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Abstract

Exploration tools with sophisticated user interfaces are necessary to support ex-
perts in analytical and decision-making processes, facilitating their comfortable
interaction with the complex, simulated phenomenon at hand. Such tools typic-
ally consist of a back-end simulation component, running sometimes on a high-
performance cluster and a user interface front-end that lets the researcher fol-
low intuitively interpretable visualised numerical results and immediately react
based on the trends of the running computation. To achieve this, the connection
between a user interaction and its effect on the simulation must not be lost. The
main challenge, then, becomes to instantly and seamlessly feed the user require-
ments back into the computation. The state-of-the-art solutions for this may
perform well for particular targeted scenarios; however, they are mostly limited
in their possible application, or entail heavy code changes in order to work in
conjunction with the existing code.

To leverage this concept for a broader scope of scenarios, this study proposes a
generic integration framework, aimed for engineering applications, which — with
minimal code changes — supports distributed computation, as well as visualisation
on-the-fly. In order to reduce latency and enable a high degree of interactivity, the
regular course of the simulation coupled to the framework is interrupted in small,
cyclic intervals followed by a check for updates. When new data is received, the
simulation automatically restarts at once with the updated settings. To obtain
rapid, albeit approximate, feedback from the simulation in the case of perpetual
user interaction, it is useful to apply multi-hierarchical approaches combined
with simulation parallelisation. This is investigated in the context of an optimal
application basis, and hence, is well-supported by the framework. In addition,
the framework tackles the problem of long communication delays caused by huge
data sets, which can hinder the user in exploring the effect of his interaction.

The proposed framework is applied to a number of environments, including an
application for exploring temperature distribution, a neutron transport simula-
tion, that enables researchers’ interplay with virtual models of nuclear reactors
under various conditions and the trial integration into the sophisticated SCIRun
Problem Solving Environment itself to extend this environment for large-scale
problems. The framework is also integrated into an existing pre-operative plan-
ning environment for joint replacement surgery, enabling a real-time interactive
patient-specific selection of the optimal implant design, size, and position, for
even higher accuracy in computations.



Zusammenfassung

Um Experten aus dem Bereich Computational Science and Engineering bei der
visuellen Datenanalyse zu unterstiitzen, sind ausgefeilte interaktive Exploration-
swerkzeuge notwendig. Diese Werkzeuge haben i. d. R. anspruchsvolle Benutzer-
oberflachen, die eine moglichst einfache und komfortable Interaktion mit den zu
Grunde liegenden komplexen, simulierten Phénomenen anbieten sollen. Sie be-
stehen typischerweise aus einer Back-End-Simulationskomponente, die oftmals
auf Hochleistungsrechnern lauft, und einem visuellen Front-End als Benutzer-
oberflache, mittels der ein Anwender intuitiv die Berechnungsergebnisse erfassen
sowie unmittelbar auf die Tendenz der laufenden Berechnung reagieren kann. Um
dieses Ziel zu erreichen, muss aber der Zusammenhang zwischen Ursache und
Wirkung unbedingt erhalten bleiben, d. h. die Simulation muss in Echtzeit auf
Anderungen reagieren und dem Anwender neue Berechnungsergebnisse liefern.
Nur so kann das Empfinden von echtem interaktiven Arbeiten aufkommen.

Die grofite Herausforderung besteht nun darin, die vom Anwender getétigten An-
derungen sofort wieder in die Berechnungen einflielen zu lassen. State-Of-The-
Art-Losungen bieten heutzutage fiir ausgewdhlte Szenarien bereits gute Ergeb-
nisse, haben jedoch entweder eine begrenzte Anwendungsmoglichkeit oder er-
fordern zahlreiche Anderungen des vorhandenen Codes. Damit dieses Konzept
fiir einen breiteren Anwendungsbereich von Szenarien genutzt werden kann, ist
ein generisches Integrationsframework als Teil dieser Arbeit entwickelt worden.
Das Framework ist auf technische Anwendungsfalle ausgelegt und unterstiitzt
verteiltes Rechnen sowie Online-Visualisierung mit minimalen Code-Anderungen.
Der Verlauf einer Simulation, die mit diesem Framework gekoppelt wurde, wird
dabei in kleinen, zyklischen Abstdnden unterbrochen, gefolgt von einer Priifung
auf Anderungen (z. B. neue Randbedingungen oder neue Lage/Art von geo-
metrischen Objekten). Falls neue Daten empfangen wurden, startet die Sim-
ulation anschlieflend automatisch mit den aktualisierten Einstellungen. Multi-
hierarchische Ansétze kombiniert mit effizienten Parallelisierungsstrategien sind
hierbei von Vorteil, falls Nutzer ein schnelles, wenn auch nur qualitatives Feed-
back der Simulation benétigen. Eine (ggf. nicht interaktive) quantitative Analyse
ist dariiber hinaus jederzeit ebenfalls moglich. Weiterhin behandelt das Frame-
work Probleme durch Kommunikationsverzogerungen aufgrund grofler Daten-
mengen, die ein interaktives Arbeiten behindern.

Das vorgestellte Framework wird in dieser Arbeit auf eine Reihe von unterschied-
lichen Problemstellungen angewendet, um damit das Verhéltnis von Kosten und
Nutzen einer interaktiven Datenexploration aufzuzeigen. Die einzelnen Prob-
lemstellungen werden jeweils im Hinblick auf die notwendigen Code-Anderungen



sowie die nunmehr vorhandenen Moglichkeiten zur Interaktion untersucht. Als
Beispiele wurden dafiir einfache bis komplexe Szenarien aus dem Ingenieurwesen
und den Naturwissenschaften gewahlt, diese umfassen u. a. eine Neutronentrans-
portsimulation, die Industriestandardsoftware SCIRun sowie ein Werkzeug aus
der bio-medizinischen Anwendung fiir die pré-operative Planung und Analyse
von Hiiftgelenksimplantationen.
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Chapter 1

Introduction

1.1 Numerical Simulation

Numerical simulation opens the door for scientists and engineers to provide an in-
sight into a problem, which cannot be gained by theory or real experiments. Real
experiments cannot always be done. Sometimes they are not affordable. Even if
they are affordable, they might not be ethical (many examples may be found in
medicine, for instance), might not be safe, or reasonable (such as explosions, or
flooding of a terrain). But there is even more to it — often, it would be desirable
to predict certain phenomena (such as weather), or natural disasters (such as
tsunami). In combination with sophisticated scientific visualisation representa-
tion methods, scientists and engineers see their simulations as an opportunity to
gain a better insight into various phenomena within their field of expertise — to
get a better mental vision.

The practice of simulating physical phenomena was limited in the past by several
factors — from the objective ones, such as memory capacity of the computing sys-
tems, to the subjective ones, such as impatience of scientists, for example. With
new hardware technologies, efficient algorithms, data structures, and parallelisa-
tion strategies, this scientific simulation of very complex problems, which used to
be beyond belief, has become a realistic endeavour.

Namely, most of the problems the numerical community is interested in are built
around real-world phenomena. Those usually commonly known processes are
driven by well-established systems of equations. Thus, scientific simulation re-
quires the ability to model a desired physical problem domain, altogether with
appropriate boundary conditions, and do numerical approximations of the govern-
ing system of equations of a particular phenomenon. The result is then validated
and, in the ideal case, visualised for more intuitive interpretations. These are
all rather complex steps with data interdependences, often executed as separ-
ate programs with their own data formats, hence, often require computationally
expensive conversion steps in order to amalgamate.
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Constructing a model means finding a mathematical model to a physical system
and, thus, an approximate description of the physical world, as well as geometrical
construction of a physical problem domain, in which a continuous structure is
discretised, approximating the actual domain. In addition to approximating the
geometry, some (idealised) physical properties, such as material properties, can
be associated with the discrete domain. This typically time-consuming phase
often has to be repeated for each new configuration.

For numerical approximations of the governing ordinary or partial differential

equations based on the chosen discretisation and corresponding boundary (heat

on the boundary of a heat conduction simulation, e.g.), and initial conditions

(how the heat sources inside the domain are distributed, e. g.), one can use either

common approximation methods (the Finite Element Method (FEM), the Finite

Difference Method (FDM), Finite Volume Method (FVM), etc.), or even combine
NE% and [123].

problems on multiple scales, as proposed methodologies in

This yields a linear or a non-linear system of equations, which is solved using
either the existing direct or iterative methods (with or without preconditioning),
or hierarchical methods (multigrid and relatives), or even a combination of these
if appropriate. The size of the system can vary significantly — from hundreds or
thousands to millions or billions of unknowns — thus, the corresponding compu-
tation time may vary significantly.

The final part of a conventional simulation flow — efficient graphical representation
of the resulting, often large, data sets — is itself a considerable task.

Aforementioned cycles are traditionally carried out as a sequence of computations
(Fig. [T, left). Still, the wide range of experts in developing fields has to be
kept in the centre of analysis and, thus, needs an interactive and, moreover,
collaborative exploration environments.

1.2 Computational Steering

Interactive computing in general refers to user interplay with a program during
its run time in order to estimate its current state and/or tendency and to react
on its progress. In the numerical community in particular, an expert would
like to intervene with the running simulation so as to change some parameter
settings, geometry, boundary conditions, etc. This concept is widely known as
computational steering (Fig. [LT] right).

The concept is present in the scientific and engineering communities for many
years now. The pioneer of a related idea was interactive visual computing — a
process whereby scientists communicate with data by manipulating its visual
representation during processing m, @]

The more sophisticated process of navigation allows scientists to steer or dynam-
ically influence the simulated phenomena while they are occurring. In the Panel
Report on Visualization in Scientific Computing Workshop (ViSC) @] it is re-
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Figure 1.1: Difference of algorithmic schemas for: left — traditional simulation cycles (an
update can be applied only when the previous computation is finished); right
— the concept of computational steering (an update can be recognised at any
point, and the computation restarts accordingly).

ported that the “scientists not only want to analyse data that results from super-
computations; they also want to interpret what is happening to the data during
super-computations. Researchers want to steer calculations in close-to-real-time;
they want to be able to change parameters, resolution and representation, and
see the effects; they want to drive the scientific discovery process; they want to
interact with their data.” Although it has been a quarter of a century since the
report was written, these conclusions have remained the driving forces for the
development of real-time, or close-to-real-time, steering systems.

However, the “definitions” of the interactive computational steering tool have
been changing over time, i.e. what the term exactly refers to and when it can
be used. On the one hand, the minimal user requirements or expectations are
changing, and on the other, the criteria dictated by developers and the features
they choose to support. Even nowadays, in modern applications, those criteria
vary significantly. After the thorough study of the existing steering tools and
environments, the author dares to state that the term “computational steering”
is certainly not self-explanatory in any particular sense. Thus, the following
section provides a further taxonomy.

1.3 Classifications of Computational Steering Sys-
tems

The classification suggested in this thesis is inspired mostly by the analysis and
taxonomies in @], | and ﬂﬁ] According to these taxonomies, different
steering tools are roughly differentiated among depending on:
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— user interfaces,

— aim of steering,

— type of steering,

— level of interactivity,

— support for distributed computing,

— support for multi-component and collaborative steering,

— utilisation method.

1.3.1 User Interfaces

The simplest interfaces available to users are textual interfaces, based either on
console commands or on input read from textual files.

Some more sophisticated alternatives would be wisual programming languages
(VPLs), which provide the environment to design, compile, debug, etc., and
even execute programs by manipulating graphically the components (“boxes and
arrows” @], e.g.).

Graphical user interfaces (GUIs) are still most common in modern computational
steering applications. They typically consist of a visualisation window (possibly
allowing for direct interaction) and a dialog-based interface, where a user can
change simulation or view parameters through using sliders, text fields, boxes,
ete.

Most complex and most immersive user interfaces are virtual reality (VR) en-
vironments such as cave automatic virtual environments (CAVEs), and flexible
reconfigurable CAVEs — FRAVES. They consist of three to six walls in the virtual
room, with different kinds of sensors, towards which high-resolution projectors
are oriented. The actions of a user are detected by the sensors and the virtual
environment responds to changes immediately.

1.3.2 Aim of Steering

According to @, @], it can be distinguished between human interactive, al-
gorithmic, performance steering, and combinations of these.

In human-interactive steering a user modifies a simulation during the program
run time in order to explore the computational model, while in algorithmic steer-
ing the system is instrumented to monitor intermediate results and/or statistics
“online”, or store them in files.

Performance steering refers to migration and monitoring mechanisms, especially
popular, and even essential, in distributed and grid services. It is used in load
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balancing and scheduling, modelling and design, in interactive refinement of sci-
entific visualisations, and performance optimisation of web servers and parallel
I/O systems HE]

1.3.3 Type of Steering

There are also two so-called types of steering. One is steering and controlling a
program as an entity, where all the interaction is done on the global, program
level. The typical user actions which can be categorised here are: pause, migrate,
checkpoint, break, suspend, resume, kill, etc.

In contrast to this, there is application level steering, where scientists can get
much more insight from their simulations. They are able to modify and query the
simulation data, including, for instance, some simulation internal state variables,
inspecting as carefully the progress of the overall simulation, as the “behaviour"
of the chosen individual parameters, the details of interest, the desired parts of
the domain, etc.

1.3.4 Level of Interactivity

There are two mainstream approaches to steering in terms of how and when
the changes are applied. So-called “stop-and-go” steering technique (known also
as “online monitoring”) assumes explicit stopping or pausing the simulation,
performing changes, and then explicitly starting anew from the point of interest.
This mechanism allows not only for more time to analyse every action and the
corresponding effect, but also more time to think about the next action.

In contrast to this, interactive steering can also be done “on-the-fly”, which is
typically implemented via call-backs and similar mechanisms. It assumes real-
time feedback from the running simulation, while experimenting with different
simulation setups. The intuitive recognition of which change made by a user has
lead to which effect is the prerequisite which is sometimes challenging to achieve.
However, if this condition is met, interactive steering provides more immersive
experience, i.e. situations where one can learn “by accident” and, thus, can come
to an idea to examine a particular setting closer. The disadvantage is, however,
having less time to think and plan the next action.

Both methods are challenging in that sense, that they require deep knowledge
in wide range of disciplines. However, for very time and memory consuming
simulations running remotely (even on massively parallel architectures), the lat-
ter method involves solving more complicated synchronisation issues among pro-
cesses. Namely, it is necessary that the calculations remain consistent all the
time, despite frequent changes. In this dissertation, the accent will be set exactly
to this latter, more dynamic, hence, typically more ambitious approach.
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1.3.5 Support for Distributed Computing

As the name already indicates, this classification is concerned with the distri-
bution of components of a complete steerable application or a system. These
may all be executed on a single (local) machine. Otherwise, either simulation or
visualisation processes, or both, run remotely, distributed among (possibly) het-
erogeneous computing systems and communicating via a network (or even using
Web or Grid services, e.g.).

1.3.6 Support for Multi-Component and Collaborative Steering

Running and steering multiple simulations simultaneously has certainly always
been a point of interest. Sometimes there is also a need to attach multiple visu-
alisation clients. The third sub-categorisation criteria is the number of the users,
e.g. experts in different fields, that can attach to the application and steer it
simultaneously. Multiple users certainly bring into play synchronisation issues
and additional data sharing policies. However, support for multi-component and
collaborative steering is precious in collaborative, interdisciplinary research.

1.3.7 Utilisation Method

As suggested in ], it is clearly distinguished between the scenario where the
existing applications can be incorporated into the steering environment, and the
one where the environment itself is intended for a development of new applica-
tions. Looking from that perspective, there is a variety of steering tools developed
over decades — from those where whole applications may be developed, such as
Problem Solving Environments (PSEs), to the light-weight steering tools (i.e.
frameworks, toolsets, middleware, etc.), which are intended mostly for a loose
coupling to, or integration into, some existing code. The overview of the state-
of-the-art tools is provided later, in Chapter

Problem Solving Environments

As mentioned in the previous sections, one increasingly wants to put experts
in the centre of the result analysis, in order to utilise the modern simulation
possibilities in real-life problems. Therefore, it is essential to provide the tools
where the complexity of individual components is hidden from those experts, so
that they may only concentrate on the problem (i.e. a setup, processing, etc.)
and the interpretation of the results.

Problem Solving Environments (PSEs) are popular tools that facilitate interac-
tions with complex computational models, without requiring specialists to know
their algorithmic, data, or visualisation structures M] “The environment must
allow the scientist to focus on the science, and the visualisation expert to focus on
understanding the data” @] In short, typically, these are user-friendly tools
for guiding the numerically approximated solution to the governing system of
equations for a certain problem.



1.4 Computational Steering in Applications 7

These tools are intended to support solving the problem on all levels @, @]
First, they provide a sophisticated user interface as a tool for both software de-
velopment — including debugging and tuning — and the interaction on the user
level. Then, they provide at least basic modelling, computation, and visualisa-
tion components, which are preferably flexible and extendable. Finally, their role
is to coordinate all the components. PSEs form typically a whole environment
— an infrastructure where one may plug in different simulation and visualisa-
tion components. The rest, such as event handling, communication between the
two, user interface components, etc. may well be part of the environment. It
is possible to intervene during all phases of the model exploration — from the
development to the performance tuning — and also during the execution of any
of the aforementioned components.

Light-weight steering tools

Besides PSEs, there are various light-weight tools available for computational
steering, such as: application frameworks, scripting languages, wrappers, middle-
layers between simulation and visualisation, toolkits, library routines for instru-
mentation of a source code, etc.

1.4 Computational Steering in Applications

Experts in various fields would like to make as well-informed decisions as possible
within their area of expertise. Some of them are neither educated how to develop
simulation methods, nor how to develop the corresponding software. This is the
reason why all of them — from medical doctors to architects — should tend to
be supported with tools with sophisticated features, however, hidden complexity
of simulation and visualisation methods, high-performance computing, network-
ing, etc.

This section provides a broad overview of fields where computational steering is
utilised. These are mostly, but not exclusively, scientific and engineering fields.
At this introductory point, the intention of the author is purely to show how
wide the application area actually is, or may grow and, hence, which experts
already profit, or may profit, from such tools. The concrete software implement-
ations themselves, in terms of the implementation concepts behind the existing
frameworks, PSEs, libraries, etc. are described in Chapter [2

1.4.1 Civil Engineering and Architecture

Computational steering has found its application already in quite a few scenarios
in Civil Engineering. Those are concerned with engineering ventilation systems
in rooms (Fig. [L2 left), heating ventilation air-conditioning systems, flood sim-
ulations, etc. Only few of them are now briefly described.

Engineering Ventilation system in rooms, as proposed in ﬂﬂ], allows a user to
explore indoor airflow while interactively adding, removing, or modifying objects
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inside a virtual room. The modifications may refer to translation, rotation, scal-
ing in each direction, etc. Heating Ventilation Air-Conditioning (HVAC) systems
simulation described in [48] provides an environment where even multiple distrib-
uted researchers can collaborate working on a fluid simulator through inserting
obstacles into a domain, relocating or removing them simultaneously and seeing
the impact of these modifications on the fluid immediately. To analyse the indoor
flow, an HVAC engineer will use a tool for computational fluid dynamics (CFD),
while the interior designer might use a visualisation software with advanced ren-
dering capabilities in order to perform an illumination analysis @] In the work
of |, single parameters can be modified or components added to the scene.
The model considers the stationary heat balance of the human body, taking into
account the statistically predicted reaction to ambient conditions, where both the
metabolism and the clothing are considered.

1.4.2 Biomedical and Biology Applications

In biomedical applications desired properties of implantable devices cannot be
explored experimentally (through the surgical interventions on humans). This is
where numerical simulation tests are precious, to explore a wide range of design
and placement possibilities or simply learn about the patient-specific abnormal-
ities. To accurately model such a system, often a highly-detailed computational
model must be used. Such a model can take hours or days of CPU time to com-
pute results, such as, for instance, in Computational Cardiovascular Biomechanics
applications.

One such example is simulation of Cardiopulmonary Bypass Surgery (CBS) pro-
posed in @] It is an example of the simulation being finished out of the scope
of the “interactive” rates and no run time steering is enabled yet. But, the mo-
tivation should come from the fact that out of more than 2 million procedures
which are performed yearly, 2-13 % end up in some sort of a stroke (excluding
other less serious complications). During this surgery, the deoxygenated blood is
removed from the right side of the heart to a heart-lung-machine, where it is oxy-
genated, filtered, and pumped back to the circulation system, thereby bypassing
the heart and the lungs. To provide the surgeons a bloodless environment of
the heart to work on, the ascending aorta is clamped. Thereby, some particles
may break loose and block the artery to the brain, or hypoperfusion may occur
(not sufficient blood supply reaching all arteries in the brain). A complex inter-
play between the following factors plays a major role: patient-specific geometry,
cannula site, orientation and tip design, clamp site and orientation, interaction
between cannula and clamp, etc. Computational steering should then help a sur-
geon find some optimum state of the clamp and cannula sites which will have
the least risk of causing the release of embolic particles and sustaining the most
physiological flow conditions for the specific patient during this procedure.

Medical doctors would take a great advantage through exploring medical patient-
specific simulations during run time and, thus, knowing what to look out for.
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Quite a few of the applications, in fact, already provide support for interactive
steering.

One such application, proposed in @], serves for pre-operative planning of non-
invasive vascular reconstruction, with a physician in the experimental loop. To
achieve the best treatment, which is often not obvious for a surgeon due to a
serious vascular disease, heEl would like to preview the patient’s condition and
experiment by virtually adding a bypass for the patient specific scenario, i.e. a
graft redirecting the blood around vascular blockages. In the interactive blood
flow simulation within artery suggested in M], one can add obstacles or virtual
bypasses inside the simulated artery in order to narrow or completely obstruct
the blood flow.

A pre-operative planning environment for joint replacement surgery is elaborated
on in ﬂﬁ, @, @] It is yet another application where patient-specific data is
the crucial factor for choosing an optimal implant. An improper design, size, or
position may lead to bone degeneration due to stress shielding, having unfortu-
nately soon a new surgery as an outcome. The tool enables real-time surgeon’s
interplay with virtual models of bones and implants in sophisticated 3D visual
environments (see Fig. [[2] middle) providing an easily interpretable feedback in
terms of bone stresses.

Within SCIRun PSE @], the two following medical simulations can be run, as
described thoroughly within the online tutorials m, @]

Myocardial ischemia is a disease characterised by reduced blood supply of the
heart muscle. Symptoms may include characteristic chest pain on exertion and
decreased exercise tolerance E] It is the most usual cause of death in most
Western countries, and a major cause of hospital admissions @] Since early
detection may lead to the prevention of further complications, scientists hope to
detail what occurs in the border zones between the healthy and ischemic tissue
layers by measuring many anatomic details and electrical measurements M]
Since the simulation can be very time consuming, one would like to interact with
the model, test different simulation properties and visualisation methods of the
data of interest.

Defibrillation consists of delivering a dose of electrical energy to the affected heart
with a device that terminates cardiac disorders and allows normal sinus rhythm
to be reestablished by the body’s natural pacemaker. Implantable Cardioverter
Defibrillators (ICDs) are small, relatively common implantable electric devices,
that provide an electric shock to treat fatal arrhythmias in cardiac patients E]
Specialists need to be able to accurately both simulate and interpret how the
assigned electric potentials in one part affect other parts of the domain, i.e.
thorax and, thus, to choose an optimal, patient-specific device. Children, for
instance, require more specialised ICD configuration than adult patients, due
to their smaller size and often abnormal anatomy @] Optimal operation is

'Here and further in the text, for reasons of simplicity, a male form of a pronoun is used,
however, it stands for both a male and a female person.
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achieved only through the correct combination of voltage, placement, size, shape,
and numbers of electrodes @], where computational steering is advantageous.

Another light-weight version of steering has application to computational biology.
One simulates the electrical behaviour of the heart — in particular, reentrant
arrhythmia or irregular heartbeat. In the gViz @] demonstrator, a number of
heart simulations are run and the results monitored, each for a specific set of
parameters which are of interest.

The iPlant project goal is to develop new tools, networks, and cyberinfrastructure
that can connect plant biologists and bring together their data, in order to feed
the growing population on Earth; a common iPlant API is developed and allows
researchers with little programming experience to add common functionality to
their plant biology projects.

1.4.3 Physics-Based Simulations

Physics-based computational steering applications described within this section
are mostly related to computational fluid dynamics (CFD) and its application,
astrophysics, heat conduction, electromagnetic wave modelling, etc.

Computational Fluid Dynamics (CFD)

FlowSim 2004.NET M] is selected for this overview due to the fact that it gives
a user the opportunity to interactively modify the flow domain. All the changes,
for example to the geometry of the flow area, can be directly incorporated into
the calculation.

In @], one uses the Navier-Stokes equation to simulate the flow of an incom-
pressible fluid on a complex surface. First, one sets some initial conditions, like
the distribution of a coloured dye, which helps to visualise the flow. Then, one
defines the boundary conditions, such as the sources of dye and the in-flow/out-
flow of the fluid. Finally, the simulation runs and the results are visualised using
different rendering techniques, chosen via user interface. A user can directly in-
teract with the fluid under the mouse cursor, due to the interactive simulation
rates.

In @], the interactive simulation rates are achieved as well, using CUDA-based
implementation. This 2D flow simulation allows effective interactive manipula-
tion of a boundary, such as solid obstacles or velocity profiles.

The CFDLIB simulation, integrated into the SCIRun PSE@], consists of three
fluids of different density that interact inside the box. Scalar field of density, tem-
perature and volume friction are produced for each type of a fluid. The pressure,
temperature and velocity fields can be extracted from the running simulation and
the particle sets can be extracted from a particle-based simulation. One can view
datasets from previous time-steps using a slider.
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In @], a simulation of lid-driven cavity is shown. It is, namely, a box full of
liquid and the top lid is moving from left to right with a certain velocity. The
interactively visualised streamlines show how a particle would move if placed in
the flow. The parameters are then being changed (viscosity of the fluid, velocity of
the lid, and the time, where one can jump backward and forward). One simulation
takes around 30 minutes to complete (in parallel) and the interpolation delivers
an approximate solution in real time.

One of the “pioneers” of interactive steering of the simulation is a 3D turbulence
model in Lake Erie M]

Another application area in CFD is weather modelling. For instance, a meteoro-
logist can control the wind direction ﬂﬂ] via Virtual Windtunnel Binocular Omni
Orientation monitor.

Virtual environment techniques, just like in ﬂﬂ} turned out to be useful in
visualising complex fluid flows. The flow can be investigated at any length scale.
The time evolution of the flow can be sped up, slowed down, run backwards or
stopped completely for detailed examination.

Similarly, in atmospheric modelling of Distributed laboratories M], assimilated
wind fields derived from satellite observational data are used for its transport cal-
culations, and known chemical concentrations are derived from observational data
for its chemistry calculations. Models like this are important tools for answering
questions regarding exchange mechanism between different layers of atmosphere
or the distribution of species such as ozone. Steering is accomplished by position-
ing latitudinal and longitudinal planes, sizing and moving the cube to intersect
the plane, and then entering a desired concentration value so as to apply it to all
grid points in the cube.

A wide scope of other physics-based applications ranges from thermodynamics,
such as heat diffusion simulation ], to astrophysics, etc., as described in the
following, last, example within this category.

The Enzo simulation software is incredibly flexible, and can be used to simulate
a wide range of cosmological situations with the available physics packages B] It
is mostly online monitoring, however on very large scales for the present moment.
The model represents a volume of the Universe about 800 million light years on
a side and used a 5123 top level mesh with 7 levels of adaptive mesh refinement.
It requires the memory and processing power of almost 94 000 cores of the NICS
Cray XT5, Kraken. Each re-start/checkpoint file is 30 TB in size M]

1.4.4 Pollution Modelling

Pollution modelling is an another area of application. An environment disaster
scenario is considered in ﬂﬁ] The dispersion of a dangerous environment pol-
lutant is simulated, in order to ensure efficient evacuation. Evacuation planners
can experiment with different wind directions via arrow widgets of a visualisation
front-end.
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Another example is smog prediction over Europe @] The simulation calculates
the smog dispersion over four layers according to the numerous input paramet-
ers concerning emission fields, meteorological and geographical parameters. The
governing equations of the model are a set of partial differential equations that
determine the advection diffusion emission, wet and dry deposition, fumigation,
and chemical reactions. In this interface, the user can examine the different at-
mospheric layers and steer the simulation by manipulating pollution emission
sources.

Atmospheric diffusion is another representative application example. A simula-
tion of atmospheric dispersion from a power station plume is described in ﬂﬁ]
The photo-chemical reaction of NO, with polluted air leads to the generation of
ozone at large distances downwind from the source. The user interface allows the
user to set up initial conditions: the initial position of the pollution source, the
velocity of the flow, the level of adaptive mesh refinement in the regions close to
the pollution source, etc. The main area of mesh refinement is along the plume
edges close to the chimney. Using an adaptive mesh, the plume edges can be
clearly seen and areas of high concentrations identified. During the execution
time, a user can change the level of adaptive mesh refinement.

1.4.5 Nuclear Engineering

The first example in this field is the AGENT simulation framework for modelling
reactor physics in configurations common to standard research reactors, current
power reactors, and any future reactor designs. AGENT solves the 3D Boltzmann
transport equation using the method of characteristics (MOC). This method of
simulation requires a large number of parameters to be configured by the user —
a variety of meshing parameters, as well as a set of convergence variables. Mesh
and resolution parameters include, for example, the number of rays representing
neutron tracks of motion and the number of boundary edges along each side of
the reactor core assemblies. Improper settings of these and other parameters can
lead to slower and worse convergence of neutron transport solution and, thus,
dissipated computational resources or memory. However, the proper values are
not easily understood in many cases, and hence the user is required to complete
a detailed “survey” toward the best estimate solution. This unnecessarily ex-
acerbates the computational cost of simulating particular phenomena. To resolve
this, a computational steering approach is employed. In some other reactor mod-
elling environments, such as at the one developed at the University of Illinois @],
“only” online monitoring is used thus far (to the best knowledge of the author).

1.4.6 Steered Molecular Dynamics

Molecular dynamics is also an example of a field where computational steer-
ing plays an important role, as presented in @] The described tool serves for
creating and examining new molecules — sometimes called Steered Molecular Dy-
namics (SMD) ﬂﬂ] Here, the user can express external forces to help the system
overcome energy barriers or he can search for likely geometric configurations
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in docking problems m @ Another scenario is the Distributed Laborator-
ies | project, which makes possible the performance optimisation, such as
changing decomposition geometries in response to changes in physical systems
or shifting the boundaries of spatial decompositions for dynamic load balancing
among multiple processes. The aim of the simulation is calculating intra- and
inter-molecular forces based on information from neighbouring particles in order
to apply calculated forces to yield a new particle position.

1.4.7 Manufacturing

In @] the advantages of numerical simulations for a semiconductor diode laser
are described, subject to optical feedback, where the result has infinite degrees
of freedom [64]. The user can interactively set the values of selected parameters
using sliders. He can choose any of the (visualised) fixed points to start the
simulation from, or can experiment with different parameter values.

In wood science applications, research into the time of press closure in the hot
compression process has always been a mystery. It only lasts for 15 to 60 seconds,
but much of the final panel characteristics are believed to be determined during
this time. There has been a lot of experimental work to determine the influence
of press closure rate on panel properties. The challenge is to determine when
the key events occur. A scientist can use the WBCSim ﬂﬁ] computational
steering feature to study this issue, instead of physically testing a panel after
it has completed the entire press cycle. Here, the parameters related to the
steering setup, material, initial condition, boundary condition, adhesive cure,
and press schedule can be specified. The feature provides intermediate results
and options to steer the simulation during the run. The model is defined by
specifying material transport, boundary transport, and compression properties.

TENT ﬂﬂ] is used in analysis of turbo components in gas turbines, for the de-
velopment of virtual automobile prototypes, the simulation of static aeroelastics
of an aircraft and the simulation of combustion chambers.

More examples of interactive simulation steering of manufacturing systems can be
found in Nﬁ, automotive industry and, to be more specific, vehicle forward light-
ning — optimising for visibility and comfort, where virtual lightening laboratory
from Hella KG [45] has been involved.

1.4.8 Other Application Areas

Indoor thermal comfort is becoming increasingly important in the industrial en-
vironment. Relevant areas of application in this scope, according to m, @]
include manufacturing, such as the automotive industry, the aircraft industry, the
railway /coach industry, as well as Civil Engineering — the HVAC-building sector,
for instance.

Acoustic wave propagation has been studied by interactive adjustment of input
parameters, such as the seismic shot location, intensity, etc. m, ]. A user
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may either get a coarse overview of the whole computational domain, or a finer,
detailed view of a particular area of interest, i.e. the shock-wave reaction.

Simulation of the sailing characteristics of an East-Indiaman is described in M]
The simulation calculates the new state of the ship at each time step. The new
state is derived from the prior state and the wind conditions (the direction and
the force), the wave spectrum of the see, the position, orientation and surface area
of sails, the orientation of the rudder, etc. The user can literally steer the ship
— sails can be set, the sail area can be enlarged or reduced to adjust to different
wind forces, the sails can be aimed to different angles to adjust to different wind
directions and ship courses; the user can use the rudder and the sails to change
the course of the ship; the wind force and direction can also be changed.

The next example is C-SAFE (Fig. [[2] right) ﬂa] Its ultimate goal is to simulate
fires involving a diverse range of accident scenarios including multiple high-energy
devices, complex building/surroundings geometries and many fuel sources. How-
ever, the initial efforts focus on the computation of three scenarios: rapid heating
of a container with conventional explosives in a pool fire (e. g., a missile involved
in an intense jet-fuel fire after an airplane crash), impact and ignition of a con-
tainer with subsequent explosion and fire-spread (e. g., shelling of a mine storage
building by terrorists) and heterogeneous fire containing a high energy device
(e.g., ignition of a containment building in a missile storage area).

Figure 1.2: Diverse application fields for interactive computing — left: air flow simulation
in an office room, middle: bone simulation (source: Chair for Computation
in Engineering, TU Miinchen), right: fire simulation (source: C-SAFE, Uni-
versity of Utah).

Many present computer games use concepts closely related to computational
steering. Just to name one, an interactive RoboCup (Robot Soccer) @3] is an in-
teractive environment which lets teams play a soccer match together, using either
real robots or simulated players @] People at different locations on Earth can
play along with a running RoboCup simulation in a natural and intuitive way —
each in his own CAVE.

Other applications may include traffic, crowd, flood simulation and — last but
not least in this overview — educational software. This software helps not only
teachers evaluate the progress of students programming activity based on the
collected statistics (e.g the speed of typing, hopefully indicating the program-
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ming proficiency of the students) HLG_@JH, but also supports students by tools for
education and learning in all aforementioned areas of science and engineering,
such as nuclear engineering, physics, mechanics, civil engineering, etc.

1.5 Real-Time Interactive Computing Environment

In order to provide an environment for experts to do analysis in the existing,
widest imaginable, range of fields (only some of which are mentioned in the previ-
ous section), “scientists attempt to use as much resolution as they have memory
and patience for” ﬂﬁ] As it can be concluded from the previous examples,
multi-scale, multi-dimensional, and multi-physics simulations are nowadays the
rule rather then the exception. This is also where the motivation comes from
to explore interactively the underlying complex models. Preparing, running, and
postprocessing within a large-scale simulation takes away minutes to hours, or
even days of a researcher’s time. Yet, at least several updates per second would
be desirable for interactive computational steering. What could be done then?

Numerous aspects have to be considered in order to create an advanced envir-
onment, with real-time computational steering enabled for a wide range of ap-
plications, in particular large-scale, multidimensional, multiphysics simulations.
Let us optimistically assume that powerful hardware is available, as well as an
efficient application basis (allowing for utilising that hardware). So as to fully
develop such an environment, it is still required to get acquainted with numer-
ics, high-performance computing, network transport protocols, and visualisation,
as discussed in more detail in Chapter 2l However, even this is not necessarily
solving all the open questions.

The situation gets more challenging if the simulation kernel is executed remotely
on a supercomputer cluster, in contrast to where graphical user interface and
visualisation are done typically, i.e. on a local machine. The simulation may be
required to run in an interactive instead of a batch mode, which is not always
supported by supercomputer systems @]

Finally, it is also important to have systematic, patterned, consistent approach
to the design, development, and maintenance of software.

1.6 Task Definition and Approach

Current computational steering problem solving environments, libraries, and
frameworks significantly help engineers run some specific simulation codes in an
interactive mode. Nevertheless, when it comes to real-time response of the simu-
lation to this interaction — namely, keeping the aforementioned relation between
a user’s change and its effect intuitive or at least observable — these environments
are still limited in their possible application. In other words, they are typically
restricted to just one, or very few scenarios for which they perform exactly as
desired. Moreover, they often entail heavy code changes in order to be coupled
to existing codes.
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Therefore, the goal of this research is to implement an integration framework
with the following properties:

— applicable to different engineering applications,

— minimal invasive — modification of the original application code necessary
are minimal,

— supports multithreading, distributed parallel simulations, as well as visual-
isation on-the-fly,

— supports different hierarchy-based /adaptive simulation methods,

— provides instant response of the simulation model to changes (keeps the
connection between a cause and the corresponding effect intuitive),

— provides fast transfer of a simulation result,
— can be compiled using different compilers,

— is portable to different operating systems (OSs).

To avoid any kind of ambiguities of the terms and in the same time stress the
generic character of the approach described within this work, it will be denoted
interactive computing further on in the text and, hence, its implementation with
the listed properties — an interactive computing integration framework or some-
times just framework.

Yet, the author would like to point out that it is mostly aimed to serve numerical
engineering applications. It is inspired by various engineering disciplines, some of
which are mentioned later, in Chapter [, and developed in engineering-dominated
academic surrounding, where the motivation for introducing a relatively generic,
easy to integrate concept has originally come from.

To sum up, in the modern scientific computing community, the author reasons
that it should not, without any consideration, be claimed unimaginable to in-
teractively steer also long-running, resource intensive simulations, providing at
least some feedback about the effect of modifications in real-time. Long-running,
in this context, may mean anything which is not real-time — in the range from
a second to a day, or longer. Resource-intensive means — in the context of this
work — requiring full utilisation of the available hardware resources: machine
memory, network bandwidth, etc. Most of the aspects mentioned in Section
are considered. Considering these aspects is essential in order to fulfill the afore-
mentioned vision in the future.

Thus, different interactive steering concepts are thoroughly discussed through-
out this dissertation, some of them applied and evaluated. In addition to the
implementation-independent option to switch to more powerful hardware, good
utilisation of that hardware is assumed within all application components and



1.7 Guide Through Chapters 17

layers. Usage of more efficient algorithms and data structures is advised as an
optimal basis for integration of interactive computing concepts. Some of the
sophisticated domain decomposition methods are portrayed, allowing not only
for new designs of faster solvers, i.e. with lower computational complexity, but
also sophisticated parallelisation strategies. Reduced order models — or simply
reduced accuracy requirements — are suggested while an application is running in
an interactive mode (if they may be appropriate for the particular application).

The author considers this a helpful contribution for proposing a direction in which
science and engineering might go when it comes to implementation of interactive
computing tools. For realistic problems, where typically large data-sets as well as
high computational complexity requirements have to be handled efficiently, the
potentially detected performance limits could often be overcome via sophisticated
simulation and visualisation techniques (as a basis) and good performance of the
overall interactive environment. The latter in particular could /should be provided
via user-friendly interfaces, with all the implementation details “hidden” from an
end-user. The aim is to support research in various fields and encourage experts’
demand for such tools both in industry and in other application areas.

1.7 Guide Through Chapters

This chapter has introduced the motivation for doing interactive computational
steering and its numerous challenges. The taxonomy of the tools enabling inter-
active computational steering helps to understand their differences, which are of-
ten colossal. The chapter provides a broad overview of application fields, without
any implementation details of the computational steering environments support-
ing the interactive process. The aims of minimalistic integration frameworks for
a wide scope of engineering applications — developed as a goal of this thesis —
are described, together with the concept of “interactive computing”, the way the
author sees it.

Chapter [2] describes in more detail the challenges in building a real-time interact-
ive computational steering environment. The chain consists of (1) efficient simu-
lation methods based on approximation and sophisticated solvers, which exploit
different domain decomposition methods and hierarchical approaches, (2) ad-
vanced parallelisation strategies, (3) fast transfer of simulation result, (4) editing
and visualisation of this result. The actual implementation of the (classified)
state-of-the-art tools supporting interactive steering is discussed at this point.
The difference of the concept introduced in this work is briefly presented.

Chapter Bl provides a detailed picture of the concept of the developed frame-
work, as well as the implementation specifications. The concept of signals is
introduced, due to its relevance for the framework implementation. Examples
illustrate the implementation details and challenges not only for sequential app-
lication codes but also for parallel ones — multithreaded, distributed parallel and
“hybrid”. Preliminary results are shown in regard to the overhead of the frame-
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work and, moreover, in regard to the minimal effort which a user has to invest in
order to enable this pattern in his own application.

Chapter M presents the experience gained by the integration of the interactive
computing concept into different engineering scenarios, as well as the achieved
results. The first application scenario is a 2D simulation of the temperature con-
duction, where heat sources, boundaries of the domain, etc. can be interactively
modified. The second one is a neutron transport simulation developed at the
University of Utah’s Nuclear Engineering Program, which has served as the first
Fortran test case for the framework. Next is the sophisticated Problem Solving
Environment SCIRun developed at the Scientific Computing and Imaging (SCI)
Institute, University of Utah. Due to its flexibility, modularity, and dataflow
based design, it is used in different applications at the SCI Institute and wider,
thus, has provided an excellent basis for interactive computational steering and
the test integration of the proposed framework. The fourth, final one, is a tool for
pre-operative planning of hip-joint surgery, done as a collaborative project of the
Chair for Computation in Engineering and Computer Graphics and Visualization
at Technische Universitdt Miinchen. For each individual scenario, the effort to
integrate the framework is briefly discussed from the user’s point of view. The
overhead of the framework is analysed in terms of the execution time.

Chapter Bl summarises all the conclusions from the previous chapters and an-
nounces the outlook for future work.

Appendix presents the exact practical changes which were made in order to in-
tegrate the proposed framework into the heat conduction application code.
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Chapter 2

Interactive Computing

This chapter introduces, above all, the minimal prerequisites for building up
an efficient and scalable, high-performance interactive computing environment.
Common central requirements in interactive computing are to support develop-
ment and execution and, thus, to design corresponding components. The deve-
lopment (i. e. front-end) part should involve a sophisticated user interface, which
guides the user in building a solution to his problem, and at least one visualisa-
tion widget, which may itself also be interactive. On the back-end often executes
a time- and memory-consuming simulation kernel, either on a local machine or
on a high-performance cluster (Fig. [ZT]).

HPC

Update (BC,
geometry, etc.)

Simulation back-end

User GUI/UI
front-end

Network, e. g.

Tteration 1

Vis.
widget

pPC/
Workstation

Iteration 2

Simulation
result

Iteration N

Figure 2.1: A large-scale simulation is executed on the simulation back-end, while on
the visualisation front-end, the user guides the solution via a user interface
(changing boundary conditions, geometry, etc.).

The state-of-the-art implementation of such tools will be briefly presented and
classified using the taxonomy defined in Chapter [ The awareness of concepts
already utilised worldwide and the features they support, as well as the experi-
ence gained within our research group over the last decade, have contributed to
the success of establishing a new, rather generic, interactive computing concept.
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Thus, this chapter discusses the barriers preventing real-time update rates as a
response to user interaction especially for large-scale problems, as well as the op-
timal application basis for the integration of this concept. There is no restriction
imposed on a potential application scenario so far. However, in conjunction with
an optimal application basis, the integration of this new concept, i. e. framework,
involving only minor code changes, may result in complete, efficient interactive
computing environments, at least for many familiar standard-class optimised ap-
plication cases. Nevertheless, in addition to the numerous challenges already ad-
dressed, the growing number of application scenarios will certainly always present
new challenges. While the solutions to these challenges may increase the com-
plexity, they may also contribute to a more robust, feature-rich framework.

2.1 Challenges in Building a Scalable Interactive Com-
puting Environment

Solving small-scale problems interactively has already been thoroughly investig-
ated in the field. For building up an environment with real-time interactive steer-
ing enabled for large-scale problems, the developers still have to bring together a
variety of components, even assuming state-of-the-art hardware is available (i. e.
high performance CPU/GPU clusters, high-bandwidth network, etc.):

an efficient (rather parallelised) simulation, running in a high-performance
computing (HPC) environment,

— a possibility for a user to interrupt the simulation at any point (to have it
re-executed with the updated settings),

— hierarchical concepts (e. g., computing with different approximation-related
parameters) providing less accurate, albeit quick intermediate feedback
from the simulation,

— fast transfer of simulation results, using methods for selection or compres-
sion of data, via high-bandwidth network connections,

— intuitive and real-time visualisation of this result.

These are the minimal prerequisites, all of which have to be taken into account
to provide the desired response of a large-scale simulation to user interaction.

This chapter gives an overview of the involved aspects, with the corresponding
state-of-the art hardware where appropriate, to describe the optimal basis for in-
tegration of the interactive computing framework. The application bases already
given and tested with the framework are also discussed. The framework is not
held responsible to make the provided application scenario — e.g., a simulation
method — more efficient. On the contrary, we strive for a minimally-invasive
integration. However, potential users should keep in mind that the initial applic-
ation code, once it completely fulfills the requirements suggested in the previous
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paragraph, could significantly contribute to the interactivity rate of the overall
system, i.e. application software “symbiosis” with the integrated framework.

Especially where a simulation of complex, realistic phenomena is concerned,
without efficient simulation methods, interactive computing concepts alone could
never lead to acceptable update rates as a response to user modifications. Ac-
ceptable update rates, within this work, means the rates which keep intuitive for
a user the connection between his interaction and the corresponding outcome
effect.

Namely, only so-called real-time simulations (irrespective of how this “real-time”
property has been achieved) allow instant transfer and visualisation of results as
a response to user interaction, independent of the realisation of a coupling of the
two components.

Contrarily, there are cases when middle-to-large-scale problems are not amenable
for parallelisation, or even those with a “decent” level of concurrency of the tasks
involved, due to inadequate parallelisation schemes, or any other reason, still
remain out of the scope of real-time simulation rates. It may be the case that
neither CPU/GPU power of PCs/workstations, nor of supercomputer clusters,
are sufficient to compensate for a poor parallelisation strategy, or any other soft-
ware property due to which only some of the hardware capacity can actually be
exploited. An effort to rethink the algorithms and rewrite the codes might pay
off in this case. When solving a system of equations, for example, strategically
used spatial decomposition methods may help and allow not only for faster direct
solvers, but also for scheduling and load balancing methods needed for efficient
parallelisation. This is the case with the nested dissection algorithm described
later.

For large-scale problems, on the other hand, even when a simulation scales well
on powerful hardware, it is often rather questionable whether constructive (or at
least intermediate) feedback from the simulation back-end could be provided in
even close-to-real-time. To that case, simulation authors can turn to:

— adaptive approximation methods, or multi-level, or reduced order methods,
which can be physics based, or projection based (to a lower dimensional
space which captures most of the information of the original system),

— sophisticated iterative solvers or even hierarchical solvers — hierarchical pre-
conditioners and efficient algebraic solver methods, such as multigrid (if
there is a system of equations to be solved, keeping in mind a wide scope
of possible simulation scenarios),

— etc.
Therefore, a closer overview of the common simulation methods and parallelisa-

tion techniques which may be applied is provided — especially those which are
directly related to the application and test cases with the framework integrated.



22 2. Interactive Computing

2.2 Efficient Simulation Basis

For the scientific simulation of phenomena within an interactive computing envir-
onment, an efficient modelling of a desired physical problem domain is required,
as well as appropriate boundary conditions.

Based on the application scenario, appropriate numerical approximations of the
governing system of equations of a particular phenomenon (FEM, FD, FVM)
should be chosen, which provide fast computation of the solution. Thereby,
sometimes an opportunity should be regarded and used to pre-compute poten-
tially needed values and simply load them within an interactive computing loop,
instead of computing them during the execution time.

2.2.1 Approximation

Approximation starts with describing the idealised physical problem with a
mathematical model. Then, a discretisation step has to be done — often both
space (related to the domain geometry) and time, and so-called equation discret-
isation.

Space discretisation means representing the continuous domain with a finite num-
ber of points or elements, to which discretisation entities are associated (such as
shape functions in a Finite Element Method) and where the numerical values of
simulation-specific variables have to be calculated. Based on the discretisation
points a mesh is generated. Efficient and sometimes adaptive mesh generation
is essential when it comes to any user updates which involve the re-meshing of
the domain. Alternatively, for complex geometries, methods with an embedded
domain approach, such as the Finite Cell Method (FCM) @}, are likely to be
profited from, since mesh generation need only be done once. More remarks on
the convenience of this approach when it comes to interactive steering are found
with regard to the Bone application scenario in Chapter @l

The equations are discretised by transforming the differential or integral equations
into discrete algebraic operations involving the values of the unknowns related
to the mesh points. As mentioned before, the resulting problem can be then an
algebraic linear or nonlinear system of equations for the mesh-related unknowns.

The Finite Difference Method

The Finite Difference Method (FDM) is based on the properties of Taylor ex-
pansions and on the straightforward application of the definition of derivatives.
It requires a grid to be set up in a structured way. The order of accuracy of
FD formulas for a continuous function is evaluated by Taylor expansion for the
function around some point z (in some small but finite Az surrounding). Finite
Difference formulas are said to be of the first, second, etc. order, depending on
the order of accuracy, i.e. the power of Ax with which the dominant term in
the local truncation error of the Taylor expansion tends to zero as Az tends to
zero. For every derivative, an infinite number of FD formulas can be derived,
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depending on the number of mesh points involved and on the required order of
accuracy. Theoretically, both can be arbitrarily high. Depending on the posi-
tion of the points involved in the FD formula for a particular point, there are
backward, forward, central, or mixed FD schemes. Not all these schemes, nor
their derivation (which is straightforward; see @]) will be discussed here. We
only discuss the already derived (and utilised) formulas for particular application
scenarios relevant in this work.

Difference schemes for the Laplace operator Au = %—i— giyg are used in several
application and test examples (Chapters Bl and ]) and are therefore introduced
here. The Laplace equation for a (continuous) function u

Au =0, (2.1)
and its generalisation, the Poisson equation
Au = f, (2.2)

play an important role in CFD, as well as in simple models such as heat con-
duction or potential flows (as will be seen later in the 2D heat conduction and
the SCIRun application scenarios). As the Laplace equation is typical for diffu-
sion phenomena, which is of isotropic nature, i.e. does not distinguish between
upstream and downstream directions, it has to be discretised with central differ-
ences, in order for the discretisation to be consistent with the physics it simulates.
This is a crucial element in the selection of an adequate numerical scheme, among
all the possible options @] Application of second-order central differences in
both directions leads to the well-known five-point difference operator

Uitl,j = 2Uij + Wity Ui+l — 2Uij + Uij—1
N + Ay = fij (2.3)
or for Az = Ay
Uit1j + Uim1j + Wija1 + Uijo1 — dugj = fij - Az’ (2.4)

Here, f is a discrete “source” function and (7, j) an ordered pair of indices de-
termining position of the discrete values of u and f associated to the grid (their
x and y coordinates). This is the most widely applied scheme of second order
accuracy for the Laplace operator @]

The Finite Volume Method

In contrast to FDM, where the discretised space is considered a set of points, in
the Finite Volume Method (FVM) a discretised space is formed by a set of small
cells, one cell being associated with one mesh point. FVM associates a local finite
volume (the “control volume”) to each mesh point. It is a widely used technique
in CFD, however, it is not discussed for this work, since it is utilised neither in
our exemplary nor our application test cases.
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The Finite Element Method

The Finite Element Method (FEM) m, l1d, (144, @} is a well-established and
widely-used numerical approximation scheme, especially in complex structural
problems, where it originated. The first step, in general, is to decompose the
given spatial domain into a finite number of elements, resulting, typically, in tri- or
quad-elements in 2D or in tetrahedral or hexahedral elements in 3D, respectively.
For each of the elements, so-called basis, ansatz or shape functions (either linear
or higher-order) are defined. Then, representations of the unknowns based on
linear combinations of the ansatz or shape functions associated to that element
are formulated. Next, an integral formulation of the equations to be solved is
defined for each element of the discretised space, i.e. the local problem. The
global system of equations is assembled from all the individual elements.

To illustrate the concept on a practical example, in structural mechanics one
wants to have the response of a structure under load. FEM can be applied to
obtain an overview of the stresses and strains. These can be computed if the
deformation under loading of the structure is known. It will be illustrated later
on the Bone application test case, where the behaviour of a thigh bone under
load — analogous to loading e.g. while a human is walking, climbing the stairs,
etc. — can be simulated and interactively explored.

The behaviour of a classical type of elements, the so-called Lagrange elements,
can be described in terms of the loads and responses at discrete nodes. For
each element of a certain type there is a small matrix, the element stiffness
matriz, which relates a vector of unknowns — nodal displacements — to a vector
of applied forces at these nodes, the load vector. The elements of the matrix
describing the elastic deformation under load are computed by integrals over the
partial derivatives of the shape functions and the material parameters of the
element. Once we calculate elements’ stiffness matrices and load vectors, they
are all assembled into one large matrix: the global stiffness matriz for the whole
system, and the global load vector, respectively, due to the superposition principle
(Fig. 22). Thus, the algebraic system of equations describing the behaviour of
the whole system is

K- -u=d, (2.5)

with K the system stiffness matrix, u the nodal displacements, and d the accu-
mulated forces.

There are many variants of FEM, however, the mainstream approaches are:

— h-method: to subdivide the domain mesh (A is customarily the diameter
of the largest element in the mesh),

— p—method @, , @] instead of making h smaller, one increases the
degree of the polynomials used in the basis function, p. Most p-version
implementations use hierarchical shape functions and not Lagrange shape
functions, with significant advantages concerning, for example, the condi-



2.2 Efficient Simulation Basis 25

(1) Ky -di = f1
@ @ (2) K3 -dy = fo
(3) K3-d3 = f3

g 4 Kgiobat = K1 @ Ko @ K3
Jgtobat = f1® f2® f3

Figure 2.2: The behaviour of a bilinear Lagrange element in FEM is described in terms
of the loads and responses at discrete nodes 1,...8. For each element, a small
matrix, element stiffness matriz, K;,i € 1,2, 3 is calculated, relating a vector
of unknowns — nodal displacements d; — to a vector of applied forces at these
nodes, load vector f;. The global system of equations Kgobal - d = fgiobal
is gained by superposition from all the individual elements.

tion number of the stiffness matrix, yet loosing the property that degrees
of freedom can directly be associated to nodal displacements.

— hp—method ﬂﬂ] a method combining these two refinement types,

— rp—method: to adjust the FEM mesh to the shape of the elastic-plastic
interface [133], etc.

The convenience of these adaptive approaches in one interactive computing en-
vironment will be thoroughly described in Chapter Bl

Method of Characteristics

Another method in use is the computational Method of Characteristics
(MOQ). To briefly demonstrate the idea, a simple concrete example from ﬂ@] is
provided. Let us consider a substance flowing in a region of interest [z, 23] in z-
direction, u(z,t) denoting its density ([quantity]-[volume]~!) as a function of pos-
ition 2 and time ¢, and let ¢(z,t) denote the flux ([quantity] - [time] ™! - [area] '),
where density and flux variations in the y and z directions are assumed to be
negligible. Velocity is denoted c¢(z,t), and f(x,t,u) the source term at which
density increases by any process other than flux. Thus, the conservation law for
a substance (e. g. mass or energy) in this 1D space

- (2.6)

must hold across the whole domain. If we know the velocity c(z,t) ([length] -
[time] 1) then the flux is ¢ = cu. By the trivial substitution, we get the transport
equation

u + (cu)e = f, (2.7)
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where one seeks the function w(z,t) that satisfies this equation, and satisfies
u(z,0) = ug(x) for some given initial density profile ug.

After straightforward transformations of the transport equation, one can assign
a geometric interpretation to it (see Fig. Z3)): we seek a surface u(z,t) whose

c(x,t)

directional derivative in the direction of the vector field is f—u-cy.
1

This geometric interpretation is the basis for the solution method. Curves x =

x*(t) in the (z,t) plane that are tangential to the vector field (¢(x,t),1) are

called characteristic curves. The characteristic curve that goes through the point

(x,t) = (k,0) is the graph of the function z* that satisfies the ODE

dx*
dt

= c(z",1),
z*(0) = k.

(2.8)

Denoting the value of u along a characteristic curve by u*(t) = u(x*(t),t) results
in
d , Oudx® Ou

i “orat "ot

That is, characteristic curves are paths along which the differential operator of
the transport equation reduces to a total derivative. They define equation dis-
cretisation for a flow simulation — the approximate paths along which particles
move — supplemental to the geometry mesh discretisation.

= cup tur = g. (2.9)

t

T T2 k x

Figure 2.3: MOC: along characteristic curves the partial derivative in the transport equa-
tion reduces to a total derivative.

Among the application scenarios described in this thesis, the 2D heat conduction
test case uses central differences as an approximation method, SCIRun simula-
tions are based on h-FEM, and the Bone project on a variant of p-FEM with
the embedded domain approach, which, as already mentioned, can be extremely
convenient for interactive computing since an expensive re-meshing step does not
have to be repeated for each new configuration. The AGENT application uses
MOC to simulate neutron transport (e.g., scalar fluxes) within a reactor core.
Most of these application scenarios may use as well some kind of adaptivity or
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hierarchy, which is discussed in Chapter B] in the context of the integration of
the framework. Namely, the intention is to show how these hierarchies can be
exploited to accelerate the convergence of the solutions, while maintaining the
desired accuracy, and how the framework fits into that concept.

2.2.2 Solvers

At this point, it is convenient to mention the three essential error sources in nu-
merical simulation: the mathematical model error together with the input data
error; approximation error — when operators or input parameters are replaced by
approximations (e.g. a differential with a difference, a function with a polyno-
mial); and round-off error which occurs during the calculation.

Once a resulting system of equations is obtained via one of the aforementioned
approximation methods, it is essential that the solution method for it is effective
as well. Depending on problem size and other properties, direct or iterative solv-
ers, with or without preconditioning, are employed, or the popular hierarchical
methods, such as multigrid (both as a stand-alone solver, and as preconditioner),
or even their combinations.

As mentioned at several points before, the outcome of an approximation method
is an algebraic system for the unknowns associated with a series of mesh points.
Often it is simplified by discretisation into a large linear system, as it is the case
with all the application cases presented within this thesis. This system can be
very large. Two large families of solvers for linear algebraic systems are direct
and iterative methods.

If this system is small enough to fit into memory, methods exist to find the direct
solution efficiently. An overview of these methods can be found in @] Direct
methods are based on a finite number of arithmetic operations leading to the exact
solution of a linear algebraic system @] However, Cholesky decomposition and
Gaussian elimination have a cost of O(N3), where N is the number of variables.
This is generally considered too costly in both memory and computational time.
Sparse direct methods such as nested dissection cost O(N3/2 ﬁﬁ @ |, which is
still high for large N.

However, it might not be necessary to solve the linear systems exactly. Depending
on the application, approximate solutions, or even coarse approximations, can be
sufficient.

Iterative methods perform operations on the matrix elements of the algebraic
system in an iterative way. Their goal is to approach the exact solution, with some
accuracy tolerance, in a finite, hopefully small number of iterations @] Most of
these methods are not described in this dissertation, except for: (1) basics of the
methods demonstrating hierarchical state-of-the-art solvers, essential for efficient
simulation, (2) a few examples which are directly used in our application or test
scenarios, and are also helpful for understanding the parallelisation strategies
relevant for this work.
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Simple iterative methods such as Jacobi and Gauss-Seidel have O(N?) cost per
iteration, however, the number of iterations required depends on the condition
number of the system matrix and on the desired level of accuracy. When the con-
dition numbers are very large, these solvers might take too many iterations until
solutions converge. This is the case, e. g., for some structural mechanics simula-
tions in which p-FEM methods are utilised, one of which is the Bone application
scenario.

Even in this case, iterative methods such as Jacobi and Gauss-Seidel, could be
effective as so-called smoothers. They could serve to smoothen high-frequency
components of the correction in small number of iterations. Hence they are used
in multigrid methods, described later in the text, in conjunction with a hierarchy
of grids. Since stand-alone Gauss-Seidel and Jacobi are used in a few framework
application test cases, they are illustrated and discussed further in the text.

Examples of point Jacobi and point Gauss-Seidel method for the Pois-
son equation

In order to solve the Poisson equation (Eq.[22]), an initial approximation (guess)
of the vector u is defined. Then, an attempt to improve this approximation is
made by sweeping through the mesh of 42 X Jmae point-wise, starting at the
point (i,7) = (1,1), i. e. with lowest mesh indexes in this example, traversing the
mesh row- or column-wise. If we indicate by u;’; (or u}) the assumed approxim-
ation (n will be an iteration index), the corrected approximation u?T" (or u/*1)

can be obtained according to the Gauss-Seidel scheme by s
w0, ) = i(u”(z’ +1,5) + Ui = 1) + a6 1)+ ut G = 1)
~1fG9) - A,
(2.10)
where i € [2, [nae — 1] and j € [2, Jmae — 1]. It can be observed that the points

(¢, —1) and (i — 1, j) have already been updated at iteration (n + 1) when u; ;

is calculated. The new values in the estimation of u’;;rl are used as soon as they
have been calculated. It can be expected thereby to obtain a higher convergence
rate since the influence of a perturbation on v is transmitted more rapidly.

A program to solve the Poisson equation with Gauss-Seidel is illustrated in Al-
gorithm [I1

The Jacobi method is defined by the iterative scheme
1

4 | (2.11)
_an(iaj) Az

With the Jacobi method, a perturbation of uf_ﬁl ; will be felt on u; ; only after

the whole mesh is swept since it will occur for the first time at the next iteration
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Algorithm 1 Gauss-Seidel solver pseudo-code.

1. assign__initial values(); // assign values to the mesh points
2: ... // more initialisation steps

3: // iterations until convergence or T),,, criteria is satisfied
4: for t + 1,T},4> do

5. // update all the values of u in the discrete domain

6 for i+ 2, I, — 1 do

7 for j «+ 2, Jye: — 1 do

8 uli)[j] = 0.25- (uli +1[5] 4 uli = 1[5] +u[i][j + 1] + uli][j — 1] = £[i][])
9 end for

10:  end for

11:  check_convergence()

12: end for

through the equation for u?72. With the Gauss-Seidel method, this influence

Z7j
already appears at the current iteration since u;‘TH is immediately affected by

7]
n+1 n+1

(e and U iy

From almost every point of view, Gauss-Seidel iteration has proved to be more
advantageous than the Jacobi method. For instance, it can be observed that

as soon as a new value u?1! is calculated, the ‘old’ value ug'; 1s not needed
I

Z7
anymore. Hence, the new Vajlue can be stored in the same location and overwrite
the local value u;';. Therefore only one vector u of length n has to be stored, while
two vectors «™ ! and u™ have to be saved in the Jacobi method. Moreover, the
convergence is guaranteed for Jacobi method only if a system matrix is diagonally
dominant, while for Gauss-Seidel it needs to be positive definite and symmetric.
However, the Jacobi solver is easier to parallelise, as will be demonstrated in
Subsection The two easy-to-remember schemes used in these methods are

visualised in Fig. 241

i+1 i+1 i+1

i1 i1 i1 ]
B B N i R B N S B B NS |

Figure 2.4: left: stencil; middle and right: Jacobi and Gauss-Seidel scheme, respectively
— filled nodes represent the values from the n!” iteration, while white nodes
represent the value from the iteration n + 1; circle represents the currently
updated value
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Multigrid methods

Multigrid (MG) methods @, 89, 51, @} are an advanced family of numeric-
ally stable and computationally efficient methods for iterative solving of linear
systems. They are often based on simpler iteration schemes like Gauss-Seidel
or Gauss-Jacobi, which is used in the example of a full multigrid below. Like
hierarchical (multilevel) preconditioners, multigrid techniques use a hierarchy to
accelerate the reduction of low-frequency errors. However, in order to ensure that
both high- and low-frequency errors are smoothed quickly, multigrid techniques
perform additional smoothing at each hierarchy level. While multigrid techniques
can be used as stand-alone iterative solvers (like Jacobi and Gauss-Seidel), it is
now common to use certain forms to aid the convergence of an iterative solver,
such as Conjugate Gradient. Such methods are particularly effective because
they handle the large-scale trends at coarse resolutions.

One full iteration, from fine mesh to coarse and back, is typically called a V-cycle.
In V-eycle algorithms one proceeds from top (finest grid) to bottom (coarsest
grid) and back up again (Fig. 25 right). On each grid but the coarsest, a
relaxation step is done some number of times before transferring (restricting)
to the next-coarser grid and also some number of times after interpolating and
adding the correction @]

As a first step in so-called full multigrid, the mesh is coarsened and the problem
is transfered to the coarsest grid, where it is solved. The solution is then interpol-
ated to the second-coarsest grid and a V-cycle is performed. This is recursively
done until the finest grid is reached (Fig. 23] left).

If the given discretisation (for the Poisson equation with Dirichlet boundary con-
ditions, on a unit square, e.g.) is based on a uniform grid g with mesh-cell size
h, to apply a V-cycle, both coarse grids and the intergrid transition operators
have to be defined. According to @], a coarse grid matrix g* of (nxm) with
a mesh-cell size h can be calculated by full weighting of corresponding (2nx2m)
fine grid values g by applying local averaging (i € [1,n],j € [1,m]), e. g.:

R)* Lo h h h
(9 )ij = 1—6(921‘—1,2]‘—1 + 92i-1,2j+1 T 92i41,25-1 1 92i+1,2j+1

h h h h h
+2(92i-1,2j T 92i4+1,2j T 92i,2j—1 t 92i.2j41) + 492 25)

(2.12)

On the other hand, switching from a coarse grid g of (nxm) with a mesh-cell size
2h to a fine grid ¢** of (2nx2m) by traversing g pointwise for the now “refined”
grid indices in x and y direction (i € [1,n],j € [1,m]), a common choice according
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Finest ® ® Finegt
grid | Restriction Prolongation / l grid f
‘ /
Coarsest VI /.
grid

Figure 2.5: Multigrid: left — full multigrid, right — V-cycle

Coarsest
grid

to the same source is bilinear interpolation, as can be seen in Eq. 213l

g?/hz,j/Q, if 7 is even and j is even
%(Q(Qifﬂrl)/ljﬂ + g(zzh_l)/QJ/Q), if 7 is odd and j is even

2\ ** _ 1/ 2h 2h op s ..
(9 )” = §<%/2,(j+1)/2 + gi/27(j_1)/2), if 7 is even and j is odd

1 h h
Z(g(Zi+1)/2,(j+1)/2 + 9(22‘71)/2,(j+1)/2

"'9(2;11)/2,(]‘—1)/29(2z‘h—1)/2,(j—1)/2)’ if i is odd and j is odd.
(2.13)

Sometimes, for particular applications, it is enough to perform only a part of
the V-cycle. In ] only the second half in a pure upsampling procedure is
implemented, while in @] a purely coarse-to-fine solver is used, also called cas-
cadic. In ﬂﬁ] it was demonstrated that a cascadic approach has applications well
beyond the adjustment of tonal values, such as gradient-based image processing.
The Poisson solver propagates sufficient information from coarse to fine, allowing
to achieve local solutions at interactive rates that are virtually indistinguishable
from the full-resolution solution.

With today’s simulations of complex phenomena, no matter how efficient the
underlying methods and implementations are, good parallelisation strategies are
still a prerequisite rather than an option. In the subsections to follow, different
high-performance computing aspects are elucidated.

2.3 High Performance Computing (HPC)

The performance of modern applications increases rapidly due to faster hardware,
more available memory, more efficient algorithms, optimisation techniques, and,
finally, parallel computing techniques. The main goal of parallel computing is to
try to answer the insatiable demand of complex problems for yet more comput-
ing power — numerous examples worldwide can be found in climate or geophysics
simulations (tsunami, e.g.), structure and flow simulations, large data analysis,
military applications, etc. Based on the published booklet results of numerical
simulations on the High Performance Computer in Bavaria (HLRB II), an SGI
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Altix 4700 system in the period 2009-2011 ], the HPC projects involved astro-
physics, computational chemistry, geo sciences, high energy physics, life sciences,
and solid state physics.

2.3.1 State of the Art Parallel Computer Architectures

Having HPC hardware to run simulations on is only a starting point. The rough
classification of parallel computers according to the level at which the hardware
supports parallelism assumes, on the one hand, multi-core, many-core, simultan-
eous multithreading (SMT), and multi-processor computers, having multiple pro-
cessing elements within a single machine (typically, shared memory) and, on the
other hand, massively parallel processors (MPPs), and Grids, using multiple ma-
chines to work on the same task (distributed memory system). As networks have
become faster and multiprocessors more loosely connected, those clear distinc-
tions between the use of shared memory and message passing as communication
mechanisms have been obscured. It is worth mentioning the three major types
of multiprocessors which have gained commercial acceptance: UMAs (uniform
memory access multiprocessors), NUMAs (non-uniform memory access multipro-
cessors), or their cache coherent counterparts — cc-NUMAs and NORMAs (no
remote memory access).

In a shared memory system, all processors in the system share equal access to
one or more banks of memory. All areas in memory are equally accessible to all
processors and processor-to-processor data transfers are done using shared areas
in memory. All processes have direct access to shared variables, thus, in general,
they have to be synchronised.

Multicore architectures, as the name indicates, have multiple processing units,
so-called cores, on the same chip — connected by the on-chip central intersection
through which all the information must flow between those cores or between cores
and memory and I/O ports. To be considered multi-core, each core has to be
a full processor (e.g., a superscalar design, i.e. one core having multiple integer
calculating units, together with the enabled pipelining, would not count).

Multiprocessor architectures have more than one processor on a motherboard
(each of which in turn can also be multicore).

Mamnycore architectures have a “revolutionary” relatively new chip design, which
can harness the processing power of tens to hundreds ﬁ] or even thousands ﬂﬁ]
of cores on a single chip interconnected with on-chip network. It is considered
a processor in which the number of cores is large enough that traditional multi-
processor techniques would no longer be efficient. In other words, a manycore
architecture is characterised by more simple, low-power cores coupled with high
memory bandwidth.

SMTs have an even smaller subset of a core’s components duplicated. An SMT
core has duplicate thread scheduling resources, so that the core looks like two
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separate “processors” to the operating system. In fact, it has only one set of
execution units. One such implementation is Intel’s Hyperthreading.

Uniform memory access multiprocessors (UMAs or cc-UMAs, using special-
purpose hardware to maintain cache coherence) are those with access time to
a memory location nearly independent of which processor makes the request or
which memory chip contains the data.

For non-uniform memory access multiprocessors (NUMAs or cc-NUMAS), the
memory access time depends on the memory location relative to a processor —
a processor can access its own local memory faster than non-local memory (i.e.,
memory local to another processor or memory shared among the processors).

No remote memory access (NORMAs) are those with message-based communic-
ation among processors over an internal or external network.

In a pure distributed memory system, each processor in the system has its own
separate bank or banks of memory. Processor-to-processor data transfers are
done over some form of network topology.

MPPs use of a large number of processors (or separate computers) to perform
computations in parallel.

Grid computing is done on a large number of heterogeneous computers in geo-
graphically distributed and diverse administrative domains. The resources are
opportunistically used whenever they are available.

Some facts about HPC

“The trend of increasing a processor’s speed to get a boost in performance is a
way of the past. Multicore processors are the new direction manufacturers are
focusing on. (...) Throughout the 1990’s and the earlier part of this decade
microprocessor frequency was synonymous with performance (...) Since pro-
cessor frequency has reached a plateau, we must now consider other aspects of
the overall performance of a system: power consumption, temperature dissipa-
tion, frequency, and number of cores. Multicore processors are often run at slower
frequencies, but have much better performance than a single core processor.” @]

Namely, a co-founder of Intel, Gordon E. Moore, stated in 1965. that the num-
ber of transistors that could be placed on an integrated circuit was increasing
exponentially, doubling approximately every two years (or eighteen months, ac-
cording to Intel executive David Hause). The trends in HPC architectures are
directed also by the fact that 25% reduction in performance (i.e. core voltage)
leads to approximately 50% reduction in dissipation. Therefore, manufacturers
came up with the idea of installing two cores per die, having together the same
dissipation as single core system, but better overall performance. However, if
writing a program which can be run only on one core on such architectures, this
non-parallel program will get slower. In fact, even when a program is executed
on multiple cores, the increased number of transistors and the number of cores
per die unfortunately still does not give equivalent performance gains.
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One of the concerns is memory/cache coherence. Distributed and shared caches
on the chip must make sure that when one core reads data from memory, it is
reading the current value, not one that has been updated only in the cache of a
different core. All the cores need to communicate with each other, and to the main
memory. This is usually accomplished either using a single communication bus,
or an interconnection network, so the answer of manufacturers is to increase the
bandwidth, with on-chip memory controllers and interconnects. With a shared
cache, if there is no proper replacement policy, one core may starve for cache
usage, thus, continually make calls out to the main memory.

Regarding memory itself, rather than increasing its capacity, there is an urge for
re-design of the interconnection network between the cores. That is, decreasing
intercore communication latencies should not be underestimated.

Finally, using aforementioned processors and clusters to their full potential is
another issue. If the code developers do not write their programs so that their
parts can be executed concurrently on multiple cores, and especially without
heavy synchronisation among those parts, there is no gain in performance. “The
software has to also start following Moore’s Law, software has to double the
amount of parallelism that it can support every two years.” Intel fellow Shekhar
Borkar said in 2007. ﬂ@] The question is how many code developers in today’s
scientific and engineering applications understand the necessity to strive towards
that goal and how capable they are of achieving it.

2.3.2 Parallel Programs

To “support parallelism” means that a program itself must be written in
such a way that the execution of program instances occurs on more than one
core/CPU/node. This often requires major changes or rewriting of the corres-
ponding sequential algorithms, yet is the only way to take advantage of parallel
computing architectures, i.e. increase the computational performance relative to
the performance obtained by the sequential execution of the program on one core.
Keeping this in mind, the best parallelisation strategy and implementation for a
specific program should be chosen, taking into consideration not only the problem
itself (its algorithms, adaptability of methods and data structures to the problem;
the ways in which one can decompose it into concurrent parts), but also the avail-
able computer resources. Having a program portable to other machines without
a significant decrease in performance is certainly itself an important issue.

The typical necessary steps to be taken are: identify concurrent tasks, map tasks
to different processors; manage inputs, outputs, and other data; manage shared
resources; synchronise the processors, and so forth. Further steps, addressing
concurrency in particular — potential resource starvation states which should be
avoided (deadlocks, livelocks, etc.) or synchronisation steps — might need to be
applied. They are commonly implemented via synchronisation primitives, such
as semaphores, mutexes (short for mutual exclusion) or barriers.
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The main objectives are one or all of increasing throughput, shortening the re-
sponse time, or increasing the possible problem size. As the simplest example,
known as embarrassing parallelism, N instances of a sequential program can be
simultaneously run with different input data. More common approaches would
be: (1) computing one problem by running N instances of a parallel program for
jointly solving different problem tasks, or (2) computing one problem by running
N instances of a parallel program and N-times larger data, using the sum of all
local memories for computing.

Depending on the goals of the software developer, there are two major approaches
for breaking the problem into concurrent tasks, i.e. decomposition. These are
data and task approaches for decomposition, although this distinction is not ne-
cessarily a strict one.

2.3.3 Decomposition

There are actually many ways to decompose the problem in order to utilise paral-
lelisation for a specific problem. Roughly speaking, there are two most common
kinds of decomposition: domain decomposition (data parallelism) and functional
decomposition (task parallelism).

There is a Russian saying which rougly translates to: “Do not forget that you can
eat an elephant if you slice it into small enough portions.” In domain decompos-
ition, data is divided into pieces that are approximately the same size and then
mapped to different processors. Each processor works only on the portion of the
data that is assigned to it. However, the processes may need to communicate
periodically in order to exchange data (e.g. on the borders of sub-domains).

For some large, complex problems, however, domain decomposition may not be
the most efficient strategy for a computation. This is the case, for instance, when
the individual subsets of data assigned to the different processes require greatly
different amounts of time to be processed. The performance of the code is then
limited by the speed of the slowest process since the remaining processes are idle.
In these situations, functional decomposition can be considerably more efficient.
Using this strategy, the problem is decomposed into a large number of smaller
functions, which are then forwarded to the processors as they become available
so that processors that finish quickly are simply assigned additional work.

Besides this rough classification, there are a few already established decomposi-
tion methods, worth being named at this point:

— Recursive task decomposition — one problem is split into tasks which can
be done completely concurrently, each processor getting its own part. In
the next recursion step, parts are again split among processors. The disad-
vantage may be that with a large number of recursion steps, the number
of processes which can be utilised may decrease, i.e. on the lower levels of
recursion.
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Data decomposition — typically used when large data structures need to be
processed. For instance, matrix data can be split for concurrent computa-
tion row-wise, column-wise, or block-wise (Fig. left, middle and right,
respectively).

“Hybrid” decomposition has also become popular. Namely, first a recurs-
ive decomposition is done, so that then the tasks’ data and computations
can be split where needed. This is well illustrated in the Bone applica-
tion test scenario, at the point where distributed parallel scenario and its
improvements are discussed, and also sketched in Fig. 271

Exploratory decomposition is employed in search algorithms.

Speculative decomposition — for dependent choices in computations; but
the last two named are neither employed as part of this work, nor in the
application scenarios, thus, are just mentioned for the reason of complete-
ness.

row-wise column-wise block-wise

Figure 2.6: Data decomposition — left: row-wise, middle: column-wise, right: block-wise

decomposition of a matrix. Each filled part represents an example of the
domain which is assigned to a single processor.
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P; | P,

Py | Py P3 | Py

P, Py P3 Py

Figure 2.7: Hybrid decomposition — recursive decomposition of the tasks where each task

in the hierarchy is split based on data decomposition. The tasks are assigned
to different processors P;, i € {1,...4}.

Often computational effort required for parallel simulations does not allow for res-
ults to be gained quickly enough for (especially high-rate) user interaction. When
custom decomposition techniques are not enough to fully exploit the hardware
available, sophisticated data structures and methods are required [56, .
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Hierarchy based structures, such as trees, are very convenient due to their spatial
subdividing property @, @] For instance, octrees are based on the principle
of successively dividing a cube where needed in every direction. The resulting
cells either lay completely inside or outside that geometry, at least due to some
threshold value, or are cut by the boundary. Fig. illustrates the 2D variant of
this, creating a quadtree. Examples of both 2D- and 3D-spacetrees can be found
in g], and collections of adaptive trees (conveniently called forests of octrees)
in [57). Making use of this structure to store the volume information (each cell
stores some), the complexity can be reduced to O(N?) cells in 3D or O(N) cells
in 2D instead of O(N?3) or O(N?), respectively, in case of an equidistant discret-
isation.

3 1 (0

O

Figure 2.8: Nested dissection of the geometry domain: (left) halving the domain in each
spatial direction. The cells either lay “inside” or “outside” of the specified
geometry (at least due to some threshold value), or they are cut by the
boundary; (right) the corresponding quadtree structure.

Alan George was the first to apply nested dissection (ND) on finite element prob-
lems @], in the 1970’s. As described in @], his idea was to subdivide a whole
domain € recursively into sub-domains §2; and after eliminating all the unknowns
which are local for €2; to solve the remaining, so-called Schur complement, system
of equations. Now that the sub-systems are released from mentioned influences of
local variables they may be processed independently from each other (Fig. 2Z9]).

Let us consider the system in Eq. Approximately halving the system matrix
in each dimension creates four sub-matrices K;, i = 1,...4 as an outcome. If we
arrange these matrices so that they can be divided into inner parts (II), containing
only local variables, outer parts (OO) and inner-outer parts (IO, OI), the systems
now look like what is shown in Fig. (A, x and b are arranged counterparts
to K, u and d respectively, i € 1,2,3,4).

After substitution of x; from the corresponding Eq. 214

Arp-zr+ Ao - 10 = by
17+ Ajo - xo I (2.14)
Aor-xr + Aoo - xo = bo
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Figure 2.9: Domain decomposition — domain {2 divided recursively into sub-domains €2;,
which can be processed independently except on the common boundaries
(represented with the filled circles).

11 10 I I
01 00 O O
A X b

Figure 2.10: Division of the problem into II — inner-inner, IO — inner-outer, OI — outer-
inner and OO — outer-outer parts depending if the corresponding degrees
of freedom are local or global (shared among different elements). A is a
matrix of (n x n), and & and b are vectors of the size n.

and doing few obvious transformations, it looks as follows
(Aoo — Aor - Al_ll - Ar0) -0 =bo — Aor - Al_ll - by, (2.15)
where Apo — Aor - Afll - Ajo is called the Schur complement.

Denoting A’ = Apo — Aor - Afll Ao and b =bp — Aoy - Afll - by, the following
system is gained:
Ao =10, (2.16)

In Eq. the influences of local variables are eliminated. The same principle
may be used for each of the sub-matrices gained in the potential further recurs-
ive subdividing of the matrix K. Finally, all the Schur complements of “small”
matrices and right-hand sides are assembled, resulting in a new system of equa-
tions, whose matrix is the assembled Schur complement. It can be solved, for
example, using a direct solver, such as Gaussian elimination. In this way the
vector zo of unknowns is calculated and a proper substitution of unknowns with
its values is done in the first equation in Eq. 214l From Eq.[2I4] the rest of the
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solution — x; — is calculated
CC[:A[[—l'b[—A[[—l'A[O'IEO. (2.17)

Despite the fact that, as mentioned before, the efficiency of this solver compared
to other direct solver options is better, employing an iterative method with pre-
conditioner, or even one of the multigrid methods should be considered. The ND
solver is, nevertheless, employed in one of the framework application scenarios
related to a femur simulation. It is a convenient example to demonstrate do-
main decomposition techniques, where Schur-complement-based methods are the
standard and typically allow for efficient parallelisation. However, the challenge
of implementing a scalable parallelisation strategy becomes greater in the case
of “long” structures, as in the femur example, due to the resulting unbalanced
octree data structures, and the corresponding tasks with dependencies.

Dependency issues

Once the concurrent tasks are identified and the problem is decomposed as desired
the need for synchronisation and data access issues must be considered.

First, a more obvious category, are task dependencies (especially for task de-
composition of the problem). These impose constraints concerning the order of
execution of tasks: whether or not they fulfill the conditions related to other
tasks.

Second, a data-decomposition-based parallel program might also have execution-
order constraints between statements (i.e. instructions) due to dependencies.
Hence, dependency analysis should determine whether or not it is safe to reorder
or parallelise these statements.

A task interaction graph is formed by considering nodes to be tasks and edges
their interaction. One can distinguish between data dependencies (including loop
dependencies), and task dependencies, together with control dependencies.

A task dependency graph is a sub-graph of the task interaction graph. A task
decomposition of the problem can be illustrated as a directed graph, where again
nodes are tasks, and edges dependencies among them. A dependency between
tasks implies an interaction between them.

In a sense similar to task dependencies, control dependencies are defined as fol-
lows: an instruction (or a block of code) executes if the previous instruction
(block) evaluates in a way that allows its execution. This is essential in dataflow
models, which will be described in Subsection

On the other hand, data dependencies arise due to competitive access to shared
data, which often entails synchronisation. Data dependencies might lead to ineffi-
ciencies and bottlenecks, hence preventing optimisations such as out-of-order ex-
ecution or parallelisation. Modern tools, such as KAP pre-processors, developed
by Kuck & Associates, Inc. (KAI) use dependence graphs to find potential de-
pendency issues and examine them to see if those ties can be “broken”.
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These dependencies occur for two tasks when: (1) task 7; modifies a resource
that the other task T reads and 77 precedes T5 in execution, (2) if 77 and Ts
modify the same resource and 77 precedes T3 in execution [41]. Case (2) may be
removed through renaming of variables.

Since all the applications which served as a basis for integrating the interactive
computing framework use some kind of parallelism (often several combined), all
the named concurrency and dependency aspects have been carefully considered
in their implementations — especially while integrating the interactive computing
framework (where the task, as shown later, becomes more challenging).

2.3.4 Mapping of the Tasks

The most relevant, sometimes conflicting, aims of a good mapping of tasks to
processors is to maximise concurrency by mapping independent tasks to different
processors, minimise idling by even load distribution and minimise interaction,
i.e. communication, overheads among tasks by mapping interacting ones on the
same process. Thus, the assignment’s goal is to find a good trade-off strategy.

Static mapping

For this kind of mapping, the decisions about the distribution of the tasks is
done prior to program execution time. Jobs are defined at compile/link time,
based typically on problem size, number and performance of processors, amount
of data to communicate, etc. This technique is used mostly for the a priori known
hardware systems with known characteristics and connection topologies. Yet, an
application which might be perfectly balanced based on analysis, can turn out to
be much different in practice. Past performance results can be used to improve
future performance. However, processor loading due to other users/programs,
or inherent communication and synchronisation delays of the system cannot be
taken into account, nor can a shutdown of one of the resources be resolved by
migrating mechanisms.

Most common static mapping strategies are:

— Based on data partitioning

— Based on task partitioning — one example are hierarchical structures such
as an octree of tasks. It is crucial to minimise the interaction overhead by
mapping interdependent tasks onto the same processors (i.e. tasks along
the “straight” branch). Inevitable idling in bottom-up processing has to be
compromised somehow.

— Hierarchical mappings assume a combination of the two. In the case of
different weights for the tasks, each big task is considered a “supertask”,
for which classical data decomposition can be done.

Static mappings might be preferred when there is large data compared to compu-
tation, thus, e.g. migration of the tasks is costly. Even static mappings may be
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Master

Mini-master Mini-master

Figure 2.11: Hierarchical master-slave structure: the master process splits its respons-
ibilities with several “mini”-masters, each of which becomes in charge of a
certain number of slaves.

challenging — the problem of obtaining an optimal mapping is an NP-complete
problem E@] for non-uniform tasks. In practice, simple heuristics provide good
mappings, as will be shown in Chapter [l

Dynamic mapping

For this kind of mapping, tasks are generated dynamically at program execution
time since the task sizes are not known a priori. Jobs are assigned to corres-
ponding processors, but the work load is adjusted during run time. The cost
of moving data may outweigh the advantages of dynamic mapping. In a shared
address space dynamic mapping may work well even with large data, however
careful consideration of the underlying architecture is necessary (e.g., NUMA or
UMA) because it might occur that the data needs to be moved physically in this
case as well. It is a more commonly used type of mapping.

Among dynamic mappings, one typically distinguishes between:

— Centralised schemes (master—slave, self-scheduling, chunk scheduling) —
where there is a central entity where jobs are handed out or tasks are
placed into a single work pool. For the master—slave concept, it is possible
to employ several master-levels — “mini-masters” to try to avoid bottlenecks
(Fig.2IT]), but there is a reasonable fear of then additional synchronisation,
communication and computation complexity that this implies. Another
question is which data is worth keeping in the memory for which process
and which data is always communicated among them.

— Distributed schemes — the load balancer is located on all processors. The
performance information has to be broadcasted throughout the system.
Central coordination is not needed since all the processors have all the
information they need.
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What may be concluded from the previous content is that while decomposition
is done based on the actual concurrency among tasks within a specific problem,
the overall performance depends heavily on the mapping strategy.

2.3.5 Load Balancing (LB)

To keep the workload distributed evenly among available resources involves a
trade-off between balancing the workload and the price one pays for communica-
tion. The load balancing is defined by the decomposition of the initial problem,
and the way the resulting components are mapped to different processors.

Thus, additional runtime effort is required to support running the balancing al-
gorithm. Typically those algorithms have to communicate the information about
the current load among the processors, recalculate the load and redistribute jobs
when needed.

The best load balancing strategy is dependent on the type of application. To
find an optimal strategy, it is reasonable to consider: (1) if the system is based
on an analogy to physical systems (physical, probabilistic models, etc.); (2) the
topology of the target architecture (bus-based shared memory multiprocessors,
workstation clusters interconnected by networks, distributed memory multipro-
cessors, whether or not they are of a homogeneous or heterogeneous architecture);
(3) the network topology (grid-like, tree-like, non-interacting), to have compon-
ents connected in an appropriate way; (4) whether nodes which communicate
with each other are direct neighbours, or they are close to each other; (5) if the
transfer of load-state information is system-wide or restricted, what is the extent
to which processes (load balancers) collect load info, before making a decision:
partial or complete; (6) if the decision structure is centralised, distributed or
hierarchical, decision mode — autonomous, cooperative, competitive; (7) if ini-
tiation of communication is done by the sender (e.g. when it is overloaded), or
receiver (when a target is underloaded); (8) if a central LB entity exists, or it is
timer-based or threshold based; (9) migration costs; and many more.

2.3.6 Parallelisation and Communication APIs, Libraries and
Middleware

Once the load balancing strategy is chosen, the question which arises is — how a
program should be written, compiled and executed, such that multiple program
instances happen concurrently on multiple cores?

When a memory-coupling parallel model on shared memory systems is used, the
programs written in a sequential language are mapped to the parallel computer
via compiler directives, library calls, etc. They are used, e.g. for splitting the
scope of loop iterator indexes and the corresponding tasks among different com-
putational resources. One example of thread-based parallelism (multithreading)
is that a single processor executes code between loops, but activates a set of pro-
cesses to cooperate in executing a parallel loop, called a fork. A thread then may
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be active (running), sleeping (pausing) for a specified interval, or yielding (being
placed at the end of the run priority queue and another thread is scheduled to
run). Threads can be synchronised by explicit or implicit barriers, where they
join each other, or gain exclusive access to some part of the code — a single thread,
or one thread at a time via:

— scoped locking, i.e. mutezes and locks of different libraries (where it is al-
lowed to leave the locked region with break, continue, return, or

— critical sections via an OpenMP threading interface, e.g. (which are not
exception safe and break, continue, return are forbidden within — which is a
point of interest for the framework implementation, as shown in Chapter [3)).

Most of the aforementioned functionality is supported by OpenMP directives,
POSIX threads (pthreads) library calls, the Boost threads library, etc.

OpenMP (Open Multiprocessing) is one of the most commonly used application
programming interfaces (APIs) for writing multithreaded programs, using a set
of compiler directives, (runtime) library routines, environment variables, etc. It
is available for C, C4++, and Fortran suited for programming UMA and SMP
systems, DSM/VSM systems (i.e. NUMA, cc-NUMA), and hybrid multiprocessor
systems in combination with message passing (e.g., Message Passing Interface —
MPTI).

In distributed memory systems, a message-coupling model is used — the one that
extends parallel languages (C/C++, Fortran) by additional parallel language
constructs, implemented via procedure/function calls from communication APIs
(for instance, MPI).

MPI is a de facto standard communication API providing virtual topology, syn-
chronisation, and communication functionality between a set of processes. Its
goals are high performance, scalability, and portability. It belongs to layers 5
and higher of the Open System Interconnection (OSI) Reference Model, with
sockets and Transmission Control Protocol (TCP) <ﬂ§] used in the transport layer
by default.

The point-to-point MPI communication routines can be:

— Blocking: they do not return until the message data and envelope have been
safely stored away so that the sender is free to access and overwrite the send
buffer. The message might be copied directly into the matching receive buf-
fer, or it might be copied into a temporary system buffer. The represent-
atives are: MPI Ssend (“synchronous send”), MPI Send (“standard”),
MPI_Bsend (“buffered”), MPI _Rsend (“ready”), MPI _Recv (“standard

receive”).

— Non-blocking calls return immediately, no matter if the data is safely stored
in the buffer, allowing to overlap other computation while testing for the
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operation to be completed — examples are MPI Isend, MPI Ibsend, and
MPI Irecv.

In addition to this, send/receive operations can be classified as either synchron-
ous or asynchronous, depending on if they can return before the matching re-
ceive/send have reached a particular phase.

Apart from aforementioned point-to-point rendezvous-type forms of send and
receive operations (the rendezvous protocol is elaborated in Chapter ), MPI
supports: choosing between process topologies; collective communication, such as
broadcasting a message to a group of processors (MPI_Bcast), combining partial
results of computations (gather and reduce operations); synchronising processes
(barrier operations) as well as obtaining the number of processes in the session;
current processor identity that a process is mapped to; neighbouring processes
accessible in a logical topology; and so on.

Although MPI programs are portable to different platforms, both shared and
distributed memory supercomputers, different MPI implementations are typically
optimised for the hardware on which it is used. In MPI-3 standard, attention
is paid to the fact that there will be more multicore and hybrid architectures,
thus, non-blocking collective communication is suggested to be implemented. For
instance Ibcast (non-blocking broadcast) is planned. Early discussions of the MPI
Forum lead to the conclusion that nonblocking collective operations introduced
too many complexities and instead recommended the use of separate threads that
make blocking calls. Due to the ever-growing number of machines within clusters
in computer centres, fault tolerance will also be considered. It is still unknown
which functionality announced at this point will be part of the new standard, will
be implemented in all MPI distributions, and will have consistent performance.

On distributed shared memory based architectures it is advantageous to mix mes-
sage passing and multithreading to maximise performance Nﬁ This approach
is referred to as “hybrid” or “multilevel parallel programming”.

When using multithreading and MPI calls, the level of support for send and
receive calls in different threads has to be considered:

MPI_THREAD_ SINGLE — only one (user) thread is supported,

MPI_THREAD_FUNNELED — many user threads, but only one thread
may make MPIT calls,

— MPI_THREAD_ SERIALIZED — many user threads may make MPI calls,
but only one thread at the time does it (user has to guarantee this),

— MPI_THREAD MULTIPLE — free for all, any thread may make MPI calls
at any time.

An MPI implementation of MPI_Init_thread is allowed to return any of these
values (which indicates the level of support provided on a system). For ex-
ample, an MPI implementation that is not thread safe will always return
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MPI_THREAD_SINGLE. The user may, however, choose whether to pay any
performance penalty that might come with a fully multithreaded MPI imple-
mentation.

What is relevant for this work, as it may be seen later, is that threads provide a
natural implementation of nonblocking communication operations @] A thread
can be created to do a blocking receive operation, e. g. As long as this blocks only
one thread and not the whole process, it has the effect of a nonblocking receive.
The same applies to sends. In fact, it is often preferable to use threads and the
blocking versions of the sockets on those Unix systems that support threads, as
this provides a simpler programming model. Additionally, threads can increase
the convenience and efficiency of the implementation of collective operations.

In order for threads to be used in combination with a library, however, the lib-
rary must be designed to work well with threads. This property is called thread
safety. Thread safety means, in the case of a message passing library, that mul-
tiple threads can be executing communication, synchronisation, etc. calls without
interfering with one another. Thread hazards occur when a message-passing sys-
tem is expected to hold certain parts of the process state and it is impossible to
hold that process state for more than one thread at a time. For example, some
libraries use the concept of “the most recently received message” to avoid passing
a status argument stored on the process’s stack.

For an application to use MPI with threads, it is not enough that the implement-
ation of MPI is thread-safe. As @] explains, the thread library must be aware
of the MPI implementation to the extent that execution of a blocking operation
will cause the current thread to yield control to another thread in the process,
rather than cause the process to block. When a message arrives, a thread waiting
for it should be made runnable again. Furthermore, when a system call is made,
the operating system should block only the thread that made the call, not all
threads, or much of the flexibility of user-level threads is lost @] This is very
important for the implementation of non-blocking communication pattern using
blocking MPI calls in multiple threads, as in some of the application test cases.

2.3.7 Examples

Let us consider a simple example from Section 2.2, now from the parallel com-
puting perspective. To parallelise Jacobi algorithm for the Poisson equation dis-
cussed before, there is a choice between shared-memory and message passing
based methods. The basics of parallel programming as well as the solver tech-
niques are already provided in this chapter. The framework is tested on both of
the methods in terms of the induced overhead, as shown in ChapterBl Therefore,
it is helpful to illustrate both of the parallelisation methods for this example.

Both of them can be done column-wise or row-wise (illustrated in Fig. 2:6). An
implementation of a multithreaded program (using OpenMP directives) to solve
the Poisson equation by Jacobi iterative method is very straightforward, as shown
in Algorithm 21
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Algorithm 2 Jacobi pseudo-code — multithreaded version.

1: assign__init_ values()

2: // iterations over time

3: for t < 1,7}, do

// here start parallel(i) region, private vars(j)

for i < I'in, Imax // each thread has its own [min, maz] do

for j «+ 1, J,4, do

uli][j] = 0.25 - (u_old[i + 1][j] + u_old[i — 1][j] + u_old[i][j + 1] +
u_old[i][j — 1] — f+[i][7]

8: end for

9:  end for

10:  check convergence()

11:  copy_u_to_u_old()

12: end for

If the program is written for a distributed memory machine using MPI, many
questions arise. Which tasks are concurrent? How should we distribute the
data (the data locality issue), or rather — how should we distribute a coefficient
matrix and a right-hand side among CPUs? How should we distribute a vector
of unknowns? What data needs to be communicated?

In the case of row-wise distribution, assuming without losing generality that a
dimension of the matrix can be divided by the number of CPUs, the blocks of
m rows of the matrix u_old — the system matrix from the previous iteration —
would be distributed to different CPUs. The vector f — the right hand side of the
Poisson equation — would be distributed similarly.

Since at the end of one iteration only part of the rows of u_ old are available on
each CPU for the next one, the “ghost” layers (the neighbour rows “belonging” to
other CPUs) need to be communicated after each iteration. It is simple to imple-
ment, but involves much communication and therefore limits (especially strong)
scalability. Using techniques for overlapping computation and communication
could improve scalability.

Namely, each CPU needs to exchange a vector with the neighbour above and
below. In order to overlap communication with computation (see Fig.), each
CPU does the following: first posts non-blocking requests to send and receive data
to/from upper neighbour and to receive/send data from lower neighbour. These
return immediately, which allows the next step: partial computation with the
data currently available. Finally, the process checks non-blocking communication
status and waits if necessary, before repeating the whole sequence.

In the case of column-wise distribution, blocks of m columns of a coefficient
matrix A are distributed to different CPUs; each CPU has to keep the whole f
vector. Since the data has to be communicated among processes, with vertical
ghost-layers this time, it can be overlapped with computation, similarly to the
previously described scheme.
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Figure 2.12: Above: one iteration consists of waiting for the necessary data from the
ghost neighbour entries, computation, and sending the processes’ own ghost
data. Below: overlapping the communication, i. e. waiting for the necessary
ghost data to arrive, with the computation which does not require that
particular data. At the end of the iteration, all the remaining ghost data
is received and the remaining entries updated.

An implementation of the block-wise distribution for the Laplace equation has
served as one of the test cases for the framework. It is illustrated in Chapter
in that context.

2.4 Postprocessing and Communication

When scientists and supercomputers are in geographically different locations,
the most significant barrier to effective visualisation, especially within interactive
computing, is that networks cannot cope with the amount of data to be transmit-
ted. In shared memory systems, the main bottleneck is often related to memory
access. In distributed systems, sometimes many instances of the same program
execute on different, possibly heterogeneous computing platforms and exchange
data when needed. Or even several different components are interconnected via
network and exchange data over that network — for instance a simulation, a visu-
alisation and a databases component. Each of them may itself perform some form
of concurrency. The performance of such a system depends on the execution time
of all the executing components, the amount of data which has to be exchanged,
the speed of transmission, and also the way the components are synchronised
with one another.

Improving the network architecture is critical, however, research must offer tech-
niques to reduce the demand on the network [33]. Thus, it might be beneficial to
reduce the amount of transferred data when possible.

Once a satisfactory trade-off between load balance and communication costs is
found, a variety of communication strategies should be applied in attempt to
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increase the transfer rate. Here, one distinguishes between hardware related
strategies, network protocols, or software based strategies, such as postprocessing
techniques — selection, compression, re-ordering of the data, etc. Storing data on
media attached to the supercomputer is often inadequate due to the amount of
data. How to postprocess simulation data on a supercomputer efficiently is a
challenge gaining impact due to the rapid increase of the number of cores on
supercomputers and, at the same time, slow hard disk I/O when copying data.
At least a few trends are studied extensively, hence, are listed in the paragraphs
to follow.

Compression: One of the approaches described in @] is running the simulation
and the client in a distributed manner. For easy data exchange, a streaming class
has been defined which is used as a container for data of all kinds and which can
be compressed during the compression phase.

Selection: Many applications write the whole simulation data to a stream. The
data is then interpreted on the client side. This classical approach is often in-
adequate due to network bandwidth restrictions. Often, most of the data is
not required in full resolution, and so multiresolution approaches are fruitfully
applied.

Mutiresolution streaming is used in @] As soon as the amount of data
returned by the query requests exceeds available computing resources, the query
results can be returned at different levels of resolution. The indices list for the
hierarchy of resolutions can be encoded. When the query is performed, the ap-
plication can specify the desired level of resolution to be returned as a result.

In ﬂﬁ], data is read from the disk, using a multiresolution respresentation of the
data to reduce the amount of data sent over the network. The visualisation starts
at a coarse resolution for a quick overview. If a user zooms in to a particular part,
the data is refined only for this part, and streamed to the user for visualisation.
The rest of the data is left at the coarse resolution. To achieve fast interaction,
the rendering process normally takes place on the client’s side.

In ﬂﬁ] streaming the dynamically adaptive grids of a particular CFD solver was
found to be inadequate, as the visualisation and postprocessing algorithms were
written for regular Cartesian grids. A two-fold strategy that overcomes these
drawbacks is proposed. The CFD code delivers only data really required for
post-processing steps (on-demand) and bandwidth is invested where it does the
most good [37]. The post-processing codes pass queries which comprise the spatial
region, the resolution and the variable of interest to the simulation. The solver
then returns the Cartesian grid of the requested data, which is a low-overhead
data-structure, according to ﬂﬁ]

What is often used is a sliding window model, such as in @] Here, the data
elements arrive in a stream and only the last N (i.e. window size) elements to
have arrived are considered relevant at the moment. The rest are deemed expired
and they no longer contribute to query answers or statistics on the datasets @]
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Selection — subsampling and tiling: The system described in ﬂﬁ] also used
efficient multi-resolution range queries. The framework only needs to access and
solve visible pixels and provides adaptive multiresolution access to out-of-core
images in a cache-coherent manner. Moreover, it is flexible enough to handle
different hierarchical image formats — both tiling for higher-quality images, and
subsampled hierarchies. All these approaches have their pros and cons. The tiled
image is visually pleasing, but details are lost. The price to pay is significant
preprocessing, reduced flexibility when dealing with missing data, and increased
I/O when traversing the data @] On the other hand, the least costly image
hierarchy can be computed by subsampling. Subsampled hierarchies have aliasing
artifacts, but also retain enough contrast to see details M], in many cases. For
greater I/O speed, the HZ-order proposed in ﬂﬁ] is used to stream the data.

Re-ordering: With a minor variation to the underlying I/O layer, the previously
mentioned system also supports a faster, subsampled Hierarchical Z-order as pro-
posed by Pascucci and Frank ﬂﬁ] To achieve the level of scalability necessary
in the current system, they further simplify the HZ data access scheme M]
They use a lightweight recursive algorithm that avoids repeated index compu-
tations, provides progressive and adaptive access, guarantees cache coherency,
and minimizes the number of I/O operations without using any explicit caching
mechanisms M]

Postprocessing: Another approach is in-situ post-processing, where the post-
processing is done directly on the computing node @] A simulation runs on
a supercomputer, where images are produced from the results during run time
and sent to the remote desktop/laptop user client. Such an approach is suit-
able particularly in heterogeneous environments with graphics cards physically
attached to the computing node as postprocessing devices. It also keeps the re-
quired bandwidth quite low, by streaming only the data actually studied to the
user.

Hardware related techniques: Current leadership-class supercomputers suffer
from a significant imbalance between their computational power and their 1/0
bandwidth ﬂﬁ] One of the ideas is to ship I/O calls from compute nodes to
dedicated I/O nodes @]

IO forwarding is an approach where the slow I/O operations are deployed to spe-
cialised cores to overlap 1/O operations. It is described in | where the target
architecture, IBM Blue Gene/P supercomputer runs a light-weight Linux-like OS
on the compute nodes which mitigates OS interference by disabling support for
multiprocessing and POSIX I/O system calls. To enable applications to perform
I/O, this minimalistic OS forwards I/O operations to the dedicated I/O node,
which executes I/O on behalf of the compute nodes ]

High-throughput communication is used in the CAVERN project @] They have
implemented three mechanisms to increase the throughput of data transfers over a
network. For reliable networks such as those using the TCP protocol, when using
multiple connections, delays caused by waiting for acknowledgement packets can
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be hidden by serving other connections that are ready. Another technique refers
to data volume reduction and data encoding (where some of the accuracy is lost
on the way — it relies on the fact that the receiving side might not always be
interested in the most accurate representation of the data) and data compression
(via freely available compression libraries).

2.4.1 Network Hardware

To sum up, the communication cost on the simulation back-end, as mentioned
before, has to be kept as low, so as not to surpass the benefits of doing the actual
computations in parallel. In parallel programs, different network strategies (stat-
ic/dynamic) can handle communication in between nodes. If hardware is known
a priori, it is easier to assign the tasks to processors statically. Communicating
large simulation results to the user component should be done using some of the
aforementioned techniques.

Concerning hardware, connections can be made by standard network cards (100
MBit/1 GBit), or special components can be used: MyriNet 10 Gbit/s, Infini-
band up to several hundreds Gbit/s, etc. Inter-node network topology can have
major influence on the performance of a parallel program, i.e. whether two nodes
which are physically connected with each other are exactly those which need to
communicate data among each other (an optimal case). On many of the systems
the default mapping of processes to different processors is done, e.g. in round-
robin manner, however, there is a way to control this via processor affinity. Using
this concept, one can also take advantage of the fact that some data may remain
in one processor’s cache from the previous run, resulting in a reduced number of
cache misses.

2.4.2 Challenges

Even if it is given that all the software and hardware components involved in the
interactive process are optimal/optimally used, still some challenges and contra-
dictions have remained. Namely, HPC resources are mainly configured to run
batch jobs, however, they now need to be utilised in an interactive manner for
many large-scale problems.

In @], for example, an issue affecting the operation of remote steering due to
protection by firewalls is solved by system administrators by opening some num-
ber of ports to be used for a particular application. According to the same source,
the main problem becomes controlling the user environment on (possibly many)
heterogeneous machines. The ability provided to “dynamically configure the soft-
ware to use one of the open ports greatly simplified this process” ﬂé] They also
use a container environment which can be configured and represents a single point
of contact for different components.

Another possibility to combine interactive computing and HPC resources is to
run ‘small’ simulations, i.e. with reduced accuracy, on small, interactive cluster
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systems for a quantitative analysis, before any promising setup figured out by
the user is then (automatically) launched (as a batch job with high accuracy for
a quantitative analysis on a supercomputing system) as proposed in @, .

Therefore, yet another conclusion of this chapter is that for a fully operational,
portable, efficient high-performance interactive environment (the one desired in
modern, real-life applications) the present situation must improve. Namely, a
union of batch-job oriented, non-interactive, HPC environments and the com-
ponents related to steering of these jobs and their settings during the run time
— which used to be “contradictory” to each other — is nowadays an absolute
imperative.

2.5 Visualisation

The visualisation component, without which intuitive data analysis and under-
standing would not be possible, must be attached to a user interface. Intuitive
understanding and effective visual analysis is essential in the context of dynamic,
interactive environments, where update rates should be high. Visualisation pro-
grams are preferably written for and executed on specialised, dedicated, efficient,
powerful hardware — Graphics Processing Units (GPUs).

2.5.1 GPU Hardware

Pioneered in the late 1990s by 3dfx Interactive ﬂg] and NVIDIA m], GPU com-
puting has quickly become an industry standard, enjoyed by millions of users
worldwide and adopted by virtually all computing vendors E,]

Workstation graphics cards from AMD and NVIDIA are unbeatable for profes-
sional 3D visualisation. AMD’s FirePro and NVIDIA’s Quadro families have been
competing for a long time for best hardware as well as the best driver support.
NVIDIA’s Kepler is currently the world’s fastest and most efficient high perform-
ance computing (HPC) architecture ] In addition to 8 GB of memory with
320 GB/sec memory bandwidth and 3072 cores [11], it delivers more processing
performance and efficiency through a new, innovative streaming multiprocessor
design that allows a greater percentage of space to be applied to processing cores
versus control logic (contrary to CPUs).

2.5.2 GPU Computing

The early issues from previous generation GPUs, related to cache coherence,
or the possibility to compute only with single precision, have now been solved
due to new innovative technologies. Nowadays it is possible to run not only
visualisation, but also many simulation codes efficiently on this hardware. GPU
computing utilises a GPU together with a CPU to accelerate general-purpose
scientific and engineering applications |10].
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Namely, a combination of CPU and GPU computing can be incredibly powerful,
because CPUs consist of a few cores optimised for serial processing, on which
serial portions of code may be run, while GPUs consist of many more smaller,
but more efficient cores designed for extreme parallel performance of parallelised
parts of the code.

From the program development point of view, the GPU programs use an extended
C language, embedded in C/C++ host program. The data is loaded on an execute
device, where computations are done and results are then copied to the host. The
problem is split up into logical blocks of threads, all executing the same code on
one Microprocessor.

Still, it should be noted that any synchronisation, or data communication among
threads causes overheads to be longer than desired. If the data, additionally, has
to be copied many times to the CPU memory and back, the situation concerning
latencies becomes even more dramatic. As a response to these issues, dynamic
parallelism in the latest generations simplifies GPU programming by allowing
programmers to easily accelerate all parallel nested loops — resulting in a GPU
dynamically spawning new threads on its own without going back to the CPU ﬂﬂ]
On some architectures, such as NVIDIA’s Kepler, multiple CPU cores are allowed
to simultaneously utilise a single GPU, advancing programmability and efficiency.

To sum up, despite of all the advantages which GPU computing offers, some
problems and the corresponding simulation codes are not highly concurrent by
their nature in the way that is optimal for the execution on a GPU. These remain
faster on CPUs. Many simulations still have to be written for the execution on
CPU hardware, which the framework is suited and primarily aimed for. Fur-
thermore, even if possible, it requires significant time and effort to port those
application codes written already for CPU to their GPU counterparts.

Despite the wide application area (which can be found in the list on NVIDIA
popular applications catalogue ]), GPU hardware and computing are, within
this work, discussed mostly with the intention to provide a more complete picture
of hardware/software state-of-the-art in scientific computing. None of the simu-
lation test scenarios for the framework run on GPUs, however, for some of the
visualisation components, the acceleration due to GPU computing is significant.
Due to this, acceleration is observed for the update rates of the whole interactive
system as well.

2.5.3 Scientific Visualisation

“Visualisation is a method of computing. It transforms the symbolic into the
geometric, enabling researchers to observe their simulations and computations.
Visualisation offers a method for seeing the unseen. It enriches the process of
scientific discovery and fosters profound and unexpected insights. In many fields
it is already revolutionising the way scientists do science.” ﬂj__%]
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Today, scientific visualisation @, @, @, @] is still a key feature to foster in-
sight into the complex scientific data. Interpretation of the huge data sets gained
as a result of simulating complex phenomena is today unimaginable without it,
whereas in addition to editing this data in a visualisable format, selective pre-
viewing, or lower accuracy previewing is possible to achieve interactive feedback
rates. It maximises our capacity to perceive, analyse, and understand dynamic
processes and situations in either theoretical, or fictitious, or the real world. The
challenge in this field is certainly to efficiently visualise large-scale data sets and
complex data structures.

In contrast to briefly presented simulation techniques, in scientific visualisation
one normally tries to reconstruct a continuous real object from a given discrete
representation, although there are also examples where data to be presented is
discrete, such as some statistical values in geographical regions. Discrete struc-
tures consist of entities, from which grids/meshes consisting of cells are built.
The continuous signal is known only at a few points (data points). In general,
data is needed in between these points. By interpolation a representation that
matches the function at the data points is obtained, which allows for constructing
new values within the range of a discrete set of known data points.

As mentioned before, visualisation itself is not the focus of this work, however it
is a necessary interactive computing component. Without real-time visualisation
tools, there would be no possibility to intuitively interpret the results and guide
the exploration of a computational model.

Scientific visualisation without integration into interactive computing environ-
ment may take e.g. image data, based on MRI/CT scans, digital landscapes,
colour cryosections, etc. One famous example is the Visible Human Project &h,
where bodies were frozen in a special material to preserve the tissues and organs.
Sections were “shaved” off the frozen block in thin layers to expose underlying
tissues and photograph them. The frozen section procedure is a laboratory pro-
cedure to perform rapid microscopic analysis of a specimen, the technical name
for which is cryosection ﬂﬁ] In this way, a “stack” of around two thousand two-
dimensional cryosections were obtained (there are also MRI and CT sets) B]

In an interactive computing environment, in particular, the data which is avail-
able for visualisation is either (1) directly a simulation result, i.e. the simulation
component reads in the input data and the values of the parameters are influ-
enced via a simulation component (e.g. a textual user interface), or (2) initial
geometry/model data is read by a visualisation component, visualised and then
passed to the simulation kernel for simulation. In the latter case, as soon as the
results are received, further updates can be made via GUI, and the cycle repeats.
This is described for the concrete examples in Chapter [ It is always a good
question which data to visualise (and how) and which to skip, so that the “im-
portant” data is most interpretable and not hidden by the information which is
redundant or irrelevant for a particular purpose.
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2.6 Software Engineering

In every engineering and scientific community, in interdisciplinary projects in par-
ticular, there is an urge for code designs which are easily extensible, modular and
reusable, free for the whole community. Moreover, there are still open questions
as to what kind of workflow is both scalable on different architectures, including
massively parallel ones, and intuitive for the user. What kind of user interfaces
should facilitate interactive scientific computing? Talking about “generic” con-
cepts for every (or one common, “supersonic”, next generation) interactive envir-
onment — the question remains if the whole, ever-growing diversity of applications
would allow for anything generic, just like there are examples of industry APIs,
without significantly compromising the performance.

In software engineering, a design pattern is a general reusable solution to a com-
monly occurring problem within a given context in software design m] A design
pattern does not refer to the final code which can be integrated into an applica-
tion, but rather a (reusable) formalised practice for solving a concrete problem,
which is then to be implemented.

The way object-oriented design patterns show relationships and interactions
between classes or objects, without specifying the final application classes or
objects that are involved |, many other patterns describe, e.g. application
modules and their interconnections.

2.6.1 Design Patterns

The content presented at this point becomes relevant for this work when discuss-
ing integration of the framework into different application scenarios in Chapter @l
SCIRun uses a Model-View-Controller (MVC) design. Some codes, on the other
hand, lack a formal design, which makes integration of the framework less intu-
itive.

The Model- View-Controller (MVC) pattern separates the simulated model from
the representation of information and the user’s interaction with it. The controller
entity mediates all the input, informing the model or view component about the
change. The central idea behind MVC is code reusability and separation of
concerns.

The Observer pattern is another software design pattern in which an object,
called the “observable”, maintains a list of its dependents, called “observers”,
and notifies them automatically of any state changes, usually by invoking one of
their methods. Observer is also a key part of the MVC architectural pattern.

2.6.2 Dataflow Model — Advantages for Interactive Steering

The dataflow model is a software architecture based on the idea that changing the
value of a variable should automatically initiate (often a sequence of) recalculation
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of other values which, indirectly or directly, depend on the initially changed one.
This concept is utilised, for instance, in the SCIRun application scenario.

The obvious benefit of one such architecture for a highly interactive computing
environment is that it can reduce the amount of coupling-related code in a pro-
gram, i.e. that the update operation does not have to be explicitly contained in
the program, and an explicit check doesn’t have to be added to avoid cyclical
dependencies.

2.7 State-of-the-Art Interactive Steering Environments

As mentioned earlier, the idea of interactive simulation steering has been present
in the scientific and engineering community for more than two decades. Numer-
ous powerful tools serving this purpose have been developed. In this section,
an extended overview and classification of the state-of-the-art tools is provided,
which the author already briefl dlscussed and which have been published in
m @ @ Eé . The ideas behind the steer-
ing environments and systems such as CSE Nﬁé], VASE [88], Progress 1,
Magellan M], SCIRun m, @] Uintah ﬂa] G-HLAM ] and EPSN 1,
libraries such as CUMULVS ﬂﬂ], or RealityGrid @ @ , frameworks such
as Steereo @ etc. are illustrated in order to be compared to the approach in
this work.

2.7.1 Frameworks

Steereo @] is a light-weight steering framework, where the client sends requests
and the simulation side will respond to them. However, the requests are not
processed immediately, but rather stored in a queue and executed at predefined
points in the simulation. A developer must define in their code when this queue
should be processed.

2.7.2 Toolkits

In Progress @], steering acts on application level data structures. Actuators are
function calls inserted by the user to instrument code at appropriate locations.
Actuators are the mechanism through which steering actions are accomplished.
They are placed where it would be safe to perform the steering action. The steer-
ing entities are registered within the steering server via function calls manually
inserted into the application code.

Magellan’s ﬂﬁ] architecture consists of a number of steering clients and servers.
Steering servers can be executed as a separate thread in the application address
space, they are modular, and can be adopted to a range of (e.g. parallel) ap-
plication scenarios. Clients can control the steering system from various sources,
including remote, heterogeneous sources, such as collaborative, immersive envir-
onments @] Steering objects are exported from an application. A collection
of instrumentation points, such as so-called actuators, knows how to change an
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object without disrupting application execution. Pending update requests are
stored in a shared buffer until an application thread polls for them ].

VASE (Visualisation and Simulation Steering Environment) @] is designed for
model studies and experimenting with algorithms. Steering is accomplished us-
ing programmer-defined breakpoints. One may alter the values of variables and
parameters and add scripts and statements during program execution time. It is
designed for a single parallel computing environment.

2.7.3 PSEs, Environments and Systems

CSE @] is a computational steering environment consisting of a very simple,
flexible, minimalistic kernel, and the modular components, so-called satellites,
where all the higher level functionality is pushed. It is based on the idea of the
central process, i.e. the Data Manager, to which all the satellites can be con-
nected. Satellites can create and read/write variables, and they can subscribe
to events, such as notifications of mutations of a particular variable M] The
Data Manager informs all the satellites of changes made in the data and an inter-
active graphics editing tool allows users to bind data variables to user interface
elements.

In the SCIRun @, @, @, @] problem solving environment (PSE) for mod-
elling, simulation, and visualisation of scientific problems, a user may smoothly
construct a network of required modules via a visual programming interface.
Computer simulations can be then executed, controlled, and tuned interactively,
triggering the re-execution only of the necessary modules, due to the dataflow
model. This PSE has typically been adopted to support pure thread-based par-
allel simulations so far. Uintah [61] is a component-based visual PSE that builds
upon the best features of the SCIRun PSE, specifically addressing the massively
parallel computations on petascale computing platforms.

In the G-HLAM PSE @], the focus is more on fault tolerance, i.e. monitoring
and migration of the distributed federates. The main G-HLAM services consist
of a coordinator which manages the simulation, a migration service which decides
when performance of a federate is not satisfactory and migration is required, and
another which stores information about the location of local services. It uses
distributed federations on a Grid for the communication among simulation and
visualisation components.

The EPSN API @] is a distributed computational steering environment, in
which an XML description of simulation scripts is introduced to manage data and
concurrency at instrumentation points. There is a simple connection between
the steering servers (i.e. simulations) and clients (i.e. user interfaces). When
receiving requests, the server determines their date. The request is responded
to as soon as it fulfills a condition. Reacting on a request means releasing the
defined blocking points.
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It is easy to construct PSEs in the PSE Park HEJJ] framework. (In other words,
based on the user’s data, it outputs PSE). It supports program generation, easy
modification of programs, PSE development, automatic documentation creation
and simulation execution support via a Cloud.

2.7.4 Libraries

CUMULVS ﬂﬂ] is a (middleware) library that provides functionality so that a
programmer can extract the data from a running (possibly parallel) simulation
and send the simulation result data to the visualisation package. It encloses
the connection and data protocols needed to attach multiple visualisation and
steering components to a running application during the execution time. The
user has to declare in the application which parameters are allowed to be modified
or steered, or the rules for the decomposition of the parallel data, etc. Using
check-pointing, the simulation can be restarted according to the new settings.
CUMULVS is also collaborative, hence, a token scheme prevents conflicts among
different users. Consistency protocols are used to verify that all the tasks in a
distributed application apply the steering changes in union.

The RealityGrid @, @, @] project has provided a highly flexible and robust
computing infrastructure for supporting the modelling of complex systems @]
An application is structured into a client, a simulation, and a visualisation unit
communicating via calls to the steering library functions. This infrastructure
involves insertion of check- and break-points at fixed places in the code where
modified parameters are obtained and the simulation must be restarted. It rep-
resents an example of job- and application-level steering.

The Pablo M] library routines are aimed at instrumenting the source code. It
is intended to extract performance data as the code executes. It utilises sensors
to collect the information from the executing code and actuators to do the alter-
ations. It does performance steering, varying cache size and cache block replace-
ment policy as needed.

2.7.5 Collaborative Steering

As mentioned in Chapter[I] in collaborative environments multiple users, e. g. ex-
perts in different fields, can attach to the application and steer it simultaneously.
One of the reasons why desktop and application sharing can be unsuitable is
according to ﬂﬂ] “the fact that specialists from different domains make different
demands on the application they are using while taking part in the collaborative
session”.

The Cactus M] simulation framework provides a generic code module (a “thorn”)
which implements a web server within a system for collaborative research. It
uses standard Unix socket communication calls on the network I/0O layer. It
listens on the chosen port to the HT'TP client request. Within this astrophysics
community framework, new computing technologies have been developed, which
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allow massively parallel simulation codes to be simultaneously developed and
used by multidisciplinary community M]

DISCOVER (Distributed Interactive Steering and Collaborative Visualization
Environment) M] is an environment for web-based, collaborative interaction
of scientists and engineers with a running simulation. It consists of detachable
thin clients at the front end, a network of interaction servers (which are web
servers, extended to handle real-time simulation results and user request data)
in the middle, and a set of sensors, actuators and interaction agents at the back
end M] Clients (users) can interact with registered applications using a web
browser.

Distributed laboratories HE_'IJ] provide application-specific event-based monitoring
of parallel and distributed applications. The aim is to explore highly distributed
and dynamic target platforms. The resulting set of values is forwarded to the
computational instrument via the steering infrastructure and is available as a
model in the next timestep. At any point the user can checkpoint the application
execution by pressing the button or invoke a default checkpointing policy which
automatically saves the application execution history after a predefined number
of timesteps. The various programs that make up Distributed Laboratories need
not all be under the control of single group, compiled by the same compiler or
even written in the same language.

COVISE (COllaborative VIsualization and Simulation Environment) ﬂﬂ] is a
software environment which integrates simulations, postprocessing and visual-
isation functionalities. It is easily extendable and supports remote distributed
computing on heterogeneous machines. An application consists of several mod-
ules, i.e. processes. Each processes can be arbitrarily spread across different
platforms. The users can collaboratively analyse the simulation result in a fully
immersive Augmented Reality environment. One of the users (the “master” user)
can add others to the collaborative session.

Many of these powerful tools have targeted a particular application only (to
the needs of which they are adapted, and perform according to expectations),
however, they are not applicable to many other application scenarios. Others
involve major simulation code changes in order to be effective for different problem
sizes (and, independent from the size, apply an optimal check-pointing strategy
for recognising user updates). This makes scientific and engineering communities
reluctant to use them. The vision inspired by all the good properties of the state-
of-the-art tools leads naturally to the implementation of a software which can
be used in a wide spectrum of engineering codes, without requiring major code
changes.
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2.8 Projects within the Chair for Computation in En-
gineering

Within the Chair for Computation in Engineering at the Technische Universitéit
Miinchen, a series of successful computational steering research projects took
place in the previous decade. Industry partners have also been involved. Per-
formance analysis has been done for several interactive applications, in regards
to their responsiveness to steering, and the factors limiting performance have
been successively identified. The focus at this time was namely on inter-
active computational fluid dynamics (CFD), based on the Lattice-Boltzmann
method ﬂﬁ%, including Heating Ventilation Air-Conditioning (HVAC) system
simulator @]], online-CFD simulation of turbulent indoor flow in CAD-generated
virtual rooms @], interactive thermal comfort assessment ﬂ@, @], and also
on structural mechanics — namely, computational methods in orthopaedics @]

In online-CFD simulation of turbulent indoor flow for CAD-generated virtual
rooms, the underlying CFD parallel simulation is processed on a high perform-
ance supercomputer based on master-slave strategy. The propagation steps’ data
among the slaves is exchanged via vendor optimised MPI. Since the supercom-
puter is not the optimal place for the visualisation component to run, the visual-
isation is done on the workstation. To handle the huge 3D data set more efficiently
a VR environment is integrated into the computational steering concept @]
The transformation of objects is performed by a wand device interacting with
draggers @] The visualisation of cutting planes, streamlines, vector planes,
etc. are provided by an extension of the TGS Open Inventor library. The coup-
ling of the simulation with the VR environment is done by an MPI distribution
which supports heterogeneous environment. To make this communication effi-
cient, the steering information is sent only when the user interacts and the simu-
lation results are transmitted in regular, user-predefined intervals. When the user
interacts, he gets feedback on the most recent result, right after the interaction.

In the Collaborative Computational Steering Platform (CoCoS) @], geograph-
ically distributed engineers can collaborate on solving the same problem numer-
ically. The implementation assumes a central server component which holds the
3D geometric model data, boundary conditions, machine and material paramet-
ers, etc., which can be accessed by multiple clients in a consistent way. Due to
the locking-based, centralised approach, conflicts cannot occur. For the client
component, logging in/out of a server is possible, as well as visualisation and
modification mechanisms for the geometry, display of additional data related to
the selected object and overview of other “online” users.

In ﬂ@, @] the air-flow is examined interactively, but more in the context of
thermal comfort assessment. A VR user interface for visualisation and user in-
teraction forms a front-end, while on the back-end a parallel CFD kernel and a
3D grid generation component are running. User interaction, depending on the
type of interaction, can be performed via providing data in input files, or via
dialogs, or even via VR devices, such as draggers. In the collaborative version
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of the project, multiple clients connect to a common server containing geometry
data using the Orbacus CORBA ﬂﬁ] communication library. This way the MPI
compatibility issue among different platforms is elegantly solved.

Over time, valuable observations and experience have resulted in significant re-
duction of the work required to extend an existing application code for steering.
Nevertheless, the developed concepts have been primarily adapted to this limited
number of application scenarios. They allow for further investigations so as to
become more applicable — in the same time efficient enough, generic, and easy to
implement. This is where the new concept comes into play.

2.9 Difference of our Approach

An integration framework applicable to different engineering applications is intro-
duced, which — with only minor code modifications involved — enables real-time
interactive computing. Cases of parallel simulations (with shared and/or distrib-
uted memory) are supported, as well as visualisation on-the-fly. For interrupting
the regular course of a simulation, software equivalents of hardware interrupts are
used. This way, the control is shifted from the simulation code to the operating
system. Checking for the updates is based on a generic mechanism, involving
user defined intervals instead of the “smart” placement of check-points in the
code. For the communication of the simulation back-end and GUI/visualisation
front-end typically non-blocking asynchronous communication routines are used,
or such communication is simulated via multithreading mechanisms. Different
applications in terms of algorithm and code structures, in terms of time and
memory consumption, parallelisation techniques, and engineering field have been
tested; different programming languages, compilers and operating systems are
supported, as detailed in Chapter Bl

2.10 Conclusions

Efficient simulation is absolutely necessary as a basis component in an interactive
process. For large scale simulations, it may be advantageous to use approximation
methods and solvers based on hierarchies, i. e. adaptive meshes, p-FEM “natural”
hierarch @, 144 @, @, @, @], sparse grids @, ], efficient multigrid
solvers E, 82 @], etc. When simulation memory requirements exceed the
available resources, out-of-core methods must be employed. A survey of general
out-of-core algorithms for linear systems can be found in @] The solution
vectors, however, often have to be kept in main memory, which is sometimes not
possible. Therefore, more sophisticated ordering methods are needed for accessing
these large data. To achieve a fast interactive trial-and-error process needed for
intuitive parameter tuning, parallelisation methods are desired on many of the
application levels.

What is required for an effective parallel computation approach is the following
combination of hardware and software capabilities |:
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— The interconnection between processors and memory must allow rapid com-
munication between the individual processes as well as fast transfer of data
to and from memory.

— A protocol must be available for the communication between processes —
either based on ports (channels) or on process identifiers. Improving the
network architecture is critical, however, research must offer techniques to
reduce the demand on the network ﬂﬁ] between all the application com-
ponents.

— It must be possible to effectively separate the computational algorithms
and input data into individual sub-problems (the decomposition issue).

— Evidently, it must be possible to assign individual sub-problems to separate
processes.

— Load balancing for the system — dividing the required work equally among
all of the available processes, which ensures that one or more processes do
not remain idle while the other processes are actively working on their as-
signed tasks. In this way, valuable computational resources are not wasted.

Scientific visualisation is crucial for intuitive interpretation of results. In inter-
active computing it is also essential to achieve real-time update rates. Thus,
depending on the application, it might be advantageous to do selective updates
of only part of the domain which is of interest, with adapted resolution, etc. Oth-
erwise, for large data sets, updates would not be possible for the whole domain
within real-time interactive rates.

It is very important to have powerful hardware available, however, to exploit it
seems to be more challenging. Moore’s law in software technology is the main
prerequisite for exploiting upcoming exascale architectures.

As the last conclusion of this chapter, the author finds nothing more adequate
than a quote from the 2011 report about researchers presenting experiences from
ENZO, CACTUS, and iPlant API development efforts ﬂﬁ] “Nearly every field
of science has a community code (or several) that satisfies a large percentage of
the discipline’s scientific needs. Great minds — and thousands of hours of PhD
and post-doc labor — have gone into the creation of these codes. However, as new
technologies emerge that are capable of delivering millions of times the power
as previous systems, it is often necessary to rethink and rewrite these existing
community codes, which is no small step.”
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Chapter 3

Implementation

In interactive computing environments, it is essential that no component, which
has to be re-executed when an update occurs, requires so much time that the
connection between the cause, i. e. the update, and the corresponding effect is lost.
The frequency of the updates perceived by a user during interactive exploration
of a computational model depends on the component that requires the longest
amount of time to process at least one update [44], i. e. one iteration. There are
various challenges which have to be faced in order to interactively steer a long-
running simulation, therefore achieving the corresponding updates in real-time.
As said before, a long-running simulation, as defined in this dissertation, assumes
one with execution time ranging from a second to a day, or longer — anything
which is not real-time.

First of all, a simulation program, running often remotely on a high performance
cluster, should immediately become aware of the user update, skip the outdated
computation, and start anew. However, the rate of checking for updates should
not dramatically affect the execution time of a simulation program.

Another issue is how to develop a relatively generic concept, one which can be
used for various simulation scenarios, and how can users with various require-
ments profit from that concept. How can users avoid, for instance, placing check-
points in the code based either on experience of previous runs, or a priori estim-
ations of the execution time of one iteration?

Finally, in the case of large data sets which need to be transferred as a simulation
result, the challenge of transferring and editing this result in real time remains.
The implemented interactive computing framework tackles all these issues.

3.1 The Concept of the Framework

The first intention was to follow the minimal invasion principle and, thus, shift
potential changes of an initial code as much as possible towards the integration
framework functionality.
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In addition to this, the responsiveness of a simulation to changes should depend
more on the user-predefined settings (how often the update check is desired),
than on the time which e. g. one iteration takes.

One of the basic options is certainly to place check-points at pre-defined places in
the code. A simple example should be enough to illustrate the major issues of this
approach. Let us consider an iterative function with several nested loops being
executed, whereas users can interact at any point, requesting some update of the
data. Obviously, the difficulty has to be confronted — where within the given
code would be the optimal place for check points, so that within the function
the updates are definitely applied as soon as possible. If they are placed inside
the innermost loop, checking is presumably frequent enough, i.e. so that the
relation between an update and a response of the simulation remains intuitive for
a user. This, however, might cause significant time overheads, especially when
communication library calls have to be employed to do the aforementioned checks,
i.e. to probe a message. Checks in the outermost loop might turn out to be not
frequent enough, i.e. the simulation is not responding in real-time to the actual
user demand (see Fig. Bl left).

Another option would be to employ one thread per process to wait and check for
updates (see Fig. Bl right). Here, both of the scenarios have to be taken into
account — the one where a user process and a simulation process have access to a
common, shared memory, and the distributed scenario, i. e. where (a) simulation
process(es) are informed about user updates via a message passing interface. In
either case, if not implemented carefully, computational resources, especially if
they are very limited, may be wasted. To prevent this, setting the checking
thread to sleep or yield periodically is mandatory, thus, releasing the occupied
resources, as long as there is no update (a shared variable update) initiated
by a user. In the MPI case, the solution would most likely involve setting the
MPI variable MP_ WAIT_MODE to nopoll, by which the thread waiting for the
message would keep polling the message dispatcher for a very short time (less
than 1 millisecond, according to the IBM MPI Programming Guide @]) Then,
it would release the resource it is running on until either an interrupt occurs, or
time expires.

The idea of the framework is conceptually similar to the latter option described.
However, speaking of implementing and integrating a generic concept, it would
need to predict a variety of possible threading APIs and scenarios on the sim-
ulation side. Moreover, that implementation concept would certainly result in
the necessity to re-structure and/or re-write parts of the initial code. This would
mean either: (1) introducing multithreading in originally sequential codes, or
(2) in codes originally having multithreading enabled — modifying existing im-
plementations of parallel regions, due to possibly conflicting APIs of these codes
and the framework itself.

Therefore, a new concept is developed as a part of this work. It overcomes the
aforementioned potential issues using software equivalents of hardware interrupts,
i. e. signals. Thus, a brief overview of this concept is provided — first of all for Unix
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Within an iterative function:

for (i 4 0 %0 N) do "Thread 1 ||| Thread 2| || Thread 3| || Thread 4
Check point here? Check for | Compute | Compute | Compute
for (j < 0 to M) do updates() (...) (...) (...)

Check point here?
Compute (datali][j])
od
od

Figure 3.1: Checks for updates — left: insertion of check-points in code; right: dedicating
one thread per process to do only checks for updates. Having in mind a
generic concept of the interactive computing framework, it is rather difficult
to predict the threading API used in each application scenario. However,
this would be necessary in order to avoid conflicts of using two different
APIs in one code.

systems, whereas further in this subsection portability to Windows operating
systems is considered as well.

3.1.1 Signals Introduction

Signals are software interrupts @] Applications generate signals to inform
about their situation |, or users may generate them by pressing certain com-
binations of terminal keys; hardware exceptions, such as invalid memory refer-
ence, can be a reason for the corresponding signal to occur. More details on when
a signal may occur, or how to invoke it, is provided further in the text.

Linux supports both POSIX reliable signals (“standard signals”) and POSIX
real-time signals. Fach signal has a current defined action, which determines
how the process behaves when the signal is delivered. Default actions, according
to Linux Manual pages ﬂﬁ] can be to terminate the process, to ignore the signal,
to terminate the process and dump core, stop the process, or to continue the
process if it is currently stopped.

A programmer may change the action of a signal using the sigaction system call
in his code, or (its less portable counterpart) signal (Code BIl). Using these
system calls, an active process can elect on delivery of the corresponding signal
whether it is performing the default action, ignoring the signal, or catching the
signal with a signal-handler. A signal-handler is a programmer-defined function
that overrides the default behaviour, i. e. disposition or action, on signal delivery.

sigaction provides more control, allowing for specifying additional control flags.
The structure sigaction, used to describe an action to be taken, is defined in the
header <signal.h> and includes at least the members listed in Code 311
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#include <signal.h>
typedef void (*sighandler_t)(int);
sighandler__t signal (int signum, sighandler_t handler);

#include <signal.h>
int sigaction (int sig, const struct sigaction *act,
struct sigaction *oact);

struct sigaction members:

void(*) (int) sa_ handler — SIG_DFL, SIG_IGN or pointer to a signal-handler,
sigset_ t sa_ mask — signals to be blocked during execution of signal-handler,
int sa_ flags — special flags to affect behaviour of signal,

void(*) (int, siginfo_t *, void *) sa_ sigaction — signal-handler.

Code 3.1: Signal and sigaction specification.

A signal may be blocked, which means that it must not be delivered at that time
point. Between the point when it is generated and the point it is delivered, a
signal is said to be pending. It is delivered later, as soon as it is unblocked. The
list of blocked signals is maintained within the signal mask.

Raising signals

On UNIX based systems, signals can be raised in one of the following ways:

— alarm(unsigned int t) — which arranges SIGALRM signal to be delivered
to the current process in ¢ seconds; ualarm(t) is its equivalent, whereas an
interval ¢ is in microseconds;

— settimer — (conforming to SVr4, 4.4BSD) similar to, but more powerful than
alarm; it is, however, used less often due to the more complex semantics
(the synopsis is provided in Code B2));

— keyboard taster combinations: CTRL-C sends SIGINT, CTRL-Z sends
TSTP signal (SIGTSTP), and CTRL-\ sends a QUIT signal (these default
combinations can be modified by stty command);

— kill system call/command sends the specified signal to a process if permis-
sions allow, such as termination of the process, e. g.;

— ragse library function sends the specified signal to the current process;

— abort function causes abnormal process termination to occur, unless the
iiénal SIGABRT is being caught and the signal handler does not return
s
— pthread__kill upon successful completion arranges that a signal is delivered
to the specified thread;
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int setitimer ( int which, struct itimerval * new__interval,
struct itimerval old__interval);

/* Timer values are defined by the following structures: */
struct itimerval {
struct timeval it_interval; // next value
struct timeval it_ value; // current value

}

struct timeval {
long tv_sec; // seconds
long tv__usec; // microseconds

}

There are three interval timers:

ITIMER_REAL — provides SIGALRM signal (real-time timer)
ITIMER__ VIRTUAL - provides SIGVTALRM signal (virtual time timer)
ITIMER,_ PROF — provides SIGPROF signal (profiling timer)

Code 3.2: settimer synopsis. settimer notifies of a timeout according to the chosen in-
terval timer (real, virtual or profiling). When the parameter new_interval is
nonzero, an appropriate signal is invoked in the specified interval. When the
old__interval is nonzero, the old value of the timer is stored there.

— sigqueue provides signal specified to be sent and queued with the specified
value, which is discussed in more detail later in this chapter.

Standard signals

As mentioned before, Linux supports standard signals. A reader may note that
several signal numbers are architecture dependent. Tab. Bl contains a list of
some of the signals described in the original POSIX.1-1990 standard.

Some signals, such as SIGKILL and SIGSTOP cannot be caught, blocked, or
ignored.

Code B3] shows first examples of code segments using signals (in C programming
language). The provided “solutions” use either sigaction or signal. However,
sigaction is favourised, since it is not specified whether signal automatically resets
the signal handler. This means that signal needs to be explicitly called again
inside the handler. Furthermore, if there are two signals in quick succession, and
the second is delivered before the handler is reinstalled, the default action will be
applied. This is often to terminate the receiving process. sigaction, on the other
hand, is guaranteed not to reset the defined signal action.
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Signal Number | Action | Summary

SIGINT 2 Term | Interrupt from keyboard
SIGQUIT | 3 Core Quit from keyboard
SIGFPE 8 Core Floating point exception
SIGKILL 9 Term | Kill signal

SIGSEGV | 11 Core Invalid memory reference
SIGALRM | 14 Term | Timer signal from alarm
SIGTERM | 15 Term | Termination signal

SIGUSR1 | 30,10,16 | Term | User-defined signal 1

SIGUSR2 | 31,12,17 | Term | User-defined signal 2

SIGCONT | 19,18,25 | Cont Continue if stopped

SIGTSTP | 20 Stop Stop process, can be ignored/caught

SIGSTOP | 17,19,23 | Stop Stop process

Table 3.1: Unix signals.
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Nevertheless, a developer should be aware that sigaction might be unavail-
able on some Linux systems, since sigaction is conforming to POSIX stand-
ard and signal to POSIX, ANSI C 89 and 99. For sigaction to be supported,
Linux test macro requirements which have to be fulfilled for GNU C Library
are either POSIX C SOURCE < 1, or that either X OPEN SOURCE or
~ POSIX SOURCE is defined.

There are also other functions similar to signal and sigaction, such as bsd__signal
and sysv_signal. However, just like signal, they are not recommended @, E]
This is due to their often even more serious reliability and portability issues. To
sum up, one should choose sigaction whenever possible and, thus, it is used in all
further examples.

sig_atomic_t volatile keep__computing; /* globally visible var. */

/* The signal handler just clears the flag and re-enables itself */
void handle_alarm (int sig)
{

keep_ computing = 0;

signal (sig, handle_alarm);

}

// Within the main function:
/* Establish a handler for SIGALRM signals */
signal (SIGALRM, catch_ alarm);

/* a better alternative would be:

struct sigaction new__action;

new_ action.sa__handler = handle_ alarm,;
sigemptyset (&new__action.sa__mask);

new_ action.sa_ flags = 0;

sigaction (SIGALRM, &new__action, NULL); */

/* Set an alarm to go off in a little while */
alarm (2);
/* Check the flag once in a while to see when to quit */
while (keep__computing)
do__computation (); /* a desired function */

Code 3.3: Catching ALARM signal, using signal and sigaction

Real-time signals

Apart from standard signals, Linux supports 32 real-time ones, as included
in POSIX.1-2001. They are numbered typically from 32 (SIGRTMIN) to 63
(SIGRTMAX). Unlike standard signals, the entire set of real-time signals can
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#include <sys/types.h>
#include <signal.h>
int sigqueue(pid__t pid, int signo, const union sigval value);

Code 3.4: Synopsis sigqueue

be used for application-defined purposes, except from the first three real-time
signals, which are used by LinuxThreads. The default action for an unhandled
real-time signal is to terminate the receiving process.

If multiple instances of a standard signal are delivered while that signal is cur-
rently blocked, only one instance is queued. By contrast, multiple instances of
real-time signals can be queued.

A real-time signal must be invoked using sigqueue (synopsis is provided in
Code [B4) in order to queue all the upcoming signals. Here, one can send also
an accompanying value (either an integer or a pointer) with the signal. If the
receiving process establishes a handler for this signal using the SA_ SIGINFO flag
to sigaction, then it can obtain this data via the si_ value field of the siginfo_ t
structure passed as the second argument to the handler. The si_ pid and si_ uid
fields of this structure (which are omitted in Code[B]) can be used to obtain, re-
spectively, the process identification and the real user identification of the process
sending the signal.

Real-time signals are delivered in a guaranteed order. Multiple real-time signals
of the same type are delivered in the order they were sent. If different real-time
signals are sent to a process, they are delivered starting with the lowest-numbered
signal (i.e., low-numbered signals have highest priority).

Different compilers

POSIX standard says for the usage of sigaction that the action for a signal need
not be refreshed after signal invocation in order to have the next signal handled
as desired. However, the experience with some compilers (Intel, e.g.) shows the
opposite. Sometimes it has to be explicitly “required” that the signal action is
refreshed before the next signal occurs.

Different programming languages

The previous examples referred to the signal handling within C/C++ codes. In
order to make the framework applicable to Fortran codes as well, support for
signal handling in this programming language has to be considered.

Signals with Fortran

On the one hand, support for signal handling in Fortran can be achieved at
user level with minimal efforts. Some vendor supplied Fortran implementations,
including for example Digital, IBM and Intel, have the extension that allows the
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// The code in a C-file:
typedef void (*sighandler_t)(int);
/* “clean-up” wrapper in C */
void sigclear  (int *signum)
{

signal (*signum, NULL);
}

/* wrapper for the signal in C */
void signal_(int *signum, sighandler_t handler)
{

signal(*signum, handler);

}

! Fortran code segments:
subroutine handle alarm

do_ computation ()
end subroutine handle alarm

! Within the main function:
call sigclear(2) ! “clean-up” for signal(2) = SIGINT
call signal(2, handle alarm) ! set the new signal(2) behaviour

Code 3.5: Signals in Fortran

user to do signal handling as in C @], thus, a C wrapper function for overriding
the default signal behaviour is implemented.

On the other hand, one has to take into consideration that the behaviour of the
corresponding Fortran function is implementation dependent. GNU Fortran has
defined one such as an intrinsic function, i.e. a compiler makes it available for
use. If one uses Intel Fortran compiler, the specified signal handler function does
not provide the expected result when the corresponding signal occurs. In order
to take actions defined in the signal handler one needs to “clear” the previously
defined action first (Code B.3]).

Windows OS signals

Finally, it is important to discuss portability issues to Windows operating sys-
tems. Windows is an event-driven operating system, thus, only the timers
provided by Windows can be used. In other words, hardware interrupts cannot
be invoked for timing purposes directly in an application (unless the application
is a device driver itself, e. g.). There are two basic types of timers for Windows:

— the system timer,

— the multimedia timer.
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The concept of timers is similar to the one in Unix systems — a time interval for
the timer is specified and the timer is activated to fire each time the time period
expires. In the Windows systems, however, a callback function, which will be
called each time the timer fires, has to be specified for the timer. Optionally, in
the case of the Windows system timer, WM_ TIMER message can be sent to the
application’s Window procedure each time the timer fires.

The system timer is according to ] easiest to use, but less accurate, as the low-
est interval one can effectively use is about 55 milliseconds. It is also less reliable
than the multimedia timer. The reliability issue is related to the mechanism of
the WM__ TIMER message to notify a user each time the specified interval elapses
and the priority of this message. The other way to create and use a system timer
is using the Win32 API — the SetTimer and KillTimer functions, or VCL TTimer
component. In the latter case, an interval is specified (in milliseconds) and an
event handler for the OnTimer event has to be implemented.

Of all the messages in Windows, WM__ TIMER  is one of the lowest priority mes-
sages. Thus, if the system is busy, WM__ TIMER messages may be delayed, or
removed from the message queue altogether. This would not be a major issue
concerning the framework itself, since, as described in the next subsection, the
timer would be set to fire periodically, thus a message that something has changed
on the user side would be definitely received at some point. Nevertheless, since
the response of the simulation would be limited to the 55 milliseconds interval,
this method is not considered for the framework implementation.

A solution to reliability and accuracy issues of the system timer is provided by the
Windows multimedia timer. Despite of its name implying a particular purpose,
the multimedia timer is not limited to multimedia. It has a resolution of 1
millisecond. Furthermore, it is reliable, i.e. not the subject to the lost messages.

The multimedia timer functions are found in the MMSYSTEM.H header. This
header need not be explicitly included, depending on the version of C++Builder
used. To use the multimedia timer, the minimal time resolution needed has to
be set via timeBeginPeriod. Next the timeSetEvent is called (see Code B.6l).
timeSetFEvent returns zero if an error has occurred, or a timer handle if the
function has succeeded. Each call to timeBeginPeriod must have a matching call
to timeFEndPeriod, passing the same values.

The Windows documentation for the callback function says that only a few func-
tions such as the PostMessage can be called from a callback function. Thus, a
user-defined message (and its handler) can be created in the application’s main
form class. A message is posted by calling PostMessage from within the callback.
This way the handler for the user-defined message does all the work.

Regardless of the timer used, it has to be ensured that the code that executes as
the result of a timer event is short and concise. This holds especially if the timer
interval is short. Namely, all the timer event instructions have to be executed
before the next timer event occurs. A developer who sets the timer interval
to one millisecond, for instance, should know how much time is needed for the
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int time__int, delay;
timeBeginPeriod (1);
MMRESULT timerID;

timerID = timeSetEvent (time_ int, delay, TimeProc, 0, TIME_PERIODIC);

/* timeSetEvent parameters:

1. parameter: time_int — the timer interval,

parameter: delay — delay (zero means demand for the highest possible accuracy),

parameter: TimeProc — used to pass the address of the callback function,

parameter: used to pass user-specified data (or a pointer to it),

parameter: the type of the timer: TIME_ONESHOT (fires one time), and
TIME_PERIODIC (the timer fires repeatedly, in cyclic intervals). */

Uk W

The signature of the callback function:
(must be a stand-alone and not class-member function)
void CALLBACK TimeProc (
UINT ulD, UINT uMsg, DWORD dwUser,
DWORD dwl, DWORD dw2);
/* ulD — timer ID of the timer that generated the event,
uMsg — reserved by Windows and is not used,
dwUser — used to pass user-defined data to the callback (the data passed in
the call to timeSetEvent) will be passed to the callback function in
this parameter,
dwl, dw2 — also reserved and should not be used. */

Code 3.6: Multimedia timer functions.
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int i, j;

void CALLBACK TimerProc(UINT uTimerID, UINT uMsg,
DWORD_PTR dwUser, DWORD_PTR dwl,
DWORD_PTR dw2)

{

some__action(i, j); // might need to be called via PostMessage

}

int _tmain()
{
timeBeginPeriod (1);
MMRESULT mmr = timeBeginPeriod(1);
mmr = timeSetEvent (1000, 0, &TimerProc, 42, TIME_ PERIODIC);
for (i = 0; i < Imax; i++) {
for (j = 0; j < Jmax; j++) {
do__computation (i, j);
}

}
}

Code 3.7: Signal handling in Windows OS.

aforementioned instructions. A good profiler is indispensable in determining this.
TurboPower’s Sleuth QA Suite Tﬁ] is suggested in }

3.1.2 The Concept of the Framework

In order to leverage interactive computing for a broader scope of applications,
the immediate response of the simulation side to the changes made by the user
is indispensable. The major steps which are taken in order to achieve this goal
are the following:

— interrupting the simulation to check for updates,

— restarting the desired (part of the) computation automatically and instantly
if an update has occurred,

re-computation,

sending simulation results to the user for (visual) interpretation.

Interrupting the simulation

If coupled to our software, the regular course of the C/C++ /Fortran simulation
is being interrupted in small, cyclic intervals ensued by a check for updates.
For this, signal SIGALRM would be invoked and caught in predefined intervals.
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sig_atomic_t volatile keep__computing = 1; /* globally visible var. */

/* The signal handler just clears the flag */
void catch__sigint (int sig)
{

keep__computing = 0;

}

// Within the main function:

/* Establish a handler for SIGINT signals */
struct sigaction new__action;

new_ action.sa__handler = catch_ sigint;
sigemptyset (&new__action.sa__mask);

new_ action.sa_ flags = 0;

sigaction (SIGINT, &new__action, NULL);

/* Check the flag once in a while to see when to quit */
while (keep__computing)
do__computation();

Code 3.8: Catching SIGINT signal

Optionally, one may choose not to invoke automatic, periodic alarm, but do
checks for updates on user demand instead. A user may demand a check for
updates by sending SIGINT signal to the simulation back-end via pressing a
combination of keyboard tasters, as described before. An example of handling
this signal is presented in Code B.8l

If a check “proves” that there has been no user activity, the control is given back
to the computation, which continues from the previous interrupt-point either
until the stage when the results should be sent to the user process, or until the
expiration of another time interval.

Otherwise, the new data is received. The receipt of an update message is con-
sidered to be instantaneous. As the next step, the update of the old data is
required. However, it is the responsibility of the user himself to instruct the sim-
ulation program, before compiling and running it, to match the received data to
the simulation-specific requisites.

Restarting the computation

After an update has arrived, the computation is intended to be restarted using one
of the supported concepts: (1) (sig)setjmp and (sig)longjmp, or (2) manipulating
simulation-specific variables in the signal handler.
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#include <setjmp.h>
void longjmp (jmp_ buf env, int val);
void siglongjmp (sigjmp__buf env, int val);

/* sigsetjmp — set jump point for a non-local goto */
#include <setjmp.h>

int setjmp(jmp__buf env);

int sigsetjmp(sigjmp__buf env, int savemask);

Code 3.9: (Sig)setjmp and (sig)longjmp synopsis.

(Sig)setjmp and (sig)longjmp

longjmp, siglongjmp, setimp and sigsetjmp (see Code B9 and Algorithm [3]) are
primarily used for handling errors and interrupts.

Both setjmp and sigsetjmp call save their calling environment in their env argu-
ment for later use by longjmp or siglongjmp respectively. longjmp/siglongjmp call
restores the environment saved by the last call of setjmp/setlongjmp in its env
argument. siglongjmp is similar to longjmp except if sigsetjmp used a nonzero flag
as a second argument, when siglongjmp also restores the set of blocked signals.

(sig)setimp returns 0, if the return is from a successful direct invocation. If,
however, the return is from a call to (sig)longimp, (sig)setjmp returns a non-zero
value val. This allows for recognising when the return is from the signal handler
due to arrival of a user update, and treating this case independently from a direct
invocation.

If the value of the savemask argument is not 0, sigsetjmp will also save the current
signal mask of the calling thread as part of the calling environment, so that it can
be restored after a next user update, thus, the next invocation of this function.

All accessible objects have values as of the time siglongjmp was called. The
exception might be the objects of automatic storage duration, which are local to
the function containing the invocation of the corresponding sigsetjmp, unless they
have volatile-qualified type (which is introduced later in the text). Namely, their
values are indeterminate if they are changed between the sigsetjmp invocation
and siglongjmp call @]

This approach is most generic, since the application code can be used as a black
box. Some simulation specific reinitialisations can even be implemented within
the signal handler if needed.

Manipulating variables in the signal handler

If one chooses the concept of manipulating simulation-specific variables, a sim-
ulation code is not recognised as a black-box anymore. Namely, there has to
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Algorithm 3 Longjmp within the handler.

1: jmp_ buffer env

2:

3: signal_handler_code (int p):

4: siglongjmp(env, p)

5:

6: // Within the main function:

7. for (t <~ Ty to Ty) // iterations over time
do

8:  if (sigsetjmp(env, savemask=1) != 0) then

9: do__reinitialisation()

10:  end if

11:  for (idy + Xjo to Xyy) interval do

12: for (Z'dxg +— Xog to XQN) do

13: // Can be interrupted at any point,

14: // idy; are reset in the interrupt handler:

15: process(datalid,|[idy2])

16: end for

17 end for

18: end for

be at least one interface (simulation) variable registered within the framework.
According to some of the standards of multithreading libraries (OpenMP; e. g.),
branching (i.e. jumping) out of the parallel region is not allowed. Therefore,
this approach becomes inevitable in the multithreaded scenario. The section
related to the integration of the framework into multithreaded codes discusses
this in more detail. Nevertheless, the approach is illustrated in the context of a
sequential code scenario as well, for the sake of completeness.

As an illustrative example, let us take a code which consists of several nested
loops. The idea is that the computation is restarted, as a response to an up-
date, by manipulating the iteration vector i = (idy,,idy,,...id;, ), i.e. the loop
indices id;, of all the loops. This is done by setting ¢ for each loop index to the
predetermined maximal value, as shown in Algorithm @]

In the sequential scenario, there is no difference which variables are manipulated.
When the multithreading comes into play, the private copies of ¢ — belonging to
the corresponding threads — are not visible inside the signal handler.

Re-computation

In the first approach, i.e. sigimp example, the restart of the computation is
immediate, and the restart point is the place in the code which was executed
when setjmp was called previously.

In the second approach, when the control of the execution is given back to the
main computation, it is obliged to continue at the point where it has previously
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Figure 3.2: The framework with sigsetjmp, siglongjmp.

been interrupted. Conveniently, this happens only until the end of current, inner-
most loop iteration, where the earliest opportunity is used to compare the current
value of the loop index with maximum value and analogously exit all the loops
(i. e. starting with innermost and finishing with the outermost one). In the next
steps of the algorithm (i. e. a new iteration), all the loop indexes are re-initialised
with zero or some other simulation-specific initial value, thus, the computation
is resumed. All the necessary reinitialisation routines are well supposed to be
executed before this point, in order to guarantee the correct new computation.
To guarantee the correct execution of the program, a developer has to be aware
of at least a few important matters when handling interrupts, as discussed in
Subsection

Sending a result

When one or several iterations have been finished without an interrupt, the new
results are copied into the send buffer and forwarded to the user. Again, it is
then the user’s responsibility to instruct the program, this time the one running
at the front-end, how to interpret the received data correctly so that it can be
visualised.

3.1.3 Challenges

When employing signals within a software implementation, many factors have
to be taken care of — from interactions among different signals, to atomicity of
operations, memory consistency, deallocating memory which will no longer be
referenced, interaction of alarm with other function calls, etc.
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Algorithm 4 Manipulating loop indexes within a handler

idy, , idy, declared global, sig_atomic_t, volatile
alarm_ signal handler():

manipulate id,,, ...idg,

reset__alarm()

Within the main function:

init_sigaction()

alarm (interval) // set alarm

for (t < T to Ty) // iterations over time do
10: for (idml +— Xjp to XIN) do

11: for (idgc2 +— X9 to Xon ) do

12: // can be interrupted at any point, id,, are
13: // reset in the interrupt handler

14: process(datalid,, |[id.,])

15: end for

16:  end for

17: end for

Interaction among different library calls

According to GNU C Manual @], each process has three independent interval
timers available:

— a real-time timer that counts elapsed time. The timer sends a SIGALRM
to the process when it expires,

— a virtual timer that counts only processor time used by the process. This
timer sends a SIGVTALRM signal to the process when it expires,

— a profiling timer that counts both processor time used by the process, and
processor time spent in system calls on behalf of the process. This timer
sends a SIGPROF signal to the process when it expires.

Theoretically, when settimer is supported on a system, any of these timers could
be used. The synopsis can be found in Code[B2l and an implementation example
in Code BI0l at the end of this section. Still, there can be only one timer of each
type set at the time. Hence, a potential use of the same timer must be com-
promised in the initial simulation code (if planned to be executed in conjunction
with the framework). On the systems where settimer is not supported, the less
powerful alarm is used instead.

Moreover, interactions between alarm and any of settimer, ualarm, or usleep are
unspecified [22]. Thus, they are not desirable within the initial code.

If signal is used (when sigaction is not supported, e. g.), it has to be taken into ac-
count that another signal of the same type must not be delivered during execution
of the signal handling routine.
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Figure 3.3: On the simulation back-end, an iterative function is running. Iterator indexes
idg, ..idy, are reset by the SIGALARM handler to the value outside of the
corresponding iterator scope, for instance max(X;n,Xax)+1. This way, the
iterative function omits the rest of the calculation and starts anew.

To restart interrupted system calls, one can use SA__ RESTART flag within sigac-
tion. sigprocmask can be used in the parts of the code, where it is undesirable to
receive the signal.

Any use of non-reentrant functions, such as malloc and printf inside the signal
handler is also unsafe. When finding place to re-initialise the data for the new
computation, it should be taken care that no new memory is allocated within the
signal handler itself.

Ensuring data consistency

One of the important tasks, when one uses signals, is to ensure that certain types
of objects which are being modified both in the signal handler and the main
computation are updated in an uninterruptible way. Namely, such updates are
said to be atomic, thus, it is impossible for the object to be in an inconsistent
state during the update. However, the types that support atomic updates are
usually very simple (e.g., integer). The C standard provides the specific type
for this purpose. Objects of types other than sig atomic_t are allowed within a
signal handler under the condition that they are never accessed by the program
outside of the signal handler’s context. If they are, sig atomic_t has to be
used. Although this topic gets into operating system dependent problems, no
matter how the operating system handles the issue, using this certain type for
loop counters one can be sure he will not end up with corrupted bytes due to
interrupts.
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This is what C99 says about sig_atomic_ t:

— (7.14 <signal.h>, paragraph 2) The type defined is sig_atomic_ t, which
is the (possibly volatile-qualified) integer type of an object that can be ac-
cessed as an atomic entity, even in the presence of asynchronous interrupts.

— (7.14p5) If a signal occurs other than as the result of calling the abort or
raise function, the behaviour is undefined if the signal handler refers to any
object with static storage duration other than by assigning a value to an
object declared as volatile sig_atomic__t.

The point of relevance for the framework itself is that handlers for SIGALRM,
SIGVTALRM, SIGPROF, SIGINT, etc., which return normally, may modify
some global variables. Typically, the same variables — for example, iterator indices
within a loop — are being examined by the program during normal operation. For
instance, when CPUs require more than one instruction to write data of a certain
size to memory, a sudden interrupt can lead to data inconsistency, as explained
in the following example.

A computation is performed on a machine with 32-bit long integers, 32-bit CPU
registers, 64-bit long long integers. This is how the generated assembly code
would look like for the C-code line:

x = 1; /* long x */

move #1, register
store register, [memory location for x]

But if y is long long (and thus 64 bits wide), it requires two separate stores to
set it to a new value — for instance:

y = 0x00000000000000001LL; /# long long y; */

might compile to:

move #0x00000000, register

store reg, [memory location for y]

move #0x00000001, register

store reg, [(memory location for y) + 4]

Now, suppose that a portion of C code compiles into:

load register, [y]
push reg (%)

load register, [y+4]
push reg
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Suppose further that it is managed to invoke the signal handler right when the
processor has finished the first load but has not yet started the second load, i. e.,
is about to execute (or has just executed) the instruction marked (*). If y used
to hold the value 0x00000000000001LL, and it is supposed to be re-initialised
with 0x00000000000000LL the code will have handled the first half — 0x00000000
— but not the second (depending if it is big- or little-endian architecture). The
signal handler keeps y value intact — 0x0000000000000001LL, and only when
its execution finishes, the CPU will resume and execute the second load. This
would not happen only for 64-bit variables — but also if CPU has 32-bit integers
and 16-bit registers, or 16-bit integers and 8-bit registers, etc. For one of the
first examples in this chapter, Code B3] this all means that without declaring
keep__computing sig atomic_t, its value might not be set to 0 when desired.

And even if the implementation happens to match particular CPU hardware —
either by accident, or by knowing all the details about the CPU — what if the
compiler chooses to decide to modify only the lowest byte of a variable? The
keyword wvolatile is likely to inhibit such an optimisation.

Ensuring memory consistency

In the C, C++, C#, and Java programming languages, a variable or object
declared as volatile usually has properties restricting compiler optimisation an-
d/or related to threading. It is, namely, intended to prevent the compiler from
performing any optimisations of the code which assume that values of variables
cannot change “suddenly”.

Let us consider the case of a loop which tests the same memory location re-
peatedly. Most of the modern compilers would arrange to reference memory only
once and copy the value into a register to be used further on, speeding up the
loop this way. Naturally, “this is undesirable for objects which are subject of sud-
den change for reasons which cannot be predicted from a study of the program
itself” . Thus, to ensure correct program execution, every reference to such
an object has to be genuine.

This type qualifier is used within the framework implementation to:

— allow uses of variables between setjmp and longjmp,

— allow uses of sig atomic_t variables in signal handlers.

The definition and applicability of the volatile keyword differs in different pro-
gramming languages. These differences should be carefully considered. In any
case, when using volatile, one may observe that the produced assembly code is
bigger than the one without volatile specifier, because the volatile keyword stops
the compiler from performing optimisations. Thus, volatile should be restricted
to the variables where it is really needed. In the framework implementation, dis-
abling this kind of compiler optimisation can be well compensated for in terms
of the execution time. This holds especially if a user process and a simulation
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process communicate via message passing, which is a typical scenario. The com-
pensation for disabling some compiler optimisations is achieved by reducing the
expensive communication calls for probing of an update from the user’s side.
Namely, these calls are now placed within the signal handler, where a user has
more control over the checking intervals.

To sum up, the one guarantee from the ANSI/ISO C standard, is that one can
assign to a wolatile sig__atomic__t variable and see either the old value or the new
value, never any inconsistent intermediate one. Using any other type, the C-level
guarantee is gone and it has to be looked elsewhere for guarantees. If a user,
based on his architecture information can make sure that no inconsistent state
may occur, he can even remove sig_atomic_t and use any desired data type, e. g.
integer.

Finally, Code is a simple example of a program where sig atomic_t and
volatile must be used to guarantee correct program execution independent from
a hardware architecture and a particular test case. It executes the body of the
loop until it has noticed that a SIGALRM signal has arrived. When the signal
arrives, the iteration in progress is allowed to complete before the loop exits.

Many applications that are amenable to concurrent execution can be programmed
using either shared memory or message passing algorithms. The basics of parallel
programming are presented in Chapter Bl These will be discussed with regard to
signals and the interactive computing framework.

The sections to follow describe the simulation patterns, which utilise either shared
memory (e.g. OpenMP /POSIX threads) or “hybrid” parallelisation models (i. e.
MPI and OpenMP) in conjunction with the framework. This involves additional
synchronisation issues, due to the “restart”-signals from the thread/process which
is first informed about the changes, and thus, has received the updates, to the
rest of the threads/processes.

Other challenges

In addition to the guaranteed data values consistency necessary for the correct
program execution, a few steps have to be taken to prevent potentially intro-
duced severe memory leaks before the new computation is started. This is due
to the interrupts and their possible occurrence before the memory allocated in a
simulation program — a solver of a system of equations, e.g. — has been released.
Therefore, within a function which is executed asynchronously with a signal hand-
ler, an access to all the previously allocated memory has to be assured also after
the signal handler returns.

3.1.4 Example

To make this section complete, a practical example is provided. The framework
is illustrated in conjunction with a Gauss-Seidel sequential solver, implemen-
ted for 2D heat conduction simulation, where approximation is done by central
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struct itimerval itv;

sig_atomic_t volatile id,, , idg,;

alarm__signal handler()

{
idy, = (Imax > Jmaz)?Imax : Jmax;
idy, = (Imax > Jmaz)?Imax : Jmax;
setitimer (ITIMER_VIRTUAL, &itv, NULL);

}

struct sigaction new__action;

new_ action.sa__handler = handle_ alarm,;

sigemptyset (&new__action.sa__mask);

new__ action.sa_ flags = 0;

sigaction (SIGALRM, &new__action, NULL);

itv.it_interval.tv_sec = 0;
itv.it_interval.tv_usec = 1000;
itv.it_ value.tv_sec = 0;

itv.it_ value.tv__usec = 1000;

setitimer (ITIMER_ VIRTUAL, &itv, NULL);

for (t = 1; t < T'maz; t++)
for i = 1;i < Imax; i++)
for (j = 1;j < Jmaz; j++)
ufif[j] = 0.25 - (u[i+1][j] + u[i-1][j] + u[i][j+1] +
+ uli]fj-1] - £[i][j]

Code 3.10: Gauss-Seidel sequential version to demonstrate the framework using settimer
“instead of” alarm.

finite differences. The solutions discussed throughout this chapter are collec-
ted and presented within the Code BI0. However, a reader may notice that
(re)initialisation routines are missing as well as all the communication calls. The
latter are discussed separately within Section

3.2 Framework and Multithreading

For the multithreading, Lee ] has stated that “although threads seem to be a
small step from sequential computation, in fact, they represent a huge step. They
discard the most essential and appealing properties of sequential computation:
understandability, predictability and determinism. Threads, as a model of com-
putation, are wildly nondeterministic, and the job of the programmer becomes
one of pruning that nondeterminism.”
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In modern computing articles and technical reports, there are many similar state-
ments: “To use multicore, you really have to use multiple threads. If you know
how to do it, it’s not bad. But the first time you do it there are lots of ways to
shoot yourself in the foot. The bugs you introduce with multithreading are so
much harder to find.” @]

The challenges when using signals introduced in the previous section arose in
scenarios with sequential codes. Now taking a look at the last two quotations,
a reader might already suspect that the additional challenges introduced with
multithreading are not negligible. To the contrary, even as far as the implementa-
tion of the framework is concerned, at least several sudden unexpected behaviours
in the program have been detected (all to be addressed later). The answers to
particular challenges are unfortunately beyond the information provided by the
common literature sources and online manuals. Nevertheless, the final success in
overcoming challenges has provided an even more complete set of framework fea-
tures. Moreover, this chapter might give an interested reader a solid overview of
potential error sources within any multithreaded program, especially using Unix
signals.

3.2.1 Signals and Multithreading

FEach process has its own signal action. Within a multithreaded application, the
action of a particular signal is the same for all the threads of one process.

However, there is a way to prevent that a particular thread receives that signal.
Each thread in a process has an independent signal mask, which indicates the set
of signals that the thread is currently blocking. Similar to a traditional single-
threaded application, where sigprocmask can be used to manipulate the signal
mask, any thread can manipulate its own signal mask using pthread sigmask. A
process-directed signal may be delivered to any among the threads that does not
currently have that particular signal blocked. If more than one of the threads
has the signal unblocked, then the kernel chooses a random thread to which to
deliver the signal. A signal may be generated (and pending) for a process as
a whole (e.g., when sent using kill, raise, etc.), or for a specific thread (using

pthread_ kill).

3.2.2 The Concept of the Framework

If OpenMP /POSIX threads, for instance, are used in the initial application, as
soon as a random thread is interrupted at the end of the user-specified interval
(Fig. B4), it checks if some information regarding the user activity is available,
through using the functionality of the Message Passing Interface. If the aforesaid
probing of the user’s message indicates that a change has been made, the receiving
thread instantly obtains information about it and notifies all the other threads
that their computations should be started anew.

As in the case of a single thread of execution, as soon as an interrupted thread
becomes aware that there is a user-made change to be applied, it automatically
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manipulates its loop variables and, thus, computation will be restarted imme-
diately after the end of the current, innermost loop step. This is illustrated
in Algorithm Our implementation, favourably, issues clean termination of
OpenMP parallel loop and clean exit from the parallel region after the threads
are either implicitly or explicitly synchronised and before the whole iteration is
resumed. In this manner, the correct program execution will be ensured.

Algorithm 5 Idea of the framework — multithreaded scenario

Xin, Xon declared global, sig atomic_ t, volatile
alarm_ signal handler():

Xin, Xony + —1

reset__alarm()

//Inside the main function:

init_sigaction()

set__alarm()

for (t < Ty to Ty) // iterations over time do
10:  parallel region private(idzy, idzg)

11: for (id:ﬂl +— Xjp to XlN) do

12: for (idxg < Xoo to Xopn ) do

13: // can be interrupted at any point, Xy, Xon are
14: //reset in the interrupt handler

15: process(datalid,, |[ids,])

16: end for

17:  end for

18: end for

3.2.3 Challenges

The challenges for integrating the framework in multithreaded scenarios are, as
expected, more numerous than for the sequential scenario. They refer to visibility
of variables private for any thread but the main one, i.e. the one with thread
identification 0, as well as the usage of critical sections, mutexes, semaphores,
etc. within the initial code.

“Jumping” out of a parallel region

According to OpenMP standard, it is not allowed to “jump” (using sigjmp mech-
anism) out of the parallel region, and then back, thus, it is not desirable to keep
the initial sigjmp concept of the framework also for the multithreaded scenario.

Visibility of the variables in the signal handler

For the second approach — manipulating the loop indexes — an issue which occurs
for OpenMP, for example, is that private loop variables are not visible within
the signal handler. Any attempt to manipulate id,,, id,, would fail. Thus, as a
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Figure 3.4: The framework with manipulating loop indexes; Notation id,,, ds,, Xin,
Xan refers to the variables from Algorithm

reader may notice in Fig. B4land Algorithm [0l the concept used for multithreaded
simulation is based on manipulating the global variables Iz, Jmaz-

Critical sections and mutexes

All the mutual exclusion (mutex), semaphores, or any kind of locking-based vari-
ables have to be declared globally visible, so that they can be unlocked in the
signal handler, and the return to the main code is possible (as illustrated in the

Code B.IT]).

In general, there seems to be less “control” concerning this matter in OpenMP
than, for instance, in POSIX threads, since in OpenMP many parallel constructs
have implicit locking effects. Branching out of a critical section, i. e. using breaks,
returns, exceptions is not allowed by OpenMP standard. A user still has a few op-
tions. He can modify his code, i. e. completely block SIGALRM in those particular
parts of an OpenMP-parallelised code. Otherwise, despite of some advantages
of critical sections over scoped locking (e.g., it is typically a faster mechanism),
according to the framework requirements, critical sections should be replaced by
mechanisms for handling mutual exclusions, such as locks. The corresponding
variables should be globally visible, thus, it should be possible to unlock them
within the signal handler (Code BI1]). Only the thread which owns the lock at
the point when an interrupt happens can also release it (unlock) and, hence, if
any other thread catches the signal, the unlocking does not have any effect.
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omp_ lock_t lock;

void handle_alarm (int)

{

omp_ lock_unset (&lock);

}

// Within the main function:
omp__init_lock(&lock);
#pragma omp parallel
{
omp_ lock_set (&lock);
do__smt();
if(omp_ lock test (&lock))
omp_ lock_unset (&lock);
}

Code 3.11: Signals and locks

3.2.4 Example

An example pseudo-code (see CodeBI2]) of Jacobi solver is provided (for 2D heat
conduction simulation, approximated using finite differences) — this time running
multithreaded. Specifically in OpenMP, the signal-handler manipulation of the
upper limit for the index vector for which the parallelisation is done, would still
not have any effect on the loop execution. With other threading libraries, this
issue does not occur, since the developer has more control over the visibility of
variables (at the expense of having more responsibility).

A reader may observe that the communication scheme with a user process is
again omitted in the provided example code, since it is discussed in more detail
within Section B.5l however, for a brief overview at this point, a reader may refer

to Fig. B4l

3.3 Framework and Distributed/Hybrid Scenario

When computing environments supporting both parallel paradigms mentioned at
the beginning of this subsection are available, a hybrid algorithm, at a sufficiently
high level of granularity, may be used to advantage ﬂﬁ] Computing environ-
ments which possess the hardware diversity required for such parallel applications
nowadays, i.e. provide a pillar for multiple concurrent computation models, are
the norm rather than the exception.
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alarm_ signal handler()
{
Imax = —1; // Does not have any effect on the loop only for OpenMP.
// Still, since all the inner loops are skipped,
// the overall effect remains similar also in this case.
Jmaxr = —1;
ualarm (1000); // time in microseconds

}

// Within the main function:

struct sigaction new__action;

new__ action.sa__handler = handle alarm:;
sigemptyset (&new__action.sa_mask);
new__action.sa_ flags = 0;

sigaction (SIGALRM, &new_action, NULL);

ualarm(1000);

for (t = 1; t < Tmax; t++) {
reinitialise_u__old();
// here start a parallel region, private(j)
for i =1;1i < Imax; i++) {
for (j = 1;j < Jmax; j++) {
wli][j] = 0.25- (u_old[i + 1][j] +u_old[i — 1, j] +u_old[i][j + 1]
+u_oldi][j — 1] — f[i][4]);

Code 3.12: Jacobi multithreaded for Poisson equation code segments, demonstrating the
integration of the framework.
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3.3.1 Signals and Distributed scenario

The major subject in the implementation of the framework for this scenario, where
the simulation processes communicate over message passing protocols, is that all
the “signals”, i. e. user updates, have to be explicitly “transferred” and applied for
each process. A challenge is to broadcast a “signal” efficiently to all the processes.
A broadcast algorithm had to be implemented within the framework to be used
instead of MPI__ Bcast, because there was still no probing of a message possible
for MPI collectives. With MPI-3 standard, however, comes a non-blocking Bcast
implementation, such that an arrival of a broadcasted message can be tested for.
Thus, it might be possible soon to use vendor-optimised implementation as well
and re-implement the framework’s Bcast.

3.3.2 The Concept of the Framework

In the case of a pure distributed scenario, each process has its own alarm which
rings (Fig.30). In the case of “hybrid” parallelisation of a simulation, very similar
to this, a random thread in each active process is being interrupted, hence, fetches
an opportunity to check for the updates.

In both cases, if no user action has taken place, the previous computation is
continued (for the “hybrid” scenario — without stopping the other threads). Oth-
erwise, the user data is received, the “restart signals” are sent to other processes
and, thus, the loop counters are manipulated in all the required computations.

3.3.3 Challenges

From the framework point of view, the difference in comparison to the multith-
readed parallelisation is that now all the processes have to be notified about the
user action, which involves additional message passing overheads. In the current
state of development, it is assumed that one master process, which is the direct
interface of the user’s process to the computing-nodes (i. e. slaves), apprises all
the slave processes of the user-made alterations, which, in the case of demand
for and availability of a large number of slaves may result in the master process
becoming a bottleneck.

Synchronisation of the processes

The processes might need to synchronise at the end of each iteration to exchange,
e. g. ghost-cells’ data. Then, they may proceed. But the question which remains
is how the “alarms” are synchronised for each of the processes, how fast all of
them can be notified, and what happens in the case of perpetual user interaction.
What happens if, as it is currently implemented in a test scenario, an update
occurs approximately each 5 milliseconds?

Two non-blocking broadcast algorithms have been developed in order to compare
the performance. It should be noted that the implementations have been finished
before MPI-3 standard has introduced non-blocking collectives. However, at the
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Figure 3.5: Framework — distributed scenario

time this work has been written, it is all still at an early stage and not all the
implementations are yet conforming to the new standard. Consistency protocols
are used to verify that all the tasks in this distributed scenario apply the user
changes consistently with one another.

Linear broadcast algorithm

The first distributed test-environment has three components. First is the de-
scribed simulation back end, which consists of n slave processes executing Jacobi
solver instructions in parallel, as previously described. Now with the framework
integrated, each of the processes has its own alarm set to “ring” each millisecond.
Second is the user process, sending updates of the boundary conditions — in our
example the temperature — each 5 milliseconds. Third is a framework entity —
a master process, which is actually the first one receiving the user updates, for-
warding them to all the simulation processes and collecting results. It has its
own alarm set to 2 milliseconds. A simple linear broadcast algorithm has been
implemented — the master process forwards the updates to all the slaves, one
after the other (Fig. B.0).
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Figure 3.6: Linear broadcast

Hierarchical broadcast algorithm

To avoid potential bottlenecks of one master process in a massively parallel scen-
ario, another version of efficient broadcast algorithm for transferring the signal
to all computing nodes has to be developed (Fig. B7). Moreover, there is a
trade-off between ensuring a minimal number of checks per process and receiving
the update data promptly. In the case of a larger number of processes, where
the difference might be distinguishable, it is worth experimenting with different
alarm intervals on different levels of the hierarchy in order to reach the optimum.
The results in terms of comparison of the time needed to pass an update message

User

Figure 3.7: Hierarchical broadcast

to all the active processes for these two broadcast algorithms are provided in
Subsection 3.7.2]

3.3.4 Example

A simple distributed parallel MPI-based Jacobi solver is implemented based again
on Finite Difference approximation of 2D heat conduction simulation. The data
(in terms of temperature) is read in at the beginning of the simulation program,
so that each process can start his own computations. At the end of the iteration,
the processes synchronise and exchange data as shown in the Fig. The result
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is afterward sent to a user. This is done mostly only for testing purposes — to see
how fast the signals are “passed” from the user process to all the other processes.
For a more computationally efficient algorithm, a reader is referred to Subsection

237

The user process, on the other hand, is simply generating some update data and
sending it to the simulation in very small intervals, i.e. 5 milliseconds (which is
very unlikely in real applications). The results in terms of the overhead of the
framework, compared to the execution time of the initial simulation, are based
on this particular example and presented in B.7.11

3.4 Suggested Hierarchical Approaches

Although CPU power and memory capacity of computers have increased in the
last decades, many numerical problems are still only tractable with simplifications
and accuracy trade-offs. Moreover, it is necessary to estimate the quality of the
applied approximation, before one can rely on the result while making decisions
in “real-life” situations.

Adaptive procedures try to automatically and optimally adjust the model to
achieve a solution with a needed accuracy. These adjustments may, e. g., refer to
refining or coarsening of a mesh, and/or adjusting the basis functions used within
different approximation methods.

Typically, a trial solution, with lower accuracy, is generated first, i. e. on a coarse
mesh, or with a low-order basis. Then, the error of this solution is estimated,
to check if it satisfies the prescribed accuracy. Next, if needed, minimal-effort
adjustments are made to gain the desired solution. For example, a discretisation
error might be reduced to its desired level using the fewest degrees of freedom, i. e.
deformation state variables for the nodes (in the Finite Element approximation,
e.g.). A numerical solution can be improved by, e.g., refining the grid (i.e.,
increasing the number of mesh cells), increasing the local expansion order (i.e.
polynomial order), etc. Here are listed some of the common refinement methods:

1. h-refinement (increasing the number of mesh cells),
2. p-refinement (switching to higher order polynomials as shape functions),
3. hp-refinement (combination of h and p refinements),

4. r-refinement (adjust the positions of the nodes),

5. m-refinement: one switches to a different equation, i.e. physical model de-
pending on the local behaviour of the approximated solution. As an ex-
ample one may use linearised equations only if the nonlinear terms of the
physical model are negligible.

In addition to the previous taxonomy, refinements can either be:
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Figure 3.8: Distributed Jacobi algorithm: For each (n x n) matrix assigned to one pro-
cessor, it keeps ((n + 2) x (n + 2)), where 2 vectors (n x 1) and 2 vectors
(1 x n) are so-called “ghost layers”, i.e. store the data received from the
“neighbour” processes. The received data is the needed part of the result
of the previous iteration executed by the “neighbour” processes, which is
necessary for an update in the current one.
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1. uniform, i.e. when all mesh cells are divided, or polynomial order is uni-
formly increased;

2. selective, where only chosen mesh cells, in the regions of interest, will be
divided /will have their polynomial order increased.

A user can profit most from the framework if he uses hierarchical simulation ap-
proaches in conjunction with it. In the case when an interrupt occurs, the compu-
tation using coarsest/lowest refinement level can be started, switching gradually
to finer resolutions/polynomial orders, e.g., only when a user stops interacting.
Due to the unpredictability of the underlying simulation model and simulation
methods, the support for hierarchical approaches is neither a part, nor respons-
ibility of the framework.

However, some kind of a hierarchical approach s addressed in addition to the
basic concept of the framework in most of the application scenarios, as described
in Chapter @l The author considers further possibilities, depending on a partic-
ular application scenario, inexhaustible. In future test applications, the same or
similar ideas might be re-used, or their range extended.

Therefore, a very brief overview of most common adaptive scenarios is provided,
with a remark that the extension of the set of possibilities, altogether with im-
plementation details, can be found in Chapter @l In the same chapter, the corres-
ponding performance results are provided, as well as more concrete conclusions,
especially concerning the effectiveness of the framework in combination with ad-
aptive approaches. In this chapter, however, only a brief overview of potential
approaches is considered, and the possibilities in conjunction with the framework
discussed rather on an abstract level (with few exceptions). First, h-refinement
is discussed, where the polynomial order is kept fixed and selective subdivision
of the mesh is done.

3.4.1 H-refinement

Adaptive grid generation assumes establishing an initial discretisation of a given
domain, then refining a given discretisation when needed, and adjusting it.

Initial discretisation starts from a description of the domain, which is then being
decomposed into simplicies or quadrilaterals, e. g., conforming to some ‘regularity’
criteria. Given a vector of local error indicator, a new discretisation providing
smaller local error should be achieved. FElements which should be refined are
marked, replaced by some with predefined smaller diameters and, thus, a new
grid is constructed. The main challenge is to avoid potential degeneration of the
simplices during repeated refinement and the “matching” between the coarse and
the fine zones, and often also improve boundary approximation. These steps can
be repeated as long as the grid is still too coarse to satisfy the imposed criteria.

Adaptive mesh refinement can be described best within the Finite Element con-
text. Namely, the aim is to use as less as possible degrees of freedom, however,
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the approximated solution must have a required accuracy. The usual FEM ana-
lysis would proceed from the selection of a mesh. To determine whether or not
the mesh is optimally refined, a solution on a finer mesh is typically calculated
and a comparison of the two solutions is made. If needed, the existing elements
could either be divided into smaller ones, i.e. by adding more nodes, keeping the
original element boundaries intact, or a complete re-meshing has to take place.
Then, a new set of element shape functions is developed for all the nodes. The
shape functions may be generated from the Lagrange polynomial @]

An obvious disadvantage of the higher order h-elements for introducing hierarch-
ical approaches within interactive computing environment is that “a new set of
shape functions is required upon changing the element order” @] All calcula-
tions of element stiffness matrices and element load vectors have to be repeated.
Therefore, this adaptive technique is not very favourable from the interactive
computing point of view, since it does not offer straightforward possibilities to
profit from the previous calculation, i.e. use a result on a coarser grid for the
computation on a finer one. However, a simulation can keep doing “faster” com-
putation for smaller A and then, once a user stops interacting, start from scratch,
calculating for higher h.

A converging adaptive algorithm for linear elements applied to Poisson’s equation
in 2D, e.g. can be found in @} An error is estimated starting from a coarser
triangulation, and a sequence of refined triangulations and approximate solutions
are generated. Another example of a method to generate a sequence of success-
ively finer or grids on enlarﬁ domains until the desired accuracy of the solution

.

is reached can be found in

3.4.2 Up- and Down-Sampling

Due to the mentioned disadvantages for h-refinement within classical h-FEM,
alternatives should be considered. For some problems, especially those which
have smooth solutions away from the boundaries, when doing A-refinements on a
structured grid, e. g., it is possible to do simple upsampling from the coarse grid
to the fine grid and use it as an initial guess for the solution on a finer one.

In the 2D heat conduction simulation in Chapter [, upsampling has resulted in
(visually) satisfying solutions. In applications such as tone mapping, bilateral
upsampling ] from a coarse grid solution produced also good results. In ﬂﬁ]
global progressive upsampling of the edited image is done. To improve solution
at the seams, local refinement has been performed. Then, an iterative method
(CG or SOR) runs on original pixel data with higher resolution.

Downsampling can be used when switching again to the coarser grid, e. g. in the
case of repeated user interaction, where some kind of averaging of the values on
a finer grid can be used to get an initial guess value on a coarser grid. Both of
these techniques would be applicable to the AGENT test scenario in Chapter [
They would typically involve intergrid transition functions, similar to those used
in multigrid algorithms, as illustrated in Eq. and Z13] for instance.
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Figure 3.9: Upsampling (a value from a coarser grid is assigned to the corresponding
grid cells of a finer grid) and downsampling procedure (by averaging values
on a finer grid, the corresponding value on a coarser grid is gained).

3.4.3 P-refinement

In the p-refinement methods @, @, @, @, @, @], the initial mesh elements
are kept unchanged, and selective or total increase in the polynomial order is
applied. However, the polynomial order, p, of the shape functions can be enriched
by adding higher order term(s) without changing the existing lower order shape
functions. These shape functions are generated, for example, from Legendre
polynomial. They are called hierarchical shape functions @3]

Adaptive p-refinement is conceptually simpler than adaptive h-refinement ﬂ@]
The hierarchical shape functions allow for the re-usability of all existing element
stiffness matrix terms in the next solution. As a 1resultZ ﬁ—reﬁnement seems to be

a better adaptive refinement approach @, @, @, , , , ]

If uniformly increasing p for all elements in FEM, the order of the shape function
in the mesh is uniformly increased until the convergence is achieved according
to the desired accuracy. In many cases, extrapolation type error estimators are
used HE]

In non-uniform p-refinement, the order of shape functions is increased in some
selected elements, if an error is large. For this, an error indicator is required, i. e.
a feedback parameter calculated from the available information of the previous
solution, which is used to select the region or the elements for refinement @]
The use of non-uniform p analysis in adaptive p-refinement will result in an im-
provement in computational time for solving the equations and less memory us-
age. The issues which could arise related to having to store many records to track
all the information and data needed for mesh upgrading are discussed in @]
Namely, element sub-stiffness matrix terms which correspond to the interaction
between the degrees of freedom corresponding to the high order shape functions
and the existing degrees of freedom must be stored in the places where an equa-
tion solver and an error estimate can use them M] Once this is provided,
interactive computing framework could be easily plugged in to help switch to
different p-refinement levels when appropriate. This means to switch to a lower
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Figure 3.10: Hierarchical shape functions for p = 1 (po, p1), p = 2 (p2) and p = 3 (p3).

one when there is an update, then gradually to a higher one and fetch all the
intermediate results to provide feedback to the user.

There are polynomial sets, such as Legandre polynomials, which retain an or-
thogonal property with the increase of polynomial order @] It allows the
polynomial order to be increased without changing the existing lower order ones,
i.e. the element higher order shape functions are simply added to the existing
shape functions for each desired element. For example, in 1D, a “bar” element has
its natural coordinate £ in the range [—1, +1] and its hierarchical shape functions
are given in Eq. B | (see also Fig. B10).

(1-¢)
(1+¢) (3.1)

(&) = oy s (1 - P71, p=23...

NI—= N

After rearrangement, the corresponding finite element equation can be written
as
k‘uT kin| di) | fi (3.2)
kin® knn| |dn In

and [k, [knn], and [fr] are the element sub-stiffness matrices and the element
load vector corresponding to the newly introduced hierarchical shape functions.
An advantage of using p-elements is that the elements can be upgraded efficiently
to any desired order. Element sub-matrix [k;;], which is calculated for the initial
set of shape functions is reused in Eq. B2 Thus, only the [k;;] and [kpy] terms
are calculated.
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3.5 Data Transfer

Experience gained from the application scenarios has shown that it is essential
for a user to be able to send desired updates asynchronously from receiving the
previous result. The component related to transfer of a simulation result plays
a remarkable role in an interactive steering process. Fast data transfer remains
a challenging task for developers in the case of high accuracy requirements and,
thus, very large data sets generated on the simulation side, despite of the net-
works with ever-growing bandwidth. Therefore, this chapter also discusses non-
blocking, mostly asynchronous transfer of the update data to the simulation, as
well as how one can achieve immediate transfer of a simulation result by selecting
the information really needed by a user.

3.5.1 Our Framework Functionality for Communication

The communication calls used in the framework are wrappers around MPI com-
munication calls. For sending, non-blocking routines are used, due to the require-
ment not to keep the sending process pending more than necessary. However, it
has to be guaranteed at least that the data is copied to the send buffer and,
thus, MPI_Bsend is utilised. For receiving an update, the simulation process
uses a blocking receive, but only after the message is confirmed to have arrived
by non-blocking and asynchronous MPI__Iprobe, which returns immediately. The
simulation result is sent by a standard send function, which is blocking when a
message is larger than a send buffer and non-blocking otherwise (MPI decides
internally). The same result is received by a user process by a blocking receive,
since this thread of execution is asynchronous with others (i. e., the thread fetch-
ing and sending user updates and the rendering one). This is detailed in the
subsections that follow.

3.5.2 Fast Data Transfer

As Chapter 2] states, the improvements in network bandwidth are not the only
prerequisite for fast transfer of a simulation result. They are often mandatory
in interactive environments where update rates have to be extremely high, i.e.
less than a second. Another prerequisite, however, are network strategies, either
software or hardware based. These strategies and the state-of-the-art implement-
ations are named in the same chapter.

In addition to the flexible asynchronous communication pattern, the framework
offers a feature similar to the sliding window described in Chapter 2l Namely, a
user can pre-define the sliding window size in each spatial direction and choose
the left upper corner of the data he would like to preview, thus, receive only the
result within this spatial frame (Fig. B12). In the current version, the window
size is assumed to be fixed and corresponding to the visualisation resolution. The
future work in this direction should cover the case when the specified size exceeds
the size of the pre-defined window, when some kind of extrapolation of the values
has to be done to fit the data into the given window. This way the amount of
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Figure 3.11: Our framework functionality for communication.

data to be transferred would remain constant all the time and restricted to a
certain region of interest.

3.6 Visualisation and GUI Front-End

The experience based on the four main test cases has shown that it is crucial
to keep the three separate threads — the one in charge of user interaction, the
rendering thread and the communication thread — asynchronous to each other
(Fig.BI3). Otherwise the operating system could assign computational resources
to the more loaded rendering thread, thus, would not allow for user interaction
to take place.

Typically, it is a users’ responsibility to interpret the results, since the framework
cannot predict all the requirements. It is only in charge of storing the data in
both sending (i. e. on the simulation side) and receiving (i. e. visualisation) buffer.

3.6.1 Challenges

When it comes to user interface and visualisation APIs, sometimes the events
which should be delivered to a widget must be put into a special thread-safe queue
for delivery. If for instance a rendering thread is not the main thread, different
visualisation libraries provide different thread-safe objects. Qt version 3 ﬂﬁ]

provides one such (see Code BI3]).

Similar is supported by WxWidgets library HE] (see Code B.14).
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}

Thread 1| Thread 2 || Thread 3.

Catch user | Rendering | Receive

interaction/ loop() result()
send|()

i

// Within the rendering loop:
QCustomEvent *event = new QCustomEvent (event_ id);

QApplication :: postEvent (receiver, event);

msleep (100);

Code 3.13: Thread safe queue of events in Qt3.

Figure 3.13: Visualisation and GUI front-end
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wxPaintEvent event (wxEVT_PAINT);
wxPostEvent (m__frame, event);

Code 3.14: Thread-safe queue of events in wxWidgets.

3.7 Results

3.7.1 Overhead of the Framework

The comparison of the overheads of the framework are given both for multi-
threaded and distributed parallel scenario. The overhead is not significant, des-
pite of the perpetual, non-realistic, user interaction (in few milliseconds intervals).

Results for (multi)threaded Jacobi — overhead of the framework

First, one would like to evaluate potential overheads caused by integration of the
framework for a previously given multithreaded example scenario.

For the cases of single-, two- and four-threaded simulation and the different initial
problem sizes: 1000 x 1000 (Fig. BI4), 500 x 500 (Fig. BI6]), and 300 x 300
(Fig. BIT), the overhead in terms of the execution time is up to 10 %. It is
caused only by the cyclic signal invocation every millisecond. It is assumed that
there is no update available at this time and that the simulation may immediately
proceed. For the problem sizes 1000 x 1000 and 300 x 300, almost perfect (linear)
speedup has been achieved, with or without integrated framework. Around 10 %
lower speedup with the framework integrated, for the 500 x 500 scenario, is due
to synchronisation issues with threads and alarm. Namely, it is required that the
last set alarm within one iteration expires before the new iteration starts. One can
improve this by finding and setting a more optimal alarm interval. Furthermore,
the total execution time (and the speedup rate) in the case of an update, depends
on the time when the update occurs, due to these safety-grounded synchronisation
issues of the alarm and the computation. The speed of getting the result can
be accelerated by a hierarchical approach. As shown in Fig BI85l the overall
execution time remains similar to the original simulation scenario, i.e. without
the framework integrated, by employing this approach. The approach is based
on switching from one mesh resolution to another according to the frequency of
user interaction.

Distributed Jacobi, results — overhead of the framework

In none of the tests with the distributed test case, i. e. for different alarm intervals,
has the integration of the framework significantly affected the overall execution
time. This holds also when the user interaction has been invoked in 5-millisecond
intervals, which is far more frequent than typically occurs in practice. The results
of the measurements are shown in Fig.[318] where it can be observed that speedup
curves remain almost intact compared to the original simulation.
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Figure 3.14: Multithreaded Jacobi solver, on 1000 x 1000 grid, user interaction rate is
5 ms. Execution times in seconds (y-axis) are provided — based on the
average of several runs — for the computations on 1, 2 and 4 cores (x-axis).

3.7.2 Comparison of the Results for Linear and Hierarchical
Broadcast

Measurements of the “speed” of the signal transfer to each processor — both for
hierarchical and linear algorithm — are presented in Fig. Obviously, linear
algorithm performs slightly better for this relatively small number of processors.
However, for a larger number of processes it might be more advantageous to
use hierarchical broadcast. The result could be sent back the same way to the
master process, which, finally, collects all the parts of the result. This kind of
communication scheme is more advantageous when dealing with larger data.

3.8 Conclusions

In this chapter, the implementation ideas of the framework as well as some tech-
nical details are described. Since the concept of signals is used, it is discussed in
the context of different codes (sequential or parallel). The implementation details
are provided for different operating systems (Unix or Windows) and compilers.
In addition to the challenge of combining signals with multithreading, which is
not said much about in particular standards (OpenMP, e. g.), thus, involves spe-
cial concern and treatment, other challenges come from ensuring memory and
data consistency during sudden interrupts. Asynchronous but reliable commu-
nication patterns between the user front-end and simulation back-end and fast
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Figure 3.15: Multithreaded Jacobi solver, on 1000 x 1000 grid. 2 hierarchies are used,
especially to compare the execution times with the calculation without the
framework integrated (for the same number of iterations). The execution
times in seconds (y-axis) — based on the average of several runs — are close to
each other for the computations on 1, 2 and 4 cores (x-axis), on the expense
of the accuracy for the iterations where user interaction has occurred.
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Figure 3.16: Multithreaded Jacobi solver on 500 x 500 grid: execution time measure-
ments in seconds (y-axis) — based on the average of several runs — for the
computations on 1, 2 and 4 cores (x-axis). The results are provided both for
the initial program and the one with integrated framework with or without

user interactions actually occurring.
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Figure 3.17: Multithreaded Jacobi solver, on 300 x 300 grid: execution time measure-
ments in seconds (y-axis) — based on the average of several runs — for the
computations on 1, 2 and 4 cores (x-axis). The results are provided both for
the initial program and the one with integrated framework with or without
user interactions actually occurring.



3.8 Conclusions 107

64

32

16

-
-
-
g

e
4
-
3
3
%
43
-~
Z

no alarm ——
alarm set to 1 ms-------
alarm set to 0.5 ms--% -

1 4 9 16 36 64

number of processors

Figure 3.18: Speedup results for distributed Jacobi solver used for 2D temperature con-

duction simulation on 1000 x 1000 grid. Speedup curves are provided for
the scenario without integrated framework as well as for the scenarios where
alarm is set to 0.5 and 1 millisecond intervals. The overhead of the frame-
work itself is negligible and speedup results are kept similar to the scenario
without integrated framework.
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Figure 3.19: Measurements for linear vs. hierarchical broadcast algorithm on Infin-
icluster at LRR-TUM (Opteron nodes, four AMD Opteron 850 processors
2.4 GHz each; equipped with two Gigabit Ethernet ports and with a
MT23108 InfiniBand Host Channel Adapter card from Mellanox). Along
the x-asis, the number of processors are presented; along the y-axis — the
time needed to broadcast an update. It can be observed, due to delayed
responses of some of the nodes, for the messages sent to more than 32 pro-
cesses that there is more time needed for a message to arrive. However,
if the running processes are enforced to synchronise at the beginning of
the program execution, there is no significant delay noticed for 64 and 96
processors any more.
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data transfer are very important, thus, they are tackled as well. Finally, hier-
archical simulation approaches are compared in terms of their applicability in
conjunction with the framework. These approaches are neither a part nor a re-
sponsibility of the framework, however, are supported and advised to be utilised
whenever possible.

To integrate the platform into any application scenario, a few modifications of
the code have to be made by the user. Since these modifications are only minor,
all of them are listed:

— All the loop indexes which will be affected by the interrupt handler, i.e.
interfaces to the framework, have to be declared global and both atomicity
of their updates and prevention of the compiler optimisations which would
lead to incorrect value references insured.

— The integrity of each user-defined ‘atomic’ sequence of instructions in the
simulation code has to be ensured.

— All the variables related to the potential locking mechanisms, such as mu-
texes, semaphoras, etc. have to be declared global and “unlocked” within
the signal handler. A user himself has to know and decide about his own
variables.

— Critical sections have to be replaced by scoped locking mechanisms and
corresponding variables should be declared global. Another option would be
to block the desired signal in this part of the code, however, for guarantees
for correct program execution, a user would have to look out of the OpenMP
standard, thus, also out of the scope of what framework guarantees.

— A user has to be aware of his operating system and compiler related issues
and choose an appropriate option supported by the framework.

— The calls to our send and receive functions have to be included in the
appropriate places in the programs. However, a user himself has to instruct
the interpretation of the data (e.g. in the receive buffers).

— Finally, he has to enable the regular checks for updates by including ap-
propriate functions which will examine and change the default signal (in-
terrupt) action and specify the time interval in which these checks should
be made. These functions and their behaviour are system and compiler
dependent. Most of the differences are documented and discussed within
this chapter.

— Fast transfer of the data is ensured by selection routines which we provide.
A user should be able to select part of the domain he wants to preview.

A user should also keep in mind that the prevention of compiler optimisations
is done only to ensure the correct program execution in generic case. Some of
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the optimisations can easily be enabled again by a user if he finds guarantees
for the correct execution elsewhere. The variables which are manipulated within
the signal handler are integers, often loop variables, and typically not numerous.
If those variables appear elsewhere in the code, and a user would like them to
remain local, they can be renamed in the segment of the code which is of interest
(thus, declared global only there). The intention is to provide a generic, easy to
integrate concept, thus, at several points a good trade-off has to be found. The
concept is probably not the best suited for every application, however, is well-
suited for many. It provides easily accessible, minimal invasive interface for a
user whose field of expertise, or focus, may be different from real-time interactive
computing.
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Chapter 4

Application

4.1 Interactive Computing in Engineering Applica-
tions

Chapter [ briefly described a wide range of the application fields using different
concepts of, and tools for, interactive computational steering. It also explored the
way experts in those particular fields, or more precisely in those particular scen-
arios, can profit from the adopted tools. The implemented, rather generic, frame-
work described thus far is intended to support multiple applications. It must now
be validated and evaluated through existing practical examples — namely, various
engineering application codes. In this chapter, a few scenarios are presented in
which the implemented framework itself has been integrated and tested.

Various conditions have significantly helped determine challenges, potential lim-
itations, and areas of further investigation. These include a high diversity in
terms of engineering fields, programming languages, code design and structure,
user interaction interfaces; the overall system being distributed or local; the com-
putation running in parallel, on multiple processing cores/nodes, or sequentially;
etc. These conditions also support the exploration of possible additional require-
ments, which might be implemented in the future to provide additional features
and extensions. A brief conclusion at this point is that the pool of different classes
of applications is enormous, and each class, or subclass, has many rather specific
characteristics — all of which would have to be supported by the framework. In
order to achieve this, the user is still expected to provide some necessary inform-
ation related to his specific case. The framework itself, as clarified in Chapter B3]
cannot predict, for example, the names and types of variables to be steered,
nor how to match the received simulation result from the message buffer to the
visualisation data.

Before all the application scenarios are described in more detail, a brief classi-
fication of test cases in terms of diversity is provided, clarifying the challenges
and the differences in integrating the framework. Namely, 2D heat conduction
simulation, AGENT, and the Bone test cases have the user component and the
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simulation component implemented as separate MPI processes, communicating
the data over a communication network; all the SCIRun components typically
run on a local machine.

Concerning the simulation itself, 2D heat conduction and the AGENT sequential
computations discussed in this chapter use central FD and MOC approxima-
tion methods, respectively. However, FD approximation for a heat conduction
simulation is also seen in the distributed parallel test case in Chapter [l where
the resulting system of equations is solved using the Jacobi solver. The applic-
ations tested within the SCIRun environment run multithreaded (particularly
their concurrent parts, such as solvers of the systems resulting from a corres-
ponding h-FEM approximation). The concurrent parts of the FCM-based Bone
simulation component within the interactive environment run multithreaded as
well (e. g., assembly function for the stiffness matrices). Moreover, the processes
running for different polynomial degrees, as described later in more detail, are
implemented as separate MPI slave processes, communicating the data to and
from the user via one master node — a component of the framework itself. A
distributed parallel stand-alone version of the solver has been developed with
the intention of speeding up the computation and integrating it into the steering
environment once the optimal parallelisation strategy is found.

Those applications also follow different design patterns. For instance, the ex-
ecution design pattern in SCIRun is MVC, while the structural pattern is the
module pattern. The concurrency pattern in Bone and SCIRun computations
is lock, but on the level of the whole application in SCIRun, for example, it is

Scheduler.

Programming languages used are: C++ in 2D heat conduction and SCIRun,
native C in Bone (C++ only for the visualisation component), and Fortran in
AGENT. The simulation component of all the application scenarios run on Linux
systems, and in the case of the Bone environment, the visualisation component
runs on Windows OS. For simulations running on Windows OS, only small tests
have been done so far, yielding promising results in terms of successfully invoking
a timer in small cyclic intervals to manipulate simulation specific variables, as
described in Chapter Bl However, this scenario requires further investigation in
more complex, “real-life” simulation test cases.

The different levels of challenges in integrating the framework from the user’s
point of view are discussed for each scenario at the end of every subsection of this
chapter. The methods and results presented in this chapter were developed by
the present author, and can be found in m, @, @ E?ﬁ @f

4.2 2D Heat Conduction Simulation

4.2.1 Problem Description

To evaluate the concepts proposed in Chapter [3] as the first scenario, the frame-
work was integrated into is a simple 2D heat conduction application. The first
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version of the application was implemented for lecture at the Chair for Com-
putation in Engineering (TUM) in 1998 and has little scientific impact; however,
it has offered a sound basis for the first integration of the framework into an
existing interactive environment. Namely, it aims at exploring heat conduction
in a domain, where different states and starting conditions tend toward stable
equilibrium. In light of the alternating heat sources and their distribution in the
finite domain, the application intends to estimate those equilibrium states for
each setup.

4.2.2 Simulation

The simulation back-end is a C++ implementation that simulates heat conduc-
tion in 2D (described by Laplace heat equation) in a given region. After dis-
cretising the polygonal domain using a Finite Difference scheme for updating the
values, one comes up with the well-known five-point stencil (Eq. 24]). The sys-
tem of linear equations is then solved using the Gauss-Seidel iterative method
(Eq. 210, where all the elements of vector f are set to zero, according to the
requirement of achieving the stable equilibrium state). Faster solvers, such as
Conjugate Gradient, are not used since this application scenario serves only to
test the framework, and it is more convenient to preserve the simplicity of the
solver algorithm.

4.2.3 Interactive Visualisation

The graphical user interface for this application is implemented using the wz-
Widgets library ﬂﬁ] OpenGL is used to visualise the gridlines of the discrete 2D
domain with the assigned temperature (whose values appear along the vertical
axes, pointed upward, as the “height” of the point). The range of temperatures
(low to high) are mapped to the range of colours in the visual representation
(green to red, respectively). This information is redundant, however, due to the
already obvious “height” of each point.

4.2.4 Communication Pattern

The simulation and visualisation are implemented as separate MPI processes,
communicating the update data (i. e., the position of the heat sources, boundaries,
maximal number of iterations). The update events are caught by the user front-
end process and stored in the event queue. Each item of the queue is an object
with attributes representing a new z, y coordinate and the type (char) of action
made by a user — representing, for example, mouse click, mouse drag, mouse
release and similar events. Entries from the queue are sent to the simulation
process and then removed from the queue. Once calculated, the result is sent
back to the user. A simple communication scheme illustrating this is shown in
Fig. 41l This exact setup was implemented in this work for testing purposes.

Lthe course Advanced Computational Methods 2 of the Master Program Computational
Mechanics in 1998 [7(]
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Figure 4.1: Heat conduction — 2D heat conduction simulation is running in the back-end.
The solution is approximated using FD, and sent — as soon as it satisfies
accuracy requirements imposed on the Gauss-Seidel iterative solver — to the
user interface/visualisation front-end.

4.2.5 Initial Settings

The very first settings include grid generation parameters (i. e., the resolution in
both spatial dimensions) as well as the solver parameters (i.e., error tolerance
and maximal number of iterations for the simulation). The user specifies these
parameters through a graphical user interface (Fig. [£2). After providing these
parameters, the user can define the boundary points of the domain, and the points
(i.e., heat sources) with certain fixed values of the temperature set (Fig. 2.

4.2.6 User Interaction

A user can interact with the simulation during its execution time by adding,
deleting or moving heat sources and boundary points, changing the maximal
possible number of iterations or error tolerance.

4.2.7 The Framework in Action

Every time a user changed something, an event was added to the event (task)
queue and a real-time signal was raised on the user front-end indicating the
change. The signal handler sent the data about the collected events to the simu-
lation through a message passing interface. (A similar mechanism could have been
also implemented using two separate threads for user interaction and communic-
ating the data.) The simulation, on the other hand, became aware of the message
through the SIGALARM invocation. In the Gauss-Seidel solver algorithm, the
loop index variables in both spatial directions were manipulated, restarting the
computation. The beginning of the new computation required reinitialisation
steps (e. g., initial guess for the solution was reset to a zero vector). If either the
maximal number of iterations or the error tolerance was changed, these values
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interactive_membrane =

Figure 4.2: Initial settings: solver and mesh parameters, positions of boundary points
and heat sources. Once a simulation is run, the overview of the temperature
distribution is visualised after each iteration IE]

were reset for the new computation. The same occurred for the new positions
of heat sources and boundary points. A reader may refer again at this point to
Fig. BI1] and the simplified pattern including MPI communication and probing
routines.

As illustrated in Fig. E3] a calculation on a 300 x 300 grid immediately raised
doubts as to the feasibility of instantly estimating the equilibrium state for points
of the domain far away from heat sources. This was due to the short intervals
between two restarts in the case of intensive user interaction. Here a hierarchical
approach becomes necessary to provide instant feedback, which still satisfies the
user despite its lower accuracy.

4.2.8 Hierarchical Approach

The hierarchical approach switched back and forth among several different grids,
depending on the frequency of the user interaction. The principle was as follows:
Initially, the desired grid was used for the computation. In the case of a user
update, the simulation process recognised it, and as soon as it restarted the
computation with the updated settings, it switched to coarser grids — with the
level of coarseness dependent on the frequency of the user’s activity.

In this particular test case, three different grids were used: the initial 300 x 300
grid; the intermediate one of 150 x 150 for a low pace of user interactions (e.g.,
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Figure 4.3: Left: the simulation running; right: the equilibrium state cannot be estim-
ated due to frequent user interaction, thus, frequent restarting due to the
interrupts.

adding or deleting heat sources or boundary points); and the coarsest of 75 x 75
(Fig. @4), for a very high frequency of moving boundary points or heat sources.

In general, at the initial point of interaction, one does not gain results as accurate
as desired. However, the tendency of the running simulation in the overall domain
can be easily and instantly observed, independently from the number and the rate
of the applied changes. At some point the user may reduce his pace of interaction,
trying to explore a “detailed”, more accurate result. At last, when the current
settings seem to satisfy the user’s requirements, no more interaction takes place,
and the stage of calculating even more accurate results is reached for very detailed
analysis.

More specifically, as soon as the simulation at the back-end realised that there
has been a front-end intervention in a certain time interval, it forced the actual
computation to finish early and switched back to one of the coarser grids, depend-
ing on the interval (if less than 10 milliseconds, to the coarsest grid, otherwise to
the intermediate one). The computation started then with the updated settings.
When there was no user interaction, the interval before switching back from the
coarsest to the intermediate grid was 10 milliseconds, and from the intermediate
to the finest grid it was 100 milliseconds. These values were estimated by several
experiments.

In this case, unfortunately, the results of the previous computations on the coarser
grid were discarded. A multi-level method was used to speed up reaching the heat
equilibrium on finer grids, where the previously calculated results were reused.
This is discussed in more detail further on.

An upsampling algorithm was employed to not waste the results of computations
gained during the highly interactive mode. The results on the coarsest grid
were taken into account when switching to the finer one. The hierarchy of the
grids offers benefits analogous to a multigrid algorithm, albeit with a different
approach. The multigrid algorithm accelerates the convergence of a basic iterative
method by global correction from time to time through solving a coarser problem
(i.e., descending to the coarser grids and calculating an error). In contrast, our
scheme (when the user interacts) started with the solution on the coarsest grid



4.2 2D Heat Conduction Simulation 117

T

L

+
il

VL e
X

|
L

i

Py e
I

Figure 4.4: Switching between different mesh parameters. In the case of a user starting
moving boundaries, or heat sources, it was instantly switched to the coarsest
grid; in the case of adding/deleting heat sources or boundary points, it was
immediately switched to the intermediate grid. When a user stops interact-
ing, it was gradually switched from one grid to the next finer one, until the
finest one is reached.

and only used the result we gained as an initial guess of a result on a finer
one m,, @] (Fig. @3). This approach provides a sensible preview to the user
due to the smoothness of the solution in most of the domain. Once the desired
setup is found, the simulation can be executed for it, starting from scratch with

a zero vector as an initial guess.
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Figure 4.5: Multi-level approach.
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4.2.9 Results

Due to the analogy of the Gauss-Seidel to the Jacobi scheme, the overhead graphs
for the framework in terms of its execution time are comparable to those for the
simulation with the sequential Jacobi solver algorithm presented in Fig. B.I7]

The results, presented also in m, @], show clearly that the convergence rate is
higher with the multi-level approach. For the examples of the settings tested, the
number of iterations needed for convergence both on the intermediate and the
initial grid can be improved by a factor of 2. This held for the initial 300 x 300
grid and several different heat sources Pj(x;,y;) and boundary Bj(z;,y;) points
with corresponding ordered pairs (xg, yx) of x- and y-axis indices respectively and
the error tolerance set to e — 05. Nevertheless, measurements also showed that
the variation of the solution on the finest grid is around 4.5% compared to the
intermediate grid, and around 14.6% compared to the coarsest one.

4.2.10 Effort to Integrate the Framework

As a conclusion to this application scenario, a brief summary is presented below
of the steps in integrating the framework:

— The framework function for overriding the default SIGALRM signal handler
was inserted in the simulation code (see MOD. 3 in Appendix).

— The loop variables manipulated within this function to skip the redundant
computation were declared global, sig _atomic__t and wvolatile (see MOD. 1
in Appendix).

— The signal handler function was edited according to the needs of a specific
code and compiled together with the rest of the code.

— The implementation of the signal handler function in this case consisted of
probing a message from a user, manipulating the loop indexes, if needed,
and specifying the hierarchy depending on when the last update occurred
(see MOD. 4 ’for hierarchical approach’ in Appendix).

— Depending on the hierarchy, the program had to switch to a pointer to the
corresponding grid (see Gauss-Seidel solver function in Appendix). (The
hierarchical approaches in general are not part of the framework itself, but
rather a concept well supported by the framework, and thus these should
not be considered as additional effort in integrating the framework.)

— Reinitialisation had to be done at the beginning of the interactive computing
loop. When switching from a coarser to a finer grid, this was done by
interpolating values from the coarser one as an initial guess on the finer
one. When switching to the coarsest grid, the initial guess was a zero
vector.

— The appropriate communication function calls were employed (see MOD.
2, MOD. 4, MOD. 5 and MOD. 6 in Appendix).
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From the user’s point of view, to enable the framework functionality for inter-
rupting the simulation was very straightforward, and took a couple of hours at
most. Implementing the hierarchical approach (which is technically not a part
of the framework, but is worth mentioning) was more time consuming (in terms
of a couple of working days). Here, an optimal automatic detection when to
switch from one hierarchy to another (based on time intervals in-between two
user interactions) had to be enabled, which required numerous experiments.

4.3 AGENT Software

4.3.1 Problem Description

While tremendous advances in computer hardware and computational methods
enable a variety of complex physics problems to be analysed and simulated with
increased accuracy, these experiments still require a significant amount of time.
This refers to the numerical modelling of the particle transport methods as well,
which has even been abandoned in the past due to computer power, speed and
memory limitations @] In nuclear engineering in particular, both high-accuracy
and real-time simulation of big reactor cores — diverse in material and other
properties — is still beyond reach. Researchers in this field, however, aim to have
more impact on this time-consuming process, especially in cases when certain
acceleration methods allow for faster convergence towards a solution with little
to no loss of accuracy.

4.3.2 Simulation

AGENT (Arbitrary GEometry Neutron Transport) solves the neutron Boltzmann
transport equation, both in 2D and 3D, using the Method of Characteristics
(MOC) @] To approximate the problem, the continuous domain has to be
discretised. First, a number of parallel rays (i.e. characteristic lines, see Sub-
section 2Tt Method of Characteristics) are generated in a discrete number of
directions to represent neutron trajectories. Along those, as shown in Subsec-
tion .21}, the differential operator in transport equation reduces to the total
derivative. Second, the regular geometry mesh of the reactor domain is gener-
ated and the intersections with the parallel rays is found. Discrete scalar flux is
then iteratively calculated within the sequence of multiple nested loops.

Modelling the exact geometry of a reactor system requires a fine spatial discret-
isation to keep material properties on each discretisation unit constant, and thus
to provide an accurate solution to the problem. On the other hand, a good initial
guess for the scalar flux always tremendously speeds up the convergence, and this
property is used to considerably profit from the implemented interactive steering
concept ].
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4.3.3 Interactive Visualisation

To examine the suitability of the chosen parameter set during the run time, a user
must be able to understand the properties of the current solution. Therefore, the
simulation periodically outputs the current result for visualisation. The visual-
isatioﬂ-rzl_4| is performed on a local machine, using the ImageVis3D volume rendering
tool [74].

Update
parameter /Simulation back-end
Network ( Iteration 1
Simulation Iteration 2
PC/ I | Provide a result m
Workstation new value

Figure 4.6: AGENT simulation back-end runs on the remote cluster; visualisation front-
end consists of a simple console interface where a user can interrupt the
simulation and modify the desired parameters.

4.3.4 Communication Pattern

The steering environment consists of the simulation, which runs on a remote
server, and the visualisation component, which runs locally. The visualisation
system queries the server data. The server maintains a list of available simulation
results, and the client connects to the server, queries the data and downloads it to
the local machine where it is visualised. This approach can be improved for larger
dataset, however the current solution was sufficient for the data sizes presently
used for running the AGENT software HE]

4.3.5 Initial Settings

A range of parameters has to be specified as the initial settings, such as accuracy,
number of iterations, geometry grid resolution, number of azimuthal angles, ray
separation and initial guess for scalar fluxes. The corresponding set of variables
in the program defines the interface to the framework.

4.3.6 User Interaction

The user can intervene at any point with the running simulation via a simple
console interface. Typically, after previewing an intermediate result achieved by
changing a simulation parameter, he might want to further optimise the exper-
iment. When a keyboard event signals the simulation to stop, the new values
of the desired parameters must be provided via the same console interface. The
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updates are automatically applied within the restarted computation, or, more
precisely, at the beginning of the interactive computing loop.

4.3.7 The Framework in Action

The framework aimed to provide an instant response to the change of paramet-
ers made by a user in the AGENT simulation, ensuring that the regular course
of the computation could be interrupted at any point. This was accomplished
in this case via user-generated keyboard events. The default behaviour of the
SIGINT signal was overridden so that certain simulation variables were automat-
ically assigned a value outside of their domain. These variables also determined
the range of a few loop indexes in the code, such as the number of planes and
the discrete number of parallel discretisation rays — so-called azimuthal angles.
This manipulation of the specific variables was done, as always, within the signal
handler. Afterward, control was given back to the simulation, which then con-
tinued from the state saved at the previous interrupt-point, skipping most of the
then outdated computations.

The framework directly supports the most straightforward procedure of steering
the variables which do not affect the dimensions of the rest of the data — such
as the maximal iteration number or the convergence criteria. In principle, the
concept of the framework is flexible: a user can actually choose whether to proceed
with the running iteration (without manipulating loop variables), and only then
to start anew with the updates, or to skip the rest of the iteration. On the other
hand, the support for steering of the discretisation parameters is categorised as
a hierarchical approach.

4.3.8 Hierarchical Approach

This category typically refers to steering the discretisation parameters used in
numerical modelling and is thus considerably more challenging. For the reasons
mentioned in the previous subsection, the hierarchical approach assumes that the
user still wants to preserve and reuse some of the values from the previous calcu-
lation as an initial guess for the solution in order to accelerate the convergence.
It is distinguished between the two subcategories.

The first subcategory refers to the discretisation parameters: the numbers of
azimuthal angles, polar angles and boundary edges or ray separation. In the
AGENT numerical model, for instance, the number of azimuthal angles represents
the discrete number of directions in which neutrons move; thus, an increase in this
value increases accuracy, but prolongs the computation. One actually accelerates
the convergence process with no loss of accuracy by running the simulation first
for smaller numbers of azimuthal angles and then using the calculated scalar
fluxes after a certain number of iterations as an initial guess for the solution on
a higher resolution grid (Fig. ET)).

The implementation of the steering pattern in AGENT requires more effort if
the resolution of the geometry mesh is manipulated, and thus the values of the
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Figure 4.7: Switching between different numbers of azimuthal angles. The small num-
bers (1 and 2) are shown only in order to simplify the picture.

coarser mesh must be interpolated to the finer mesh as an initial guess. This
is because all variables and fields must be properly reinitialised. However, it is
estimated to be very beneficial and is therefore planned to be carried out at the
University of Utah’s Nuclear Engineering Program (UNEP) in the near future.

Future research in this direction shows promising potential M] based on the
results already obtained by experimenting with the number of azimuthal angles
and on the fact that the framework has already yielded excellent results sup-
porting conceptually similar algorithms in other scenarios, such as the multilevel
approach in the 2D heat conduction simulation in Section or other kinds of
hierarchical approaches described later in Section
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Figure 4.8: Switching between different geometry mesh parameters. In order to re-use
the previous calculation as an initial guess, the values would have to be inter-
(when switching from finer to coarser mesh) or extrapolated (when switching
from coarser to finer mesh).
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4.3.9 Results

For this particular scenario, one solver iteration (i.e. one update which can be
visualised) may take longer than real-time depending on the predefined problem
size and convergence criteria for the solver. Nevertheless, it is most important to
be able to immediately apply updates during the execution time and to use the
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results from previous iterations to accelerate the convergence. To estimate the
effectiveness of the framework, the measurements are made with regard to the
simulation’s responsiveness to user interaction — that is, the time needed to restart
the simulation — as well as the CPU-time/solver convergence acceleration from
changing the parameters during the simulation run time. The measurements in
this subsection are published in detail in ﬂm, @] Here, most of the published
results and conclusions are given in brief.

Time to restart the simulation

To evaluate the effectiveness of the framework, as reported in M], the tests
were performed for a fine discretisation along the z-axis based on 20 horizontal
planes, each of which is further discretised by a 300 x 300 geometry mesh and 36
azimuthal angles (parallel rays along which the neutron transport is simulated).
The loop variable representing the number of planes (nPlanes) was manipulated
first in the signal handler, setting its value to —1; thus, the time needed to restart
the iteration at any point during its execution was reduced from 500 seconds — the
execution time of one, outermost iteration for this choice of simulation parameters
—to 25 seconds. Manipulating further the number of azimuthal angles (nAz), this
restart took only few seconds; whereas, by manipulating both nPlanes and nAz
it took a second or less, no matter at which point a user performs a change.

As the measurements indicate, for the currently used data input, there is no need
to manipulate more than the two aforementioned simulation variables to instantly
start the computation anew. However, in the case of larger problem sizes, it might
be desirable to manipulate more loop-range parameters, such as the number of
energy groups to prevent any delay in the restart M] The framework allows
for additional variables to be added by a user for steering.

Experiments

Since the AGENT code solves the neutron transport equation using an iterative
process, two convergence criteria are used. The first is the value of relative
difference for the multiplication factor between iterations (kdiff), and the second
is the maximum relative difference of zone flux for all zones, i.e. with the same
material properties. It is now considered how steering different parameters can
accelerate convergence towards the solution.

The experiments were done after the integration of the framework at the UNEP.
In the experiment described in @], a user starts the simulation with a non-
optimal set of initial parameters; thus the convergence follows a slow trend. If the
simulation is interrupted during a particular iteration, the next experiment could
be started with the same set of parameters by conserving the same geometry mesh
but refining the MOC resolution parameters. The resulting solution will improve
toward the best estimate and also in a shorter computation time. Fig. shows
the values for the solution (i.e., phigiffmaz, scalar neutron flux). Namely, in
contrast to the previous non-interrupted simulation where at the 600" iteration
the convergence criteria is not satisfied yet, the interrupted scheme reaches the
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convergence criteria around the 500" iteration @], also achieving the more
accurate value of kdiff @]
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Figure 4.9: The results of the experiments done at the UNEP (Hermilo Herndndez,
Tatjana Jevremovié¢). The outcome of this collaborative work is published
in . The picture itself shows that choosing an optimal set of parameters,
the convergence of the solution can be significantly accelerated. Namely, in
the 600" iteration the convergence curve does not meet the limit line yet.
If, however, the simulation is run with the same set of parameters, then is
interrupted in the 249" iteration, when a more optimal set of parameters is
chosen, the solution converges already around 500" iteration.

AGENT simulation steering reducing total CPU time

Another experiment done at the UNEP, described in M], showed the effect of
the interruption early during the AGENT simulation of the TRIGA research re-
actor. The AGENT iterative process started with the low-resolution parameters,
which in themselves — as proved by the previous experiment — do not meet the
convergence criteria, but rather create an initial solution estimate. The inter-
ruption was introduced after a certain number of iterations. Two independent
cases based on MOC resolution were analysed after the interruption: medium
resolution and higher resolution. As reported in @], the low-to-medium inter-
ruption procedure in this experiment provides 15.6 % of the CPU-time saving.
This gain in time increases with the low-to-high interruption procedure which
consumes around 22 % of the CPU time with respect to a high-resolution level
computation.
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4.3.10 Effort to Integrate the Framework

From the user’s point of view, the integration of the framework was straightfor-
ward and also not time consuming. After examining the initial AGENT code,
deciding which variables to register within the framework, and writing reinitial-
isation routines, it took several hours to couple everything together and enable
visualisation after each iteration. The greatest effort was required for the proper
reinitialisation of variables before the new computation starts. This was a kind
of input which, like always, had to be provided by the developer of the simulation
code and method. A detailed and more technical overview follows:

— The framework function for overriding the default SIGINT signal handler
was inserted in the simulation code.

— The C wrappers for signal function, as well as for clearing the previous
signal action, had to be implemented, compiled and linked with the rest of
the code.

— Those functions had to be called from the main program.

— A signal-handler (Fortran) subroutine had to be edited according to the
needs of a specific code, then compiled together with the rest of the code.

— The loop variables manipulated within this Fortran subroutine had to be
visible in all the other subroutines using it in order to skip the redundant
computation.

— The implementation of the signal handler function in this particular case
consisted of manipulating the loop indexes and providing new values for
solver and discretisation parameters.

— Depending on the parameter changed, the appropriate reinitialisation
routines had to be called before the new computation started.

— The reinitialisation of some light parameters, such as the maximal number
of iterations or convergence criteria was straightforward and effortless.

— Steering discretisation parameters required more effort, depending on
whether the parameter affects the solution size. For the number of azi-
muthal angles, a few reintialisation steps had to be taken, which were similar
to actual initialisation subroutines and thus did not require major effort.

— The geometry mesh parameters require interpolation of the values from
one mesh to another and thus more user effort. However, this has yet to be
tested.
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output port

Figure 4.10: SCIRun network of modules, connected via input/output ports. For each
of the modules, a small widget with an interface to different module-related
parameters can be open.

4.4 The SCIRun Software

4.4.1 Problem Description

SCIRun [93, 124, 134, 125] is a Problem Solving Environment intended for in-
teractive construction, debugging and steering of large-scale, typically parallel,
scientific computations [150]. It is a modular, easily extendable software pack-
age based on dataflow programming, and it provides an efficient and comfortable
environment for exploring different computational models.

4.4.2 Simulation

A SCIRun simulation is designed as a network of modules connected via in-
put/output ports (Fig. EI0). It allows for adding new modules and easily modi-
fying each of them without affecting others. Object-oriented SCIRun code uses
the Model-View-Controller design paradigm (Fig. [£11]), where the Controller en-
tity — so-called Scheduler — is in charge of all other modules and their priority of
execution. Storing one module in the execution queue causes all modules with
input ports attached to that module to be also scheduled for execution.

The simulation test cases for the integration of the framework are: (1) a sim-
ulation that facilitates early detection of acute heart ischemia and (2) two
defibrillation-like simulations on two different domains — the first being a sim-
pler, homogeneous cube domain, and the second an inhomogeneous human torso.
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Heart ischemia model

This application aims to generate a quasi-static volume conductor model of an
ischemic heart based on data from actual experiments ﬂﬁ] to help early detection
of heart ischemia. The modelling pipeline requires the generation of experiment-
specific models of the myocardium, based on the magnetic resonance (MR) scans
of a dog heart. The known values are extracellular cardiac potentials as meas-
ured by electrodes on an isolated heart or with needles inserted. The potential
difference between the intracellular and extracellular space is not the same for
ischemic and healthy cells, which causes so-called injury currents to flow within
the two spaces. These potential differences translate to so-called ST shifts in
the electrocardiogram (ECG) M] Using data from experiments, a network of
modules can be constructed within SCIRun to simulate and then render a model
of the transmembrane potential of a dog’s myocardium.

Simplified defibrillation simulations

A simple defibrillation-like example is first examined: a simulation of the elec-
trical conduction on a homogeneous cube domain with two interactively placed
electrodes. Each of the electrodes is assigned a conductivity value, which can
then be changed within the interactive computing loop.

For a given pattern of source activation, one of the bioelectric field problems
cardiologists examine is the spreading of the electric activity through the rest
of the domain. Such studies are used when investigating internal implantable
defibrillator designs, as discussed in Chapter [l Constructing the computational
model of a patient’s body and mapping appropriate conductivity values over the
domain, doctors can accurately estimate how activity generated in one region
would be remotely measured in another region ﬂﬂ]

4.4.3 Interactive Visualisation

There are several visualisation modules incorporated in SCIRun that can be used
to preview the result after the defined number of iterations. This parameter may
be specified in the SolveLinearSystem module. For instance, one can extract
isosurface from the field data and then map a colour from one of the colour maps
to an isovalue. In the case of an interrupt in any of the modules (which are
typically higher in the execution hierarchy), the visualisation modules are also
scheduled for execution. From the framework point of view, it is important that
the execution of the visualisation modules in the presented simulation scenarios
last several seconds. Thus, it is necessary to remove them from the schedule once
a user interaction takes place.

4.4.4 Communication Pattern

Communication within simulation and visualisation components is implicitly es-
tablished via shared memory for all the test cases described above. SCIRun also
supports remote execution of a (multithreaded) simulation via TCP/IP socket



128 4. Application

communication. To profit from the framework in this case, this communication
pattern would have to be replaced with the framework non-blocking routines.

4.4.5 Initial Settings

The initial phase reads in the data and sets all necessary parameters related
to different modules — ranging from values located in various simulation-specific
fields, to the colour panel settings, etc. The user interface to these values is
provided separately for each corresponding module.

4.4.6 User Interaction

Concerning the solver parameters, different solver options may be used: Con-
jugate Gradient (CG), Biconjugate Gradient (BCG), Jacobi, Minimal Residual
(MINRES). One can also activate pre-conditioners, such as Jacobi, and influence
error tolerance, the maximal number of iterations, the frequency of emitting the
visualisation, etc.

In the case of defibrillation-like simulations, two electrodes with two input con-
ductivity fields should be placed; thus, the corresponding module and its variables
can be accessed for each electrode and modified interactively.

In addition to manipulating solver-related parameters — for the resulting system of
the linear equations — along with conductivity-related parameters, it is possible to
switch between different mesh resolutions in A~-FEM approximation. This allows
the user to preview the solution on a coarser grid and switch to the finer one
(starting from scratch) once the user is satisfied with the current setting. It
could be advantageous to run a separate process with higher resolution in the
background, then to update the solution on the coarser grid as soon as the user
stops interacting (or after a certain number of iterations).

4.4.7 The Framework in Action

SCIRun provides an optimal software environment for integrating the aforemen-
tioned interactive computing frameworkd. The dataflow model (Subsection [2.6.2])
allows for triggering only the re-execution of the necessary modules due to user
updates. In this an already mature and sophisticated environment for computa-
tional steering, as pointed out in M], the goal was to have real-time feedback
for even more time- and memory-consuming simulations. To re-execute a module
during user interaction, it was essential that the redundant, often long, compu-
tations were skipped. Hence, any module previously scheduled for execution had
to be canceled at this point. However, the execution of all modules following the
modified one in the pipeline had to be re-triggered. These features were provided

2The work related to SCIRun PSE was made possible in part by software from the NIH /N-
IGMS Center for Integrative Biomedical Computing, 2P41 RR0112553-12. It was accomplished
in winter 2011/12 during a three-month research visit of the author to the Scientific Computing
and Imaging (SCI) Institute, University of Utah.
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Figure 4.11: SCIRun GUI — a visualisation widget and user interfaces — one for each mod-
ule on the front-end; one of the three simulations is running also locally — a
tool for early detection of heart ischemia, or defibrillation-like simulations
on homogeneous cube and a human torso.

via the integrated framework. The framework was tested on all the aforemen-
tioned simulations to evaluate user response for different overall execution times,
orders of module execution, changes in chosen parameters, etc.

Interrupting the solver

In the network of modules created in this simulation, the most computationally
expensive step was typically the execution of the SolveLinearSystem module.
Thus, the first challenge for the framework was interrupting it as soon as a user
made a change via the user interface. To achieve this in the iterative solver
algorithm for the system of linear equations, the maximal number of iterations
(normally a user interface variable) was replaced by a globally visible variable
registered within the framework. This value was then manipulated in the signal
handler, as described for all the other test cases as well. Afterward, the execution
of this module had to be re-scheduled with the updated settings. However, after
the integration of the framework, the previous interrupted execution of the same
module had to be finished in a clean way.

To achieve this, all other system components had to be notified about the return
from a module-specific ezecute function. First, the input and output ports — which
had been opened by the previous ezxecution call —had to be closed and re-opened,
so that the SolveLinearSystem variables are properly reinitialised. Second, max-
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imal number of iterations had to be reset along with some other user-interface
variables which would have been automatically reinitialised without the inter-
ruption. Omne such variable, for instance, was determining whether the partial
solutions should be emitted. Finally, the Scheduler had to be explicitly informed
about this new execution and had to confirm that it had stored the identification
of a task to be executed.

Interrupting the scheduler

To emit the partial solution after each iteration, as mentioned before, scheduling
the executions of several visualisation modules takes place, prolonging the time
to finish one iteration by several seconds. Thus, after an interruption of one
solver iteration achieved by the framework, the preview of old results had to be
canceled. In this way, the execution of all modules that would happen after the
current module had to be aborted. This was achieved by enforcing an exception
in one of the classes so that it was automatically caught where needed in all other
modules.

4.4.8 Results

The overhead of the framework was tested for all of the three simulation scen-
arios described above (see also M]) Different update-checking intervals were
considered along with different problem sizes and solvers of linear systems of
equations.

For the electrical conduction simulation on a human torso with inserted defib-
rillators — with the mesh resolution (50 x 50 x 75), in the case of the shortest
alarm interval (i.e. 1 millisecond) — the overhead caused by the framework is
around 15 % (Fig. E12]). By prolonging the interval to 2 or 5 milliseconds, the
overhead is reduced to around 5 and 2-3 %, respectively. With this increase of
the interval, however, an end user does not intuitively notice the difference in
terms of the simulation response.

In the case of electrical conduction simulations on the homogeneous cube domain
(with two inserted electrodes), tests have been done for two problem sizes — mesh
(32 x 32 x 32) and (64 x 32 x 32) — and again no more than 5 % and 10 %
overhead is observed for these two calculations, respectively (Fig. EI3]).

For the simulation based on the heart ischemia model, even less overhead is
apparent — namely, no more than 5 % in all cases. (One must also consider that
for such small overall execution times, 1-2 % overhead can also be assigned to
the cache coherence and measurement precision issues).

Therefore, in conclusion it is recommendable to experiment with different alarm
intervals for a specific simulation, in particular if one observes that the execution
time has been significantly extended.



4.4 The SCIRun Software 131

overhead [%]

Figure 4.12:

overhead [%]

[ ]

™~
b ln

!

[
=

Malarm 1 ms

Oalarm 2 ms

Ealarm 5 ms

=

CG BCG Jacobi MINRES

Overhead of the framework (vertical axis — in %) for the simplified defib-
rillation simulation on a human torso, shows that an optimal interval for
setting the SIGALARM signal to occur is rather 2 or 5 milliseconds, not
1 millisecond, due to the higher overhead in the latter case than desired.
Tests are done for different solvers represented on the horizontal axis.
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Figure 4.13: Small overhead (vertical axis — in %) for the simplified defibrillation on a

homogeneous cube — mesh (32 x 32 x 32). Tests are done for different solvers
represented on the horizontal axis.
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Figure 4.14: Small overhead (vertical axis —in %) for the tool for early detection of heart
ischemia. Tests are done for different solvers represented on the horizontal
axis.

4.4.9 Effort to Integrate the Framework

For a user to integrate the framework into the SCIRun code, the main challenge
was related to finding a way to automatically re-trigger the execution of all the
needed modules when the user makes a change of a parameter value. This re-
quired good understanding of a Model-View-Controller pattern within the code.
It took almost no time to register both the variables whose update can be recog-
nised and those which need to be manipulated within the framework to interrupt
the execution of the modules of interest. More detailed description of the code
modifications is provided below.

— The framework function for overriding the default SIGALRM signal handler
was inserted in the simulation code, and the SIGALARM was set to occur
in predefined intervals.

— The loop variables manipulated within this function in order to skip the
redundant computation were declared global, sig atomic_t and wvolatile.

— The signal-handler function had to be edited according to the needs of a
specific code and compiled together with the rest of the code.

— The implementation of the signal-handler function in this particular case
consisted of checking if an update had occurred and manipulating either
the loop indexes or the variable used as an indicator for the Scheduler to
cancel the outdated tasks.
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Variables in the loop of an iterative solver had to be replaced with ones
registered within the framework which could be checked or manipulated,
respectively, within the signal handler.

— Reinitialisation had to be done at the beginning of the new computation.

— Finally, the previously described steps had to be taken to cleanly re-execute
the interrupted module and cancel the execution of Scheduler jobs

— In a distributed environment, the communication library calls would have to
be replaced with the corresponding non-blocking framework function calls;
however, this scenario has not yet been tested.

4.5 Virtual Planning of Hip-Joint Surgeries — “Bone”

4.5.1 Problem Statement

To determine the optimal implant design and position, an orthopaedic surgeon
would like to experiment with a model of a bone based on computed tomography
(CT) scans and estimate the response of the bone to different implant positions
and designs and to moderate load application — for instance, walking up or down
stairs. The tool was developed for this purpose within a collaborative project
of the International Graduate School of Science and Engineering (IGSSE) — as
previously mentioned in Sections and It consists of a graphical user
interface and a visualisation widget for the bone stresses and strains on the front-

end, and the simulation of these on the back-end @, @, , , , @]

4.5.2 Simulation

The simulation kernel is based on the geometry models of the femur (i.e. thigh
bone) constructed by CT/MRI-data. For the numerical approximation, the Fi-
nite Cell Method (FCM) — a variant of the high order p-FEM code with fictitious
domain approach — was used, as proposed in [72]. This method supports com-
plicated geometries or multiple material interfaces without an explicit 3D mesh
generation. This is a very important property for interactive computing, since
this typically time-consuming step would otherwise have to be done anew for each
new configuration. The basic idea is an extension of the physical domain up to
the boundary of an embedding domain, which can be meshed more easily.

Interactive computing loop

At the beginning, the femur voxel information is generated on the visualisation
side. The model is based on the quantitative computed tomograph %)
scans, which indicate bone strength via models like those presented in E,ﬁ, .
To approximate the solution of the governing equations, the rectangular domain
embedding the entire femur is generated. The domain is then divided into cells
of the same size. The polynomial degree of the shape functions p and the number
of voxels in each direction are read from the user input file. The computational
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domain is kept fixed during the entire run time of the simulation as the time-
consuming discretisation is done only at the beginning, making it efficient for
interactive computing. The computational effort is, however, now shifted from
the mesh generation to the calculation of stiffness matrices (i.e. integration) in
order to capture well the domain boundary. To advantage, for each voxel the
constant matrices needed for further efficient calculation can be pre-integrated
analytically @]

Driven by external forces f, a deformed solid is governed by the well-known equa-
tions from static elasticity theory. Applying FCM as an approximation method
yields a linear equation system Due to the often poor condition number of
the system, standard iterative solvers fail to be efficiently deployed, thus, a spe-
cial treatment allowing for both the design of sophisticated solvers as well as for
advanced parallelisation strategies is applied. That is to say, a direct solver with
hierarchical concepts is used |, exploiting an octree data structure based on
a nested dissection of the 3D domain (Fig. FLIH]).

Here, a sort of a global stiffness matrix of the system is calculated by assembling
the element stiffness matrices, traversing the octree structure from the bottom
up (Fig. E15). The main advantage here is that when inserting an implant, the
stiffness matrices of the cells that experience change are updated locally, and the
reassembly step is done only for a modified part of the system. Despite the better
overall performance of the solver in comparison to other direct solvers (i. e. Gauss
and relatives, where the complexity, as mentioned before is O(N?3)), the current
reassembling step, which is computationally most expensive, must be interrupted
or completely skipped as soon as a user changes the settings.

To sum up, the steps described above are taken within an interactive computing
loop, which consists of receiving user updates, pre-processing, solving the afore-
mentioned system of equations, post-processing, and forwarding the results to

the user (Fig. E10]).

4.5.3 Interactive Visualisation

The other component involved in the interactive steering process is a sophisticated
visualisation platform that allows the intuitive exploration of the bone geometry
and particularly the mechanical response to various load situations in both the
physiological and post-operative states of a bone-implant situation in terms of
stresses and strains @, é]

Settings are updated by, for instance, inserting or moving an implant or testing a
new position or magnitude of the forces applied to the bone for each element and
corresponding tensor, when a scalar value — i.e. the so-called von-Mises stress
norm — can be calculated and visualised, as shown in Fig. [L17
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Figure 4.15: ND solver algorithm: Decomposition of the geometry domain results in hier-
archically organised systems of equations. First the assembly step is done,
where Schur-complements (which result from re-arrangements of matrices
separating “local" and “global" DOFs, and partial Gaussian eliminations)
are then successively forwarded from the bottom towards the top of the
tree. Solution step is done in top-down order and partial solutions are then
forwarded successively in the same manner.

4.5.4 Communication

The challenges in developing such a two-component analysis tool are described
in more detail in @, @), é, , @] Unfortunately, due to the rigid TCP/IP
socket-based communication pattern between the components in the original ver-
sion, a new setting can only be considered by the simulation after the result of the
previous one has been calculated and sent to the user. In other words, to compute
the new result and preview the effect of the latest change, a user would have to
also wait for the outdated one. Therefore, the higher polynomial degree used, the
longer the total time becomes. Hence, the central topic of this section is also the
way in which these two components were coupled in a new approach through the
framework to allow for instant feedback to the surgeon. The approach described
here along with some of the results presented are also published in m, ]

4.5.5 The Framework in Action

The proposed framework was integrated to further improve the tool towards an
interactive simulation and visualisation environment. This integration enabled a
choice of how many updates to send per time interval, making the environment
much more immersive.

The next aim was an instant interruption of a current computation in the case
of an update. Due to the update, the stiffness matrices are assembled recursively
traversing an octree bottom-up.
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Figure 4.16: Simulation back-end in the Bone application. Interactive computing loop
starts with receiving an update, and ends with sending the calculated result
to the user.

Afterwards, the system of equations at root level of the octree is solved. The
solutions are then always recursively passed to the nodes one level lower in the
hierarchy for their own local solutions, as shown in Fig. All the partial
solutions are finally assembled into the final solution vector. The described al-
gorithm, as presented in @], shows good scalability values in the case of hybrid
parallelisation @]

The general aim of the framework was to interrupt the most time-consuming
phase — i.e., assembly, parallelised using shared or newly developed distributed
memory concepts (once they are integrated into the steering environment), or
both. This interruption was achieved through cyclically repeated signals checking
for updates and restarting instantly if an upcoming message was indicated from
the user side. If the update was recognised while processing one of the nodes
in the previously mentioned hierarchical data structure, the simulation variables
were reset in a way which enforces skipping the rest of the nodes, as shown in
Fig. All the layers of the recursive assembly function call instantly returned;
all the upcoming “solution” steps were skipped as well, and the new data was
received at the beginning of the next step of the interactive computing loop.
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Figure 4.17: User interaction for the Bone environment: left — applied forces of a defined
magnitude, right — an implant is inserted.
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Figure 4.18: The Bone setup — on the simulation back-end the so-called von-Mises
stresses are calculated and the result is sent to the visualisation front-end
for the user to make an informed decision if the implant design/size is an
optimal one, or another setting should be provided for the simulation.
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Figure 4.19: Three subsequent steps in processing the tasks (the tree is traversed in the
depth-first manner, and the assembly function is recursively called for each
existing son-node of the processed node until a leaf node is reached): left —
the filled node is the one for which the assembly function is currently called;
in the next step (middle) — the interrupt occurs (in the “filled” node), the
rest of the nodes are skipped; finally (right), a new computation starts with
updated settings.

In addition to the guaranteed consistency data values necessary for accurate pro-
gram execution, this was an example of where the steps to prevent potentially
severe memory leaks had to be taken before the new computation was star-
ted. Such leaks could have resulted if the interrupts had happened before the
memory allocated in the solver was released. If the solver code was parallelised
via OpenMP, it was ensured that when a new update was recognised by the
thread catching a signal, all the other threads became automatically aware — via
globally shared variables — that they had to skip the rest of the computation.

As soon as the assembly was completed without an interrupt and the solution in
terms of stresses calculated, this result was sent back to the user process for a
visual update.

Although a significant amount of time was saved by calculating results only for an
actual setting and skipping all previous ones, for p values higher than 4, a delay
was noticed, as expected, since the time needed for a new computation increases
when p is increased. Here once again, a hierarchical approach was beneficial.

4.5.6 Hierarchical Approach

The hierarchical approach used in this test case was based on using several dif-
ferent polynomial degrees, with a simulation for each running as a separate MPI

process (Fig. E20).

The voxel data as well as the data referring to user interaction was sent to all of
the processes via MPI, allowing them to start their own computation. Compu-
tations for a lower p were finished faster than for a higher p. As soon as the first
was finished, the results were sent to the front-end to be visualised. Then the
results for a higher p followed. Alternatively, one might have used adaptive p-
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Figure 4.20: Bone: hierarchical approach — on the simulation back-end, several MPI

processes are run for different polynomial degrees (p).

While a user is

interacting, due to the frequent interrupts, only the result for a lower p is
sent to the user, while as soon as he stops, the result for a higher p has

enough time to be calculated and sent.
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Figure 4.21: Switching from the lower to the higher polynomial degree (achieving a
higher accuracy as can be observed in the picture), and vice versa, de-
pending on the occurrence of user interaction.

FEM approximation as proposed in @] in the context of computational steering
and briefly described in Subsection B.43]). With this approach, the integration
of the framework with support for a hierarchical approach would have been even
more straightforward. In that case there would have been no need to run several
instances of the simulation program and communicate data to and from each of
them. With the scheme developed here, however, the same effect was achieved,
without investing significantly more time in implementing a hierarchical approx-
imation method.

What is accomplished is that while the user’s interplay with the settings is very
intensive, he gets immediate feedback about the effects of his changes, namely
results for lower p (e.g., p = 1 or p = 2). He can see the more accurate results
in addition to this only as soon as he stops interacting and the simulation has a
chance — now without enforced restarts — to finish one iteration in the interactive
computing loop for higher p values (Fig. L20]).

As soon as user interaction starts over again, the results for the lowest p are im-
mediately calculated again and visualised; hence, the procedure described above
is repeated. The user can choose the number of MPI program instances executed
for different p values (i.e. hierarchy). In addition, every opportunity must be
taken to accelerate the computation for all the p values used.

Thus, the next subsection discusses tests with different parallel versions of this
particular simulation. Employing a parallelisation strategy should not be seen as
the responsibility of the framework; however, it is an important topic to discuss
in the context of an optimal simulation basis. A parallelisation strategy within
an interactive environment in particular should not only give good speedup res-
ults but also not cause any significant overhead to each interactive computing
iteration. The following scenarios thus show one logical thread of progression
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which seeks a good trade-off between the two aforementioned conflicting goals
and results, on the way, in various interesting conclusions.

The non-optimal speedup achieved in the simplest, multithreaded scenario was
especially noticeable while increasing the number of the computational resources.
To remedy this, research was also done in the direction of message-passing-based
parallelisation for the ND solver. The solver itself is most time consuming within
the interactive computing loop, thus, a stand-alone version was used to explore
the parallelisation possibilities, with the intention to integrate it later into the
existing complex environment. Load balancing techniques that are as efficient
but also as simple as possible were applied in order to achieve a fair but fast
distribution of the tasks among the processors throughout the interactive process.

This turned out to be challenging for the tasks organised in the hierarchy, where
the number of processes involved typically decreases by the factor of 2" on each
level, where n is the dimension of the space. Thus, an optimisation technique for
the tasks with dependencies was applied, involving various heuristics in order to
involve all the available processes during the overall program run time. This pro-
duced promising preliminary results. All of these points are thoroughly discussed
in the subsection to follow.

4.5.7 Parallelisation for Hierarchically Organised Tasks

Problems involving spatial decomposition techniques M] based on Schur com-
plements may result in hierarchies of tasks with bottom-up dependencies, such
as trees, as described in Chapter Pl This can be very advantageous in an inter-
active steering environment, because an update of one part of the domain leads
to the re-computation only for that particular sub-tree @] Parallelisation in
the case of balanced trees — resulting from bulky structures, such as cubic-shaped
structures — typically results in a straightforward load-balancing strategy largely
based on data locality. In other words, tasks belonging to a certain sub-tree are
mapped to a certain processor, which easily achieves a fair work distribution and
minimises communication costs. In the long structures such as a femur, the situ-
ation is not so simple, especially if one considers the aforementioned prerequisite
that the load balancing step, which has to repeat on every update, therefore must
be as computationally cheap as possible to not slow down the overall interactive
process.

Multithreading in ND solver

The first, simplest parallelisation strategy applied for the ND solver was multi-
threading, in which the tree of tasks was parallelised on the first level below
the root, where up to eight child nodes resided, and the corresponding sub-trees
could be assigned to different threads for concurrent execution. Fig. shows
this multithreaded strategy’s speedup results — for the most consuming assembly
function in particular — which resulted from the tree being unbalanced.
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number of processors

Figure 4.22: Bone multithreaded version of ND solver — the one integrated currently in
the interactive computing environment — speedup results.

A reader may also find the results for the execution times from Tab. [Z.J] published
in HE] The article shows a comparison of the different resolutions 1 x 1 x 1
and 2 x 2 x 2 (with half of the initial resolution) and of different computations
cycles on an eight-core machine (initialisation vs. steering time — 1 iteration), as
well as some additional information about the simulation.

Fig. M. 23]shows the speedup results based on the information in @], both for the
solver of the system of the equations — where the assembly function is the most
time consuming — and for the overall iteration in the computational steering loop.
These results are similar to those in Fig. [£.22], where only the assembly function
is taken into account.

Another simple multithreading parallelisation strategy was experimented with
in a stand-alone ND solver, in order to draw more conclusions. This second
strategy is based on pure data decomposition in the calculation of Schur comple-
ments (partial Gaussian elimination algorithm). The speedup results for static
scheduling are shown in Fig.

It is noteworthy that in this case for p = 4 and p = 6 the speedup decreases
with the increase of the polynomial degree p (i.e. the problem size in this static
scheduling approach). This is due to the dominating partial Gaussian elimination
algorithm within the assembly function, where, using this strategy, not all the
threads get a fair portion of calculation. To improve this, one may experiment
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Figure 4.23: Bone multithreaded version, the graphs are based on information presented
in ﬂﬂ] — measurements on 8 core Dell Precision T5500, Intel Xeon W5590
CPU 3,33 GHz, for p = 4: measurements of the speedup of assembly func-
tion, vs. the speedup of the whole interactive computing loop have similar
results.
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Figure 4.24: Bone multithreaded — an experiment based on the data decomposition on
the level of the second nested loop in the partial Gaussian elimination —
speedup results on eight Intel(R) Xeon(R) CPU W5590 3.33GHz.
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Model 1x1x1]|2x2x2
DOF 61,368 13,698
Initialisation | system setup 4.73 2.50
time|s] system matrices | 0.78 0.16
Total 5.51 2.66
Steering loop | Total 8.57 0.75

Table 4.1: Comparison of the execution times for one iteration of the steering loop and
for different execution cycles with 1 x 1 x T and 2 x 2 X 2 (2 times smaller
in each spatial direction) discretisation resolutions. The measurements are
performed on 8-core Dell Precision T5500, Intel Xeon W5590 CPU 3,33 GHz.

with different scheduling techniques, such as using dynamic chunk scheduling and
different chunk sizes.

Another remarkable point is that despite the obviously better speedup for the
second scenario, the execution times for those two multithreading strategies are
incomparable, because in the first one (with worse speedup) the highly optimised
“LAPAC package is used” @] within the solver; thus, it performs better for up
to 8 cores in terms of the execution time.

The observed results have, however, led more easily to the conclusions when
designing and testing an optimal distributed-memory-based parallelisation, where
more computing resources can be exploited. A long-term vision is to achieve the
update rates in the interactive environment that fall even below one second for
polynomial degrees higher than 4.

Distributed parallel ND solver

A good scheduling strategy for an interactive computing environment, as men-
tioned before, typically involves a trade-off between achieving an even work load
distribution among all the processors (i.e., a balanced assignation of tasks to
the computing resources) and keeping both the communication and optimisation
costs low. Finding an adequate trade-off here should result in a good speedup of
a parallel application, even if the re-scheduling step has to be done every time a
user interacts.

Like in the multithreading case, for hierarchically organised tasks with bottom-up
dependencies, such as in the octree structure generated for a femur, the “classical”
scheduling would be based on the task locality (i.e. the property of belonging to
the particular sub-tree). However, the resulting tree for long structures, such as
a femur, is not well balanced. Moreover, the number of processors which can be
simultaneously exploited decreases by a factor of eight at each subsequent level
approaching the root of the tree.
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Dynamic load-balancing strategies using hybrid parallelisation patterns perform
well for the nested dissection solver ﬂﬁ, @] However, in interactive applica-
tions — which assume frequent updates from the user’s side, frequent changes in
the state of simulation and tasks, as well as in the computational model itself
— are not favourable. Namely, user updates result in extreme dynamicity of the
system itself and thus an overhead-prone load-balancing step must follow. Static
load-balancing strategies are therefore estimated as more favourable in this case.

What is needed, consequently, is a scheduling optimisation approach that is both
effective yet simple and efficient, and that does not obstruct the desired interactive
process. To the author’s best knowledge, such a solution is not the present focus
of the existing sophisticated optimisation strategies @]

A “classical” approach

From the first, simplest, multithreading scenario, it is clear that splitting the tree
of tasks among the processors by cutting the tree on the first level would not lead
to satisfactory speedup results for the femur model in consideration.

A good dynamic load-balancing strategy, where the tree is cut on different levels
(see Fig. 25 left), is proposed in Nﬁ] for a hybrid parallel scenario (involving
OpenMP and MPI). However, this load balancing strategy is estimated to be too
computationally expensive, and thus, an attempt has been made with a simpler
approach.

In Fig. (right) the basic idea is illustrated: first, the tree was cut at a certain
level depending on the number of available processes — i.e. at the first level for
2NV processes, where N is the spatial dimension, at the second for 22V, etc. In
the same figure, a binary tree (N = 1) is represented for simplicity’s sake instead
of an octree (N = 3), which is what is actually used in the Bone application.
The corresponding sub-trees were then assembled concurrently. Only one of the
possible processors took over in the upper, unassembled part of the tree — i.e.,
in the ancestor nodes of those on the last-assembled level. Namely, one of the
processors involved in the computation of the son nodes did the computation for
a parent; this was done successively by level.

A low speedup is shown in Fig. due to the decrease in number of processors
that can be employed at each level moving up the tree and due to the MPI internal
decisions related to rendezvous protocol, which are explained in the subsections
to follow. The latter effect might be improved by receiving all the available data
as soon as it has been sent. Moreover, further research would be useful in refining
the task granularity when reaching the root node of the tree.

A possible limitation of this approach may be that the number of exploitable
processors is still limited by the number of leaf tasks. Another scheduling strategy
that is even better optimised for the case of extremely unbalanced trees will
now be described. Until now, this new strategy has been evaluated only for the
numbers of processors currently available on our clusters, as published in @],
however, first results are promising and the implementation has led to better
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Figure 4.25: Bone distributed parallel version (a binary tree is presented for the reasons
of simplicity, although an octree would be appropriate): left — a sophistic-
ated dynamic load balancing technique, too computationally expensive for
interactive computing; right — a static load balancing technique, proposed
for interactive computing environment.

1 8 64 234
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Figure 4.26: Bone distributed parallel version — an initial static load balancing tech-
nique, proposed for interactive computing environment — speedup results
for p =2, p =4, and p = 6 on Shaheen IBM Blue Gene/P supercomputer
owned and operated by King Abdullah University of Science and Techno-
logy (KAUST). The maximal number of processors for which speedup is
measured is 234, since this is for this particular data input the number of
tasks in the leaf nodes of the tree, i.e. the maximal number of the tasks
which can be processed in parallel at any point.
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understanding of some issues with the “classical” approach in relation to MPI
internal decisions (see EL5.T)).

Optimisation

The newly proposed scheduling strategy is described in M] What was assumed
to be known a priori for a particular input data are the sizes of the tasks resulting
from the initial task decomposition of the problem, data dependencies and syn-
chronisation requirements. Traversing the tree bottom-up, one had to estimate
the number of operations (partial Gaussian elimination operations) needed for
processing at each node. This was considered the weight of a particular node —
i.e., a rough estimation of the amount of work to be done in the nested dissec-
tion solver for the node. Common assumptions were not made, “which are apt
to have restricted applicability in real environments” HE], such as the target
parallel architecture or uniform task execution times.

The sizes of the tasks vary notably. In order to avoid single processors becoming
bottlenecks, due to the considerably large tasks they might need to process by
themselves, a single task was split among several processors when mapping all
tasks to the processors. This splitting was done based on the comparison of
a task’s estimated work with a “unit” task, which refers to an octree leaf or
to a single element in terms of FEM @] However, unlike in the “classical”
approach, the data locality was neglected in this scenario, and the pure load
balance is highly prioritised in this stage of the development.

Since the scheduling problem can be solved by a polynomial-depth backtrack
search — and is thus NP complete for most of its variants — efficient heuristics
must be devised @] When making a strategy, one must take into account
the two major factors: the sizes of the tasks and the dependencies among them.
Therefore, at least two aspects have to be considered. The first is the level
of the task dependency in the tree hierarchy (i.e., children nodes have to be
processed before their parent nodes). And second, if the tasks are of the same
dependency level, the distinction is still made between their different levels in
the tree hierarchy. This property is named the processing order (Fig. E2T]).
Assuming the depth of the tree is IV, the tasks from level M in the hierarchy
have the processing order of N — M —1 @]

A list of priorities was formed by searching for the tasks with both the lowest
level of dependency and the lowest order of processing. Consequently, what was
prioritised were the tasks belonging to longer branches of the tree structure, with
an estimated bigger overall load. Following state-of-art heuristics @], a so-called
maz-min order was given to the tasks with exactly the same priority according
to the previous classification if there were more tasks than available processors in
the same priority list. This way, big tasks — in terms of their estimated quantity
of computations they involved — were the first to be assigned to the processors.
The main principle of max-min order was followed; however, only partial sorting
was applied in order to avoid additional computational complexity of sorting of
the tasks. Namely, the priority lists were filled by adding tasks bigger than a
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Figure 4.27: Dependency levels (division by horizontal lines), and processing order (num-
bers within the nodes).

certain predetermined limit to the front of the list, and those that were smaller
to the end.

This procedure formed arrays of tasks — so-called “phases” — each of which con-
sisted of as many tasks or their parts as there were computing resources ﬂ@]
Tasks taken from the priority lists were assigned to the phases in the round-robin
fashion. As mentioned before, tasks were also split among several processors if
needed. The phases correspond to the mapping to be done. The “bulky” tasks
are those whose size divided by the number of available resources exceeds the size
of the smallest processing unit; these tasks were simply split equally among all
the processors. The results in Fig. [£.3T] illustrate that the capacity of each phase
was mostly as “full” as possible; in other words, all the processors were busy with
approximately equal amounts of work throughout the solver execution. This was
exactly the intended effect.

Communication pattern

The mapping concept was a typical master-slave setup. Initially, all the slave
processes received the tasks they were in charge of and started processing them
sequentially. The tasks without dependencies could, clearly, be processed imme-
diately. Others needed information from other processors. Thus, one of the fol-
lowing scenarios took place: (1) for the tasks that could be instantly processed,
the assembly step was done and the resulting data was sent to the processors
needing exactly this data for the assembly of their own tasks; (2) for the tasks
dependent on other tasks, all the related data had to be received before the as-
sembly. In the present implementation, both the data necessary for a certain
step and all the pending data needed later was received, in order to reduce the
latencies caused by the MPI internal default decisions @] This is elaborated
upon in the next subsection.

When processing (a part) of the task was finished, all the processors with a part
of the same “bulky” task were supposed to exchange data amongst themselves.
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Finally, only the first processor — from the list of processors in charge of the task
— sent the result to those that were not in charge of the same task, if they would
need this data later. The pattern was repeated until the root node was reached,
when, due to the node size, all the available computing resources often become
involved M]

Improvement for distributed scenario

An interesting issue, based on the information provided in @], is that internally
in MPI a process P; may possibly send a message before P, is ready to receive
it. The receiving process, thus, has to remember that a message has arrived
and it must store the data somewhere. To remember that a message has arrived
but has not matched a receive — a queue of messages that were “unexpected”
is kept. When a program tries to receive a message with MPI_Recv, it first
checks this “unexpected queue” to see if the message has already arrived. If
it has, the receive can remove the message and the data from the queue and
complete. The receiving process must also store the data somewhere. And even
if data is too big to fit the available memory or buffer, MPI standard requires
the implementation to handle this case and not to fail. There are ways of course
to influence the internal decisions of MPI, the increase in the receive buffer, the
control of “rendezvous protocol” activation, etc. But such measures typically
downgrade the performance; thus, it is better to modify one’s own code.

Based on the Vampir (Visualization and Analysis of MPI Resources @]) analysis,
and led by the information from @], an improvement in the described distrib-
uted scenario was made in the way that all messages available for receiving were
instantly received. The comparison of the results is presented in Fig. and
Fig. — before and after the improvement, respectively. In the visual output
from the Vampir ﬂﬁ] analysis tool, the original colours have been replaced and a
few elements added to improve the visibility of the desired features for this text.

4.5.8 Results

The results refer to the overhead of the framework within the interactive environ-
ment (multithreaded scenario) as well as to the preliminary speedup results and
an evaluation of the scheduling optimisation for the distributed parallel scenario
(which is not yet a part of the interactive environment where the framework is
integrated).

Overhead of the framework

In this particular test scenario, the simulation was executed on multi-core archi-
tectures and connected to the visualisation front-end via a network. Evaluation
of the performance still proves that this is yet another test case where the over-

head caused by the framework itself is not significant @, @] (see Fig. A30).

The intuitive interaction from a user’s point of view also runs “smoothly”.
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Figure 4.28: Vampir results for an “asynchronous” run: distributed parallel assembly
function of a “stand-alone” ND solver run for 4 processors. The dark (red)
color represents the time spent for communication calls and light (yellow)
color — the time spent for doing the intended computation. The marked
thick long lines from Ps to P, and P», e. g. represent the long communication
intervals from the point when the message is sent until the point when it is
received. This, however, takes unexpectedly long due to the MPI internal
decisions. The execution time takes, based on several tests, a few seconds
longer than expected for each processor.
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Figure 4.29: Vampir results for a “synchronous” run: the same simulation, where all the

data is received as soon as possible (greedy algorithm). The dark (red) color
represents the time spent for communication calls and the light (yellow)
— time for doing intended computation. The improvement of the total
communication time, based on several experiments, is around 30% and of
the execution time is around 15%.
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Figure 4.30: Bone multithreaded — the version currently integrated in the interactive
computing environment — the overhead of the framework. Along the hori-
zontal axis the number of cores is represented and the vertical axis shows
values in percentage for p € {4,6, 7}, respectively.

Scheduling optimisation

The distribution of the tasks themselves can be observed from Fig. 3Tl This
distribution results from the task priorities and the capacity of so-called phases.
The capacity of a phase is equal to number of available processors. The aim is
to completely fill all the phases, keeping all the processors busy throughout the
simulation execution time.

Speedup results

The speedup results for the described message-passing-based parallel scenario,
with optimised scheduling strategy, are shown in Fig. and Fig. £33 The
satisfactory speedup is observed for up to 16 processors for different polynomial
degrees of the basis functions in the Finite Element approximation, where higher
polynomial degrees correspond to larger problem sizes. Compared to the load
imbalance effects in the second presented multithreaded scenario, where the data
decomposition is done in a similar way, here the speedup curves improve with
the increase of the polynomial degree. This is due to the round-robin mapping
strategy, which, in this case, does not always assign larger portions of work to
the same processors. Results for a larger number of distributed memory compu-
tational resources should also be tested. The expected speedup is achieved for
up to 16 processes on the hardware available at our department; however, with
high-bandwidth connection between all cores, the trend would be similar also
for larger number of processors (see Fig. and Fig. A33). According to this
tendency observed for p < 6, engagement of a larger number of processors would
result even for p > 6 in the desired rate of at least several updates per second
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Figure 4.31: Phases in the top-down, left-right order, respectively for N €
{16, 32, 64,128} processors available. Horizontal axis — the phase number,
where one phase contains the (up to N) tasks which have all the depend-
encies from other tasks resolved, i.e. can already be executed; vertical axis
— the capacity used, i.e. the number of processors (and the corresponding
tasks) involved (out of the maximal N).
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Figure 4.32: Nested dissection (p€{2, 4, 6}) distributed parallel solver (a “stand-alone”
version) with optimised scheduling — promising speedup results for a small
number of processors — Intel(R) Xeon(R) CPU W5590 3.33GHz.

for the calculated bone stresses in our interactive environment while the user
modifies the magnitude of the applied forces or the position of an implant M]

4.5.9 Effort to Integrate the Framework

The following steps had to be taken to integrate the framework. They refer back
to the existing interactive computing environment, without the integration of
the developed distributed parallel solver to speed up the computations (i.e., the
version which supports multithreading).

— The framework function for overriding the default SIGALRM signal handler
was inserted into the simulation code and SIGALARM set to occur in a
predefined interval.

— The loop variables manipulated within this function to skip the redundant
computation were declared global, sig atomic_t and wolatile.

— The signal-handler function was edited according to the needs of a specific
code and compiled together with the rest of the code.

— The implementation of the signal handler function in this particular case
consisted of refreshing the signal action. This was necessary for the Intel
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Figure 4.33: Nested dissection (p = 6) distributed parallel solver (a “stand-alone” ver-
sion) with optimised scheduling — measurements at sandstorm cluster (4
nodes — each 2 physical Intel Xeon E5-2690 8 core processors running with
2.9 GHz— connected via 1G Ethernet switch). Each node has 16 cores with
high-bandwidth connection, which dramatically affects the speedup results
for more than 16 processors. The estimation of the result is provided (based
purely on the network bandwidth information) in the case of the same high-
bandwidth connection between all the nodes for 32 and 64 processes. If the
network latency would be taken into account, the estimation result would
be even more promising.
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compiler, although the system conforms to POSIX standard and provides
sigaction functionality. The signal handler function probed the message
from the user and, if needed, manipulated a specific variable involved in
the computation within the assembly function of each octree node. This
way, the processing of the rest of the nodes was skipped.

— A straightforward reinitialisation step for the manipulated variable had to
be done at the beginning of the interactive computing loop.

— Communication based on a rigid pattern was replaced with the correspond-
ing framework function calls.

— To enable a hierarchical approach, several instances of the program were
compiled, run, and made accessible by the framework central entity, com-
municating the data to and from the computations for different polynomial
degrees. Just as in the previous application cases, this was not considered
the basic feature, nor the responsibility of the framework; however, it was
implemented within this work.

The greatest challenge, taking several working days, was creating the new com-
munication pattern, especially to support the hierarchical approach. The func-
tionality for interrupting the computation to check for updates and restart a
computation if needed was quick and straightforward as usual. However, the un-
expected challenge was that the default action for an occurring signal had to be
refreshed every time a signal was caught (via sigaction) in order to be effective for
the version of Intel compiler used. This is normally not the case on the systems
supporting sigaction, which generally has major advantage in this regard over
signal, for example.

4.6 Conclusions

This chapter described the four application cases in which the framework was
tested, as well as the integration process itself. Moreover, it presented the results
in terms of the overhead of the framework and the user effort to integrate it for
all the diverse test applications and for different problem sizes.

The 2D heat conduction simulation was the first, simple test scenario, where
the user component and the C++ simulation program communicated data over
a network. The simulation itself is a sequential code, where a hierarchical ap-
proach was applied using multiple grids for FD approximation. The coarsest level
was used while the user was interacting, and then an upsampling procedure was
applied to accelerate the convergence on finer grids once the interaction became
less frequent. The framework performs well in terms of the overhead and is also
intuitive from the user’s point of view.

As concluded in ﬂ@h, interactive computing represents a new feature in the
AGENT code and is — according to scientists at the UNEP — the first scen-
ario in neutron transport codes based on deterministic methods where resolution
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parameters are adapted “on-the-fly” to accelerate convergence. Although it is
in its early stage of development, the integration of the framework provides a
number of advanced ways of running AGENT, allowing a user to monitor the
solution for the best estimate in a shorter computation time during the reactor
core modelling ﬂ@h For example, by starting the AGENT solution with a coarse
resolution and interrupting the solution in an early stage of computation, users
can accelerate the overall time to convergence. Also, during run time the user
can correct initial mesh and resolution parameters, increasing the accuracy of
the entire simulation. Moreover, interactive steering is well utilised as a tool to
validate and verify the code simulation. The next steps at the UNEP would be
to enable the user to steer geometry mesh parameters and monitor “live” the
graphical representations of the main solution parameters such as neutron flux
and current distributions in 2D and 3D solution modalities. From the framework
implementation point of view, AGENT is the first Fortran code where it has been
integrated. Valuable experience has been gained in this study for supporting such
codes in the future.

Significant advantages of the SCIRun software package over other test applica-
tions turned out to be its modularity and the fact that it is based on a dataflow
model. Due to its modularity, the best interfaces to the framework were easily
recognised. The dataflow model contributed to the automatic re-execution of
only necessary modules. The underlying Model-View-Controller design pattern,
however, has introduced a few issues related to making the Controller entity can-
cel scheduled, but outdated, jobs. The three simulation scenarios were tested in
order to estimate the overhead of the framework. Tests were made for different
update intervals (5, 2, or 1 millisecond), for different solver methods for systems
of linear equations (with or without pre-conditioning) and solver-related paramet-
ers in h-FEM approximation. The overhead of the framework is up to 16% of the
execution time. Even in the case of this longest potential overhead, other alarm
intervals can be chosen to keep the overhead below 10%. This result shows that
it is worth experimenting with different alarm intervals for a specific simulation
in the case that the execution time has been significantly extended. The steering
process itself now runs intuitively and smoothly. For all the data sizes tested the
immediate visualisation of the result as a response to user changes is made pos-
sible within a second. However, additional re-use of previous computation results
for new computations should be considered when changing certain parameters (if
applicable for some of the scenarios). It is also possible to test the integrated
framework for any other simulation cases without additional code changes. From
the user effort point of view, the integration of the interactive computing frame-
work has turned out to be quick and straightforward, quite similar to the other
application scenarios @, E(ﬁ]

The starting point of the work related to the Bone application case was a compu-
tationally efficient simulation and a sophisticated user interface with visualisation
module. Both components were with their features opening the door for real-time
interactive computing. With the integration of the framework, this environment
has not only become more suitable for this purpose in the way the data is com-
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municated, but it also enabled the simulation to be interrupted as soon as, and
every time, the user interacts. As a result, instant feedback from the simulation
is gained as a response to user intervention.

In addition to the basic framework functionality, which was straightforward to
integrate, a hierarchical approach was implemented, inspired by p-FEM natural
hierarchy. A static load-balancing strategy for the time-consuming ND solver was
estimated as optimal for the interactive distributed environment. As a stand-
alone version, the strategy promises to effectively exploit the available processing
units throughout the execution of the simulation program, although it has yet to
be tested and integrated within the environment. The speedup results achieved
so far are very promising; however, testing it for a larger number of processes will
show whether the desired update rate for the stresses of the bone under the load
is going to be gained, even in the case of intensive user interaction. In future
work, reduction of communication times by also taking into account the data
locality may be considered. Such an approach must attempt to find a balance
between its benefits and inevitable computational costs.

4.6.1 Hierarchical Approaches

It has been shown that the hierarchical approaches the framework itself sup-
ports are not limited to, for example, recursive coarsening of the grid when
the user interacts and then upsampling when the interaction stops, as in the
first, simplest 2D heat conduction simulation scenario. On the contrary, other
simulation-specific hierarchies are equally supported and encouraged when applic-
able for most productive symbiosis with the framework. For example, different
polynomial degrees of basis functions in p-FEM scheme approximation may be
used, as well as different numbers of azimuthal angles for MOC simulation. Any
user of the framework can, if needed, adopt “the hierarchies” to his individual
requirements. One potentially valuable idea is to start separate simulation pro-
cesses for different “hierarchies” for FD or h-FEM — as is currently done in the
Bone project.

4.6.2 Effort to Integrate the Framework

In sum, in the shared memory simulation scenario, the only interfaces in the
framework are the data steered by a user, variables that are manipulated to
restart the computation and a couple of standard function calls overriding the
default signal behaviour. This shows that the approach is as minimally invasive,
comprehensive and straightforward as possible. However, one must note that
these variables to be steered are globally visible in the code (i.e., in the signal
handler) and that the data and memory consistency guarantees hold. The vari-
ables manipulated within the signal handler (i.e. those that must be declared
global) are integers — often just loop variables — and typically not numerous. If
they appear often (i.e. also elsewhere in the code) and a user would like them
to remain local there, he can rename the variables and make them global for
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those segments of the code whose “execution” must be interruptible when a user
changes something.

In light of the interface of the application to the framework, only negligible ef-
fort is needed to register new variables for steering. However, to complete the
picture, the possible overall effort from a user’s point of view to exploit the idea
of computational steering has to be discussed. Therefore, what follows is a brief
overview, based on the experience with the scenarios explored thus far.

A distinction is made, first of all, among non-hierarchical (direct) and hierarchical
(adaptive) approaches. Due to the lack of generality for the variety of simulation
scenarios, the latter approaches are not assumed to be a responsibility of the
framework. However, they are investigated and exploited here for each specific
simulation. The framework has proved itself to be flexible enough to support at
least several different hierarchical simulation concepts.

Most straightforward is steering of the parameters such as the maximal number of
iterations within the computation, accuracy requirements for an iterative solver,
etc.

The framework also directly supports steering of any variables where a user does
not need to reuse values from the previous calculation — in other words, when the
next iteration in the interactive computing loop starts from scratch. The data,
however, would have to be brought into the initial state before the interactive
computing loop. Nevertheless, not all steps, like memory allocation, would have
to be repeated due to the user update, especially in the case of time- and memory-
consuming pre-processing phases in comparison to the rest of the computation.
Rather, only the necessary reinitialisation would take place within the interactive
computing loop.

Another steering category is where the required reinitialisation routines involve
some discretisation parameters, which are used in numerical modelling but, nev-
ertheless, do not affect the underlying primary mesh or the dimensions of the
re-used data, including the intermediate solution.

Finally, the most challenging scenario is steering the parameters that affect, for
instance, the solution-related data and its dimensions, such as a mesh resolution.
Like in the upsampling procedure, it might be required — as an initial guess — to
assign a smaller number of entries of the calculated data on the coarser geometry
mesh to the larger number of entries.

In a distributed environment, the non-blocking communication routines provided
by the framework have to be employed. However, the framework cannot determ-
ine how the data sent to the front-end should be matched to the visualisation for
all the diverse application scenarios.
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Chapter 5

Summary

It is essential to be able to efficiently analyse and react in real-time to large data
sets from highly accurate simulations of phenomena. The immersive experience is
possible today due to advances in software methods and hardware technologies,
leading to intuitive exploration of the desired phenomena, the ability to prove
or negate postulates, and also to learning by chance. Not only experts with
good comprehension of numerical simulation methods, efficient algorithms, high-
performance computing, networking, or visualisation, but also experts in all the
other fields — medical doctors, or architects, for example — need to take a central
role in analysis to make more informed decisions.

For this, they need to be equipped with tools — consisting of a simulation back-
end, and a visualisation/UT front-end — whose complexity is hidden from the end-
user. Both front- and back-end components should be computationally efficient.
The major challenge when implementing these tools is to connect front- and back-
end components and make a running simulation instantly aware of interaction
on the user side concerning, for example, boundary conditions or any parameter
tuning, so that it automatically starts a new computation with the actual settings.

State-of-the-art attempts to achieve this have resulted either in the insertion of
check- and break-points at fixed places in the simulation code or in dedicating
one thread per process only to checking for updates. What is needed is a generic,
minimally invasive concept, which would make interactive computing widely ap-
plicable. However, the conventional methods can, depending on the size of the
problem, still compromise the benefits of the asynchronous computations and the
exchange between simulation and visualisation; and, in the latter case, they can
lead to logistical issues.

In this study, a generic framework is presented based on a “minimal invasion”
principle (i. e. minor code changes necessary) and coupling simulation codes and
visualisation tools. It allows a user to trigger a simulation during the run time
and receive prompt feedback. However, the use of signals to provide a high level of
interactivity in diverse application scenarios and for different problem sizes has



162 5. Summary

also introduced many challenges to keep memory and data consistency, which
result from asynchronous interrupts.

Four application scenarios are illustrated and discussed in terms of the overhead
of the framework, it’s responsiveness to changes, and also the necessary effort
from users or developers to integrate it. Some of these examples also show how
improving the application basis — using hierarchical approaches, optimal parallel-
isation techniques, etc. — can make the overall interactive process faster and more
intuitive. The outcome conclusions, possibilities for extension of the features and
the perspective for future work in general are all summarised in this final chapter.

5.1 Conclusions

Coupling components together into an efficient, intuitive, and interactive com-
puting environment demands first thorough consideration of each component sep-
arately, as proved in all the application scenarios described in this work. Without
efficient simulation, the interactive computing process is slowed down tremend-
ously. Especially when it comes to large scale simulations, approximation meth-
ods and fast solvers based on hierarchies, where applicable, are rather a prerequis-
ite to achieve a fast interactive trial-and-error process, particularly in combination
with an adequate parallelisation strategy. What is required for an effective par-
allel computation approach are the following hardware and software properties:
rapid communication between the individual processes, fast data transfer to and
from memory, a protocol based on ports or on process identifiers, methods to
reduce the demand on the network between all the application components and
effective decomposition of the problem, allowing for the optimal load balancing
for the system. Real-time scientific visualisation, although not itself part of this
work, plays a major role in the intuitive interpretation of results. Thus, in the
case of large amounts of data, selective updates of only the part of the domain
of interest — with adopted resolution, etc. — might be desirable. Moore’s law in
software technology is the main prerequisite for exploiting forthcoming powerful
hardware. Moreover, it is often necessary to rethink and rewrite the existing sci-
entific and engineering community codes, to make them more efficient, extensible,
and reusable. This, however, is a large step. Especially if the user or developer did
not write the initial application code, the integration of the framework is faster
and “smoother” for well-structured and easily extensible codes. This applies to
all four described application cases.

Since the concept of signals is used in this work, this concept is discussed in light
of different codes (sequential or parallel) or different operating systems (Unix
or Windows) and in cases where different compilers are required. In addition to
the combinations of signals with multithreading, which involve special treatment,
challenges also arise from ensuring memory and data consistency during sudden
interrupts. Asynchronous but reliable communication patterns between the user
front-end and simulation back-end and fast data transfer, based on the selection
of the desired part of the domain, need to be tackled as well. Finally, hierarchical
simulation approaches are desirable in general and are more or less effective in
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conjunction with the framework. These approaches are neither technically a
part of nor a responsibility of the framework; however, they are supported and
tested in most of the application test cases. Based on the promising results, it is
advisable to use these approaches whenever possible.

It would be pretentious to claim that the concept is best suited for every applic-
ation; however, it is well suited for many of them today. It provides an easy-
to-integrate functionality with a minimally invasive interface for a user, whose
field of expertise, or focus, may differ from real-time interactive computing. Its
applicability to a wide range of problems and problem sizes — without major
implementation-related distinctions among them — makes it different from other
state-of-the-art tools. This point is illustrated by the four application cases in
which the framework was integrated. Those are the codes from different scientific
and engineering communities and institutes, which are diverse in regards to simu-
lation and visualisation methods used, design patterns, programming languages,
compilers used, etc. The results in terms of the overhead of the framework,
and the user effort to integrate it, are presented for all the test applications and
also for different problem sizes. Where possible, hierarchical and parallelisation
approaches were applied to test and propose optimal application bases. The pos-
sible overall effort from a user’s point of view to exploit the interactive computing
framework is determined by the complexity of necessary reinitialisation routines.
Apart from the reinitialisation, if a simulation runs sequentially or is parallelised
using shared-memory concepts, the rest of the effort is negligible. In a distributed
environment, the non-blocking communication provided by the framework has to
be employed in addition. Determining how the data sent to the front-end should
be matched to the visualisation, however, cannot be assumed by the framework
due to the diversity of application scenarios.

5.2 Outlook

Although the results for the first application cases look very promising, further
research should be done on the question of the signal transfer from a user to all
the computing nodes in the case of massively parallel simulation. Furthermore,
the framework should be integrated and tested in more — especially distributed —
parallel engineering simulation scenarios. Hierarchical approaches can be tested
for h-version FEM and a variation of the current multi-level version for FD —
namely, those that run several instances of the simulation program for different h
values in both cases, and also with the framework integrated. Existing features
of the sliding window approach for fast data transfer should be extended. Re-
garding the implementation for Windows OS, the simulation has performed well
in initial small, rather artificial test cases. To further test its suitability in this
context, it would be useful to incorporate it into more “real life” applications
that presently exist in engineering communities. The very “nature” of the work
described, which has fortunately involved much collaboration and diverse inter-
disciplinary projects, has led to fruitful discussions about how the framework can
evolve some day into a “next generation” interactive computing tool. Needs of
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different scientific and engineering communities and projects led to a large pool of
ideas for extension of the supported features. The challenge will certainly remain
how to put them all together — constantly adding new ones — while keeping the
generality and without significantly compromising the efficiency.
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Appendix: Code Modifications

This appendix provides segments of the code from the 2D heat conduction sim-
ulation described in Chapter @l The intention is to present the code changes
which were necessary in order to integrate the proposed concept of the frame-
work. These modifications (MOD. #) are marked correspondingly. The code
contains also modifications related to the hierarchical approach for this test scen-
ario, which are technically not a responsibility of the framework itself. Parts
of the code less relevant for this “illustration” are either completely excluded or
simplified for the sake of clarity (such as those related to visualisation and user
interaction).

[ 3k sk sk sk sk sk sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk stk ok ok ok Kk KK KRR R R sk sk sk sk sk ok sk sk sk koK ok K K K K K
* INCLUDED HEADERS *
sk sk sk sk ok ok sk sk sk sk ok sk sk sk sk sk sk sk sk sk sk sk sk skt ok KK KK KK KKK K R R sk sk sk sk sk ok sk ok sk sk sk ok ok

#inlcude <queue>

#include <csignal>

#include <mpi.h>

] 3 sk sk sk sk sk sk sk sk sk ok ok ok ok ok ok oK oK KSR KKK KKK KRR R R K K K K KKK KKK KR K K

* USER HEADERS AND DEFINITIONS *

sk sk sk sk sk sk sk sk sk sk ok sk sk sk sk sk sk ok sk ok ok sk sk sk stk kKoK KKK KK KR KR R R sk sk sk sk ok sk sk ok sk ok ok /
#include <MyEvent.h> // this is where a data structure
// for user event data is stored

#define BUFFER 10000 // size of the buffer for Bsend

using namespace std;

// MOD. 1: Variables related to signal (declared global)
volatile sig__atomic__t itermax; // limit for a loop index iter.
volatile sig__atomic_t iterl1 =0; // loop index to be manipulated

// Variables used for hierarchical approach

volatile sig_atomic_t activity = 0; // user activity "index'
volatile bool interaction = false; // indicator

volatile long seconds; // to calc. freq. of interaction
volatile long seconds\_old;

volatile sig_atomic_t level; // "hierarchy" id
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// Variables related to user interaction

queue< MyEventx > qx; // queue where user events are
// stored to prevent thread hazards

long change[3]; // buffer where user data is received

// MOD. 2: Global variables related to MPI
MPI__Status status;
double res|  BUFFER]; // result buffer

/***************************************************
* SIMULATION MAIN FUNCTION *
sk sk sk sk sk ok sk sk sk sk ok sk sk sk sk sk sk ok sk sk ok sk sk sk sk ok ok Kok KKK KK KR KR R R sk sk sk sk ok sk sk ok sk ok ok /
// initialisation steps

interactive_ membraneFrm* frame;

frame = new interactive_membraneFrm (NULL);
activity = 2; // an indicator of the highest hierarchy
level = 0; // the finest grid

// MOD. 3: Initialisation of sigaction and setting alarm
struct sigaction act, oact;
act.sa__handler = alarmHandler;
sigemptyset(&act.sa__mask);
act.sa_ flags = 0;
#ifdef SA_ RESTART
act.sa__flags |= SA__RESTART;
#endif
sigaction(SIGALRM, &act, &oact);
ualarm (1000, 0);

// the interactive computing loop
while (1) {frame—>computeMembrane();}

/* End of the main function =/

/***************************************************

* IMPLEMENTATION OF THE SIGALRM HANDLER *

AR AR AA AR AR AR AR AR AR AR A HAAAK |
void alarmHandler (int p) // MOD. 4

{

int flag = 1; // indicator of a received message
long x, y; // coordinates of the changed entity
char t; // type of the changed entity

if (pthread\ mutex\ trylock( &mutex2 )){
ualarm(1000, 0);
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} // synch. with the user thread
else { // lock obtained
interaction = 0;
while(flag) { // Receive all the user events)\
MPI_ Iprobe (0, MPI_ANY_TAG, MPI_COMM_WORLD,
&flag, &status);
// the time when the event was sent is provided via:
seconds = status.MPI\ TAG;
if(flag){// if there was a message...\\
MPI__Recv (&change, 3, MPI__LONG, 0, seconds,
MPI_COMM_ WORLD, &status);
// store a new event in the queueldots
t = change[0]; x = change[1l]; y = change[2];
gqx .push (new MyEventl(x, y, t));
interaction = 1;
}
else {}

} // while(flag)

// NEEDED ONLY FOR HIERARCHICAL APPROACH:
if (interaction) {

iterl = itermax;

interaction = false

// indicator of the frequency of users activity
if (seconds < 10000) { activity = 0; }
else { activity = 1; }
seconds_old = seconds;
}
else { // there was no user interaction
struct timeval now;
gettimeofday (&now, NULL);

if ( ((now.tv_sec % 1000000 + now.tv_ usec)
— seconds_old) > 100000)
{ activity = 2; }
else {
iterl = itermax;
activity = 1;
}

}// no user interaction

ualarm(1000, 0);
} // finished

}
/* END OF SIGALRM HANDLER */
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/********************>I<>I<>I<>k>k>I<>I<>I<>k>k>k********************

*

void interactive_membraneFrm :: computeMembrane() x

*********************>I<>I<>I<>k>k>I<>I<>I<>k>k>k*******************/

{

while (gx.size()>0) {

if (qx.front()—>type() = ’a’) { // new heat source

int n = this—>WxGridPillar—>GetRows () ;
this —>WxGridPillar —AppendRows (1) ;

wxString sx,sy,sz;

sx << gx.front()—>x();

sy << qx.front()—>y ();

sz << 50;

this —>WxGridPillar—>SetCellValue (n,0,sx);
this —>W=xGridPillar—>SetCellValue (n,1,sy );
this —>WxGridPillar—SetCellValue (n,2,sz );

}

else { ... } // other types of interaction

gx.pop(); // remove this event from the queue

} // user thread can obtain the ’lock’ meanwhile

/* Hierarchy is determined x/
memb—>nx = this—>getNXGrid ();
memb—>ny = this—>getNYGrid ();
memb—>rasterizeBoundaries ();

/* A call to Gauss—Seidel solver x/
memb—>iterateDisplacement ();
} // End of computeMembrane()

/********************>k>k>k>k>k>k>k>k>k>k>k********************

* GAUSS-SEIDEL SOLVER

*********************>k>k>k>k>k>k>k>k>k>k>k*******************/

int Membrane:: iterateDisplacement ()

{

int i, ix, jx, x1, yl; // loop indexes

double u_old;

double local__error, error;

double eps = wx—>getTolerance ();

itermax = wx—>getMaxIterations ();

// get grid spacings

double hx = 300.0/(double)(nx);

double hy = 300.0/(double)(ny);

// set the pillars

for (i=0;i<wx—>getSizePillar ();i++) {
x1 = (int)( wx—>getXPillar(i)/hx + 0.5);
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yl = (int)( wx—>getYPillar (i)/hy + 0.5);
if (x1<0 || xI>nx—1) continue;
if (y1<0 || yl>ny—1) continue;
// Determine the needed "hierarchy"
if (nx = nx && ny = ny) {
grid [x1][yl] = 1;
u(x1l][yl] = wx—=>getZPillar(i);

}
else { // NEEDED ONLY FOR HIERARCHICAL APPROACH
gridl [level |[x1]][yl] = 1;
I[level |[x1]][yl] = wx—>getZPillar (i);
}

} // end of for

for (iterl=0; iterl<itermax; iterl++) {
error = 0.0;
// loop over all grid points
for (ix=1; ix<nx—1; ix++) {
for (jx=1; jx<ny—1; jx++) {
// compute new displacement, compare to the old one

if (nx = nx) { // the finest "hierarchy"
// (check here if the point is inside the domain)
u_old = ulix|[jx];
wlix][jx] = (ulix][jx+1] + ulix+1][jx]
+ ulix|[jx—1] + ulix —1][jx])/4.0;
local_error = fabs(u[ix][jx]—u_old);
if (local_error > error) error = local_error;
}

else { // NEEDED ONLY FOR HIERARCHICAL APPROACH
// (check here if the point is inside the domain)

u_old = ul[level J[ix]|[jx];
1[level |[ix][jx] = (ul[level][ix][jx+1]
+ ul[level |[ix+1][jx]
+ ul[level |[ix][jx—1]
+ ulflevel |[ix —1][jx])/4.0;
local _error = fabs(ul[level|[ix][jx]—u_old);
if (local error > error) error = local error;

}
}
}

// pack result into comm. buffer (user’s task)
int s = 0;
for (int s1=0; sl<=nx—1; sl++) {
for (int s2=0; s2<=ny—1; s24++) {
if (nx = _nx)
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res[s++| = u[sl][s2];
else // NEEDED ONLY FOR HIERARCHICAL APPROACH
res[s++] = ul[level |[s1][s2];
}
} // MOD. 5: ... and send the result to the user
MPI__Ssend (&res[0], nx*ny, MPI__DOUBLE, 0, 2,
MPI_COMM_ WORLD);
// check if the tolerance is met
if (error < eps) { break; }
}

}
/* End of Gauss—Seidel solver x/

[ 36Kk o K Kk o K K R KK K R K KK K R K KR SR R K KK K R K KK K R KK K o

* USER INTERACTION PROCESS *

S 3 K ko o KKK K R K KK SR K KK K R K KK oK R K KK oK R KK KK R K KK Rk ok %/
queue< MyEventx > gx; // queue where user events are
long change[3]; // send buffer

// Iterative sending of the user events’ data
while (qgx.size() > 0) {
// store an event in the send buffer
if (gx.front()—>type() = ’a’) { // new heat source
change[0]= ’a’;
change [1] = qx.front()—>x();
change [2] = gx.front()—>y();
gx.pop(); // remove an event from the queue

else { ... } // process any other event
// MOD. 6: send an update to the simulation

MPI__Bsend(&change[0], 3, MPI__LONG, 1, seconds,
MPI_COMM_ WORLD);
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