

VMS Vehicle Motion and Safety

Accident Avoidance by Evasive Manoeuvres

Challenges and steps towards technical solutions

Dr. Michael Fausten Abteilungsleiter Vorentwicklung Chassis Systems Control Robert Bosch GmbH michael.fausten@de.bosch.com

Chassis Systems Control

CC/ENA | 15.03.10 | © Robert Bosch GmbH 2010. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

Motivation

→ Relevance of rear end crashes with injuries in 2006:

Number of rear end crashes	Share in all accidents
500,000	28%
284,000	32%
266,000	16%
49,200	15%

Real world accident example

Source: Youtube.com

→ Rear end crashes with injuries are very relevant

→ Between 80% and 90% of all rear end crashes are caused by cars

Sources: NHTSA/NCSA, IATSS, DESTATIS Year 2006, UNECE accident report, own calculation, EU27

Chassis Systems Control

2

Options of accident avoidance by evasion

Driver reaction in rear end crashes with injuries.

Availability of adequate conditions for collision avoidance by evasion in rear end crashes.

Steering as a reaction in critical situations*

*: As a result of a study in cooperation with Daimler AG's driving simulator **. Number of persons participating in the study: 70

Evasive Steering: Studies with untrained drivers

Evasion CarClinic :

- Tests carried out with 35 untrained test drivers
 - Approx. 26% tried to evade the suddenly appearing obstacle
 - All test persons applied the brakes

Chassis Systems Control

5

Challenges for automatic evasion maneuvers

- Detection of oncoming traffic
- Detection of fast following traffic
- Detection of blind spot
- Detection of geometry of evasive path
 - e.g. Width of obstacle, width of evasion lane, ...

Chassis Systems Control

Accident avoidance by evasion – System pattern

as well as in the event of applications for industrial property rights.

Evasive Steering Support (ESS) - Principles

Technical characteristics – Support strategy

The driver steers on the optimal evasion trajectory

What ESS does:

 ESS provides no support at all as long as the driver does not decide to perform an evasive maneuver

The driver overreacts **What ESS does:**

→ Corrective torque on the steering wheel

The driver underreacts What ESS does:

Supports the driver during evasion with additional torque on the steering wheel

ESS controller deviation Direction of ESS torque intervention

Demonstrations: over and under-reaction

1. Driver under-reacts (with ESS)

2. Driver over-reacts (with ESS)

Effect and benefit of ESS

Method

- → Internal study using prototype vehicle
- Number of persons participating: 41
- → Evasion maneuver with 60 kph

Result

- → The Maximum steering wheel angle reached 25% earlier (Mean values)
 - higher steering wheel angular velocity
 - More calm steering behaviour

Drivers' steering reaction is improved by ESS

Chassis Systems Control

Evasive Steering Support (ESS) – Comparison

ESS by Torque

- ESS by (steering) torque as haptic support
- Limited steering torque below safety level guarantees controllability by driver
- Can be combined with partial braking intervention

ESS-B by brake

- ESS by (brake) yaw torque directly improves vehicle handling
- Limited yaw torque below safety level guarantees controllability by driver
- Can be combined with partial braking intervention

Chassis Systems Control

18

VMS Vehicle Motion and Safety

Accident Avoidance by Evasive Manoeuvres

Questions?

Dr. Michael Fausten Abteilungsleiter Vorentwicklung Chassis Systems Control Robert Bosch GmbH michael.fausten@de.bosch.com

Chassis Systems Control

CC/ENA | 15.03.10 | © Robert Bosch GmbH 2010. All rights reserved, also regarding any disposal, exploitation, reproduction, editing, distribution, as well as in the event of applications for industrial property rights.

