusive methods. The later can be regression [7, 90] or projec-
tion [89, 18] based. The projection method takes advantage of the or-
thogonality properties of the PC representation and computes the ex-
pansion coefficients from some evaluations of the high-fidelity model
u:

αk =
1

Nk

∫
u(µ)P(µ)ρ(µ)dµ (12)

αk ≈ 1

Nk

M∑
i=1

u(µi)Pk(µi)wi (13)

Nk =

∫
Pk
2(µ)ρ(µ)dµ (14)

where u(µi), i = 1 . . .M are, as with Kriging, M precomputed snap-
shots for different values of µ sampled according to ρ(µ).

When used as a surrogate in a steering context, the input parameters
are uniformly distributed and the Legendre polynomials are the best
choice for Pi (see [29]). The quadrature in Eq. 13 is the main computa-
tional cost but takes place offline. Similar to Kriging, any extension of
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the surrogate requires quadrature computations and makes is prob-
lematic for on-the-fly improvement.

2.4.3 Stochastic Collocation

Collocation methods [30, 57] construct an interpolant to the response
u under the condition that the surrogate coincides (is collocated),
ũ(µi) = u(µi), at the sampling points µi, i = 1 . . .M. The Stochastic
Collocation (SC) expansion is usually formed as a sum of multidi-
mensional Lagrange interpolation polynomials of degree M− 1. The
coefficients of the expansion are just the response values at each of the
collocation points. Unlike PC, which constructs coefficients to known
polynomials, SC builds polynomials to known coefficients:

u ≈ ũ =

M∑
j=1

u(µj)Lj(µ) (15)

Lj =

M∏
k=1,k6=j

µ− µk
µj − µk

(16)

where M is the size of the set of collocated points. In the uncertainty
quantification scenario the solution has to be integrated, thus Gauss
points are used as collocation points. With an increasing number of
dimensions the quadrature runs into the curse of dimensionality and
sparse grid quadrature is typically used.

Having global support, the evaluation of the interpolant requires all
snapshots. This poses efficiency challenges in the context of interac-
tive results. Furthermore, any extension to the model adds new sup-
port points and thus requires rebuilding the polynomials.

2.5 intrusive surrogate models

Intrusive reduction methods do not treat the simulation as a black
box but instead solve the initial system of PDEs in a significantly re-
duced space. A popular reduction method is the Proper Orthogonal
Decomposition (POD) [77, 42, 87]. Depending on the field of appli-
cation it is also known as the discrete Karhunen–Loève expansion
or principal components analysis (PCA). For a given set of simula-
tion snapshots x1, x2, . . . , xM ∈ RN, where xi = u(µi) is the snap-
shot for the parameter µi, POD computes a set of orthogonal vectors
V1,V2, . . . ,VM ∈ RN×1 that capture the dominant structure of X (see
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Fig. 4 for an example). Once available, each snapshot xi can be ex-
pressed as a linear combination of Vi:

xi =

 | |

V1 · · · VM
| |


︸ ︷︷ ︸

V

 |

ci

|

 = Vci (17)

where ci ∈ RM×1 are coefficients of the linear combination. The most
important properties of V are their orthogonality and their decreasing
contribution to the linear representation of xi (V1 is the most impor-
tant mode while VM the least important). This means that for a given
k 6 M, POD generates a set of orthonormal vectors of dimension k
(V1, . . . ,Vk) , which minimize the approximation error:

min
{Vi}

k
i=1

M∑
j=1

‖xj − x̂j‖2, (18)

where x̂j =
∑k
i=1

ci︷ ︸︸ ︷
〈xj,Vi〉Vi is an approximation of xj using only

{Vi}
k
i=1. It turns out that the solution of the above minimization prob-

lem is given by the Singular Value Decomposition (SVD, [37]) of the
snapshot matrix X:

X =

 | |

x1 · · · xM
| |

 ∈ RN×M (19)

The searched Vi are the left-singular vectors from SVD(X) = VΣWT .
The singular values on the diagonal of Σ give the magnitude of im-
portance of the corresponding singular vector, thus, the selection of k
is usually done by setting a prescribed energy content to be captured
by the first k left-singular vectors (e.g 90%):

∑k
i=1 λi∑M
i=1 λi

> 0.9 (20)

2.5.1 Reduction of a Linear System

Besides its use in image processing [81], data compression or signal
analysis [1], the POD method plays a central role in the reduction of
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Figure 4: The one peak function u(µ) = 1.0√
(x−µ(1)−0.1)2+(y−µ(2)−0.1)2+0.12

can be approximated by a linear combination of its first 3 modes:
M1,M2,M3.
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differential equation systems [66, 42]. The aim is to reduce the initial
equation system of size N to one of much smaller size k. We illustrate
the procedure with the linear time-dependent ODE:

ẋ(t) = Ax(t) (21)

x0 = x(0) (22)

The state x : [0, T ] → RN consists of all degrees of freedom in the
simulation domain, while A ∈ RN×N stems (e.g) from a finite dif-
ference discretization of a large linear PDE. After computing the
SVD of the snapshot matrix we choose only k << N columns from
V = {V1, . . . ,Vk}. The system is reduced with the substitution x(t)→
Vxr(t), V ∈ RN×k, xr(t) ∈ Rk×1:

VTVẋr(t)
(VT∗)
= VTAVxr(t)

ẋr(t)︸ ︷︷ ︸
k×1

= Ar︸︷︷︸
k×k

xr(t)︸ ︷︷ ︸
k×1

The resulting system has no more dependence on the very large
N.

2.5.2 Reduction of a Non-Linear System

For a linear system, the previous reduction is quite straightforward.
More complex is the reduction of a non-linear system of the form

ẋ(t) = Ax(t) + F(x(t)) (23)

x0 = x(0) (24)

where F = [f(x1(t)), . . . , f(xN(t))]T is the non-linear term obtained
by evaluating the expensive non-linear function f : R → R at the
components of x(t). With a choice of k� N we can proceed with the
reduction as in the linear case with the substitution x(t) → Vxr(t),
V ∈ RN×k, xr(t) ∈ Rk×1:

VTVẋr(t)
(VT∗)
= VTAVxr(t) + V

TF(Vxr(t)) (25)

ẋr(t)︸ ︷︷ ︸
k×1

= Ar︸︷︷︸
k×k

xr(t)︸ ︷︷ ︸
k×1

+ VT︸︷︷︸
k×N

F(Vxr(t))︸ ︷︷ ︸
N×1

(26)
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However, in the non-linear system there is still dependence on the
very large N which makes the straightforward reduction unfeasible.
To reduce also the non-linear term we give an overview of the Dis-
crete Empirical Interpolation Method (DEIM) [15, 14, 16] which ex-
tends the POD method. DEIM approximates f(t) := F(Vxr(t)) with
the help of another set of orthogonal vectors U ∈ RN×M withM� N

and coefficients c(t):

f(t) ≈ Uc(t) (27)

The approximation then becomes:

VT F̂(x(t)) = VT f(t) ≈ VTU︸ ︷︷ ︸
precomp:k×M

c(t)︸︷︷︸
M×1

(28)

Independence of the very large N is obtained provided that the un-
known c(t) can be computed. To obtain an expression for c(t) first
assume f(t) is entirely available. In that case the system of equations
from 27 is overdetermined with M � N. To make the system deter-
mined, we need to extract only M lines of f(t) and U (with the row
extraction matrix PT ), a relation for c(t) is deduced:

PT f(t) = (PTU)c(t)

c(t) = (PTU)−1︸ ︷︷ ︸
precomp

PT f(t)

Thus, in order to compute c(t) only m evaluations of the nonlinear
term f(t) are needed. By putting everything together:

f̂(t) = Uc(t) = U(PTU)−1PT f(t) (29)

VT f̂(t)
(VT∗)
= VTU(PTU)−1PT f(t) (30)

VTF(Vxr(t)︸ ︷︷ ︸
n×1

)
f(t):=F(Vxr(t))≈ VTU(PTU)−1︸ ︷︷ ︸

precomp: k×m

F(PTVxr(t)︸ ︷︷ ︸
m×1

)

︸ ︷︷ ︸
reduced non linear term

(31)

There is still the decision of which lines should the extraction operator
PT choose. DEIM employs the following heuristic algorithm:
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Figure 5: DEIM points (left) for the one peak function (right). More DEIM
points are invested for the approximation of the function peak to-
wards µ = (0.1, 0.1).

Algorithm 1 DEIM
Input: U = {u1,u2, . . . ,um}, from SVD of nonlinear snapshots
Output: ~P = {P1,P2, . . . ,Pm}

P1 ← ~0

i← arg maxi |u1[i]|
P1[i]← 1

U← [u1]
~P ← [P1]

for j = 2 to m do
u← uj
c← UT~pu~p
r← u−Uc

i← arg maxi |r1[i]|
Pj ← ~0

Pj[i]← 1

U← [U u], ~P ←
[
~P Pj

]
end for

, where {P1,P2, . . . ,Pm} are vectors with one at the position of the
node to be selected and zero elsewhere.

For the “one peak” function in Fig. 4 DEIM does a good job at choos-
ing DEIM points, which are representative for the non-linearity (see
Fig. 5).

2.6 summary

Intrusive and non-intrusive surrogate models both aim to reduce the
computation cost of the high-fidelity simulations so that fast repeated
evaluation (simulation) is possible. Any of these methods is able to de-
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liver low-fidelity snapshots. However, what is needed for interactive
computational steering is close to real-time result delivery and also
extensibility of the model at user request. These two requirements
pose difficulties to the presented methods and invite us to search
for alternative surrogates. The next chapter deals with sparse grid in-
terpolation. With a proper formulation and efficient implementation,
this method fulfills both requirements and is thus suited to support
interactive computational steering.



3
R E D U C I N G C O M P L E X I T Y W I T H S PA R S E
G R I D S

The curse of dimensionality is an infamous phenomena that arises
when analyzing and organizing data in high-dimensional spaces. It
can be understood as the exponential increase in effort associated
with adding extra dimensions to a problem space. For example, mov-
ing from a 2-dimensional discretization of size N2 to a 3-dimensional
grid increases the storage requirements but also the complexity of a
CFD solver by a factor of N. With sufficiently large dimensionality
d any problem becomes intractable on the resulting grid (Nd) and
special approaches to reducing complexity are needed.

An example of such a problem is interpolation. Interpolation is a
method to construct new data points within the range of a discrete
set of known data points, usually laid on a grid or in a structured
manner. For univariate interpolation several types of methods are well
established: linear interpolation, spline interpolation, polynomial inter-
polation and radial basis interpolation. Additional forms of interpola-
tion can be constructed by choosing a different class of interpolants:
rational functions, trigonometric polynomials, or wavelets.

Central to this work, multivariate interpolation is the interpolation
of functions of more than one variable and includes bilinear and bi-
cubic interpolation in two dimensions, and tri-linear interpolation in
three dimensions. Several univariate interpolation methods can be
extend beyond three dimensions by using tensor product approaches.
However, for many approaches the fact remains that if there are N
terms in the 1-dimensional interpolation formula, then there will be
Nd terms in the d-dimensional case.

3.1 sparse grids in a nutshell

Sparse grids help to overcome the curse of dimensionality to a great
extent. Interpolating a d-dimensional function u on a regular grid
with a resolution of N grid points in each dimension, they enable
one to reduce the number of grid points significantly from O(Nd) to
O(N(logN)d−1), while maintaining a similar accuracy as in the full
grid case—at least if u is sufficiently smooth [10]. The notion sparse
grids was coined in 1990 for the solution of high-dimensional partial
differential equations (PDEs) [99], and they have meanwhile been suc-

19
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cessfully employed in a whole range of applications, ranging from
astrophysics and quantum chemistry to data mining and computa-
tional finance, see, e.g., [10, 75] and the references cited there. In the
following, we briefly describe sparse grids and the main principles
they base upon, a hierarchical representation of the one-dimensional
basis and the extension to the d-dimensional setting via a tensor prod-
uct approach. For further details, we refer to [10].

We consider the representation of a piecewise d-linear function ũ :

Ω → Γ for a certain mesh-width hn := 2−n with some discretiza-
tion level n. We consider rectangular domains Ω which we scale to
Ω := [0, 1]d. To obtain an interpolant ũ as an approximation to some
function u, we discretize Ω and employ basis functions φi which
are centered at the grid points stemming from the discretization. ũ
is thus a weighted sum of N basis functions, ũ :=

∑N
j=1 αjφj, with

coefficients αj.

The underlying principle is a hierarchical formulation of the basis
functions. In one dimension, we use the standard hierarchical ba-
sis

Φl :=
{
ϕl ′,i : l

′ 6 l, i 6 2l
′
− 1∧ i odd

}
.

with piecewise linear ansatz functions ϕl,i(µ) := ϕ
(
µ · 2l − i

)
and

ϕ(µ) := max(1− |µ|, 0) for some level l > 1 and an index 1 6 i < 2l.
The basis functions are centered at grid points µl,i = 2−li at which
we interpolate u, see Fig. 6 (left) for the basis functions up to level
3. Note that all basis functions on one level have pairwise disjoint
supports and cover the whole domain.

The hierarchical basis functions can be extended to d dimensions via
a tensor product approach as

ϕl,i(µ) :=

d∏
j=1

ϕlj,ij(µj) ,

with multi-indices l and i indicating level and index of the underlying
one-dimensional hat functions for each dimension. The d-dimensional
basis

ΦWl
:=
{
ϕl,i(µ) : ij = 1, . . . , 2lj − 1, ij odd, 1 6 j 6 d

}
span hierarchical subspaces Wl. As before, the basis functions for
each Wl have pairwise disjoint, equally sized supports and cover the
whole domain. The classical full-grid space of piecewise d-linear func-
tions Vn can be obtained as a direct sum of Wl,

Vn :=

n∑
l1=1

· · ·
n∑
ld=1

W(l1,...,ld) =
⊕

|l|∞6n

Wl ,
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Figure 6: Left: classical one-dimensional hierarchical basis functions (grey-
filled) up to level 3. The orange line is an example function to be
interpolated. The interpolant (blue line) is the weighted sum of
hierarchical bases (grey-filled triangles) from the current and all
previous levels. Right: modified extrapolating basis functions. On
l = 1 the basis function is constant, while all other levels have the
basis functions at the far left and far right flipped to extrapolate
towards the boundary.

but the hierarchical scheme of subspaces allows one to choose those
subspaces that contribute most to the approximation. By choosing
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Figure 7: The tableau of subspaces Wl up to level 3 in two dimensions (left)
together with the resulting sparse grid for n = 3 (right).

subspaces with respect to their contribution in the L2-norm, this leads
to the sparse grid space V(1)

n ,

V
(1)
n :=

⊕
|l|16n+d−1

Wl .

The tableau of subspaces in 2D is shown in Fig. 7 for n = 3.

To obtain non-zero values on the boundary, the one-dimensional ba-
sis of level 1 can be extended by the two basis functions ϕ0,0 and
ϕ0,1. Unfortunately, even for a very coarse grid with a resolution of
h1 = 1/2 this requires 3d function evaluations—with 3d − 1 param-
eter combinations being located on the boundary of the parameter
space Ω. For our application of computational steering, we start with
a reasonable choice of Ω so that these extreme parameter combina-
tions are of less interest compared to the inner part of Ω. We there-
fore choose to interpolate only in the inner part and to extrapolate
towards the boundary. We use in the following the one-dimensional
basis functions:

ϕl,i(x) :=



1 if l = 1∧ i = 1 ,{
2− 2l · x if x ∈

[
0, 1
2l−1

]
0 else

}
if l > 1∧ i = 1 ,{

2l · x+ 1− i if x ∈
[
1− 1

2l−1
, 1
]

0 else

}
if l > 1∧ i = 2l − 1 ,

ϕ
(
x · 2l − i

)
else

(32)

depicted in Fig. 6 (right).
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(a) L = 4

(b) L = 5

(c) L = 6

(d) L = 7

Figure 8: Left: Interpolation of a function using regular sparse grids of in-
creasing level. Right: Corresponding hierarchical coefficients. Blue
lines are positive and red are negative contributions. Notice larger
coefficients where the function peaks.
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For a visual understanding of the interpolation process Fig. 8 (left)
shows a two dimensional function discretized on an sparse grid of
increasing level using linear basis functions. In Fig. 8 (right) the dis-
cretization is showed once again, but at each point a colored bar is
placed. The height of the bar is given by the hierarchical coefficient at
that grid point.

3.2 adaptive sparse grids

The classical structure of the sparse grid is based a selection of points
which is optimal with respect to the smoothness conditions and guar-
antees a priori error bounds with no additional function knowledge.

Adaptive sparse grid have been successfully used to approximate
functions which do not fulfill the smoothness criteria of the classical
method (see [75, 47]). Non-linearities in the form of peaks or steps can
be directly targeted by spending more interpolation points in those
regions.

To refine a grid point, often all 2d children need to be added (see
Fig. 9). As most algorithms use the hierarchical structure of basis
functions, it must be ensured that newly added grid points can be
reached starting from any dimension. In Fig. 9 a point is refined by
adding its corresponding children. To complete the hierarchical struc-
ture two additional ancestors are added (see Fig. 9 right).

Stemming from the hierarchical construction, the absolute value of
the hierarchical surplus reflects the contribution of a grid point to the
interpolation. For many functions it is safe to assume that children
(neighbors) of points with large surpluses also contribute significantly
to the interpolation quality in that area. The surplus magnitude is
thus the most straightforward refinement indicator, which we also
successfully use on this work.

At any time, all points on the last hierarchical level can be consid-
ered for refinement. For functions where a single evaluation is very
expensive a decision needs to be made regarding the purpose of the
refinement. If function jumps need to be well captured, then local
refinement in the vicinity of the jump is employed. However, when
interested in an overall good accuracy, then care needs to be taken to
avoid refinement concentrations only at discontinuities.
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Figure 9: For a two dimensional sparse grid with l = 2 (left) we perform a re-
finement of a single point (marked with red). This implies adding
the 2d hierarchical children to the current grid (middle). A fur-
ther refinement of another red-colored point adds 22 children but
also their hierarchical ancestors in all dimensions (the two green
points in this case) (right). They are necessary as most sparse grid
algorithms traverse the hierarchical structure top-down (arrows in-
dicate how the new children will be visited in the vertical dimen-
sion).





4
I N S I G H T T H R O U G H I N T E R A C T I V E
C O M P U TAT I O N A L S T E E R I N G

4.1 classical steering approaches

”Scientists not only want to analyze data that result from their supercom-
putations; they also want to interpret what is happening to the data during
super-computations. Researchers want to steer calculations in close to real-
time; they want to be able to change parameters, resolution or presentation,
and see the effects. They want to drive the scientific discovery process; they
want to interact with their data.” McCormick et al.[63]

“Computational steering can be applied to good effect in a variety of com-
putational disciplines. By monitoring the progress of simulations, aided by
on-line visualization, the computational scientist avoids losing cycles to re-
dundant computation or even doing the wrong calculation. By tuning the
value of steerable parameters, the computational scientist quickly learns how
the simulation responds to perturbations and can use this insight to design
subsequent computational experiments.” Mulder et al.[67]

“Interaction with the computational model and the resulting graphics display
is fundamental in scientific visualization. Steering enhances productivity
by greatly reducing the time between changes to model parameters and the
viewing of the results.” Marshall et al.[58]

Introduced by the above citations, computational steering is usually
seen as a set of tools that supports the understanding of a simula-
tion scenario through easy manipulation of parameters and instant
delivery of corresponding solutions. In broader terms it offers a fast
mapping between the various parameter combinations and the corre-
sponding solution space (Fig. 10) which have one of the following
two goals.

The first goal is to freely explore the parameter space. An exploration
process corresponds to following a trajectory in the parameter space.
Along this trajectory simulation snapshots for different parameter
combinations are visually inspected and compared for interesting be-
havior. Such behavior is usually associated with areas of significant
function change. Thus, as a point of view, freely exploring the parame-
ter space corresponds to performing visual sensitivity analysis.

27
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Figure 10: A more general approach to computational steering as a map
from parameters to appropriate solutions.

The second main use for computational steering is to localize a par-
ticular solution or solution set which is desirable and do so in an
efficient manner. Based on established search criteria, the user nar-
rows the search down to smaller subregions in the parameter space.
Plugged into an optimization process, only user-identified subregions
are considered for algorithmic optimization. Such a human-in-the-loop
process can significantly speed up the optimization of complex com-
putationally expensive simulations.

Computational steering has usually been defined as interaction with
the high-fidelity model itself: “Computational steering refers to the real-
time interaction of a scientist with their running simulation code.” Pickles
et al. [76]. Before arguing that this definition can be extended to in-
clude an approximation layer based on pre-computed data, we touch
on approaches to the design and implementation of computational
steerings systems.

One option is to build a wrapper around a single, pre-existing spe-
cific application. This requires a means of communication between
the running application and the steering client, the awareness of the
application to the steering parameters, and a communication proto-
col for the client steering commands. The wrappers are typically de-
veloped and maintained by the application authors themselves and
adapted as the code evolves. Such approaches tend to be rather spe-
cific.

A second option is the development of dedicated steering frameworks
or libraries that handle in a unified way one or more central aspects
to steering: communication, simulation control, data management, vi-
sualization or parallelization. Some examples are CSE [92], CUMUL-
VUS [35] (data management), Magellan [95] (steering language) or
ESPN [79] (steering of coupled codes). More recent designs such as
ICARUS [8], Paraview’s CoProccesing [32] or VISIT [27], focus most
on in-situ visualization with steering functionality.

Another approach is to embed the application as a component within
a more general problem solving environment (PSE) such as the classi-
cal SCIRun framework [74, 49] or the Cactus Framework[39]. Such en-
vironments already include parallelization, access to computational
grid tools, check-pointing, multiple input/output mechanisms, and
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visualization. In such environments steering is achieved by setting up
a workflow of user-configurable components. These comprehensive
tools for interacting with an application also tend to require a signifi-
cant amount of work to implement the component interface.

Furthermore, computational steering approaches such as the Reali-
tyGrid [76] aim to use the vast computational resources offered by
scientific grids. By presenting both the simulation and steering client
as Grid services, it is then possible to make use of standard Grid
infrastructure to manage communication and steering.

Some recent approaches to computational steering offer interactive
simulation results by switching between a hierarchy of computational
grids [54]. For fast response, the simulation computes on a low reso-
lution grid, switching to higher resolutions when the user is inactive
for a certain time frame. A further approach, is to keep the grid res-
olution constant, but adjust the degree of the polynomial used in
p-FEM methods [55]. A lower p provides less accurate solutions but
significantly faster.

4.2 extending steering approaches with an approxima-
tion layer

The classical computational steering approaches presented so far rely
on the almost immediate availability of simulation results. For some
simulations this is possible when given a large availability of comput-
ing resources and a corresponding scalability of the application with
an increasing number of computational nodes.

There are many situations where only limited computing resources
are simultaneously available or the simulation code does not scale to
deliver interactive output. To overcome such settings, a valuable idea
is to move computational effort to a time previous to the actual use
of computational steering techniques. Such offline computed data is
then used to reduce computational effort in the productive phase of
actual steering.

The approach proposed in this work is to place an approximation
layer on top of the high-fidelity simulation. Acting as a preview to the
simulation behavior, such a layer delivers approximate results, but in
an interactive manner. Being the base for constructing the approxima-
tion, the simulation still remains the central part of the exploration
process. It delivers results during the exploration, albeit only in the
background.

The proposed method thus comes down to a trade off between accu-
racy and interactivity. The initial interactive solutions are delivered
by the approximation layer, while the full simulation results are de-
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livered with a certain delay. If the delay is significant, a scheduling of
the full simulations is done, so that the results are available during
the next exploration session.

The notion of steering, as in changing parameters and visualizing sim-
ulation outcome, is unchanged. With the approximation layer, not
only does steering become interactive, but valuable knowledge can
be extracted from the pre-computed data and presented during steer-
ing.

4.3 steering and insight

While one goal of computational steering is insight in the underlying
simulation, there are hardly any tools available to guide the steering
process itself. The parameter space P given by a moderate number
of parameters (2-10) can still be quite large even for an interactive
exploration. Indicators of where to focus the exploration are valu-
able.

There have been some efforts to guide the search in the solution space.
Matkovic et al. [60][59] employ a combination of automatic and in-
teractive optimization workflow, where domain expert knowledge is
used to interactively select data points (parameter combinations) and
approximate values in a continuous region of the simulation space
using regression. The “best” points in that continuous region, based
on the specified constraints and objectives, are then suggested as next
points to be considered for expert investigation. The accuracy of the
regression model is improved with the newly added points.

Burrows et al. [11] investigated a bridge simulation with similar goals
– efficiency and insight. They see the mining of simulation data as an
approach to extract knowledge and decision rules from simulation
results. The acquired knowledge is then used to provide preliminary
answers and immediate feedback if an accurate analysis is not at hand
or if waiting for the actual simulation results would considerably slow
down the interaction between a human designer and the computer.
The mapping from the design space to the solution space is learned
by clustering aggregated snapshots. For new design parameters, the
mapping returns similar designs (k-nearest neighbor). The clustering
itself is also used to offer insight as to which parameter combinations
lead to similar bridge designs.

Such methods aim to go beyond the efficient delivery of simulation
results for given parameters. The next step is to "steer" the user to
relevant parameter combinations, by offering information collected
and aggregated in advance.



5
I N T E R A C T I V E C O M P U TAT I O N A L S T E E R I N G W I T H
S U R R O G AT E M O D E L S

This chapter formulates the idea of surrogate-supported computa-
tional steering that satisfies two main exploration goals: interactiv-
ity and insight. First we identify the requirements a surrogate model
must fulfill and afterwards continue with the presentation of the gen-
eral surrogate model process. In line with the intrusive/non-intrusive
distinction, sparse grids are motivated as non-intrusive surrogate mod-
els due to their favorable computational requirements and inherent
extensible structure. On the intrusive branch, we present an exten-
sion to the POD-DEIM method, based on DEIM locality which reduces
even more the cost of intrusive surrogate-based exploration.

5.1 requirements and challenges

Interactivity

In classical steering the researcher usually faces a screen or a visual-
ization system and actively changes simulation parameters. Based on
the observed result, he then decides which next change to investigate.
The responses of a system to the actions of the researcher serve as
continuity of the exploration process. Thus, as a first requirement, a
surrogate for a computational intensive simulation must deliver new
data at interactive rates. Depending on the task at hand, different
kinds of responses and response delays are psychologically accept-
able. Take for example the two main types of exploration patterns
common in visual computational steering. In a parameter sweep, the
user continuously increments a single parameter, being interested in
its influence on the behavior of the simulation. A response time of
no more than 0.2 seconds was found to be suitable for such user
continuous actions [64, 85]. The task of parameter comparison involves
switching between two or more parameter combinations and after-
wards judging the differences. For this task a response time of up to
2 seconds [64, 85] would still allow for an uninterrupted thought pro-
cess. Both reaction times set a high bar for any simulation code, but
also for surrogates.

31
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Accuracy

What-if analyses or visual exploration aim to reveal main characteris-
tics, rough trends, and in general provide an intuitive insight in the
underlying simulation. Thus, as a second requirement, the accuracy
of the data extracted from the surrogate must capture the defining
simulation behavior, but need not necessarily deliver engineering pre-
cision. In general, the more accurate a surrogate model is the more
computational intensive it becomes (either offline or online) and, as a
result, less responsive.

Extensibility

Based on user input, the surrogate model should be extensible during
the online phase (Fig. 11 extends Fig. 3). This allows the improvement
of the accuracy in regions of relevance to the investigation. For simula-
tions which are not interactive, but can deliver new snapshots during
the online session, it must be possible for the surrogate to incorpo-
rate new results online without completely rebuilding the low-fidelity
model.

Figure 11: Not only is the surrogate evaluated in the online phase, but its
accuracy can be improved at user request.

Indicators

One further selection criteria among the different methods is the avail-
ability or simplicity of deriving exploration indicators. The parameter
space is usually large, but significant changes tend to be localized to
certain smaller areas. For example, sensitivity analysis [84, 34] is a
collection of methods which identify such areas. A surrogate should
allow the cheap computation of such indicators or offer itself valuable
exploration support.

A last challenge is to fulfill all the previous requirements in a com-
fortable framework. The construction of the surrogate for a new code
should be unproblematic and the interface to the visualization com-
ponents should allow a fast coupling and, as a result, a fast deploy-
ment.
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5.2 non-intrusive : sparse grids as surrogate models

The interpolatory approach of sparse grids places them in the cat-
egory of data fit reduced order models, i.e. an interpolant is fitted
to a specific set of precomputed simulations and new solutions are
extracted as linear combinations of the initial snapshots. This work
proposes and evaluates sparse grids as surrogate models for support-
ing computational steering and argues that sparse grids fulfill the
previous requirements for a great range of simulation functions. We
briefly touch on each requirement.

Performance results in Chap. 6 show that the online phase is not
costly and scales very well with the size of the snapshots. This fact
is not easy to achieve with other surrogate models. Even more, the
sparse grid surrogate model can be improved very efficiently even
in the online phase. In contrast, other methods such as regression or
Kriging require the repeated solution of large systems of equations
and thus cannot be extended on-the-fly in the online phase.

Based on the classification of surrogate models in Chap. 2, sparse grid
surrogates are non-intrusive models which treat the underlying sim-
ulation as a black box that delivers snapshots ũµ for the requested
parameter combinations. If the simulation function is smooth within
the chosen parameter ranges (see [10]), the accuracy of sparse grid
interpolation is competitive with full grid interpolation. The smooth-
ness of the focus applications presented in Chap. 1 is not a priori
known, but with adaptive sparse grids we can relax the smoothness
requirements and invest sampling points based on the local gradient
information. The results achieved in Chap. 7 show that for all consid-
ered applications the obtained empirical accuracy is well suited for
capturing the main features of each simulation.

The proposed surrogate model has a hierarchical structure which can
be used for an incremental snapshot construction but also to indicate
where change in the function response mostly happens. The size of
the hierarchical increment together with the refinement concentration
provide valuable indicators as to areas of change and thus importance
in the parameter space.

5.2.1 Offline Phase

Typical to many surrogates, a number of high-fidelity simulations
needs to be first performed and stored. The choice corresponds to a
selection of parameter combinations from PS. For projection based
methods or most data fit models, the most straightforward way is
to use a random or uniform sampling. While easy to implement,
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there are also other methods grouped under the notion of Design
of Experiments (DoE) (see [91] for the general idea) that aim to max-
imize the amount of information gained from a limited number of
snapshots. Some examples are Latin Hypercube Sampling (LHS), Or-
thogonal Array Design (OAD) and Uniform Design (UD) (see [36] for
an overview).

For the sparse grid surrogate model, the parameter domain P is sam-
pled based on the sparse grid discretization by computing snapshots
u(µ1), . . . , u(µM) ∈ RN where the parameters µ1, . . . ,µM ∈ P are the
coordinate axes of the sparse grid interpolation points (see Fig. 12).
The number of pre-computed snapshots is thus equal to the num-
ber of discretization points in the sparse grid. As all computation
happens offline, we can afford to compute reasonably many snap-
shots. Of course there are computational, time, or even processing
constraints that can limit the size of the actual sampling (and thus
sparse grid). The required sampling size depends on the smoothness
of the simulation function and the accuracy the surrogate should of-
fer.

The surrogate is a map ũ : P → RN that approximates the full sim-
ulation u. ũ can be seen as a vector-valued sparse grid function (or,
alternatively, a vector of sparse grids), where each component func-
tion ũ1, . . . , ũN : P → R can be represented as a linear combination

ũi(µ) =
M∑
j=1

αijφj(µ), (33)

where φ1, . . . ,φM are the hierarchical basis functions and the coef-
ficients αi1, . . . ,αiM are the hierarchical coefficients or surpluses cor-
responding to the i-th component function ũi. Let ui(µ) be the i-th
discretization node of the snapshot u(µ) with parameter µ. The i-th
component function ũi of ũ is the interpolant of the pairs

{(
µ1, ui(µ1)

)
, . . . ,

(
µM, ui(µM)

)}
, (34)

where the parameters µ1, . . . ,µM are the sampling points and the val-
ues at the i-th node of the corresponding snapshots are the function
values. This component-wise view illustrates how a single node in
the snapshot is interpolated. However, in the following we are inter-
ested in extracting all nodes within a snapshot and talk about ũ as
block and not component-wise.

The next step is to perform a basis transformation on each snap-
shot in Ps. Called hierarchization, this transformation step is specific
to the sparse grid surrogate model and also concludes the offline
phase.
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Figure 12: Sparse grid sampling Ps in a two-dimensional parameter space.
The point coordinates denote the (normalized) parameter combi-
nations, for which simulations need to be performed and stored.

Let Hµj ⊆ Ps be the set of hierarchical ancestors of sampling point
µj (see Chap. 3),

Hµj = { µk | µk is hier. ancestor of µj } . (35)

Hierarchization denotes the transformation of all sample snapshots
uµj , µj ∈ Ps into their representation as hierarchical increments αj =
αµj , i.e the surpluses. Hierarchization is a necessary step before the
model ũ(x,µ) can be evaluated. The surplus block αj depends on the
surpluses of all hierarchical ancestors µk in Hµj as

αj := uµ
j − ũµ

j , (36)

αj := uµ
j −

∑
µk∈H

µj

αk ·ϕk(µj)︸ ︷︷ ︸
interpolant without µj

, (37)

which motivates the name surplus: the difference needed to correct
the current sparse grid interpolant so that it interpolates additive at
µj.

5.2.2 Online Phase

The online phase starts once all snapshots are hierarchized. At this
point, ũ can be evaluated over the parameter space P, using informa-
tion from the set of sampling points Ps. The evaluation at point µ ∈ P

is obtained as a linear combination of the M weighted basis functions
corresponding to the M grid points,

ũ(x,µ) :=
M∑
j=1

αj(x) ·φj(µ) . (38)

The assembly of the summation terms involves three central aspects.
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Identification of the affected basis functions

Sparse grid basis functions φj on the same level have disjunct sup-
port but overlap with basis on different levels. It can be easily seen
how the support size varies in the illustrations of Fig. 6. Thus, only a
subset of basis functions will be affected by a certain evaluation, fact
that is speculated to increase the computational efficiency of the eval-
uation (not all bases are involved). Evaluating the surrogate model at
point µ therefore requires first to identify the set Aµ of affected basis
functions with respect to evaluation point µ,

Aµ :=
{
φj | j = 1, . . . ,M∧φj(µ) 6= 0

}
. (39)

For a two-dimensional regular sparse grid of level three, Fig. 13 shows
which snapshots (smaller cubes) need to be collected in order to inter-
polate a new snapshot at the evaluation point marked with a triangle.
Note that working with the full set of basis functions (or grid points,
respectively) instead of Aµ is not an option as typically M � |Aµ|

which would result in significantly more effort in the next step.

Figure 13: An example for a sparse grid interpolation: for the (triangle
marked) parameter combination µ, the value ũµ(x) of the ap-
proximated snapshot is constructed as a sum of the weighted
hierarchical coefficients αj(x), marked with cubes.

Combination of the weighted surpluses:

From a mathematical point of view there is little to discuss about the
sum (38). Even though simple to express, efficient gather and reduce
strategies need to be considered for its algorithmic implementation.
It is the critical operation of the online phase, and its performance
is crucial to a smooth user experience, as detailed in Chap. 6. This
step can and should be completely separated from the first step of
identifying the data dependencies.
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Improvement of the model

Last but not least, the set Ps of sampling points can be improved. A
user steered what-if analysis demands an extensible approach. This
means allowing for an incremental improvement of the approxima-
tion quality during the online phase in regions where the user sees
fit.

If the initial sampling of the parameter space does not capture well
the features of the underlying simulation function u, automatic or
user driven refinement of points from Ps is employed. The acquisition
and integration of the new simulation snapshots relies on steps from
the offline phase. The reduction operation hierarchization needs to be
performed for each new simulation result uµ

j by applying (37). As
this boils down to the cost of an evaluation plus a block subtraction, it
does not interfere with the user experience, an important requirement
for on-the-fly extension.

5.2.3 Visual Analytics for Steering

So far, with the sparse grid surrogate approximated solutions can be
interactively delivered to the exploring engineer. The question which
now rises is whether we can speed up the exploration by highlight-
ing (in some sense) relevant areas in the parameter domain. Such areas
would indicate parameters or parameter ranges to which the simula-
tion is most sensible and thus visually guide the explorer to steer the
surrogate to those parameter combinations and inspect the approxi-
mated simulation snapshot. In this sense, the surrogate contributes
itself to the what-if analysis.

By applying the surrogate models based on sparse grid interpolation
described so far, we obtain a function which has a hierarchical struc-
ture given as a linear combination of hierarchical basis functions with
hierarchical coefficients. A hierarchical coefficient corresponding to a
grid point (or basis function) is a crucial piece of information as it in-
dicates how important that grid point is for the function: A small ab-
solute value can only lead to a small change in the function, whereas
a large value means that the basis function significantly influences the
function. A through discussion of these properties of the hierarchical
basis can be found in e.g. [75, 10].

As mentioned, the sparse grid can be constructed in an adaptive man-
ner. The adaptivity is based on the hierarchical coefficients which re-
flect local smoothness. Hence, the refinement in the parameter space
contains valuable information about the influence of parameters and
is an indicator of parameter sensitivity.
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Both indicators – hierarchical coefficients and refinement – are used
with visual analytics tools. First, we employ scatter plot matrices to vi-
sualize the multi-dimensional sparse grid (see Fig. 14, [17]). A scatter
plot matrix is a scheme of scatter plots where each column contains
the same X axis and each row the same Y axis. For a sparse grid
each subplot is a projection of all high-dimensional grid points onto
two dimensions. Thus, due to the refinement criterion, the number
and location of the projected points indicates where, with respect to
the projected parameters, changes happen. We furthermore enhance
the scatter plot by drawing the grid points as circles whose radius
correspond to the hierarchical coefficient. This shows the relative im-
portance of each point and the magnitude of change.

P0 P1

P2

P1

Histogram

P0

Histogram

P1

Histogram

P2

Figure 14: Scatter plot matrix with histograms for three parameters.

Another visual analytics tool we consider, is a weighted parallel coor-
dinates plot (sketched in Fig. 15, introduced in [45] with applicability
examples in [53]). To plot a set of d-dimensional points, d axes are
drawn vertically and equally spaced. A point is represented as a poly-
line with vertices on the parallel axes; the position of the vertex on the
i-th axis corresponds to the i-th coordinate of the point. In our case,
the axes are given by the parameters of the simulation. Each sparse
grid point can then be represented by a polyline connecting each axis
(dimension) at the value of the corresponding parameter. We further
extend this plot by weighting and color-coding each polyline with the
absolute value of the hierarchical coefficient.

5.3 model improvement through adaptive refinement

Any surrogate model is an approximation to the high-fidelity model.
The type of used surrogate, the type of the underlying simulation
function uµ, or the initial sampling Ps all influence the degrees of
accuracy of the delivered snapshots ũµ.



5.3 model improvement through adaptive refinement 39

0.5

0

1

0

1

0

1

0

1

P0 P1

0.75

0.25

Figure 15: Weighed parallel coordinates. Each vertical line represents one di-
mension (two in this case). Each line corresponds to a point in the
sparse grid discretization, formed by connecting the vertical axes
at the corresponding coordinate values. The thickness of each line
corresponds to the hierarchical coefficient at that point.

For sufficiently smooth functions, sparse grids reduce the number of
grid points by orders of magnitude to only O(M log(M)d−1), while
keeping a similar accuracy as in the full grid case [10]. For compu-
tational steering the nature of the underlying simulation function is
usually not known and theoretical error boundaries are not available.
Even in such a case the accuracy of the interpolant ũ can be improved
by choosing a more appropriate set of sampling points Ps.

Either during construction or in the online phase, spatial (local) adap-
tivity is used to construct a more accurate interpolant. The adaptivity
described in Chap. 3 chooses points with the highest hierarchical coef-
ficients and adds their children to the current grid. For the surrogate
model this translates in the selection of certain parameters combina-
tions µi which are added to the sampling set. Refinement thus im-
proves the current model by an appropriate small choice of points
which helps keep the cost of the offline phase down.

As a starting point, a coarse sparse grid (as in Fig. 12) is used and,
based on a suitable adaptivity criterion, points are added in those re-
gions of the domain with most change (criteria based). The surrogate
setup consists of a succession of refinement steps.

5.3.1 Refinement Procedure

Given a fixed budget of M offline snapshots to be used for the sur-
rogate, a refinement step proceeds as follows. First, candidates for
refinement are identified. These are all sparse grid points on the last
level. Not all candidate points need to be refined at once as a refine-
ment step introduces new points, which under the considered criteria
might be more suitable for further refinement than some of the cur-
rent candidates. Typically ≈ 10 points with the highest refinement
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indicators are selected and all 2d children are added to the sparse
grid. Snapshots for all new points need to be then computed in an
automated process. After the results are available, the current repos-
itory is consolidated by mapping each new snapshot to its hierarchi-
cal representation (see Eq. 37) and adding it to the repository storage.
Sketched, the refinement process involves the following steps:

while repository size < M

identifyRefinablePoints()

for each refinable point

computeRefinementIndicator()

end for

sortRefinablePointsByIndicator()

refineFirstFewPoints()

performSimulations()

consolidateRepository()

end while �
5.3.2 Refinement Criteria

We have seen how the refinement process is implemented, but there is
still the open question as to which refinement criterion to use. In the
case where the sparse grid interpolates a single (possibly aggregated)
scalar value, a simple – though typically very effective – criterion for
adaptive refinement is to select the refinement candidates with the
highest absolute values of their hierarchical coefficients αi.

However, in a computational steering scenario the refinement candi-
dates are blocks of hierarchical coefficients. Each entry in this block cor-
responds to a node in the discretization grid of the simulation. Fur-
thermore, for applications with multiple Degree of Freedom (DoF)
per discretization node, an entry in the hierarchical block also corre-
sponds to a particular DoF. Figure 16 illustrates this case with a reac-
tive flow simulation which will be considered in detail in Chap. 7.

With multiple values per sparse grid point, the refinement still in-
volves hierarchical increments. Only now there is more choice as to
which part of the block of increments to use for the refinement. This
choice can be thought of as an objective. One such objective would be
to construct a surrogate that, on average, approximates equally well
the full snapshot. This implies a good interpolation on average for all
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Figure 16: The simulation domain is discretized with N = Nx ×Ny = 73×
37 nodes. At each node the temperature T and concentrations of
three reaction species are stored: hydrogen H2, oxygen O2, and
water H2O.
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Figure 17: Refinement pattern for a budget of M ≈ 200 and using criterium
(40).

DoFs at all N discretization nodes. The refinement indicator for block
αi is then defined as:

I1(αi) =
1

p

p∑
k=1

1

N

N∑
j=1

(αi(k, j))2 (40)

where p is the number of DoFs. The refinement criterion selects the
points with the largest indicators for refinement. Figure 17 shows the
refinement pattern using indicator I1 with a budget of ≈200 snap-
shots. A scaling of the DoFs should be considered if the ranges are
significantly different.

A second objective focuses on a specific degree of freedom at a spe-
cific location in the discretized domain. For example, the temperature
T at coordinates [0, 0] should be approximated best with the purpose
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Figure 18: Only the temperature T at node [0, 0] is used as refinement indi-
cator.
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Figure 19: Refinement pattern for a budget of M ≈ 200 and using indicator
(41) for T at [0, 0]. Notice that refinement is necessary only in A
to best capture the temperature at this point.

of comparing it to experimental measurements at the same point. We
are still interested in visually depicting the full solution, but the tem-
perature at that particular point should be best interpolated with the
budget of M points. The refinement indicator for block i for this ob-
jective is:

I2(αi) =

b∑
j=a

(αi(k, j))2 (41)

where a,b are lower and upper limits of the subset of nodes under
consideration and k is the selected DoF. Refinement outcomes for
using I2 are presented in Fig. 19 and 21 with the setup described in
Fig. 18 and 20 respectively.



5.4 steering with intrusive surrogate models 43

Fuel 
+

 Oxidizer
Inlet

x = 35

OutletAverage H2O

Figure 20: The H2O concentration along the line x = 35 is considered for
computing the refinement criteria.
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Figure 21: Refinement pattern for a budget of M = 200 and using indicator
(41) for H2O along x = 35. The refinement pattern follows the one
for indicator (40) with small changes. The H2O concentration for
DoFs with x = 35 has a similar sensitivity to the parameters.

5.4 steering with intrusive surrogate models

Intrusive surrogate models such as Proper Orthogonal Decomposi-
tion combined with the Discrete Empirical Interpolation Method (POD-
DEIM) solve the original partial differential equation (PDE) but in a
reduced space (revisit Chap. 2). The similarity with the original simu-
lation enables this method to deliver snapshots which tend to be more
accurate than their non-intrusive counter-parts. Also time dependent
simulations are captured more naturally with the POD-DEIM method
as time maintains the same nature as in the high-fidelity model and
is not considered just an additional parameter. We next describe the
offline/online usage pattern present also with intrusive surrogate
models and an extension to the POD-DEIM with steering implica-
tions.
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5.4.1 Offline Phase

POD-DEIM requires two sets of orthogonal projection bases V ∈
RnPOD×N and U ∈ RnDEIM×N. nPOD and nDEIM are the chosen
number of global and respectively non-linear POD modes. V is com-
puted from the SVD of a set of snapshots xµ1 , . . . , xµM ∈ RN while U
from the SVD of the corresponding non-linear snapshots f(xµ1), . . . ,
f(xµM) ∈ RN. Unlike the sparse grid surrogate, the sampling Ps of
the parameter domain P has no restrictions and can be constructed
either uniformly, randomly, or with DoE.

With V available, initial state vectors and system matrices are re-
duced:

x0r = VTx0 (42)

Ar = VTAV (43)

The DEIM basis and the extraction matrix P are then used to com-
pute the nonlinear approximation term which will be used during
the online phase:

VTU(PTU)−1 (44)

5.4.2 Online Phase

For POD-DEIM the online phase distinguishes itself very little from
the solution of the original PDE. Instead of the initial system of equa-
tions, the PDE has now the form:

ẋr(t) = Arxr(t) + V
TU(PTU)−1F(PTx(t)) (45)

x0r = xr(0) (46)

The accuracy up of the POD-DEIM method can be controlled by
choosing the number of global POD modesmPOD and the number of
DEIM points nDEIM. These two adjustments can be used in the steer-
ing process to obtain interactive response rates by choosing mPOD
and nDEIM so that for a problem of size N the solution is obtained
close to real-time and the accuracy is satisfiable.
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Figure 22: Two peak function (left) and corresponding DEIM points (right).

5.4.3 Improvement Through DEIM Locality

Due to real-time requirements we would like to lower nDEIM (the
number of evaluations of the nonlinear term) but at the same time
we would like the accuracy of the interpolation to stay roughly un-
changed. To tackle this, we note that the quality of the DEIM inter-
polation depends on the number and choice of DEIM points. While
the number is fixed, there is still the flexibility to define their loca-
tion.

Before describing an improvement in this direction let us first illus-
trate the problem. The “two peak“ function pictured in Fig. 22 (left)
is an extension of Fig. 4 which adds a second non-linear singular-
ity in the opposite corner. By applying DEIM on this function we
notice that the DEIM points are almost equally spread between the
two peaks (see Fig. 22, right). This is exactly the expected behavior
and shows that the method can successfully identify important (high
variance) points. However, the accuracy of the method decreases as
there are not sufficiently many DEIM points in the fixed budget to
approximate both singularities with the same quality.

A solution is to construct local DEIM bases and corresponding DEIM
points that are better suited to the underlying simulation behavior.
At runtime the appropriate basis is selected and used. Such bases can
be constructed by splitting either the parameter domain or the state
space in several regions. In this work the former is presented while
the dissertation of Benjamin Peherstorfer will detail the later. Ideas
to adapt the reduced model to local characteristics have been also
proposed for the reduced basis method [23, 24, 25, 41], POD based
reduction [96, 86], empirical interpolation method [22], and also for
DEIM [3].

The cost of the local DEIM approach changes as follows. In the offline
phase, several runs of the original DEIM algorithm are needed but of
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smaller size, thus an increase in offline cost is to be expected. We are
not bothered by this as for repeated evaluations of the surrogate, the
offline phase DEIM costs are compensated. The positive aspect is that
the computational costs of the online phase remain unchanged while
the accuracy is significantly improved when compared to the original
DEIM.

We now face the main question of how to construct ”good“ DEIM
bases. For that, we need a strategy for splitting the parameter domain
and a criterion which decides the quality of the splitting.

As a strategy, approaches such as recursive partitioning have been
tried in other contexts [25] but become problematic for parameter do-
mains of higher dimensionality (> 2). We therefore propose the use
of clustering methods. Clustering is the grouping of a set of objects in
such a way that objects in the same cluster (DEIM basis) are more sim-
ilar (criteria-based) to each other than to those in other clusters.

Algorithm 2 DEIM Residual-based Clustering
Input: X snapshots, k cluster count, Ui DEIM bases, Pi DEIM points
Output: clustering , cluster repartition for each snapshot Xj
currentMinimumError← inf
for j = 1 to size(X) do

for i = 1 to k do
ε← DEIMresidual(Xj,Ui,Pi)
if ε < currentMinimumError then
clustering[j]← i

currentMinimumError← ε

end if
end for

end for

The method proceeds by associating each snapshot with an initial
cluster. The snapshots in each initial cluster are then used to compute
initial Ui DEIM bases and corresponding Pi DEIM points. The clus-
tering algorithm (sketched in Alg. 2) takes this initial configuration
an outputs a new assignment of snapshots to clusters. This is done
by checking each snapshot against each {Ui,Pi} and allocating it to
that cluster for which the criterion is minimum. As a criterion we use
the DEIM residual

DEIMresidual(Xj,Ui,Pi) = ‖Xj −Ui(PTi Ui)−1(PTi Xj)‖2 (47)

which measures how well the snapshot Xj is interpolated by the basis
Ui with DEIM points Pi. A related idea to cluster based on projection
error was presented in [21].
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Figure 23: Left: k = 4 clustering for the two peak function. Right: corre-
sponding classification.

The clustering algorithm is repeated until the clustering does not
change or a maximum number of iterations have been performed.
The last clustering is used to construct the bases and DEIM points
used in the actual solving of the reduced PDE. To avoid large discon-
tinuities at cluster borders, each cluster is enriched with a percentage
of the neighboring clusters. This procedure is detailed in Appendix
B.

Figure 23 depicts the clustering of the two-peak function with k = 4.
It identifies very well the two singularities and groups points which
share similar values in the same cluster. Next, let us verify if the clus-
tering does indeed lead to better accuracy with the same number of
points. Figure 24 confirms that with an increasing number of clusters
the error decreases significantly for the two-peak problem.

To summarize, the intrusive POD-DEIM reduces the cost of solving
reduced PDEs with computationally expensive non-linear terms by
interpolating the non-linearity. If the problem exhibits localized non-
linearities, the accuracy of the method can be further improved by iso-
lating such non-linearities and constructing different bases for differ-
ent areas in the parameter domain. For the two-peak function the re-
sults are very promising. In Chap. 7 we apply the intrusive approach
to the reactive flow and also show improvements for this problem.
While an improved accuracy is desirable, for our steering endeavor
such improvements ultimately aim for a faster execution time (less
nDEIM points) for the same accuracy. We will elaborate on this point
of view in Chap. 7.
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Figure 24: DEIM Accuracy for increasing cluster count (line thickness). A
bit more that two digits of accuracy can be gained by using local
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5.5 summary

In this chapter, we have presented the idea of computational steering
augmented by surrogate models. The surrogate model runs either
alone or on top of a high-fidelity simulation and delivers approximate
but interactive results to a visualization system.

The choice of surrogate model has been motivated by a set of criteria
required by interactive computational steering. First, the low-fidelity
model must capture the global behavior of the high-fidelity model.
Second, any evaluation must deliver results in less than 0.2 seconds.
Third, it must be extensible on-the-fly during its usage. Fourth, for
what-if analyses, is should offer or allow the computation of parame-
ter sensibility information.

We have developed a non-intrusive surrogate model based on sparse
grid interpolation. The sparse grid is placed in the parameter space
where each point corresponds to a high-fidelity snapshot. In order to
extract new results, multi-dimensional piecewise linear interpolation
is performed among precomputed snapshots. The sparse grid surro-
gate fulfills the previous criteria. It offers cheap evaluation consisting
of a weighed summation of data blocks and is extensible by adaptive
refinement. Its accuracy and sensibility information will be the topics
of Chap. 7.

With LDEIM we have introduced an extension to the classical DEIM
that reduces the number of DEIM points needed to approximate a
non-linear function. By clustering snapshots we have constructed a
series of local DEIM bases that better capture areas of similar behavior.
Due to the similarity within clusters, fewer DEIM points are needed
to approximate the non-linear PDE term. This leads to an decrease in
response time for the intrusive surrogate model.





6
S Y S T E M D E S I G N

The evaluation of the sparse grid surrogate model consists of a lin-
ear combination of blocks of hierarchical coefficients. While this is
indeed a mathematically simple operation, the data structure used
by the sparse grid and the number and size of individual blocks di-
rectly influence how efficiently it can actually be computed. In order
to achieve close to interactive rates for reasonably sized problems, we
take advantage of modern hardware. In this chapter, we propose and
describe in detail several data organization concepts and paralleliza-
tion approaches for the evaluation operation.

The result of the simulation can be of different types (scalar, scalar
field, vector field) and requires different visualization techniques, such
as color mapping for scalar fields or streamlines for vector fields. We
present a small and flexible interface to several visualization tools,
where the sparse grid surrogate is implemented as a black box data
repository which delivers approximated snapshot data for any param-
eter combination within the P domain. The repository sees only the
data and is transparent to mesh information or number of degrees of
freedom. While the efficiency of the evaluation is critical, also loading
the result in the buffer of any visualization tool leads to performance
penalty. This is particularly important when a distributed repository
is driving a distributed multi-display visualization system, as we will
describe in this chapter.

Computational steering with surrogate models is a continuous, but
incremental exploration process, where the current surrogate model
is gradually improved by refining certain sparse grid points based on
the hierarchical increments αi. This triggers the computation of new
simulation snapshots which are integrated in the current model in
order to improve the accuracy. The implementation of this workflow
is also treated in this chapter.

6.1 system architecture for efficient data delivery

The implementation of our surrogate should result in a system which
is easily connected to a visualization environment and delivers results
at interactive rates. To achieve this, an integrated system is proposed
that manages offline snapshot computation, surrogate construction,
and evaluation during online visualization.

51
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Figure 25: The memory requirement of the surrogate model is given by the
size of the high-fidelity snapshot multiplied with the number of
points in the sparse grid. Based on this number the appropriate
implementation is to be used.

For offline snapshot computation, the high-fidelity model needs to
be automatically triggered, in order to pre-compute snapshots for the
parameter combinations in Ps. The approach followed here is to use
a custom Python wrapper for the considered simulation code. The
wrapper reads the parameter values, triggers the run, and places the
result at a designated location. The same mechanism is used online,
when a refinement is triggered.

The surrogate is constructed by converting the snapshots to hierarchi-
cal increments. This step can occur in the offline phase, and within
the implementation presented in this chapter, also at program startup.
We note, that for regular sparse grids the hierarchization operation
has been efficiently parallelized (see [12, 68]) so that both initializa-
tion and extension can be also moved in the online phase.

To organize data access during the online phase, all snapshots are
loaded into a data repository which is responsible for data loading,
query and extension of the surrogate model. For sparse grid interpola-
tion all snapshots are considered a vector of nodes which correspond
to a structured or unstructured mesh. In the simplest implementation
the snapshots are stored as a contiguous memory block in traversal-
order. Each block is indexed by a unique identifier which is then used
to lookup blocks during evaluation. The repository is also in control
of the simulation wrapper and can trigger new runs, either in the
offline or online phase.

With multi-core CPUs, graphics processing units (GPUs), hybrid CPU-
GPU, or compute clusters, modern architectures offer an interesting
set of parallelization possibilities each with certain advantages as well
as implementation challenges. The data repository, together with the
surrogate concept, is targeted at small (multi-core CPU) to mid-sized
systems (small enterprise clusters). Thus, we focus next on implemen-
tation strategies for the sparse grid repository on such systems.

The choice of the repository implementation is given by the storage
requirements of the surrogate model. For efficiency reasons, blocks
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of hierarchical coefficients are always loaded into main memory. The
implementation to be used (see Fig. 25) is decided by the capacity
of the repository to store all snapshots. Next, we elaborate repository
implementations for GPU, CPU, and distributed-CPU versions.

6.1.1 GPU Repository

The first implementation of an efficient repository involves moving
the data and most of the computation to the GPU. It is separated
into a CPU and a GPU component, where the CPU component im-
plements the logic of the surrogate model while the GPU component
is responsible for data storage as well as fast data delivery when the
model is evaluated. We refer to the components as host and device, a
common terminology in GPU computing [72].

Both the hierarchization (37) and the evaluation (38) can be expressed
in terms of Single-precision real Alpha X Plus Y (SAXPY) operations.
SAXPY (see [38]) is a Level 1 (vector) operation in the Basic Linear
Algebra Subprograms (BLAS) package, common among vector pro-
cessors. SAXPY is a combination of scalar multiplication and vector
addition in the form:

Y←− AX + Y (48)

where A is a scalar, and X and Y are vectors. Exemplified on the
evaluation, Y is the accumulated result ũ, A is the value of an af-
fected basis function at the evaluation point φ(µ) and X is the cor-
responding block of hierarchical coefficients αi. The GPU repository
uses CUDA’s SIMT (Single Instruction Multiple Thread) parallelism
([56, 70] to perform the series of SAXPY operations (see [6]).

CPU component (host)

The host acts as the frontend of the repository towards the applica-
tion side. It creates and manages the adaptive sparse grid, a data
structure based on hash maps [75]. Each entry in the hash map stores
a unique identifier to a block of hierarchical coefficients. The num-
ber of points in the grid is moderate (usually less than 1000), which
makes the managing data structure small, while the referenced data
is very large. It thus makes sense to keep the grid management on
the CPU and invest parallelization effort in the operations that work
on the blocks. Therefore, the host maintains the complex structure of
the sparse grid surrogate model and delegates tasks to the device, its
dedicated worker.
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Figure 26: Sequence diagrams for the evaluation of the surrogate model at
point µ ∈ P (left), and the extension of the model by a new snap-
shot u(x,µj), where µj is a valid sparse grid sampling point with
µj /∈ Ps (right).

GPU component (device)

The device is the backend of the repository, responsible for data and
compute intensive tasks. No knowledge about the surrogate model is
necessary to perform the hierarchization and evaluation tasks given
by the host, which are always related to (37) and (38).

In these equations very long vectors (the snapshots uµi and surpluses
αi) are added or subtracted, making this task memory-bound. This
is a suitable task for a processor with high memory bandwidth like
a GPU. Our test system uses Nvidia’s Tesla C2070 and Intel’s West-
mere processors (dual hexa-core Xeon X5690, 3.46GHz). The Tesla
C2070 offers a specified bandwidth of 144GB/s. It is therefore a good
choice for the backend in charge of these operations. In comparison,
the theoretical bandwidth of Intel’s Westmere processor is specified
as 32GB/s. However only around 21GB/s can actually be achieved
(measured with STREAM benchmark [62, 61]).

In the following, the interplay of device, host, and application is dis-
cussed for the two scenarios in which the repository is accessed (also
follow Fig. 26):
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1. Evaluation at position µ ∈ P: The host determines the set of af-
fected basis functions Aµ, evaluates them and passes the result-
ing values βj := φj(µ),φj ∈ Aµ to the device. The interpolated
snapshot ũµ is computed on the GPU using SAXPY operations.

2. Extension by the inclusion of a new snapshot uµj : Ps is ex-
tended with the valid new sparse grid sampling point uµj . The
host first determines all unfulfilled hierarchical dependencies
Dµj = Hµj\Ps, i.e., the hierarchical ancestors of µj missing from
Ps which are required to ensure a valid grid structure. Once the
high-fidelity snapshots for the µk ∈ Dµj are available, the host
prepares the hierarchization of the new snapshots uµk by com-
puting the respective weights γr = φr(µk). With the γr, the
device can efficiently perform hierarchization (37) and integrate
the surpluses αk into the model.

6.1.2 CPU-Only Repository

The evaluation operation, as a weighted sum of large blocks, is a
memory-bound task. In our interactive setting, we want to apply the
memory-bound summation also to large snapshots, hence our target
platform should provide (1) a significant amount of memory (tens of
GBs) and (2) high memory bandwidth. With up to 200 GB/s, GPUs
may offer memory bandwidth several times higher than the 50–100

GB/s obtained on a state-of-the-art x86 CPU-based system. However,
GPUs can only accommodate a small number of large snapshots due
to the memory limit of 6 6 GB on current GPU architectures. The
GPU repository thus copes very well with the second requirement,
but is limited with respect to (1).

Non-Uniform Memory Access (NUMA) is a computer memory de-
sign characterized by faster memory access to memory units that
are closer to the processors. Under NUMA, the processor can ac-
cess its own local memory faster than non-local memory (memory
local to another processor or memory shared between processors).
As a result, with NUMA systems memory bandwidth scales with the
number of NUMA cores, a feature which helps memory bound al-
gorithms like the surrogate evaluation. To make use of this property
on a NUMA system, the sparse grid operations must be translated
in a multi-threaded implementation which is aware of the NUMA
memory layout.

The NUMA-aware CPU repository implementation splits the eval-
uation work equally on the available cores. The repository is split
snapshot-wise, where each part is loaded on the physical memory
bank corresponding to a particular core. A first touch policy decides
the affinity (binding) of the thread with respect to a core. For example,
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the first memory access for performing ũµ(x0) = ũµ(x0) +α1φ1(x0)

pins the thread 0 to the core associated with that memory bank. Sub-
sequent operations will only work with repository data available in
the local memory bank. This ensures high memory bandwidth which
scales with the number of cores. Further optimizations include vector-
ization and cache optimizations. The speedup and response time ob-
tained on our test NUMA architecture are discussed in Chap. 7.

6.1.3 Distributed Snapshots for Large Repositories

Both GPU and CPU-only repositories deliver fast results to the visual-
ization as long as all hierarchized snapshots can be fitted in the GPU
or main memory respectively. For example, a current high-end GPU
featuring 6 GB of memory can store and combine up to 200 snap-
shots of size 3× 1283 floats. A system with 24 GB of main memory
can store up to 800 snapshots of the same size. Depending on the
dimensionality d of the parameter space, this might not be enough to
ensure a good approximation quality. To mitigate this limitation, we
use the combined memory of all available GPUs/CPUs to distribute
the repository and thus store more snapshots. On each node n we
construct the surrogate ũµ([xis : x(i+1)s]), i = 0 . . .N− 1, for a slice
of size s of the entire domain Ω. The GPU-distributed repository will
thus use all available GPUs in the computing cluster to distribute
snapshot slices. The CPU-distributed repository will use all available
cluster main memory to do the same. Such a distribution allows for
a flexible and load balanced computation of the final snapshot, but
requires a gather operation in order to assemble the full snapshot for
visualization.

A further enhancement could be to combine the GPU and CPU com-
puting resources in a two phase evaluation. The grid points on the
lower levels (l = 1, 2, 3..) are always involved in the evaluation. The
SAXPY operations for those levels takes place on the GPU, while in
a second phase, the CPU delivers the rest of the linear combination
in (38).

6.1.4 Visualization Requirements and Interface

In the steering environment, the user chooses a parameter µ and
is presented in real-time with the visualization of the correspond-
ing full snapshot ũµ. The visualization can be displayed either on a
single screen or on several screens attached to several visualization
nodes [28]. Recent scientific visualization tends to favor the second
scenario. For this, we distribute the repository among the same visu-
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Figure 27: CPU/GPU repository structure with visualization interface. Hi-
erarchized snapshots αj are distributed among nodes and stored
in GPU and main memory. Each repository instance evaluates a
part of the final snapshot by identifying the affected blocks (in
red) and performing the summation. In order to visualize the full
snapshot, the missing slices are gathered from the other nodes.

alization nodes to thus utilize all the available GPUs or main memory.
This means each node produces only a slice of the final snapshot.
Each visualization node collects all slices with a Message Passing
Interface (MPI) all-gather operation [88] and renders only the section
of the final image corresponding to its view frustum. Note that an
explicit all-gather operation can be skipped if the visualization envi-
ronment implements distributed rendering algorithms (classified in
[65]).

For the described data delivery, only a minimal interface needs to be
exposed by the surrogate implementation to any visualization soft-
ware. It consists of three methods:

init(): distribute and load the repository,
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Figure 28: The FRAVE consists of a series of building blocks connected by
Infiniband. The current FRAVE setup has 6 building blocks pow-
ering 10 displays (8 for the walls, 2 for the floor).

evaluate(µ, buffer): place the full snapshot uµ in the visualization
buffer via all-gather,

improve(µ): trigger several new simulation runs in order to improve
the accuracy around µ.

With such an interface, the repository is treated as a pure data de-
liverer, which stores no information whatsoever about the simulation
scenario or its geometry. This allows for loose coupling between com-
ponents by placing functionality only where it is needed.

6.2 performance

The decisive factor for interactive steering is the performance of the
surrogate evaluation. Based on a reference test system which incorpo-
rates visualization and computing resources, we next investigate the
GPU and GPU-distributed repositories. To better relate to the appli-
cation, evaluation benchmarks for the NUMA-enhanced CPU version
are presented in Sec. 7.5.2, where the BIM application employs such
a repository.

The Fully Reconfigurable CAVE Environment (FRAVE) system (see
Fig. 28 and [13]) is a multi-display semi-immersive visualization sys-
tem available at the Technische Universität München. In this thesis,
the FRAVE is the target system for a concrete deployment of the
repositories and also a reference design for a modern distributed vi-
sualization system.

It is organized as a collection of building blocks which enable it to
be folded, extended or split up to accommodate a specific type of
visualization goal (see Appendix A for detailed information on the
FRAVE).
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A single building block consists of the following components:

• Displays: one or two 3D full HD (1920x1080) 65“ plasma screens
Panasonic TX-P65VT20E

• Graphic cards: an Nvidia QuadroPlex 7000 for graphics (2x 6 GB
RAM) and an additional Nvidia Tesla C2070 card (6 GB RAM)
for computing purposes

• Computer: a dual-socket Intel Xeon E5630 quad-core system
(2.53 GHz) with 24 GB RAM and 8 TB hard drive

• Frame: a light aluminum frame on which all the above compo-
nents are mounted and which can be moved freely

• Inter-connection: QDR Infiniband network with 32Gbps

Each building block can be added to the system by connecting it to
the Infiniband network, when it is needed.

6.2.1 GPU-Based Evaluation and Hierarchization

We first benchmark the evaluation as a GPU-local task. This is the ac-
tual computation. Second, in case of a GPU-distributed repository, we
benchmark also the cost of collecting the full result on each visualiza-
tion node with an MPI all-gather operation.

In the test environment, the repository uses 6 building blocks with all
snapshots equally distributed to the 6 instances of the repository. Trig-
gering evaluation on a node implies that only one sixth of a snapshot
has to be interpolated. We examine the performance of this operation
in two scenarios:

• 200 snapshots, each consisting of 3 · 1283 floats (24MB), total
amount of data ≈ 4.8GB, and

• 150 snapshots, each consisting of 3 · 2563 floats (192MB), total
amount of data ≈ 28.1GB.

The 4.8 GB in the first scenario can also be replicated on all GPU
units but then there would be little space left for extending the model
through adaptive refinement (as described in Sec. 5.3). The second
test scenario aims to put the repository under full load. Figure 29

shows for both scenarios and varying number of affected basis func-
tions (number of SAXPY operations) how long evaluation takes on
a single FRAVE node. The chart shows that the repository is able to
deliver the partial snapshots well within the response time, even for a
larger number of affected basis functions. For smaller numbers of af-
fected basis we can even speak of real-time evaluation. For the sparse
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Figure 29: Local evaluation time in two setups with different snapshots sizes:
4 and 32 MB. By extending the model through refinement, the
number of affected bases |Aµ| and thus number of SAXPY opera-
tions increases. Even for 120 affected bases of size 32MB the GPU
repository delivers real-time results. Due to memory limitations,
180 slices of 32MB don’t fit on our test GPU.

grid interpolation only a small subset of snapshots are involved at a
time. |Aµ| is unlikely to exceed 50 in our scenario.

We skip the benchmark of the incremental hierarchization, as the time
needed for this operation during the online phase can be approxi-
mated. Hierarchization basically corresponds to a number of evalu-
ations executed successively, as sketched in Fig. 26. Multiplying the
time for evaluation by k give an estimate of the time needed to add k
new snapshots to the surrogate model.

6.2.2 Data Assembly

As illustrated in Fig. 27, each node delivers only a slice of a full snap-
shot ũµ(x) to the visualization. However, the visualization requires
the full snapshot locally in order to render, and a gather step has
to be performed. Figure 30 presents the cost of such a gather oper-
ation for different node counts and snapshot sizes on the FRAVE’s
Infiniband network. We notice that the assembly time scales linearly
with snapshot size while being almost constant with respect to the
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Figure 30: All-gather cost for different snapshot sizes and numbers of nodes.
The given spatial resolution refers to the discretization of the do-
main Ω with three components per discretization node.

number of nodes involved. We do not expect this to be the case for
a much higher number of nodes. But for visualization systems like
the FRAVE, which consist of a moderate number of nodes, it can be
assumed.

While the evaluation achieves a good response time, the assembly
costs for snapshots larger than 3× 2563 (192MB) prevent an interac-
tive parameter sweep (6 0.2s). A parameter comparison is however
still possible (6 2s). It is worth mentioning that such snapshot sizes
are challenging even for classical visualizations and require special
approaches to visualize in an interactive manner.

The distributed data availability might actually be more appropriate
for distributed visualization algorithms such as parallel volume ren-
dering [100] or distributed streamline computation [71]. In this case
the all-gather operation is not needed.

6.2.3 Performance Summary

As expected, the task of summing up weighted large blocks of data is
well suited for a high-memory throughput device such as a GPU. The
GPU evaluation time for both a large size and count of affected snap-
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shots is below ≈ 0.1 seconds which offers a truly interactive access to
interpolated results.

However, if no full replication of the repository is possible, the gather
operation – needed to ensure all nodes have the full snapshot – over-
shadows the efficient evaluation. For snapshots smaller or equal to
3 × 2563 floats (192MB) the interactive character is still preserved.
Two solutions to reduce the all-gather overhead are possible. First,
an overlapping distribution instead of the a disjoint splitting of the
repository can be employed. The overlapping pieces would need not
be communicated. The second option is to move to a CPU-replicated
repository. As we will see in Sec. 7.5.2, in this scenario significantly
larger repositories can be fitted in the main memory.

6.3 summary

In this chapter, we have presented the design and implementation of
the sparse grid non-intrusive surrogate model. The repository is a sys-
tem that stores, constructs, and evaluates the low-fidelity model. All
operations performed by the repository are formulated as a series of
weighed summations of large vectors (SAXPY operations). This for-
mulation allows a high degree of parallelism which we exploit.

We have developed a GPU repository that streams all snapshots the
the GPU and uses SIMT (Single Instruction Multiple Thread) paral-
lelism to speed-up the evaluation. For a large test case with 120 af-
fected snapshots (32MB per snapshot) the GPU-repository performs
the evaluation on 0.05sec. Due to its high memory bandwidth, the
interpolation requires well below the 0.2sec threshold that marks in-
teractivity.

Memory requirements for the non-intrusive low-fidelity model scale
with the number of snapshots considered in its construction and
extension. Thus, the amount of memory available on the GPU (cur-
rently around 6GB) becomes a limitation for the interpolation of very
large snapshots (>128MB). To mitigate this, we have presented a CPU-
repository that uses NUMA features for high memory throughput
and SIMD parallelism to distribute computation over the available
cores. We will evaluate this model in Chap. 7.
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A P P L I C AT I O N S T E E R I N G

Having introduced the concept of surrogate models for computa-
tional steering, we apply it to four applications: a heat conduction
problem (thermal block), a shape optimization problem (acoustic horn),
the flow through complex geometries (BIM), and a chemical reaction
simulation (reactive flow). This short enumeration already suggests
a great deal of variety among the applications with respect to the
treated physical model, snapshot size, number and type of parame-
ters and even mesh type. The decision to treat such diverse models
is not by chance, but aims to show the large applicability of low-
fidelity approaches and also different challenges, especially for intru-
sive models.

The effectiveness of any surrogate model is decided by its two main
properties: accuracy and efficiency. To assess these properties, a sce-
nario will be chosen and presented for each application in detail. For
the particular simulation setup the low-fidelity model is constructed
in order to benchmark it. Of interest is the accuracy which the sur-
rogate delivers over the parameter domain P. If the accuracy is high
enough, then the surrogate becomes useful if it can also deliver new
snapshots at interactive rates (it is efficient).

Before applying these criteria to the sparse grid and POD-DEIM low-
fidelity models, we shall address some technical aspects regarding
the construction of a surrogate from available code or compiled soft-
ware.

7.1 technical aspects

A non-intrusive surrogate model requires the following pieces of in-
formation: the size of the discretization domain and the number of
stored DoFs per discretization node. Based on this, the total snap-
shot size is calculated and the repository allocates appropriate stor-
age. Furthermore, a wrapper around the simulation is used to plug
in parameter values and trigger simulation runs. The wrapper works
with a compiled version of the code and requires no source access
whatsoever. Depending on the output format or the output of inter-
est, the obtained snapshots might need some post-processing (e.g,
slicing, integration) before they are loaded into the repository.

63
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Many visualization tools have specific internal formats for represent-
ing data on grids. The connection between the repository and the
visualization component must thus be aware of the used data layout.
A non-intrusive model is transparent to the actual format of the data,
so a good practice is to store each snapshot in the repository in the
same format the visualization expects it. This saves conversion time
online, which can be noticeable for large snapshots.

The story is more complicated for intrusive models, where more prepa-
ration work is necessary. Access to the source code is needed in order
to either modify it or to write a new implementation. In the former
case one needs to track down where the large system matrices or
states (e.g., initial condition) are assembled. Their reduced versions
will then be computed and used instead in the modified algorithm.
For solvers which work with full assembled matrices this swap can
be easily done. Other solvers that perform grid traversals with local
operations need to be rewritten in order to assemble global matri-
ces. These matrices are subsequently reduced, but this workflow of
course can require significant implementational effort. In this situa-
tion a separate implementation for the low-fidelity model is worth
considering.

Another very important aspect for intrusive models is the nature and
effect of the parameters on the system of PDE. If a parameter influ-
ences a right-hand side term or system matrix entries then the reduc-
tion needs to be performed before each run of the low-fidelity model.
For repeated usage, this initial reduction significantly limits the effi-
ciency of the surrogate model. Current research efforts to deal with
this issue are summed up under the notion of parametrized Model
Order Reduction (pMOR). For example, one approach is to interpo-
late the reduced matrices (see [20, 2, 5]).

As presented in Sec. 5.4, POD-DEIM reduces significantly the cost of
evaluating the complete non-linear term. Evaluation only takes place
at a smaller set of appropriate DEIM points. However, if the non-
linear evaluation at a node has dependencies on neighboring nodes,
then these dependencies need to be localized and also computed. One
way to automate the identification of the dependencies and the com-
putation of the Jacobian is to use automatic differentiation tools (see
[78]), a set of techniques to numerically evaluate the derivative of a
function specified by a computer program.

An intrusive model for the reactive flow will be treated in this chap-
ter. Some of the challenges depicted above will be discussed for this
specific application, in order to offer a perspective over the implemen-
tation efforts.
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7.2 evaluation criteria

We are first interested in the quality of the achieved approximation
within the construction parameter space P. For each simulation a set
of test points is used to empirically evaluate the approximation error
with the assumption that Ps is representative for the behavior of the
high-fidelity model u.

We distinguish between Ps ⊂ P as the set of parameter combinations
samples used to construct the surrogate ũ, and Pt ⊂ P as the set
of parameter combinations used to evaluate the accuracy of ũ. With
Ps ∩Pt = ∅ and Nt as the size of Pt, the approximation error used in
the following is given by:

ε(ũ) =
1

Nt

∑
µ∗∈Pt

||u(µ∗) − ũ(µ∗)||2 (49)

The presented applications are quite different with respect to the
number of parameters (2 - 5) and type of parameters (physical and ge-
ometrical) but also the number of DoFs per node. For multiple DoFs
the error can be computed DoF-wise or aggregated. For some appli-
cations (thermal block, acoustic horn) a natural output of interest is
defined in the setup of the simulation, and the approximation qual-
ity will be given with respect to such an aggregated quantity. Where
possible, the relative L2 error will be preferred.

Second, the efficiency is considered, i.e., the response time within
which the surrogate is able to return snapshots for a particular pa-
rameter combination. Measurements are presented only for the build-
ing infrastructure model (BIM), which due to its large snapshot size
(128MB per snapshot) poses challenges for a fast response time. Due
to smaller snapshot sizes, the surrogates for all other applications are
considered to be interactive. As such, further analysis from this point
of view will not be considered.

Finally, through its hierarchical increments and refinement, the sparse
grid surrogate model offers knowledge of the behavior of the under-
lying simulation function. For all applications the visual tools from
Sec. 5.2.3 will be evaluated and checked for consistency with known
simulation behavior.

7.3 thermal block

The thermal block problem describes the steady-state heat conduc-
tion in a square domain consisting of a regular array of 2× 2 square
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Thermal Block

Characteristic Value

type heat transfer

discretization N = 1056

DoFs/node 1

parameters conductivities: P1,P2,P3,P4
parameter type physical

parameter ranges [0.1, 10]× [0.1, 10]× [0.1, 10]× [0.1, 10]

output of interest average temperature at top wall

Table 1: Main characteristics of the thermal block problem.

blocks, i.e., regions of different thermal conductivities, see Fig. 31.
The problem has four parameters, µ ∈ R4, where each component
of µ is the thermal conductivity of one region. The different regions
can be considered as different materials which form a composite. On
each block we solve:

−µ[i]∆ui = f, i = 1, . . . , 4 (50)

At the top of the domain a non-homogeneous Neumann boundary
condition is applied which enforces a uniform flux (unity). The bot-
tom of the domain is cooled to zero by imposing a Dirichlet con-
dition, while the vertical sides are isolated and thus allow for zero
flux. Table 1 summarizes the most relevant characteristics for an easy
overview. More detailed information for the thermal block is available
in [82].

Parameters

The parameters µ = {P1,P2,P2,P4} describe the conductivities of the
four sub-domains. A lower conductivity means less heat transport
while higher conductivities allow higher heat dissipation. Figure 32

shows a visual depiction of the thermal field for different parame-
ters.

Discretization

The temperature T is discretized on a Cartesian mesh withNx×Ny =

33× 32 = 1056 nodes. At each node a single DoF is stored, namely
the temperature.
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Figure 31: The thermal block investigates heat dissipation through a block
of several materials, each with different conductivities µ =

[P1,P2,P3,P4].

Output of Interest

The temperature distribution within the whole block is usually of in-
terest, in particular the temperature of the top wall as a function of
the block conductivities and conductivity distribution. The top wall
temperature can be related to the overall thermal resistance of the do-
main. A higher resistance means the block acts as an insulator while
a low resistance makes the block a good cooling device (transports
heat away). For example, the later situation makes the thermal block
useful, if it were to be attached to a hot microchip.

Surrogate Model

The sparse grid for the thermal block is four-dimensional and consists
of up to M = 277 grid points. Such a model size achieves on a test set
of size |Pt| = 10000 an average L2 error (49) close to 10−4 (as shown in
Fig. 33). Several points in Pt have yet to be reached by the refinement
process. This causes the maximum error to decrease only slowly with
the increase of the sampling size.
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Figure 32: Thermal block heat distribution for µ = [0.5, 0.5, 0.5, 0.9] (left) and
µ = [0.5, 0.9, 0.5, 0.9] (right). A three-dimensional warping of the
thermal surface is used to give a better perspective of the temper-
ature differences.
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Figure 33: Accuracy of the sparse grid surrogate for the thermal block prob-
lem on |Pt| = 10000 test points. With an increasing size of the
low-fidelity model, the average L2 error is reduced close to 10−4.

The weighted parallel coordinates plot in Fig. 34 shows interesting
insight into the thermal block problem. First, even though the refine-
ment is adaptive, a symmetric refinement pattern with respect to the
parameter pairs [P1,P3] and [P2,P4] can be observed. Such behavior
is to be expected as the parameter ranges are identical for the equally-
sized sub-blocks. Thus, the conductivity variation due to P1 should
produce the same effect as the one due to P3. Conductivity changes
on the P2 and P4 sub-blocks, which are exposed to uniform flux, have
also symmetric outcomes (see Fig.31 for the block division).
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Figure 34: Top: parallel coordinates plot for the thermal block with 277

sparse grid points. Bottom: the same only with the largest con-
tributions. The temperature has a jump at the interface between
two neighboring sub-blocks if they are characterized by different
conductivities (one conductive while the other less conductive).
Such jumps are captured by the refinement and explain why alter-
nating conductivities (e.g, µ = [0.0625, 0.5, 0.0625, 0.5]) have large
contributions.

Second, there are some large contributions involving alternating com-
binations of lower and higher conductivities. Take for example the
grid point µ = [0.5, 0.0625, 0.5, 0.0625]. The refinement criteria indi-
cates that a considerable difference in the simulation function is present
at this point (relative to other) and a similar one for the reciprocal pa-
rameter combination µ = [0.0625, 0.5, 0.0625, 0.5]. If two neighboring
nodes correspond to different materials then the coefficient in the heat
equation has a jump across the interface. The jump in the conductiv-
ity coefficients leads to significant change in the temperature values
and this is what the refinement criteria correctly localizes.
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The resolution of the high-fidelity model is small. Thus speed up
measurements of the low- vs. the high-fidelity one do not make much
sense. For this scenario the surrogate is definitely interactive and even
for larger three-dimensional thermal blocks we can still expect inter-
active rates based on the measurements done for the GPU repository
for problem independent blocks (see Sec. 6.2).

7.4 acoustic horn

The acoustic horn problem consists of a planar channel called the
waveguide to which a conical termination called the horn is attached
(shown in Fig. 35). An incident wave is generated from the far left
of the waveguide and propagated through the horn [4, 26]. In this
scenario, of interest is how the shape of the horn influences the wave
reflexion back into the waveguide. For various applications a certain
shape is desirable so that minimal reflexion is achieved. To obtain dif-
ferent horn designs, its geometry is parametrized at five points along
its boundaries (as drawn in Fig. 35). Based on parameter values, a
widening or narrowing of the opening of the horn is obtained by lo-
cal mesh deformations around the chosen nodes. Table 2 summarizes
the most important aspects of this scenario.

The acoustic wave equation is used to describe the propagation of
sound waves. For sound pressure in one dimension the PDE is for-
mulated as follows:

∆2P

∆t2
= c2∆P, (51)

where P is the pressure and c is the speed of sound.

Parameters

The displacements of five points along the horn are to be varied aco-
ording to µ = [P0,P1,P2,P3,P4] . Unlike the thermal block, here
the parameters are not of physical nature, but represent geometry
changes. No new nodes are added to the mesh by the deformation
and no relabeling of the nodes takes place. This means each node can
be tracked through different mesh movements.
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Figure 35: Discretization mesh for the acoustic horn simulation with pres-
sure information. The cone of the horn is deformed at 5 locations.
Both walls are deformed symmetrically.

Discretization

The pressure P is discretized on an unstructured grid with N = 38967

nodes (Fig. 35). The deformations represent displacements of existing
nodes based on the values of the parameters µ .

Output of Interest

Of main concern here is usually the optimal shape of the horn that
minimizes the acoustic wave reflection back into the waveguide. For
our steering purposes, we would like to deform the mesh accord-
ing to the five displacement parameters and immediately observe
the pressure field. Even more, we would like to know which of the
parameters or combinations thereof have most impact on the out-
come.

Surrogate Model

The sparse grid for the acoustic horn is five-dimensional, where each
dimension corresponds to a mesh displacement. For the sparse grid
construction, we start with a regular grid of dimensionality three and
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Acoustic Horn

Characteristic Value

type acoustic wave

discretization N = 38967, unstructured grid

DOFs/node 1

parameters displacements: P0,P1,P2,P3,P4

parameter type geometrical

parameter ranges [0.7083, 1.1250]× [1.1250, 1.5417]× [1.5417, 1.9583]

×[1.9583, 2.3750]× [2.3750, 2.7917]

output of interest wave reflection in plane, overall pressure

Table 2: Main characteristics of the acoustic horn problem.

extend it by adaptive refinement aimed at overall improvement (40).
A test set Pt consisting of 59049 (95) parameter combinations sam-
pled on a uniform grid is used for the accuracy investigation. Figure
36 shows the approximation error for test set Pt with increasing num-
ber of points. Interestingly, already the start configuration (d = 3)
with M = 71 grid points achieves a good relative error. Adding
more points reduces only gradually the error which indicates a rather
smooth simulation function.

A look at the parallel coordinates plot for the acoustic horn problem
in Fig. 38 (left) shows that, unlike for the thermal block, the sparse
grid point on level one (µ = [0.5, 0.5, 0.5, 0.5, 0.5]) has the largest
contribution to the interpolation. The rest of the points add much
smaller contributions. By ignoring the central point and rescaling
the remaining hierarchical coefficients (as depicted in Fig. 38 (right)),
we observe (relatively) large hierarchical values around the points
[0.5, 0.5, 0.5, 0.5, 0.75] and [0.5, 0.5, 0.5, 0.5, 0.25]. A snapshot computed
for [0.5, 0.5, 0.5, 0.5, 0.75] shows indeed a pressure buildup at the wall
of the horn (see Fig. 37 bottom). This justifies the slightly larger sur-
pluses.

Furthermore, a refinement concentration happens in the parameters
P3 and P4 (as seen in the parallel coordinates plot and also the scat-
ter plot matrix in Fig. 37 top). The simulation function is thus more
sensitive to deformations closer to the edge of the horn.

7.5 flow through building infrastructure

Building Information Models (BIMs) provide a fully detailed prod-
uct model for constructions, including exact geometric representation
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Figure 36: Accuracy of the sparse grid surrogate for the acoustic horn prob-
lem.

and auxiliary information such as material parameters or measured
information. Parameter adjustment is also supported in BIM models,
which is crucial to the evaluation of buildings, such as an indoor tem-
perature analysis depending on different window and door opening
angles and the intensity of the air conditioning system. The goal in
the chosen scenario is to examine the flow around and through the
main building of the Technische Universität München with a special
focus set on the influence of several varying parameters. The build-
ing’s highly detailed model (more than 130k triangles) is obtained
by extracting the geometric specification from an Industry Founda-
tion Classes (IFC) [44] product model. Figure 39 provides a visual
overview over such an IFC model and highlights the location of two
doors, whose opening will be parameterized.

Parameters

A two level parametrization is employed for the BIM flow simulation.
The first set of two parameters is used to generate input geometries,
which differ in the position of two large doors. Both doors are inde-
pendently adjusted with opening angles α1 and α2 in the range of
[6◦; 90◦]. Further parametrization takes place on the simulation level
by changing an inflow boundary condition. This third parameter de-
scribes the velocity U of a flow that acts perpendicular to the wall
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Figure 37: Top: scatter plot matrix for the acoustic horn. The combination
of parameters [P3,P4] triggers most of the refinement. Bottom: a
simulation snapshot for parameters [0.5, 0.5, 0.5, 0.5, 0.75] shows
pressure increase towards the wall which motivates the refine-
ment concentration in [P3,P4].
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Figure 38: Parallel coordinates plot for the acoustic horn problem (left). Sig-
nificant refinement is spent for parameters P3,P4 indicating sen-
sitivity of the simulation function to this set of parameters. Re-
plotting the parallel coordinates without the central point, reveals
several points with larger hierarchical coefficients (right).
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Figure 39: The product model of the central building of the Technische Uni-
versität München’s main campus. The effect of the opening angle
of two central doors (zoom in) is of interest.

with the two doors. U assumes values in [5 m/s; 15 m/s] at the left
boundary.

Discretization

Unlike the acoustic horn where the discretization mesh was deformed
based on the parametrization, the BIM flow is discretized on a fixed
Cartesian mesh. Changes in door angles correspond to movements of
obstacles (the doors themselves) in a fluid domain. Each simulation
result is a data block of size [Nx×Ny×Nz×NDOF] = [1024× 256×
256× 4], where NDOF is the number of degrees of freedom per sim-
ulation vertex (here: the three components from the velocity field U
and the pressure P). The total snapshot size amounts to 1 GB. Note
that from the full building in Fig. 39 only the central part is used for
the simulation (shown in Fig. 40).

Output of Interest

Changes in the angle of the two doors lead to different flow patterns
within rooms of the building. Of interest is not a particular aggre-
gated value but the behavior of the full flow with respect to differ-
ent geometry configurations. To our knowledge, such a requirement
makes this simulation a particular challenge for any surrogate mod-
eling method. This is due to the very large size of the snapshot that
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Figure 40: Only the central part of the entire BIM of the main campus
is placed in the simulation domain. Furthermore, the surrogate
model interpolates only the block of the full simulation domain
marked by the red frame. This is motivated by the interest in the
flow around the two parametrized doors.

needs to be interpolated or approximated. The most relevant infor-
mations are centralized in Table 3.

7.5.1 Surrogate Model

This particular application is part of a larger workflow for taking ad-
vantage of detailed building model data (described in Fig. 41). The
starting point are complete product model descriptions of construc-
tion data, i.e., the fully detailed geometry specification together with
auxiliary data such as material parameters and measured informa-
tion. A set of efficient tools [93, 94] can generate for given parameters
and base geometries the corresponding large computational meshes.
Computational Fluid Dynamics (CFD) solvers then use the generated
discretization to compute a solution snapshot. Note that a second
parametrization can also occur on the simulation level. Due to the res-
olution of the domain, the resulting CFD scenarios are especially chal-
lenging and costly to solve. For this scenario the OpenFOAM solver
potentialFOAM [73] needs ≈ 1 hour per simulation snapshot on the
KAUST Shaheen [52] supercomputer. Right now, interactive compu-
tational steering is thus only possible with a surrogate model.

As each additional simulation is costly, this particular data fit low-
fidelity model needs to be gradually constructed in order to avoid
unnecessary high-fidelity evaluations. We thus start to sample the
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Building Infrastructure Model Flow

Characteristic Value

type potential flow

discretization Nx ×Ny ×Nz× = 1024× 256× 256
DOFs/node 4, three velocity components and pressure

parameters door angles: α1,α2, and inflow velocity U

parameter type geometric and physical

parameter ranges [6◦, 90◦]× [6◦, 90◦]× [5, 15] m/s

output of interest full flow field

Table 3: Main characteristics of the BIM flow simulation.

normalized three-dimensional parameter space P, with a small sparse
grid of level l = 3. This initial model of size |Ps| = 31 is then extended
by adaptive refinement.

As the effect of the geometrical changes is local, it makes sense to
consider only a part of the full snapshot for investigation. Thus, even
though each simulation computes a data block of size [Nx ×Ny ×
Nz ×NDOF] = [1024× 256× 256× 4], the surrogate will only work
with a slice of each snapshot of dimensions [512× 128× 128× 4] (red
frame in Fig. 40), amounting to 128 MB.

Further, we discuss the observed accuracy for the BIM simulation.
From a visual point of view, Fig. 42 shows interpolated results for a
random parameter combination which match the expected flow be-
havior. For a quantitative statement we evaluate the surrogate on a
test set Pt constructed by sampling 125 points in a uniform 5× 5× 5
grid from the parameter interval [0.12, 0.92]× [0.12, 0.92]× [0.12, 0.92].

Before testing for accuracy, ũ is improved by investing more compu-
tational time in the offline phase and thus extending the sparse grid
in an adaptive manner. We perform two such extensions by first refin-
ing the l = 3 model which leads to a surrogate model with |Ps| = 77.
A second refinement increases the model size to |Ps| = 111. As ex-
pected, we observe an increase in accuracy of the two models over
the initial |Ps| = 31 (see Fig. 43). For our defined simulation scenario
the sparse grid surrogate can then fulfill its main purpose of being
a cheap exploration indicator by delivering a good approximation to
the original simulation.

Next, we focus our attention on the visual analytics tools to check if
any insight in the BIM simulation can be gained. Figure 45 shows
a series of parallel coordinates plots for the different model sizes
obtained by refinement. For the smallest (initial) model, the central
point has the largest contribution. However, after the first extension
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Figure 41: Steering of CFD simulations in accurate building infrastructure
models. Such model descriptions give access to a wide number
of parameters (material properties, architectural changes) which
can be selected for investigation. Geometry changes translate into
new computational meshes which are then loaded into the simu-
lation code. At this point, further parametrization is done in the
form of boundary conditions. The surrogate model then requires
the pre-computation of several full simulations. After construc-
tion of the model, approximated results are delivered to the vi-
sualization system. Specific to this application, a certain degree
of hardware optimization is necessary to deliver interactive data
sets.

|Ps| = 111 Reference

Figure 42: Left: interpolated flow (zoom in close to the doors) with door an-
gles 32.88◦ and 83.28◦ and inflow velocity 12.5m/s. Right: refer-
ence solution. With the exception of the immediate vicinity of the
door where high-fidelity solution exhibits a slow flow rate (thick
blue tubes), the surrogate solution delivers very similar results.
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Figure 43: Accuracy of sparse grid surrogates for the BIM problem for sur-
rogate sizes: 31, 77, and 111. For reference, the maximum velocity
values are in the range 5-15 m/s.

Figure 44: Left: simulation snapshot ũ[0.5,0.25,0.5]. Right: simulation snap-
shot ũ[0.5,0.1875,0.5]. At a certain closing angle of the door the
flow perpendicular to the door no longer passes through but goes
around. This large change corresponds to large hierarchical coef-
ficients at neighboring sparse grid points.
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Figure 45: Top: Parallel coordinates plot for a sparse grid with 31 points.
Middle: same plot after a refinement which introduces new
points. A large hierarchical increment is computed at µ =

[0.5, 0.1875, 0.5] (dark red line). Bottom: a further refinement
identifies more points with large contributions around µ =

[0.5, 0.1875, 0.5]. The reason for this concentration of significant
change is the singularity shown in Fig. 44. Such plots steer the
user to interesting behavior.
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a much larger contribution is found at µ = [0.5, 0.1875, 0.5]. A further
refinement invests even more points in that area and picks up large
contributions. What happens around [0.5, 0.1875, 0.5]? A look at snap-
shots in that area shows indeed a large function change close to the
doors. For two simulation snapshots in Fig. 44 at µ1 = [0.5, 0.1875, 0.5]
and µ2 = [0.5, 0.25, 0.5], we observe a large change in the behavior of
the flow field. This is caused by the change in the opening angle of
the left door (α2, viewed from outside) which, when almost closed,
causes the flow perpendicular to the door to no longer pass through
the door but go around it.

The sparse grid surrogate model for the BIM application is very il-
lustrative for how the refinement and the visual tools can identify
singularities of a simulation function. Such indicators guide the user
to further investigate those areas. This leads to a better understanding
of the scenario.

7.5.2 Evaluation Performance

The total size of the repository chosen for the test scenario (128MB×111

≈ 13.8GB) does fit in the main memory of a single node of the FRAVE
test system. As such, we choose the CPU-repository for this applica-
tion. Each node has a dual-socket NUMA machine with two Intel
Xeon E5630 (4 Cores, 12MB cache) clocked at 2.53 GHz. Per node an
amount of 24GB of DDR3-1066 RAM is available.

To determine the evaluation time for the BIM scenario, three slices of
the simulation domain of sizes 32, 64 and 128 MB were used. The CPU
repository loads 111 snapshots of the respective sizes and performs
1000 random evaluations. On average the evaluation involves 23 basis
functions (≈ 20 % of the repository).

Figure 46 shows the resulting average evaluation time for different
snapshots size with an increasing number of threads. With 8 threads
the CPU-repository can perform an evaluation in ≈ 200ms. For our
steering purpose this qualifies as interactive.

With a full BIM snapshot of 1GB, would the evaluation still be interac-
tive? The decision to pick 1/8 of the full snapshot had to do with our
exploration interests. Only the flow around the doors was in focus.
Surely, any other part of the domain can be loaded and interpolated
just as interactive. However, if the full 1GB snapshots are required
then the interactivity would be reduced due the all-gather operation
needed by the CPU-distributed repository.
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Figure 46: Execution time of the evaluation for different snapshot sizes and
for different number of threads on a NUMA machine using the
CPU repository with |Ps| = 111. On average 23 affected basis
functions were involved in the evaluation.

7.6 reactive flow

The reactive flow is a two dimensional H2-Air flame described by
the reaction mechanism 2H2 +O2 → 2H2O, see [9]. A hydrogen and
oxygen mix is placed in a rectangular domain and ignited by a flame
located at a designated inlet (sketched in Fig. 47). A constant flow is
applied from left to right in order to transport the fuel (H2), oxidizer
(O2), and resulting product (H2O) through the domain. Due to the
convection supplied by the velocity U the reactants leave the domain
through the outlet at the far right.

Differential equations that guide the evolution of such flames are non-
linear convection-diffusion-reactive equations. For our scenario they
take the following form:

∂x
∂t

= κ∆x −U∇x + s(x,µ) , in Ω. (52)

x(t) is the thermo-chemical composition (state) vector that collects all
the mass fractions Yi ∈ RNx×Ny at each discretization node and the
reaction temperature T, thus x(t) = [Y1, Y2, . . . , Yns , T ]

T ∈ RN. For the
H2-Air flame the number of species ns = 3: fuel (F), oxidizer (O),
and product (P). For each species i = F,O,P, the non-linear reactive
source term s(x,µ) = [s1, s2, . . . , sns , sT ]

T ∈ RN is given by:

si(x,µ) = −νi

(
Wi
ρ

)(
ρYF

WF

)νF (ρYO
WO

)νO
A exp

(
−
E

RT

)
,(53)
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Reactive Flow

Characteristic Value

type convection-diffusion-reaction

discretization Nx ×Ny = 73× 37
DOFs/node 4 (temperature, fuel, oxidizer, and product)

parameters activation energy A and pre-exponential factor E

parameter type physical

parameter ranges [5.511, 1.513]× [1.53, 9.53]

output of interest temperature distribution over full domain

Table 4: Main characteristics of the reactive flow problem.

Figure 47: The reactor is a rectangular container with two openings. On the
left, through a small opening the fuel and oxidizer are mixed
and ignited. A velocity field U is applied from left to right. The
convection transports the reactants and the product out of the
domain through the right opening.

where νi are the respective stoichiometric coefficients, ρ the den-
sity of the mixture, and µ = (A,E) is the vector of parameters. The
main characteristics of the simulation scenario are summed up in Ta-
ble 4.

Parameters

[A,E] form a tuple of physical parameters which influence the reac-
tion rate and are crucial in the study of chemical reactions. The pre-
exponential factor A depends on how often molecules collide and on
whether the molecules are properly oriented during collision. E is the
activation energy, i.e., the minimum energy that must be input to a
chemical system with potential reactants in order for a chemical reac-
tion to take place. Different combinations of the two lead to different
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Figure 48: The H20 concentration plotted with a color mapped height field.
The reaction rate has a high value close to the inlet. Convection
moves the resulting water throughout the domain.

reaction rates, and, depending on the engineering goal, a minimum
or a maximum rate might be searched.

Discretization

Each simulation snapshot is a data block of size [Nx×Ny×NDoF] =
[73× 37× 4], where NDoF is the number of degrees of freedom per
simulation vertex (here: the fuel H2, the oxidizer O2, the product H20
and the temperature T ). Combined, the state vector has size N =

10804.

Output of Interest

With three reaction species and the temperature, it is interesting to
observe how the different mass fractions change with varying pa-
rameters and what role the convection plays. To this purpose a vi-
sualization of the full simulation snapshots (see Fig. 48 for an H2O
snapshot) with the possibility of easily changing between the DoFs
(H2O,H2,O2 or T ) is desired. Of interest are also combinations of A
and E that lead to higher temperature development.
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Figure 49: Accuracy of sparse grid surrogates for the reactive flow problem.
With M = 45 points a 1% relative L2 error for the temperature
T is reached on the test set Pt consisting of 24x24 uniformly dis-
tributed test points.

7.6.1 Non-Intrusive Surrogate

Having only two parameters, this application is rather low dimen-
sional. However, four distinct degrees of freedom per node offer more
ways of constructing adaptive surrogate models. Similar to previous
workflows, the sparse grid for the reaction flow is constructed with
up to 351 points, but based on adaptivity in the T component.

Helpful in understanding this particular simulation scenario is the
small number of parameters. With only two we can actually plot the
solution at a certain point in the computational grid and see how
well the surrogate matches the high-fidelity model. Figure 50 shows
the temperature at discretization point [x,y] = [7, 17] over the entire
parameter space P. The overall behavior of the temperature is char-
acterized by a steep increase in temperature for a rather narrow A

range ([0− 0.2]) followed by an extended saturation phase.

The surrogate model for this application delivers less than one per-
cent relative L2 over a test set of size |Ps| = 576 (see Fig. 49). At
[x,y] = [7, 17], the response surface that the surrogate delivers, closely
matches the true behavior of the simulated temperature values (com-
pare Fig. 51 with the true solution in Fig 50). Some error towards the
A = 0 region of steep function change (Fig. 52) can be observed.
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Figure 50: Actual temperature at discretization point [x,y] = [7, 17] over the
entire parameter domain P. The activation energy E has rather
moderate influence on the reaction temperature. The increase
in temperature is mostly caused by an increase in the rate of
molecule collisions A.
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Figure 51: Approximated temperature at discretization point [x,y] = [7, 17]
over the entire parameter domain P. The surrogate matches well
the overall behavior of the true solution.
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Figure 52: Relative error for temperature at discretization point [x,y] =

[7, 17] over the parameter domain P.

Next, we turn to the visual analytics based on the hierarchical incre-
ments in order to see if the actual simulation function in Fig. 50 can
also be hinted from the refinement and magnitude of the αi.

First, the scatter plot matrix for this application is changed by resizing
the points based on the corresponding |αi|. From the (scaled) scatter
plot matrix in Fig. 53 we observe that a large hierarchical coefficient
corresponds to the central point [0.5, 0.5] and significant corrections
are applied especially to the left towards A = 0. This indeed hints the
behavior of the simulation function which exhibits a steep decrease
in the same direction.

Second, from the parallel coordinates plot in Fig. 54, we can also ob-
serve very easily that refinement mostly focuses on the pre-exponential
factor A. The simulation is thus most sensible to this parameter, and,
more precisely, in a particular A range [0− 0.25] the sensitivity gradi-
ent is particularly high.

We conclude from the investigation of the reactive flow that the sparse
grid surrogate model fulfills both aims of simulation exploration. Not
only can new snapshots be extracted at interactive rates but the under-
lying structure of the surrogate model gives valuable insight (similar
to sensitivities) in the actual reaction behavior.
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Figure 53: Scatter plot for the reaction flow where each sparse grid point is
scaled by the size of its increment. The central point µ = [0.5, 0.5]
contributes most to the interpolation. The refinement focuses very
well on the change in the function towards A = 0 (compare to
Fig. 50).
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Figure 54: Parallel coordinates for the reaction flow example. We see a clear
refinement concentration over the whole range of the activation
energy A, but especially in the interval [0, 0.25].
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7.6.2 Intrusive Surrogate

With the PDE at hand, the construction of the intrusive POD-DEIM
surrogate involves quite a few steps. At this point, the computation of
the orthonormal basis V has already been performed (as presented in
Sec. 5.4). With V , the state vector, convection, and diffusion matrices
are brought to their reduced versions through projections of the form
VTx(t,p) and VTAV respectively.

After the linear reduction is in place, attention now moves to the non-
linear reaction term. The classical DEIM method computes a second
set of orthonormal basis U and a row selection matrix P which are
used to interpolate the non-linear term. As a result the reaction term
is also reduced by requiring non-linear evaluations only at the ver-
tices selected by P:

VT s(x,µ) ≈ VTU(PTU)−1︸ ︷︷ ︸
pre−computed

s( Px︸︷︷︸
reduction

,µ) (54)

In Sec. 5.4 an improved version of the classical DEIM has been pre-
sented that uses DEIM residual-based clustering. Instead of a single
global basis V and a selection matrix P, a collection of bases Vk and
corresponding projection matrices Pk is used to better capture the
non-linearity.

The precomputed clustering in the parameter domain (spanned by A
and E) is used to build a classification function c : P −→ k. For a given
start parameter combination c, maps the parameter tuple [A,E] to an
appropriate cluster number k associated with a tuple [Uk,Pk]. Having
made this choice, the solving proceeds as usual with this improved
interpolation of the reaction term.

Similar to a non-intrusive method, a construction Ps and test Pt set
of snapshots is used to compute the accuracy of the surrogate. For
the reactive flow, Ps and Pt are both uniform samplings of P with
a 50x50 and 24x24 resolution respectively. Of interest is the improve-
ment in error in the temperature component due to the use of local-
ized DEIM.

First of all, does clustering also deliver meaningful results for the
reactive flow? Figure 55 (top) and 56 (top) present the results of a
parameter clustering for k = 10 and k = 25. A quick look at the
shape of the non-linear term (see Fig. 50) does indeed confirm that
the computed clusters do represent areas of similar function behavior.
Note that a static initialization (vertical stripes) of the clusters has
been used for stability reasons.
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Next, does the localized basis selection improve the overall accuracy
for the reactive flow? Figure 55 (bottom) 56 (bottom) show that up to
two digits (e.g., k = 10,nPOD = 20,nDEIM = 20) in accuracy can be
gained over the classical DEIM by taking advantage of locality.

Discussion

As with the two peak function (see Sec. 5.4), the reduced model of
the reactive flow also profits from DEIM locality. The gain can be
seen from two points of view. On one side, LDEIM delivers improved
accuracy for the same number of DEIM points. This is particularly
useful if the number of DEIM points in the classical method cannot
be increased due to computational constraints. On the other side, and
this brings us closer to computational steering demands, LDEIM of-
fers similar accuracy for a smaller number of non-linear term evalua-
tions. The reduction in DEIM points speeds up the evaluation of the
reduced model so that interactivity or even real-time responses are
possible.

Besides the query of the map c at simulation start, the computational
costs in the online phase are unchanged to the classic DEIM. Solely
the offline phase becomes more expensive as it involves the repeated
computation of several DEIM bases, albeit of smaller size.

There are limits to the desired number of clusters k. For the reactive
problem, an increase in the number of clusters from 10 to 25 does
not bring significant improvement. The main separable features of
the non-linear function have already been well captured with fewer
clusters.

7.7 summary

In this chapter, we have presented the accuracy of the non-intrusive
sparse grid surrogates of four applications. With a moderate num-
ber of construction samples (<500) an average relative L2 error of 1%
or less has been obtained. For the purpose of visual computational
steering such an error threshold captures the global behavior of the
underlying simulation.

Furthermore, by inserting the hierarchical coefficients into visual an-
alytics tools we gained insight into parameter sensitivity. For the
thermal block, an alternating combination of high and low parame-
ter combinations leads to jumps in the temperature distribution. The
acoustic horn has a rather smooth parameter response but some ar-
eas of pressure buildup have been visually identified. The BIM simu-
lation had a particular singularity at µ1 = [0.5, 0.1875, 0.5] caused by
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Figure 55: Top: residual-based parameter space clustering with k = 10. Bot-
tom: error comparison between classical vs localized DEIM for an
increasing number of DEIM points (nDEIM). On the horizontal
axis the number of global POD modes is increased (nPOD).
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the closing of one of the doors. The reactive flow is more sensitive to
the parameter A than E. Even narrower, for values closer to the lower
range of A significant change in the temperature behavior has been
identified.

On the intrusive track, the POD-LDEIM surrogate for the reactive
flow has improved the accuracy of the classical DEIM method with
up to two digits.



8
C O N C L U S I O N S

Classical computational steering approaches have been tackling the
lack of interactivity of complex applications by employing either par-
allel architectures, or, similar in the spirit of this thesis, making com-
putational simplifications by running simulations mainly with lower
resolutions. The main contribution of this thesis is to push this idea
even further, by formulating an extension of the notion of compu-
tational steering to include an approximation layer. Built with com-
putational effort invested ahead of the actual steering process, this
layer delivers approximate, but interactive results. A smooth steering
experience becomes possible where before was not the case. When
used for what-if or sensitivity analyses, such an extension signifi-
cantly speeds up the time to results by reducing the number of ex-
pensive high-fidelity simulations needed to understand the effect of
parameters in a certain simulation scenario.

As approximation layers, this work contributes data fit and reduced
order surrogates, which reduce the computational complexity of sev-
eral parametrized simulations described by partial differential equa-
tions. In what-if analysis, for which the qualitative behavior of the
simulation is sufficient to draw conclusions, sacrificing some accu-
racy for interactivity has proven to be a viable alternative.

A successful use of low fidelity models for steering depends on two
criteria, namely, their accuracy and response time. On a set of four
applications consisting of a thermal block, an acoustic horn, a flow
through accurate building structures, and a reactive flow, the non-
intrusive adaptive sparse grid surrogate model achieves an average
L2 error around 1 per cent within the targeted parameter ranges
and for the defined scenarios. Such an error threshold is sufficient
to assess simulation snapshots in a visualization system. Of course,
reaching this target of 1 per cent error required a different number of
training snapshots, depending on the smoothness of the simulation
function under consideration. For strongly varying simulation func-
tions, it is imaginable that the number of snapshots needed to reach
the accuracy threshold can increase significantly.

On a parallel track, the reactive flow has additionally been treated
with an intrusive surrogate model based on POD-DEIM. This thesis
contributes an extension to the classical DEIM by a parameter space
clustering approach, which is better suited for problems with non-
linearities that exhibit separable features. An improvement of up to
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two digits in accuracy over the classical DEIM is achieved. The in-
trusive surrogate shows for the reactive flow superior accuracy to
its non-intrusive counterpart, but comes with the price of significant
changes in the original system of differential equations.

With 0.2ms as the upper time limit for an evaluation of the low-
fidelity model, a non-intrusive repository concept has been devel-
oped that efficiently delivers new snapshots. Several versions have
been implemented and tested: a GPU, a GPU-distributed, and a CPU-
based repository, each suited for different problem sizes and available
resources. Regarding efficiency, the BIM (flow through complex ge-
ometries) application was the most challenging one, with individual
snapshots measuring 128MB. Making efficient use of NUMA CPU ar-
chitecture, the repository was able to deliver new snapshots within
the upper limit.

The entire steering process with surrogate models is seen as a con-
tinuous exploration process. Although the number of parameters tar-
geted by the presented methods is rather moderate (2-10) there is still
a large parameter space to search. Hierarchical coefficients and refine-
ment patterns employed by the sparse grid surrogate proved capable
in identifying important parameters, parameter combinations, and
parameter ranges. Furthermore, the repository has been designed to
be extensible during the online phase. Automatically or triggered by
user demand, new simulation results improve the solution during
exploration.

The fact that the response of simulations to parameter changes can
be approximated by simpler models or that large discretizations can
be reduced to a mere fraction of their original computational cost,
indicates a lot of redundancy and thus potential to bring down the
cost or frequency of simulations. There are of course a series of open
questions. For example, regarding only stationary solutions, the con-
sidered applications did not involve time as a parameter. While the
sparse grid surrogate can consider time as just another parameter, for
oscillating snapshots trajectories, this might not be appropriate. The
POD-DEIM does not have this issue, but its reduction potential de-
pends on the data dependencies in the non-linear term. At the same
time, the implementation efforts of an intrusive low-fidelity model
are not negligible.

As demonstrated, surrogates significantly contribute to advances in
interactive prototyping and visual based understanding of complex
parameterized simulation scenarios.
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Figure 57: FRAVE – The Fully Reconfigurable CAVE Environment. Moti-
vated by the concept of the CAVE [19] as an immersive virtual
reality environment, the main design idea behind the FRAVE is
its modularity. A FRAVE module consists of a display unit to-
gether with a compute unit mounted on a common aluminum
frame. The display consists of one (sides) or two (center and floor)
plasma screens (Panasonic TX-P65VT20E) with full-HD resolu-
tion and 3D capabilities. A workstation (dual-socket Intel Xeon
E5630 quad-core, 24 GB RAM and 8 TB hard drive) attached to
the frame of each module offers resources for visualization or
computation. An external GPU (Nvidia QuadroPlex 7000) is con-
nected to each workstation to power the displays. A second inter-
nal GPU (Nvidia Tesla C2070) is reserved for compute intensive
tasks. Each module can be freely moved to fit different visualiza-
tion purposes, e.g, a flat surface for high-resolution 2D visualiza-
tion or closed for immersive 3D environments.
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Figure 58: FRAVE displaying the BIM application. The visualization of the
BIM model and fluid flow is distributed across the displays using
the Equalizer library [28]. For flow visualization the concept of
probes (blue cube) is used. Each probe seeds a number of particles
or streamlines and can be easily moved and placed in areas of
interest (next to the door in the image).

Summed up below is the detailed description of the FRAVE sys-
tem.

6x Building block

• 2x (resp. 1x) Panasonic TX-P65VT20E, 65" Full HD, 120 fps (60

HZ for 3D)

• 2x Intel Xeon E5630, (4 Core, 12M cache, 2,53 GHz)

• 2x 12 GB EEC DDR3-1066 RAM

• 1x Nvidia Tesla C2070 (15 SP, 6 GB RAM)

• 1x Nvidia Quadroplex 7000 (2x16 SP, 2x6 GB RAM)

• 1x Mellanox Connect-X2 VPI HCA (32 Gbps IB or 10Gbps ET)

3x Post-processing nodes

• IBM x3550 M3 Server Blade

• 2x Intel Xeon X5690, (6 Core, 12M cache, 3,46GHz)
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• 2x 48 GB ECC DDR3-1333 RAM

• 1x Mellanox Connect-X2 VPI HCA (32Gbps IB or 10Gbps ET)

Infiniband network

• 2x Switch Mellanox IS5030 for 1410 36-Port Managed QDR IB

• 2.88 Tbps switching capacity

• 36 ports with 32 Gbps per port

• 9x HCA Card: Mellanox Connect-X2 VPI HCA

User interaction

• 3D viewing via Active Shutter Technology

• rigid body tracking with 8x OptiTrack S250e infrared cameras

• Phantom Premium 6 DOF Haptic Device

• 5DT Data Glove Ultra

• Microsoft Kinect and mobile devices





B
D E I M E N R I C H M E N T

To avoid discontinuities on the border between two clusters, an over-
lap is added. A local DEIM basis is thus built from the SVD of the ma-
trix of snapshots in that particular cluster, but with added snapshots
from neighboring clusters. Let us consider the snapshots associates
with two clusters arranged in the matrices

X1 =

 | | | |

x1 · · · xt−2 xt−1 xt

| | | |

 ,X2 =

 | | |

x1 · · · xs−1 xs

| | |

 .

(55)

The order of the columns in X1,X2 corresponds to a decreasing DEIM
residual (47), i.e, the last columns have the largest DEIM residual and
are thus least well represented by the local DEIM basis. These snap-
shots are used to enrich neighboring DEIM bases. We pick the last
10% of each Xi and assign it to the local basis with the lowest DEIM
residual (excluding their current basis). The first clustering then con-
tains

X1 =

 | | | | | |

x1 · · · xt−2 xt−1 xt xs−1 xs

| | | | | |

 , (56)

and the second

X2 =

 | | | | | |

x1 · · · xs−1 xs xt−2 xt−1 xt

| | | | | |

 . (57)

The local DEIM bases are then computed from the SVD of Xi. Note
that the classification remains unchanged, i.e., a snapshot belongs to
a single cluster. The presented enrichment is only involved with the
construction of the DEIM bases.
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