
TECHNISCHE UNIVERSITÄT MÜNCHEN
Lehrstuhl für Informatik II

Monadic Parametricity
of Second-Order Functionals

Aleksandr Karbyshev

Vollständiger Abdruck der von der Fakultät für Informatik der Technischen Universität München
zur Erlangung des akademischen Grades eines

Doktors der Naturwissenschaften (Dr. rer. nat.)

genehmigten Dissertation.

Vorsitzender: Univ.-Prof. Tobias Nipkow, Ph.D.

Prüfer der Dissertation:

1. Univ.-Prof. Dr. Helmut Seidl

2. Prof. Alex Simpson, Ph.D., University of Edinburgh, UK

Die Dissertation wurde am 06.05.2013 bei der Technischen Universität München eingere-
icht und durch die Fakultät für Informatik am 02.09.2013 angenommen.

This thesis consists of two parts. In the first part, the following main
problem is considered: given a (effectful) second-order function implemented
in some programming language, say F : (int → int) → int, how can one
rigorously specify that F is pure, i.e., it has no side-effects other than those
produced by its (effectful) functional argument. We provide an extensional
semantic criterion of monadic parametricity (purity) of second-order func-
tionals. The approach in use extends the relational parametricity introduced
by Reynolds [Rey83]. Moreover, we show that the criterion implies the exis-
tence of a strategy tree for a given functional F which represents a strategy
for “playing the game” of computation of F . The results are presented in two
settings: a total set-theoretic setting and a partial domain-theoretic one. Ad-
ditionally, in the total case we consider a problem of parametricity in state
monads and argue that extraction of a corresponding strategy is possible.
The relation of our notion of purity to continuity is discussed.
Purity of higher-order functionals is not only an interesting theoretical

question, but is of certain practical importance. We demonstrate applica-
tions of the notion to the extraction of intentional information from pure
functionals, like modulus of continuity, as well as to design of certified algo-
rithms for exact integration and local generic fixpoint solvers.
The second part of the thesis is concerned with a rigorous verification of

partial correctness of the local generic fixpoint solver RLD. The assumption
that an input of the solver is pure and, therefore, has a strategy tree represen-
tation makes it possible to provide sufficiently strong invariants and allows
for an inductive proof of correctness. Additionally, we provide a modification
of the solver which is exact (RLDE) and formulate sufficient conditions for
termination of both of the solvers. Finally, we demonstrate how to extract
executable OCaml programs of solvers from the formal development.
All the formalized proofs are carried out by means of the proof assistant

Coq.

Acknowledgements
This thesis would not have been possible without the help and support, invaluable advices
and patience of my supervisors, Prof. Dr. Helmut Seidl and Prof. Dr. Martin Hofmann,
to whom I owe my deepest gratitude.
Also I thank sincerely Prof. Dr. Andrej Bauer, University of Ljubljana, and Prof. Dr.

Alex Simpson, University of Edinburgh, for inviting me to visit them and for numerous
fruitful discussions from which my work has profited a lot.
Special thanks goes to Andreas Reuß for chess lessons and proofreading the draft of

the thesis.

Contents

Introduction 1

1. Monadic Parametricity 3
1.1. Introduction . 3
1.2. Monadic Parametricity . 9

1.2.1. Acceptable Monadic Relations . 9
1.2.2. Parametricity Theorem . 12
1.2.3. Purity . 15
1.2.4. Second Order: the Total Case . 18
1.2.5. Second Order: the Partial Case . 25
1.2.6. Generalizations . 29

1.3. Monadic Parametricity for State Monads 30
1.3.1. Relational Parametricity . 30
1.3.2. Monadic Parametricity . 32
1.3.3. Strategy Trees . 34
1.3.4. Existence of Strategy Trees . 47
1.3.5. Generalizations . 51
1.3.6. The Partial Case . 52

1.4. Monadic Parametricity and Continuity . 54
1.5. Applications . 55

1.5.1. Modulus of Continuity . 55
1.5.2. Formal Reasoning About Programs 59

1.6. Conclusion . 59

2. Verified Generic Fixpoint Algorithms 61
2.1. Introduction . 61
2.2. RLD Solver . 65

2.2.1. Description of RLD . 65
2.2.2. Correctness . 69
2.2.3. Exactness . 95
2.2.4. RLDE . 101
2.2.5. Termination and Complexity . 104
2.2.6. The Totalized Version of RLD and Extraction 110

2.3. Conclusion . 111

References 113

viii Contents

Appendices 121

A. Appendix to Chapter 1 121
A.1. Proof of Theorem 1.2.11 . 121

B. Appendix to Chapter 2 125
B.1. Trace of cex to the erroneous modification of RLD 125
B.2. Trace of cex to the monotonic case for RLD 127
B.3. Functional implementation of RLDE . 132

List of Figures

1.1. Typing rules for expressions in λ→ . 13
1.2. Monadic semantics of expressions in λ→ 13
1.3. Functional implementation of tree2fun and fun2tree in OCaml 38
1.4. Exact integration algorithm in ML . 58

2.1. The recursive solver tracking local dependencies (RLD) 67
2.2. The erroneous optimization of RLD . 73
2.3. Counterexample for the erroneous optimization 74
2.4. Functional implementation of RLD with explicit state passing 77
2.5. Counterexample to the monotonic case . 96
2.6. The recursive solver tracking local dependencies, exact (RLDE) 102
2.7. The totalized version of RLD implemented in Coq 112

B.1. Functional implementation of RLDE with explicit state passing 133

List of Original Publications
1. Martin Hofmann, Aleksandr Karbyshev, and Helmut Seidl. What is a pure func-

tional? In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Friedhelm Meyer
auf der Heide, and Paul G. Spirakis, editors, ICALP (2), volume 6199 of Lecture
Notes in Computer Science, pages 199–210. Springer, 2010

2. Andrej Bauer, Martin Hofmann, and Aleksandr Karbyshev. On monadic para-
metricity of second-order functionals. In Frank Pfenning, editor, FoSSaCS, volume
7794 of Lecture Notes in Computer Science, pages 225–240. Springer, 2013

3. Martin Hofmann, Aleksandr Karbyshev, and Helmut Seidl. Verifying a local generic
solver in Coq. In Radhia Cousot and Matthieu Martel, editors, SAS, volume 6337
of Lecture Notes in Computer Science, pages 340–355. Springer, 2010

4. Martin Hofmann, Aleksandr Karbyshev, and Helmut Seidl. On the verification of
local generic solvers. Technical report, Technische Universität München, 2013

Online Resources
1. Aleksandr Karbyshev. Purity: the accompanying Coq implementation. https:

//github.com/karbyshev/purity/, 2013

2. Aleksandr Karbyshev and Kalmer Apinis. Solvers: verified fixpoint algorithms.
https://github.com/karbyshev/solvers/, 2013

https://github.com/karbyshev/purity/
https://github.com/karbyshev/purity/
https://github.com/karbyshev/solvers/

Introduction
Suppose that we want to find a minimal solution of a system of constraints of two
variables (unknowns) x and y in natural numbers

x ⊒ y ⊔ 5

y ⊒ x ⊓ 3

(*)

where⊑ is interpreted as the usual ordering≤ on natural numbers, ⊔ and ⊓ are maximum
and minimum functions, respectively. The system is easy to solve in one’s head, and the
minimal solution is {x = 5,y = 3}.
The matter gets more complicated when one has to deal with thousands or even mil-

lions of variables. In practice, efficient fixpoint solvers allow to tackle constraint systems
of large size. A fixpoint solver is an algorithm that takes a constraint system as input and
returns back a solution (a partial one, if a full solution is not needed) to the constraint
system when it terminates. It usually starts with least “bottom” values for variables
and tries iteratively to satisfy required constraints increasing values of variables when
needed using some kind of strategy for picking a next constraint. The strategy may rely
on extra information, e.g., dependencies between unknowns, which the algorithm keeps
in internal data structures. The required information may be precomputed statically if
right-hand sides are given explicitly in a simple format, like in (*).
Suppose, however, that the right-hand sides are given as black boxes which one cannot

look into, or semantically as second-order functions of type (V → D)→ D implemented
in some programming language, with the set of unknowns V . In order to efficiently
deal with such constraint systems, the solver must rely on self-observation and track the
variable dependencies on-the-fly storing them by means of side effects. However, then
the algorithm works correct only if functions representing right-hand sides are “good” in
certain sense: if they do not interfere with the solver by altering, for instance, a global
state or producing any other side-effects by themselves. In the thesis, we introduce
and study a semantical notion of monadic parametricity (which is a form of purity) that
characterizes this “good” operational behaviour of functions. The monadic parametricity
is a subject of Chapter 1.
As our experience confirms, a design of efficient fixpoint solvers is error-prone. For

example, a draft of the textbook [SWH10] has presented a version of the local solver
which has been in use for quite a lot of time and worked well for constraint systems
arising in a real-life program analysis. However, there was no formal proof of correctness
for the solver. Indeed, later we have discovered a counterexample and thus have shown
that the solver was wrong. As we will see further, the counterexample to this erroneous
solver is quite intricate and is based on a special case of circular dependencies between
unknowns that never appeared in practice.

2 Introduction

Testing as a verification method is not reliable for safety-critical systems. In order
to be completely sure in correctness of the software, one needs to apply more rigorous
methods like theorem proving. In this thesis, we follow the latter approach and present
a formal development for a local generic solver RLD in the proof assistant Coq [Coq12]
(see Chapter 2). We tried to formalize as many results as possible and verified not only
the solver itself, but also a prerequisite theory of monadic parametricity.
Other examples of algorithms that take second-order functions as input are algorithms

for exact real integration [Sim98, Lon99] which are briefly discussed in Chapter 1.
All results presented in the thesis are verified in Coq except for that it is explicitly

indicated. The Coq code is available for download at [Kar13] and [KA13].

Structure of the Thesis
Chapter 1, Monadic Parametricity, is based on the following two publications:

– The paper [HKS10b] presented the notion of purity for second-order function-
als parametric in state monads and characterization of pure functionals of type∏

S .(A → StateSB) → StateSC with one functional argument. In the thesis, we
generalize the characterization of pure functionals for an arbitrary second-order
type. Additionally, we provide a formalization of Theorem 1.3.35 about existence
of strategy trees in Coq (although, not fully) which was missing in loc.cit.

– The paper [BHK13] generalized the notion of purity to arbitrary monadically para-
metric second-order functionals and provided their characterization in the total and
the partial settings.

Chapter 2, Verified Generic Fixpoint Algorithms, is based on two other publications:

– The paper [HKS10a] presented a formal development of RLD fixpoint solver.

– The technical report [HKS13] which introduced the exact version RLDE of the
solver. The version of RLDE presented in the paper is novel and differs from the
one proposed in loc.cit. Moreover, in the thesis, we provide sufficient conditions for
termination of both of the solvers. Additionally, we demonstrate how to extract a
certified solver in ML from the Coq code.

1. Monadic Parametricity

1.1. Introduction
The main problem considered in this chapter can be formulated as follows. How can one
rigorously specify that a given second-order ML functional F : (int → int) → int is
pure, i.e., F only produces computational effects (changes a store, raises an exception,
produces output, consumes input, etc.) only through calls of its functional argument?
Our motivation to study this kind of purity stems from a practical problem — an

attempt to rigorously formalize and verify a local generic solver. Let us explain the
problem in more detail.
Suppose we have a system of constraints over a bounded semi-lattice D = (D,⊑,⊥)

xi ⊒ Fi(x1, . . . ,xn), i = 1, . . . , n (*)

where each xi ∈ V is a variable (or an unknown). A solution to a system (*) is a variable
assignment σ : V → D such that σ xi ⊒ Fi(σ x1, . . . , σ xn). More generally, we can think
of the constraint system (*) as given by a second-order functional

F : V → (V → D)→ D

that for every variable x returns a respective right-hand side Fx. A solution σ satisfies
then σ x ⊒ Fx σ, for all x ∈ V . Generic fixpoint solver is an algorithm that takes as
input an arbitrary constraint system F with a set of variables V over an arbitrary lattice
of abstract values D and returns a solution in the above sense. The function F is usually
implemented in some specification language.
However, in practice, a full solution to the constraint system is often not needed, or

even not feasible if V is infinite. The user often wants to know a value of only one specific
variables (or only few of them) which, for instance, may correspond to information in a
particular program point if the given system of constraints is derived by an analysis of
the program. Local generic solvers additionally take as input a finite list of interesting
variables X ⊆ V and try to solve only them and those unknowns that are needed for
evaluation of right-hand sides Fx, for x ∈ X. An efficient local solver tries to determine
relevant variables and thus, to evaluate as few unknowns as possible. For that, the
solver must take into account the information about dependencies between variables.
However, if the constraint system F is given as a black box and a static preprocessing
of variable dependencies is not possible, the local solver must rely on self-observation
in order to identify the dependencies while they are discovered during the iteration
process. The bookkeeping of variable dependencies can be achieved by means of side-
effects. That is, when re-evaluating a right-hand side Fx, the latter is applied to a

4 Monadic Parametricity

special instrumented function σ′ that additionally keeps record of dependencies between
unknowns in a dedicated store.
Notice that the algorithm is formulated as being applicable to arbitrary constraint

functions F . However, it is clear that the solver does work properly only for sufficiently
well-behaved right-hand sides F . As an examples of a “bad” F , one can take any func-
tional that spoils structures maintained by the algorithm or a snapback-like functional
which, when called, makes a snapshot of a state of the virtual machine, performs some
computation and recovers the initial state of the system prior to returning a result.
Clearly, the snapback functional cannot be considered as a pure one. We conclude that
a “good” functional F should not produce any side-effects on its own, but only those
that arise from its stateful argument σ′.
In order to make a formal reasoning about such a local solver possible and to implement

it in a pure functional language like the one of Coq, one has to make side-effects explicit
by means of a state monad State. For that, a second-order functional representing a
constraint system must by lifted to a monadic computation of the type

F ♯ :
∏

S .V → (V → StateSD)→ StateSD.

It is intuitively clear that the behaviour of F ♯ should not depend on a kind of the state
set S and thus, F ♯ is parametric in S. Two questions naturally arise. How can we
characterize this type of parametricity? For which functionals F does a monadic lifting
F ♯ exist?
One can generalize the posed problems to other types of effectful computations. Let

Monad be a collection of all the effects presented in the programming language, given
in terms of monads [Wad95]. How can one characterize pure second-order functionals of
type

F :
∏

T∈Monad.(A→ TB)→ TC

polymorphic with respect to monads? For a given F : (A → B) → C, is it always
possible to construct a monadically parametric lifting F ♯ :

∏
T∈Monad.(A→ TB)→ TC

such that F = F ♯
Id where Id is the identity monad? What are the necessary conditions

F must satisfy? Is F necessarily continuous?
The outline of the chapter is as follows. After the introductory section, we study

a notion of purity in Section 1.2 as a semantical notion of monadic parametricity. In
Section 1.3, we study a notion of parametricity for state monads. In Section 1.4, we
discuss a relation of the notion of monadic parametricity to continuity. In Section 1.5,
we discuss some application of purity to design of certified algorithms and verification
of programs. Finally, we conclude and discuss a related work in Section 1.6.

Formal verification We present a formal verification in Coq [Coq12] for all the novel
results except Theorem 1.3.35 for which only partial machine proof is available and
Theorem 1.2.43 in the domain-theoretic setting. Formal proofs in the domain-theoretic
setting are based on the constructive domain-theoretic framework developed in [BKV10]
and use SSReflect library [GMT08]. The formal development is available for download
at [Kar13].

1.1 Introduction 5

However, familiarity with Coq is not necessary for understanding of results presented
in this chapter. We say little or nothing about details and pitfalls of formalization in
Coq though there are some.
The short introduction to Coq is given in Chapter 2.

Preliminaries
In what follows, we study the notion of monadic parametricity in the total set-theoretic
setting and the partial domain-theoretic one. For the former we interpret types as sets
and for the latter as cpos, continuous posets (precise definitions follow below), and thus
we use the notations a : X and a ∈ X interchangeably. For sets (cpos) X and Y we write
X×Y for a Cartesian product X+Y for a disjoint sum and X → Y for a function space
of total functions (a cpo of continuous functions). The symbol → is right-associative,
i.e., X → Y → Z means X → (Y → Z). We denote pairs by (x, y), and projections
by fst and snd. We use λ, ◦ and juxtaposition for function abstraction, composition
and application, correspondingly. id denotes the identity function. We write curry and
uncurry for currying and uncurrying functions defined by

curry : (X × Y → Z)→ X → Y → Z = λf.λx.λy.f (x, y)

uncurry : (X → Y → Z)→ X × Y → Z = λf.λp.f (fst p) (snd p).

For a family of sets or cpos (Xi)i∈I we write
∏

i∈I Xi for its Cartesian product. If
F ∈

∏
i∈I Xi then Fi ∈ Xi denotes the i-th projection.

∑
i∈IXi stands for a disjoint

union of (Xi)i∈I . We may think of elements of
∑

i∈IXi as pairs (i, a), for i ∈ I, x ∈ Xi.
If A is a set then A∗ denotes the set of all finite sequences of elements of A. The empty

sequence is denoted by ε. We put a vector sign above a symbol, like a⃗, in order to stress
that a⃗ is a sequence. If a⃗ is a finite sequence, |⃗a| denotes its length. For sequences a⃗ and
b⃗, a⃗⃗b denotes their concatenation. We may consider an element a ∈ A as a sequence of
length 1. The notation b ∈ a⃗ means that b occurs in the sequence a⃗.
In logical formulas, conjunction ∧ binds stronger than disjunction ∨ which in turn

binds stronger than implication =⇒ , and quantifiers ∃, ∀ bind weakest.

Cpos and continuous functions The following standard definitions and propositions
can be found in any textbook on domain theory, e.g., in [AJ94]. We remind them here
however for the sake of completeness.
Definition 1.1.1. A partial order D = (D,⊑D) is called an ω-cpo (ω-complete partial
order) if every ω-chain has a supremum in D, i.e., for every c : N → D such that
ci ⊑ ci+1, for all i, there exists a least upper bound

⊔
i∈ω ci ∈ D for c, for which we will

also write
⊔
c. From now on, we write simply cpo to refer to ω-cpo. A cpo D is pointed

(shortly, cppo) if there is a least element in D denoted by ⊥D (a bottom element). We
will omit index D if it is clear from context. D is called discrete if x ⊑ y implies x = y.
Definition 1.1.2. For cpos D and E, the function f : D → E is monotonic if x ⊑ y
implies f x ⊑ f y, for all x, y. Monotonicity of f implies

⊔
(f ◦ c) ⊑ f(

⊔
c), for any chain

c in D. We say that f is continuous if it is monotonic and
⊔
(f ◦ c) ⊒ f(

⊔
c).

6 Monadic Parametricity

Definition 1.1.3. For cpos D and E, the set D → E of all continuous functions when
ordered pointwise forms a cpo. Indeed, consider a chain c : N→ (D→ E) of continuous
functions. Consider a function f defined by f x =

⊔
(λn.cn x). It is easy to see that

f =
⊔
c. If furthermore E is pointed then D → E is a cppo with the least element

⊥D→E = λx.⊥E , a constant bottom function.

Definition 1.1.4. For a cpo D, we define a lifted cppo D⊥ with the domainD⊥ = D⊎{⊥}
and a partial ordering ⊑D⊥ defined by

x ⊑D⊥ y ⇐⇒

{
x = ⊥ or
x ⊑D y, if x, y ∈ D.

Let ηD : D → D⊥ and kleisliD,E : (D → E⊥)→ (D⊥ → E⊥) be defined by

ηD x = x and kleisliD,E f x =

{
⊥ if x = ⊥
f x otherwise

which we call lifting function and Kleisli function, correspondingly.

Remind some other standard ways of constructing cpos.

Definition 1.1.5. The Cartesian product of cpos D and E is defined by the following:
it’s domain D × E = {(d, e) | d ∈ D, e ∈ E}, and ordering is componentwise, (d1, e1) ⊑
(d1, e1) iff d1 ⊑ d2 and e1 ⊑ e2.

Definition 1.1.6. The direct sum of cpos D and E is defined as follows. The domain
D + E = {inl d | d ∈ D} ∪ {inr e | e ∈ E} is a disjoint union of D and E. The ordering
is defined by

x ⊑D+E y ⇐⇒

{
d1 ⊑ d2 if x = inl d1 and y = inl d2
e1 ⊑ e2 if x = inr e1 and y = inr e2

The next theorem allows to define a fixpoint operator for functions on cppos.

Theorem 1.1.7. Given a cppo D and a continuous function f : D → D, there exists a
fixed point fix f ∈ D of f , that is f (fix f) = fix f .

Proof. Since the function iter f = λi.f i⊥D forms a chain in D, there exists fix f =⊔
(iter f). By continuity of f , we infer f (fix f) = f (

⊔
(iter f)) =

⊔
(f ◦ (iter f)) =⊔

(iter f) = fix f .

We introduce the polymorphic fixpoint operator for cppos fixD : (D → D) → D. It is
not difficult to show that fixD is continuous, for any cppo D.

Definition 1.1.8. For a cpo D, a predicate P ⊆ D is called admissible if it closed under
taking lubs of chains, i.e., for any chain c in D such that ci ∈ P , for all i,

⊔
c ∈ P holds.

1.1 Introduction 7

The following fixpoint induction principle can be easily established.

Lemma 1.1.9. For a cppo D, a continuous function f : D → D and an admissible
relation R ⊆ D, the following is true.

If ⊥D ∈ R and (∀x. x ∈ R =⇒ (f x) ∈ R) then (fix f) ∈ R.

Proof. Since fix f =
⊔

i∈ω f
i⊥D and R is admissible, it is sufficient to prove fn⊥D ∈ R,

n ∈ N. The latter can be seen by induction. For n = 0, f0⊥D = ⊥D ∈ R by the
assumption. For the inductive step, assume fn⊥D ∈ R. Then fn+1⊥D = f (fn⊥D) ∈ R
by the assumption and the induction hypothesis.

Monads

Definition 1.1.10. A monad is a triple (T, valT , bindT) where T is the monad type
constructor that for every X assigns the type TX of computations over X (TX is a cppo
in the partial setting), and

valAT : A→ TA

bindA,B
T : TA→ (A→ TB)→ TB

are the monadic operators satisfying for all a, f , g, and t of suitable types the three
properties

– left unit: bindA,B
T (valAT a) f = f a, for every a ∈ A

– right unit: bindA,A
T t (valAT) = t

– associativity: bindB,C
T (bindA,B

T t f) g = bindA,C
T t (λx. bindB,C

T (f x) g).

For the partial setting, we also require that TX is a cppo and that T is strict, i.e.,

– bindA,B
T ⊥TA f = ⊥TB.

We omit indices A,B,C when they are clear from context.

Below are some examples of monads that we will use further. A trivial one is the identity
monad Id which is defined by IdX = X and trivial monadic operators

valId x = x and bindId t f = f t.

In the domain setting, the type constructor of partiality (or lift) monad is T⊥X = X⊥
and monadic operators are

valXT⊥
= ηX and bindX,Y

T⊥
t f = kleisliX,Y f t.

T⊥ is obviously pointed and strict. It’s total counterpart is the exception monad Maybe
(also denoted as Error) with type constructor MaybeX = optionX — an inductive type

8 Monadic Parametricity

with constructors None : optionX and Some : X → optionX. We will also use error
and value as synonyms for None and Some, respectively. The monadic operators are
given by

valMaybe x = Somex and bindMaybe t f =

{
None if t = None
f x if t = Some x

The continuation monad ContR with result type R (for the partial case, we require R
to be a cppo) is defined by ContRX = (X → R)→ R and

valContR x = λc.c x

bindContR t f = λc.t (λx.f x c).

In the partial case, ContR is pointed and strict since bindContR ⊥ContR f = λc.⊥R =
⊥ContR .
Given a type of states S, we denote by StateS the state monad over S with StateSX =
S → X × S, and monadic operations defined by

valStateS x = λs.(x, s)

bindStateS t f = λs.let (x1, s1)← t s in f x1 s1.

In the partial case, for a cpo S we define StateSX = S → (X × S)⊥ and

valStateS x = λs.η (x, s)

bindStateS t f = λs.kleisli (uncurry f) (t s).

A monad transformer is a type constructor that takes a monad as an argument and
returns a monad as a result modifying the behaviour of an argument monad. Given a
type of states S, the state monad transformer StateTS maps a monad (T, valT , bindT) to
a monad defined by the monad constructor

StateTS T X = S → T (X × S)

and monadic operations

valStateTS T x = λs. valT (x, s)
bindStateTS T t f = λs. bindT (t s) (uncurry f).

The exception monad transformer ErrorT maps a monad (T, valT , bindT) to a monad
defined by the monad constructor

ErrorT T X = T (optionX)

with monadic operations

valErrorT T x = valT (valuex)

bindErrorT T t f = bindT t

(
λx.

{
valT error x = error

f a x = value a

)
.

1.2 Monadic Parametricity 9

1.2. Monadic Parametricity
In what follows, we solve one of problems posed in the introduction and provide a
semantical characterization of purity.
In Subsection 1.2.1, we introduce the notion of an acceptable monadic relation. In Sub-

section 1.2.2, we provide a relational interpretation of types and terms of call-by-value
λ-calculus with monadic semantics and establish a Fundamental Lemma of logical rela-
tions stating that every well-typed program respects any acceptable monadic relation.
After that, in three subsequent subsections 1.2.3–1.2.5, we study the notion of monadic
parametricity which is a special form of purity for first-order and second-order func-
tionals. We consider both total and partial cases. We prove Representation Theorems
stating that pure in that sense functionals can be represented as certain kinds of strategy
trees. Finally, in Subsection 1.2.6, we generalize the notion to arbitrary second-order
types.
For the rest of the chapter, we assume that A,B,C,Ai, Bi are sets or cpos, as appro-

priate. Let Monad be a fixed collection of monads such that ContR ∈ Monad, for all R.
We think of Monad as a class of effects presented in a programming language.

1.2.1. Acceptable Monadic Relations
To define the notion of monadic parametricity we first introduce several notions and
notations.

Definition 1.2.1. IfX,X ′ are types then Rel(X,X ′) denotes the type of binary relations
between X and X ′. Furthermore:

– if X is a type then ∆X ∈ Rel(X,X) denotes the equality on X;

– if R ∈ Rel(X,X ′) and S ∈ Rel(Y, Y ′) then R →̇ S ∈ Rel(X → Y,X ′ → Y ′) is
given by

f (R →̇ S) f ′ iff ∀xx′. xRx′ =⇒ (f x)S (f ′ x′);

As usually, the arrow symbol associates to the right, i.e., Q →̇ R →̇ S should be
read as Q →̇ (R →̇ S).

– if R ∈ Rel(X,X ′) and S ∈ Rel(Y, Y ′) then R ×̇ S ∈ Rel(X×Y,X ′×Y ′) is given by

p (R ×̇ S) p′ iff (fst p)R (fst p′) ∧ (snd p)S (snd p′).

Definition 1.2.2. For cpos X,X ′ and R ∈ Rel(X,X ′), R is admissible if it is admissible
as a relation in the product cpo X ×X ′.

Lemma 1.2.3. Let D,D′ be cpos, E,E′ cppos, and relations R ∈ Rel(D,D′), S ∈
Rel(E,E′) with S being admissible. Then R →̇ S is admissible.

Proof. Assume (fi, f
′
i)i∈ω ∈ R →̇ S forms a chain. Then (

⊔
i∈ω fi,

⊔
i∈ω f

′
i) ∈ R →̇ S.

Indeed, take (x, x′) ∈ R. Then

((
⊔

i∈ωfi)x, (
⊔

i∈ωf
′
i)x

′) = (
⊔

i∈ωfi x,
⊔

i∈ωf
′
i x

′) ∈ S.

10 Monadic Parametricity

Definition 1.2.4. Fix T, T ′ ∈ Monad. For every X,X ′ and Q ∈ Rel(X,X ′) fix a
relation T rel(Q) ∈ Rel(TX, T ′X ′). We say that the mapping (X,X ′, Q) 7→ T rel(Q) is an
acceptable monadic relation if

– for all X,X ′, Q ∈ Rel(X,X ′),

(valT , valT ′) ∈ Q →̇ T rel(Q);

– for all X,X ′, Q ∈ Rel(X,X ′), Y, Y ′, R ∈ Rel(Y, Y ′),

(bindT , bindT ′) ∈ T rel(Q) →̇ (Q →̇ T rel(R)) →̇ T rel(R).

In the domain-theoretic setting, we additionally assume that the monadic relation T rel

is

– admissible, i.e., T rel(Q) is admissible for every admissible Q ∈ Rel(X,X ′)

– strict, i.e., (⊥TX ,⊥T ′X′) ∈ T rel(Q).

Below, we consider two examples of acceptable monadic relations that will be used in
proofs of representation theorems. For continuation monads with result sets (cppos) S,
S′, we define a “simulation” monadic relation as follows.

Definition 1.2.5. Fix an arbitrary W ∈ Rel(S, S′). For X,X ′ and Q ∈ Rel(X,X ′), we
define T rel

Cont(Q) ∈ Rel(ContSX,ContS′X ′) by

T rel
Cont(Q) = (Q →̇W) →̇W.

Essentially, T rel
Cont(Q) relates two functions H,H ′ employing continuations iff for any

continuations h, h′ which map related values to related results, the result values H h and
H ′ h′ are related by W .

Lemma 1.2.6. Given W ∈ Rel(S, S′), Q 7→ T rel
Cont(Q) is an acceptable monadic relation.

In the partial case, if W is admissible and (⊥S ,⊥S′) ∈ W then T rel
Cont is admissible and

strict.

Proof. We check properties from the definition of acceptability.

– In the val-case, for X,X ′ and Q ∈ Rel(X,X ′), take x, x′ such that xQx′ and
(h, h′) ∈ Q →̇W . Then we have (valContS xh, valContS′ x

′ h′) = (hx, h′ x′) ∈W .

– In the bind-case, for X,X ′, Q ∈ Rel(X,X ′), and Y, Y ′, R ∈ Rel(Y, Y ′), take
t, t′ such that t T rel

Cont(Q) t′, and f, f ′ such that f (Q →̇ T rel
Cont(R)) f

′. We have to
show (bindContS t f)T

rel
Cont(R) (bindContS′ t

′ f ′). Indeed, take (h, h′) ∈ R →̇ W . To
demonstrate

(bindContS t f h, bindContS′ t
′ f ′ h′) = (t (λx.f x h), t′ (λx.f ′ xh′)) ∈W

1.2 Monadic Parametricity 11

by the assumption on t, t′ it is sufficient to show

(λx.f x h, λx.f ′ xh′) ∈ Q →̇W

which is true since (f x h, f ′ x′ h′) ∈ W holds by the assumption on f, f ′ for all
x, x′ such that xQx′.

– For the partial case, a strictness of T rel
Cont follows from (⊥S ,⊥S′) ∈ W . As for

admissibility, assume (Hi,H
′
i) ∈ T rel

Cont(Q), and let (h, h′) ∈ Q →̇ W . Then
((
⊔

i∈ωHi)h, (
⊔

i∈ωH
′
i)h

′) = (
⊔

i∈ωHi h,
⊔

i∈ωH
′
i h

′) ∈W since (Hi h,H
′
i h

′) ∈W ,
for all i, and W is admissible.

Definition 1.2.7. Fix a monad T , a set D and W ∈ Rel(TD, TD). For X,X ′, Q ∈
Rel(X,X ′), we define T rel

Cont,T (Q) ∈ Rel(ContTDX,TX
′) by putting

(H,H ′) ∈ T rel
Cont,T (Q) iff ∀h, h′. h (Q →̇W)h′ =⇒ (H h)W (bindT H ′ h′).

Lemma 1.2.8. Given T ∈ Monad, a set (or cpo, as the case may be) D and W ∈
Rel(TD, TD), T rel

Cont,T is an acceptable monadic relation. In the partial case, if W is
admissible and (⊥TD,⊥TD) ∈W then T rel

Cont,T is admissible and strict.

Proof. The proof is straightforward.

– In the val-case, for X,X ′ and Q ∈ Rel(X,X ′), let xQx′ and (h, h′) ∈ Q →̇ W .
Then (valContTD

xh, bindT (valT x′)h′) = (hx, h′ x′) ∈W .

– In the bind-case, for X,X ′, Q ∈ Rel(X,X ′), Y, Y ′, R ∈ Rel(Y, Y ′), take t, t′ such
that t T rel

Cont,T (Q) t′, and f, f ′ such that f (Q →̇ T rel
Cont,T (R)) f

′. We have to prove
(bindContTD

t f)T rel
Cont,T (R) (bindT t′ f ′). Indeed, we take (h, h′) ∈ R →̇W and show

(bindContTD
t f h, bindT (bindT t′ f ′)h′) =

(t (λx.f x h), bindT t′ (λx. bindT (f ′ x)h′)) ∈W.

In the last equality, we used the associativity of bind operator. Since t T rel
Cont,T (Q) t′

it is sufficient to prove

(λx.f x h, λx. bindT (f ′ x)h′) ∈ Q →̇W

which is true since (f xh, bindT (f ′ x′)h′) ∈ W holds by the assumption on f, f ′,
for all x, x′ such that xQx′.

– For the partial case, the strictness of T rel
Cont,T follows from (⊥TD,⊥TD) ∈ W and

the strictness of T . Show that T rel
Cont,T is admissible. For that, take (Hi,H

′
i) ∈

T rel
Cont,T (Q), and let (h, h′) ∈ Q →̇ W . Then ((

⊔
i∈ωHi)h, bindT (

⊔
i∈ωH

′
i)h

′) =
(
⊔

i∈ωHi h,
⊔

i∈ω bindT H ′
i h

′) ∈ W since (Hi h, bindT H ′
i h

′) ∈ W , for all i, and W
is admissible.

Notice that both of relations T rel
Cont and T rel

Cont,T may be considered as instances of the
⊤⊤-lifting construction as described by Katsumata [Kat05].

12 Monadic Parametricity

1.2.2. Parametricity Theorem
In the following, we introduce a call-by-value λ-calculus (λ→ for short) with monadic
semantics similar to Moggi’s computational metalanguage [Mog91]. We provide a rela-
tional interpretation of types and terms of λ→. Finally, we establish the fundamental
lemma of logical relations stating that every well-typed program respects any acceptable
monadic relation.

Call-by-value lambda calculus λ→ We define simple types over sets of base types,
ranged over by o, by the grammar

τ ::= o | τ1 × τ2 | τ1 → τ2.

For each base type o and monad T ∈ Monad we fix a set in the total case or a cpo in
the partial case JoKT . Then we extend the monadic interpretation J−KT to all types by

Jτ1 × τ2KT = Jτ1KT × Jτ2KTJτ1 → τ2KT = Jτ1KT → T Jτ2KT .
Given a set of constants (ranged over by c) with corresponding types τ c and variables
ranged over by x, we define the λ-terms by the grammar

e ::= x | c | λx.e | e1 e2 | e.1 | e.2 | ⟨e1, e2⟩ |
let x← e1 in e2 | let rec f(x) = e

with the last rule for recursive definitions in the partial case only. A typing context Γ
is a partial function mapping variables to their types. We write Γ, x : τ to designate
the typing context that extends Γ by associating variable x with type τ . The typing
judgement Γ ⊢ e : τ is defined inductively by the usual rules as in Figure 1.1. The term
e : τ is closed if ∅ ⊢ e : τ .
For each T ∈ Monad and constant c fix an interpretation JcKT ∈ Jτ cKT . An environment

for a context Γ and T ∈ Monad is a mapping η such that x ∈ dom(Γ) implies η x ∈JΓ(x)KT .
If Γ ⊢ e : τ and η is an environment for Γ and T ∈ Monad, we define a monadic

semantics JeKT (η) ∈ T JτKT by the clauses in Figure 1.2.

Parametricity theorem

Definition 1.2.9. Fix monads T, T ′ ∈ Monad and an acceptable monadic relation T rel

for T, T ′. Given a binary relation JoKrel ∈ Rel(JoKT , JoKT ′) (admissible, in the partial
case) for each base type o, we associate a relation JτKrel

T rel ∈ Rel(JτKT , JτKT ′) with each
type τ by the clauses

JoKrel
T rel = JoKrel

Jτ1 × τ2Krel
T rel = Jτ1Krel

T rel ×̇ Jτ2Krel
T relJτ1 → τ2Krel

T rel = Jτ1Krel
T rel →̇ T rel(Jτ2Krel

T rel)

1.2 Monadic Parametricity 13

x ∈ dom(Γ)

Γ ⊢ x : Γ(x)
(Var)

Γ ⊢ c : τ c
(Const)

Γ, x : τ1 ⊢ e : τ2
Γ ⊢ λx.e : τ1 → τ2

(Abs)
Γ ⊢ e1 : τ1 → τ2 Γ ⊢ e2 : τ1

Γ ⊢ e1 e2 : τ2
(App)

Γ ⊢ e : τ1 × τ2
Γ ⊢ e.1 : τ1

(Fst)
Γ ⊢ e : τ1 × τ2
Γ ⊢ e.2 : τ2

(Snd)
Γ ⊢ e1 : τ1 Γ ⊢ e2 : τ2

Γ ⊢ ⟨e1, e2⟩ : τ1 × τ2
(Prod)

Γ ⊢ e1 : τ1 Γ, x : τ1 ⊢ e2 : τ2
Γ ⊢ let x← e1 in e2 : τ2

(Let)

Γ, f : τ1 → τ2, x : τ1 ⊢ e : τ2
Γ ⊢ let rec f(x) = e : τ1 → τ2

(Rec)

Figure 1.1.: Typing rules for expressions in λ→

JxKT (η) = valT (η x)JcKT (η) = valT (JcKT)Jλx.eKT (η) = valT (λv.JeKT (η[x7→v]))Je1 e2KT (η) = bindT (Je1KT (η)) (bindT (Je2KT (η)))Je.iKT (η) = bindT (JeKT (η)) (valT ◦πi), i = 1, 2J⟨e1, e2⟩KT (η) = bindT (Je1KT (η)) (bindT (Je2KT (η)) ◦ (curry valT))Jlet x← e1 in e2KT (η) = bindT (Je1KT (η)) (λv.Je2KT (η[x7→v])))Jlet rec f(x) = eKT (η) = valT (fix (λh.λv.JeKT (η[f 7→h][x7→v])))
Figure 1.2.: Monadic semantics of expressions in λ→

14 Monadic Parametricity

Lemma 1.2.10. In the partial case, JτKrel
T rel is admissible for every type τ .

Proof. By induction on type definition. The base case, τ = o, is trivial. The case
τ = τ1 × τ2 is easy. For the case τ = τ1 → τ2, the statement follows from Lemma 1.2.3
and admissibility of T rel.

The following parametricity theorem states that any function definable in λ→ respects
any acceptable monadic relation. It is proven similarly for the total and the partial
settings.
Theorem 1.2.11. Fix T, T ′ ∈ Monad and an acceptable monadic relation T rel for T, T ′.
Suppose that JcKT Jτ cKrel

T rel JcKT ′ holds for all constants c. If ∅ ⊢ e : τ then

JeKT T rel(JτKrel
T rel) JeKT ′ .

Proof. One proves the following stronger statement by induction on typing derivations.
Given Γ ⊢ e : τ and environments η for Γ and T and η′ for Γ and T ′ then

∀x. (η x) JΓ(x)Krel
T rel (η

′ x) implies JeKT (η)T rel(JτKrel
T rel) JeKT ′(η′).

See Appendix A.1 for the full proof.

Remark. Note that every well-typed program ∅ ⊢ e : τ of λ→ defines a (parametrically)
polymorphic function of type

∏
T .JτKT by taking a product over the type of monads.

Structural recursion and parametricity In the total case, the general recursion is not
adapted. However, one can include in λ→ as a basic type any inductive data type and
introduce corresponding constructors and a recursive scheme as constants. For example,
we can introduce a type of natural numbers, finite lists or well-founded trees into the
language. For the type of natural numbers nat, we include zero 0 : nat and the successor
function succ : nat→ nat constructors along with a primitive recursion operator

Rτ
nat : τ × (nat× τ → τ)× nat→ τ

as in Gödel’s system T. The relational semantics is defined by JnatKT = N and JnatKrel
T rel =

∆N for any monad T and monadic relation T rel.
Lemma 1.2.12. The recursion operator Rτ

nat is monadically parametric.

Proof. By induction over nat.

For the type of finite lists over τ , we introduce two constructors [] : list τ and :: : τ →
list τ → list τ . The semantic relation Jlist τKrel

T rel is defined by structural induction:

– [] Jlist τKrel
T rel [];

– if a JτKrel
T rel a

′ and l Jlist τKrel
T rel l

′ then (a :: l) Jlist τKrel
T rel (a

′ :: l′).

Thus, Jlist τKrel
T rel asserts structural equality of related lists and relatedness of their

elements. Similarly to the above-mentioned Rτ
nat, we can introduce a corresponding

recursion operator Rσ
list τ and establish its parametricity by structural induction.

1.2 Monadic Parametricity 15

1.2.3. Purity
Purity at the first-order First, we discuss the monadic parametricity of first-order
functions. We show that every pure in this sense first-order functional factorizes through
the operator val.
Let Monad be a collection of monads. Intuitively, the function

f :
∏

T∈Monad.A→ TB

can be considered as “pure” if there exists g : A → B such that f = ΛT. valT ◦ g, i.e.,
the behaviour of f is fully determined by a total g having no effects. We show that our
intuition is captured by the following precise extensional notion of parametricity.

Definition 1.2.13. The function f :
∏

T∈Monad.A → TB is monadically parametric
(pure) if

(fT , fT ′) ∈ ∆A →̇ T rel(∆B)

holds for all T, T ′ ∈ Monad and acceptable monadic relations T rel for T, T ′.

As a corollary from Parametricity Theorem 1.2.11 we obtain that such functionals exist.

Corollary 1.2.14 (of Theorem 1.2.11). Every first-order function F implemented in
λ→ with monadic interpretation is monadically parametric in T .

First, we characterize monadically parametric functionals in the total case.

Theorem 1.2.15. For a total f :
∏

T∈Monad.A → TB such that Id ∈ Monad, the
following are equivalent

1. there exists g : A→ B such that fT = valT ◦ g, for all T ∈ Monad.

2. f is monadically parametric.

Proof. The direction 1 ⇒ 2 is easy. Indeed, given an acceptable monadic relation T rel

for T, T ′ and a ∈ A, (valT (g a), valT ′(g a)) ∈ T rel(∆B) by definition. The reverse is more
complicated.
Let f be monadically parametric. Put g = fId. To prove the required we construct

an appropriate monadic relation using a ⊤⊤-construction similar to the one of Kat-
sumata [Kat05]. Given X,X ′, Q ∈ Rel(X,X ′), define Q⊤ ∈ Rel(X → TB,X ′ → B)
by

hQ⊤ h′ iff ∀x, x′.xQx′ =⇒ hx = valT (h′ x′).
Define Q⊤⊤ ∈ Rel(TX,X ′) by

tQ⊤⊤ t′ iff ∀h, h′.hQ⊤ h′ =⇒ bindT t h = valT (h′ t′).

It is not difficult to see that Q 7→ Q⊤⊤ is an acceptable monadic relation for T and Id.
The val-case is easy. Indeed, let X,X ′, Q ∈ Rel(X,X ′) and take (x, x′) ∈ Q, and let
(h, h′) ∈ Q⊤. Then bindT (valT x)h = valT (h′ (valId x′)) simplifies to hx = valT (h′ x′)

16 Monadic Parametricity

which holds by the assumption on h, h′. For the bind-case, let X,X ′, Q ∈ Rel(X,X ′),
Y, Y ′, R ∈ Rel(Y, Y ′), and take (t, t′) ∈ Q⊤⊤ and (g, g′) ∈ Q→ R⊤⊤. We have to prove
that for all h, h′ such that hR⊤ h′

bindT (bindT t g)h = valT (h′ (bindId t
′ g′)).

We rewrite the last equation as

bindT t (λx. bindT (g x)h) = valT ((h′ ◦ g′) t′)

and apply the fact (t, t′) ∈ Q⊤⊤. The new goal is (λx. bindT (g x)h)Q⊤ (h′ ◦ g′). Finally,
take (x, x′) ∈ Q. The required equality bindT (g x)h = valT (h′ (g′ x′)) follows from the
fact (g x, g′ x′) ∈ R⊤⊤.
Since f is pure, we have (fT , fId) ∈ ∆A →̇ ∆⊤⊤

B . Therefore, for every a ∈ A and
(h, h′) ∈ ∆⊤

B, bindT (fT a)h = valT (h′ (f a)) holds. Put h = valT and h′ = id. The
required follows.

Since A1 → · · · → Ak → TB ≃ A1×· · ·×Ak → TB, the theorem is valid for an arbitrary
first-order type. Namely, any monadically parametric function

f :
∏

T∈Monad.A1 → · · · → Ak → TB

admits a factorization f = ΛT. valT ◦ g with g = fId.
Notice that the statement of Theorem 1.2.15 cannot be applied directly for the partial

case. Consider, for example, the function fT x = ⊥TB. It can be seen easily that f is
monadically parametric, but fT x = ⊥TB ̸= valT (g x) for any g : A→ B and a non-trivial
monad T . However, the claim turns out true if one takes functions of type A → B⊥ as
representatives of pure first-order computations as shown by the next theorem.

Theorem 1.2.16. For f :
∏

T∈Monad.A → TB such that the partiality monad T⊥ ∈
Monad, the following are equivalent

1. there exists g : A→ B⊥ such that fT = (kleisli valT) ◦ g, for all T ∈ Monad.

2. f is monadically parametric.

Proof. The proof is similar to the one of Theorem 1.2.15. Towards 1 ⇒ 2, take an
acceptable monadic relation T rel for T, T ′ and a ∈ A. We show

(kleisli valT (g a), kleisli valT ′ (g a)) ∈ T rel(∆B)

by case distinction on g a. Thus, the proof is not constructive and uses the excluded
middle axiom. If g a = ⊥ then the assertion follows from strictness of T rel. Otherwise,
g a = b : B, and the goal simplifies to (valT b, valT ′ b) ∈ T rel(∆B) which is true by
val-acceptability of T rel.
For the reverse, we put g = fT⊥ . Define a monadic relation Q 7→ Q⊤⊤ for monads T ,

T⊥ as follows. Given X,X ′, Q ∈ Rel(X,X ′), define Q⊤ ∈ Rel(X → TB,X ′ → B⊥) by

hQ⊤ h′ iff ∀x, x′.xQx′ =⇒ hx = kleisli valT (h′ x′).

1.2 Monadic Parametricity 17

Define Q⊤⊤ ∈ Rel(TX,X ′) by

tQ⊤⊤ t′ iff ∀h, h′.hQ⊤ h′ =⇒ bindT t h = kleisli valT (kleislih′ t′).

The constructed monadic relation is acceptable for T and T⊥. We omit the proof. The
required is then derived from parametricity of f and the fact (valBT , ηB) ∈ ∆⊤

B.

Conclusion. We have shown that there is a one-to-one correspondence between monad-
ically parametric first-order functions of type

∏
T .A → TB and effect-free functions of

type A → B(⊥). In particular, this means that there is only one way of “lifting” of a
function f : A → B(⊥) to a monadically parametric first-order computation. Namely,
one must compose f with the (lifted) monadic operator val.

Purity at the second order As we have shown, at the first-order any parametric func-
tional f :

∏
T .A → TB is fully determined by an effect-free “strategy” g : A → B(⊥)

which may be considered as a forest that for every a : A returns a sole answer of type B
(B⊥, in the partial case).
Not surprisingly, the matter is more complicated in the second-order case. Intuitively,

the second-order functional F : (A→ TB)→ TC is “pure” if F causes no effects on its
own — the only effects produced by F f are those that arise from calls to an argument
function f within F . However, the hypothesis that every such a pure F arises from some
effect-free G : (A→ B)→ C, similar to the first-order case, is wrong in general. Indeed,
such a G is unable to tell how to treat and propagate effects from it’s effectful argument
f , and it is not even clear how one could apply such G to an effectful f at all.
For now, let us formalize what are pure second-order functionals we are interested in.

Denote by
Func =

∏
T∈Monad.(A→ TB)→ TC

a product type taken over some fixed collection of monads Monad. We might again think
of Monad as a collection of effects present in the given programming language.

Definition 1.2.17. A functional F ∈ Func is monadically parametric (pure) for the
collection Monad of monads iff

(FT , FT ′) ∈ (∆A →̇ T rel(∆B)) →̇ T rel(∆C)

holds for all T, T ′ ∈ Monad and acceptable monadic relations T rel for T, T ′.

The Parametricity Theorem provides us with an existence of pure second-order func-
tionals.

Corollary 1.2.18 (of Theorem 1.2.11). Every second-order function F : Func imple-
mented in λ→ with monadic interpretation is monadically parametric.

In the next two subsections we prove that such pure functionals admit question-answer
strategy tree representations of certain kind both in a total set-theoretic setting and a
partial domain-theoretic one. Moreover, the correspondence between functionals and
strategies trees is one-to-one.

18 Monadic Parametricity

1.2.4. Second Order: the Total Case
First, we study our notion of purity in the set-theoretic setting in which every func-
tional is total and a general recursion is not adapted. We assume that the functionals
under consideration are defined for all continuation monads, i.e., ContR ∈ Monad for all
resulting sets R.
Define inductively a set of strategy trees — “skeletons” of pure second order functions.

Definition 1.2.19. The set of strategy trees TreeA,B,C is a minimal set generated by
the constructors

– Ans : C → TreeA,B,C

– Que : A→ (B → TreeA,B,C)→ TreeA,B,C

Thus, a strategy tree is either an answer leaf Ans c with the answer value c : C or a
question node Que a f with the query a : A (an argument for which a question is asked)
and the branching (continuation) function f : B → Tree that for every possible answer
of type B returns another tree. Since types A,B,C are fixed, we omit these indices.
Example 1.2.20. For A = B = C = N, Ans 1 and Que 0 (λx.Ansx) are strategy trees.
For a given monad T ∈ Monad, every strategy tree defines a functional of type (A →
TB)→ TC as in the following definition.
Definition 1.2.21. Given T ∈ Monad, we define the function tree2funT : Tree→ (A→
TB)→ TC by structural recursion as

– tree2funT (Ans c) = λk. valT c

– tree2funT (Que a f) = λk. bindT (k a) (λb.tree2funT (f b) k).
Since tree2funT is parametric in the monad T , we define a polymorphic version

tree2fun t =
∏

T∈Monad.tree2funT t

of type Tree→ Func.
Intuitively, the computation defined by a strategy tree can by considered as a sequence
of queries to the first-order argument function k applied to elements from A followed
by an answer in C. For every question node Que a f the result of k a determines the
followed branch defined by the continuation function f . The definition ensures that all
the monadic effects come only from the argument function.
Example 1.2.22. Let A = B = C = N and a strategy tree t = Que 0 (λx.Ans x). Then
for a monad T

tree2funT t = tree2funT (Que 0 (λx.Ans x))
= λk. bindT (k 0) (λb.tree2funT (Ans b) k)
= λk. bindT (k 0) (λb. valT b)
= λk. bindT (k 0) valT
= λk. k 0

1.2 Monadic Parametricity 19

Thus, the tree t = Que 0 (λx.Ans x) corresponds to a second-order function that queries
its argument k at 0 and returns a produced result, in addition an effect of k is propagated
and no other effects are produced.
The following lemma states that every t ∈ Tree defines a monadically parametric

computation.

Lemma 1.2.23. For any t ∈ Tree, tree2fun t is monadically parametric.

Proof. Take monads T, T ′ and an acceptable monadic relation T rel for T, T ′. We prove
the statement by induction on t.

– t = Ans c. It suffices to show that (valT c, valT ′ c) ∈ T rel(∆C). Indeed, it holds by
the definition of acceptability of T rel.

– t = Que a f . Assume that

tree2fun (f b) is pure for every b ∈ B (IH)

Take (k, k′) ∈ ∆A →̇ T rel(∆B) and thus, (k a, k′ a) ∈ T rel(∆B) for all a : A. Since
T rel is acceptable, it suffices to show that

(λb.tree2funT (f b) k, λb.tree2funT ′ (f b) k′) ∈ ∆B →̇ T rel(∆C)

which holds by (IH).

Perhaps somewhat surprisingly, a strategy tree can be extracted by means of the con-
tinuation monad.

Definition 1.2.24. We define function fun2tree : Func→ Tree as follows:

fun2treeF = FContTree Que Ans

Representation theorem In what follows, we prove that functions fun2tree and tree2fun
are mutually inverse in the total case. One direction is quite easy.

Lemma 1.2.25. For any t ∈ Tree, fun2tree (tree2fun t) = t.

Proof. By structural induction on t.

– t = Ans c. Indeed,

fun2tree (tree2fun (Ans c)) =
fun2tree (ΛT.λk. valT c) = (λk. valContTree c)Que Ans = Ans c.

– t = Que a f . Assume the induction hypothesis

fun2tree (tree2fun (f b)) = f b for all b ∈ B.

20 Monadic Parametricity

We have tree2funT (Que a f) = λk. bindT (k a) (λb.tree2funT (f b) k), for any T , and
thus,

fun2tree (tree2fun (Que a f)) =
= fun2tree (ΛT.λk. bindT (k a) (λb.tree2funT (f b) k))

= (λk. bindContTree(k a) (λb.tree2funContTree (f b) k))Que Ans
= (bindContTree(Que a) (λb.tree2funContTree (f b)Que))Ans
= Que a (λb.tree2funContTree (f b)Que Ans)
= Que a (λb.fun2tree (tree2fun (f b)))

= Que a f.

We used the induction hypothesis and extensionality in the last step.

For the reverse statement we use purity of functionals.

Theorem 1.2.26. Given a pure F ∈ Func,

tree2funT (fun2treeF) = FT

holds (extensionally) for an arbitrary monad T ∈ Monad.

We first verify the statement for an arbitrary continuation monad.

Lemma 1.2.27. Given a pure F ∈ Func, tree2funContS (fun2treeF) = FContS holds for
every S.

Proof. Given a set S and functions q : A→ (B → S)→ S and a : C → S, we define the
conversion function convq,a : Tree→ S by

convq,a = λt.tree2funContS t q a.

We have

tree2funContS (fun2treeF) = FContS

⇐⇒ ∀q, a.tree2funContS (fun2treeF) q a = FContS q a

⇐⇒ ∀q, a.convq,a (fun2treeF) = FContS q a

⇐⇒ ∀q, a.convq,a (FContTree Que Ans) = FContS q a

⇐⇒ ∀q, a.(FContTree Que Ans, FContS q a) ∈ ⟨convq,a⟩

where ⟨f⟩ is a graph of f , i.e., (x, y) ∈ ⟨f⟩ iff f x = y.
We prove the last proposition by constructing an appropriate monadic relation for

ContTree and ContS and utilizing the purity of F . Fix some q and a. For X,X ′ and
Q ∈ Rel(X,X ′), define a monadic relation T rel

convq,a(Q) ∈ Rel(ContTreeX,ContSX ′) as

1.2 Monadic Parametricity 21

an instantiation of T rel
Cont from Definition 1.2.5 with W = ⟨convq,a⟩ ∈ Rel(Tree, S). By

Lemma 1.2.6, T rel
convq,a is an acceptable monadic relation. Since F is pure,

(FContTree , FContS) ∈ (∆A →̇ T rel
convq,a(∆B)) →̇ T rel

convq,a(∆C)

which by definition of T rel
Cont means that for all k : A → ContTreeB, k′ : A → ContSB

such that (k, k′) ∈ ∆A →̇ T rel
convq,a(∆B) and for all h : C → Tree, h′ : C → S such that

(h, h′) ∈ ∆C →̇ ⟨convq,a⟩,

(FContTree k h, FContS k
′ h′) ∈ ⟨convq,a⟩.

Thus, to prove the goal it suffices to check that (Que, q) ∈ ∆A →̇ T rel
convq,a(∆B) and

(Ans, a) ∈ ∆C →̇ ⟨convq,a⟩. Indeed, take c ∈ C. Then convq,a(Ans c) = a c and the latter
holds. Take a1 ∈ A and f : B → Tree, f ′ : B′ → S such that (f, f ′) ∈ ∆B →̇ ⟨convq,a⟩.
Then

convq,a(Que a1 f) = tree2funContS (Que a1 f) q a
= bindContS (q a1) (λb.tree2funContS (f b) q) a

= q a1 (λb.tree2funContS (f b) q a)

= q a1 (λb.convq,a (f b))
= q a1 f

′

and the former holds.

Now by Lemma 1.2.27, we have

tree2funContTC
(FContTree Que Ans) = FContTC

.

Using functions

φ1 = bindB,C
T : TB → ContTCB

φ2 = λg.g valCT : ContTCC → TC

we construct ΦT : ((A→ ContTCB)→ ContTCC)→ (A→ TB)→ TC as

ΦTF = λh.φ2(F (φ1 ◦ h)) = λh.F (bindB,C
T ◦h) valCT

which translates a functional for Cont to a functional for T . We prove

Lemma 1.2.28. For any pure F ∈ Func and T ∈ Monad, ΦT FContTC
= FT holds.

Proof. Again, the idea is to construct a suitable acceptable monadic relation and to ex-
ploit the purity of F . ForX,X ′, Q ∈ Rel(X,X ′), we define T rel

Φ (Q) ∈ Rel(ContTCX,TX
′)

as T rel
Cont,T (Definition 1.2.7) instantiated with D = C and W = ∆TC . By Lemma 1.2.8,

T rel
Φ is an acceptable monadic relation. Since F is pure, we have

(FContTC
, FT) ∈ (∆A →̇ T rel

Φ (∆B)) →̇ T rel
Φ (∆C)

22 Monadic Parametricity

which by definition of T rel
Cont,T means that for all k : A → ContTCB, k′ : A → TB

such that (k, k′) ∈ ∆A →̇ T rel
Φ (∆B) and for all h : C → TC, h′ : C → TC such that

(h, h′) ∈ ∆C →̇ ∆TC (and thus, h = h′), (FContTC
k h, bindT (FT k

′)h′) ∈ ∆TC holds, i.e.,

FContTC
k h = bindT (FT k

′)h. (1.1)

Note that for any g : A→ TB,

ΦT FContTC
g = FContTC

(bindB,C
T ◦ g) valCT

and
FT g = bindC,C

T (FT g) valCT .

Thus, using (1.1), it is sufficient to prove (bindB,C
T ◦ g, g) ∈ ∆A →̇ T rel

Φ (∆B). Indeed,
take a ∈ A and h, h′ such that (h, h′) ∈ ∆B →̇ ∆TC (and thus, h = h′). Then
(bindB,C

T ◦ g) a h = bindB,C
T (g a) h′ holds trivially.

Proof (of Theorem 1.2.26). Finally, we derive

FT = ΦTFContTC
(by Lemma 1.2.28)

= ΦT (tree2funContTC
(fun2treeF)) (by Lemma 1.2.27)

= tree2funT (fun2treeF) (by Lemmas 1.2.23, 1.2.28)

This proves the theorem.

The alternative proof As an anonymous reviewer of the paper [BHK13] has pointed
out, one can provide an alternative proof on the assumption that a syntactical strategy
tree monad belongs to the collection Monad for which F is defined.
The strategy tree monad TTree is defined by abstracting TreeA,B,C over the return type

C, i.e., the type constructor is given by TTreeX = TreeABX and monadic operators are

valTTree = Ans and bindTTree = subst

where subst : ΛXY.TreeA,B,X → (X → TreeA,B,Y) → TreeA,B,Y is a tree substitution
function. When applied to t and g, it substitutes all the leaves Ansx in t with trees g x.
subst is recursively defined by

subst (Ans x) g = g x

subst (Que a f) g = Que a (λb.subst (f b) g).

On the assumption TTree ∈ Monad, fun2tree : Func→ Tree can be defined as

fun2treeF = FTTree (λa.Que aAns)

Theorem 1.2.29. For a strategy tree t ∈ Tree,

fun2tree (tree2fun t) = t.

1.2 Monadic Parametricity 23

Proof. By induction on t. The case t = Ans c is easy. We have

fun2tree (tree2fun (Ans c)) =
fun2tree (ΛT.λk. valT c) = (λk. valTTree c)(λa.Que aAns) = Ans c.

In the case t = Que a f , we compute

fun2tree (tree2fun (Que a f)) =
= fun2tree (ΛT.λk. bindT (k a) (λb.tree2funT (f b) k))

= (λk. bindTTree(k a) (λb.tree2funTTree (f b) k)) (λa.Que aAns)
= bindTTree(Que aAns) (λb.tree2funTTree (f b) (Que aAns))
= Que a (λb.subst (Ans b) (λb′.tree2funTTree (f b

′)Que Ans))
= Que a (λb.tree2funTTree (f b)Que Ans)
= Que a (λb.fun2tree (tree2fun (f b)))

= Que a f.

In the last step, the induction hypothesis and extensionality are used .

Theorem 1.2.30. For a pure F ∈ Func and a monad T ∈ Monad,

tree2funT (fun2treeF) = FT .

Proof. Take f : A → TB and show tree2funT (FTTree (λa.Que aAns)) f = FT f . For
that, we exploit the purity of F with an appropriate acceptable monadic relation. Given
X,X ′, Q ∈ Rel(X,X ′), define Q⊤ ∈ Rel(X → TreeA,B,C , X

′ → TC) by

hQ⊤ h′ iff ∀x, x′.xQx′ =⇒ tree2funT (hx) f = h′ x′.

Define Q⊤⊤ ∈ Rel(TTreeX,TX ′) by

tQ⊤⊤ t′ iff ∀h, h′.hQ⊤ h′ =⇒ tree2funT (bindTTree t h) f = bindT t′ h′.

It is not difficult to show that Q 7→ Q⊤⊤ is an acceptable monadic relation for TTree and
T . The val-case is easy. Let X,X ′, Q ∈ Rel(X,X ′) and take (x, x′) ∈ Q. Take (h, h′) ∈
Q⊤. Then the goal tree2funT (bindTTree(valTTree x)h) f = bindT (valT x′)h′ simplifies to
tree2funT (hx) f = h′ x′ which holds by the assumption on h, h′. For the bind-case, let
X,X ′, Q ∈ Rel(X,X ′), Y, Y ′, R ∈ Rel(Y, Y ′), and take (t, t′) ∈ Q⊤⊤ and (g, g′) ∈ Q →̇
R⊤⊤. We have to prove that for all h, h′ such that hR⊤ h′

tree2funT (bindTTree(bindTTree t g)h) f = bindT (bindT t′ g′)h′.

Using properties of monads, we rewrite the last equation to

tree2funT (bindTTree t (λx. bindTTree(g x)h)) f = bindT t′ (λx. bindT (g′ x)h′)

24 Monadic Parametricity

and apply the assumption (t, t′) ∈ Q⊤⊤. What left to show is

(λx. bindTTree(g x)h)Q
⊤(λx. bindT (g′ x)h′).

Take (x, x′) ∈ Q. Then the required equality

tree2fun (bindTTree(g x)h) f = bindT (g′ x′)h′

follows from the fact (g x, g′ x′) ∈ R⊤⊤. From purity of F , we have (FTTree , FT) ∈ (∆A →̇
∆⊤⊤

B) →̇ ∆⊤⊤
C . We rewrite the goal as

tree2funT (bindTTree(FTTree (λa.Que aAns)) valTTree) f = bindT (FT f) valT .

It is sufficient to show (λa.Que aAns, f) ∈ ∆A →̇ ∆⊤⊤
B and (valTTree , valT) ∈ ∆⊤

C . The
latter is obvious since tree2funT (Ans c) f = valT c, for any c : C. Towards the former,
take a : A and (h, h′) ∈ ∆⊤

B and show

tree2funT (bindTTree(Que aAns)h) f = bindT (f a)h′

which simplifies to bindT (f a) (λb.tree2funT (h b) f) = bindT (f a)h′. The last equality
follows from the assumption on h, h′.

An example of non-parametric functional Consider the functional Min : (N→ N)→ N
that returns a minimal value of its argument function, i.e., Min f = min{f n | n ∈ N}.
Proposition 1.2.31. The functional Min cannot be represented by means of a strategy
tree and thus, cannot be implemented as a monadically parametric function.
Proof (sketch). To the contrary, suppose there exists a strategy tree t ∈ Tree such
that tree2funId t = Min, and consider the constant function f x = 1. Obviously,
Min f = 1. Then tree2funId t f = Min f = 1 which means that when traversing the
tree t with f the leaf Ans 1 is met. Note that the list of asked questions can be ex-
plicitly extracted by means of the instrumented function f instr : N → StateN∗N defined
as f instr x s⃗ = (f x, s⃗x) which additionally keeps record of nodes visited in t. Let
q⃗ = snd (tree2funStateN∗ t f

instr), and define

fq⃗ x =

{
1 if x ∈ q⃗
0 otherwise.

It is intuitively clear that tree2funIdM t fq⃗ = 1 as the computation must go through the
very same sequence of questions and thus, meet the very same leaf Ans 1 (for the formal
proof see the discussion on extraction of a modulus of continuity in Section 1.5). This
contradicts Min fq⃗ = 0.

Actually, it is not a surprise that Min cannot be represented by means of a strategy
tree since Min is not continuous. Intuitively, Min cannot decide what is a minimal
value of its functional argument by asking only finitely many questions to it. Min might
need to look arbitrarily deep to find out a minimum of its argument. This computation
cannot be determined by any well-founded strategy. See also the discussion on purity
and continuity in Section 1.4.

1.2 Monadic Parametricity 25

1.2.5. Second Order: the Partial Case
In this subsection, we provide a characterisation of monadically parametric second-order
functionals for partial semantics in the domain-theoretic setting. In what follows, we
will use the term acceptable monadic relation to refer to acceptable monadic relations
which are strict and admissible as formulated in Definition 1.2.4. As in the total case,
results of this subsections are valid on the assumption ContR ∈ Monad, for all cppos R.

Solution of the domain equation We adapt a formal development of solution of the
domain equations from [BKV10] which in turn follows the approach by Freyd [Fre90,
Fre91] and Pitts [Pit96].
The idea is to construct a cppo of “strategy trees” as a solution of a recursive domain

equation X ≃ F(X) for an appropriate locally continuous functor F : C → C in a
suitable category C of cpos. Let F(X) = C + A × (B → X⊥) be such a functor for
the Kleisli category for T⊥ over the category Cpo (category of cpos with continuous
functions). Let Tree be a cpo such that Tree ≃ F(Tree), together with two (continuous)
isomorphism functions

fold : C +A× (B → Tree⊥)→ Tree⊥ and
unfold : Tree→ (C +A× (B → Tree⊥))⊥,

i.e., (kleisli fold) ◦ unfold = ηTree and (kleisli unfold) ◦ fold = ηF(Tree) hold. For all iso-
morphisms in the Kleisli category for T⊥, say, f : X → Y⊥ and g : Y → X⊥ such that
(kleisli f) ◦ g = η and (kleisli g) ◦ f = η, f and g are total functions. Therefore, we can
define total

roll : C +A× (B → Tree⊥)→ Tree and
unroll : Tree→ C +A× (B → Tree⊥)

using their “partial” counterparts fold and unfold. Moreover, the minimal invariance
property takes place

fix δ = η (1.2)
for δ : (Tree→ Tree⊥)→ (Tree→ Tree⊥) defined by

δ e = fold ◦F (e) ◦ unfold .

For details on a Coq development of the reverse-limit construction and a formal proof
of the minimal invariance, refer to [BKV10].
It is well known that the morphism fold forms an initial F -algebra in the Kleisli cate-

gory, i.e., for any other F -algebra φ : F (D)→ D there exists the unique homomorphism
h : Tree→ D⊥ such that the φ ◦ F (h) = h ◦ fold.
We notice that since the Kleisli category for the lift monad is isomorphic to the category

Cppo⊥ (of cppos with strict continuous functions), Tree⊥ can also be considered as a
solution of the domain equation

X ≃ C⊥ ⊕A⊥ ⊗ (B⊥ ⊸ X)⊥

26 Monadic Parametricity

in Cppo⊥, where ⊕ and ⊗ are the smash sum and the smash product operations re-
spectively.

Definition 1.2.32. We refer to elements of Tree⊥ as strategy trees. Define continuous
“constructor” functions Ans : C → Tree⊥ and Que : A→ (B → Tree⊥)→ Tree⊥ by

Ans = fold ◦ inl and Que = fold ◦ inr .

Definition 1.2.33. We define the function fun2tree : Func→ Tree⊥ by

fun2tree F = FContTree⊥
Que Ans.

The definition is correct since ContTree⊥ is a strict monad (Tree⊥ is pointed). The
function fun2tree is continuous and strict.

Definition 1.2.34. Given T ∈ Monad, we construct

tree2funT : Tree⊥ → FuncT = fix GT

where

GT : (Tree⊥ → FuncT)→ Tree⊥ → FuncT = λf.kleisli ([ϕT , ψf
T] ◦ unroll)

ϕT : C → FuncT = λc.λh. valT c
ψf
T : A× (B → Tree⊥)→ FuncT = λp.λh. bindT (h (π1 p)) (λb.(f ◦ π2 p) b h)

and the polymorphic version tree2fun t = ΛT.tree2funT t.

tree2funT is correctly defined (since FuncT is pointed) and is continuous and strict for
every strict T ∈ Monad.
As in the total case, strategy trees define pure computations.

Lemma 1.2.35. For any t ∈ Tree⊥, tree2fun t is pure.

Proof. Fix pointed T, T ′ ∈ Monad and an acceptable monadic relation T rel for T, T ′.
From admissibility of ∆C and T rel and Lemma 1.2.3, we conclude that the relation
(∆A →̇ T rel(∆B)) →̇ T rel(∆C) is admissible. Define a relation P ∈ Rel(FuncT ,FuncT ′)
by

fPf ′ iff ∀t.(f t, f ′ t) ∈ (∆A →̇ T rel(∆B)) →̇ T rel(∆C).

Clearly, P is admissible. Then the required statement is equivalent to (fix GT)P (fix GT ′)
which we prove by the fixpoint induction principle of Lemma 1.1.9. It is sufficient to
show

– ⊥P ⊥ and

– for all g, g′, g P g′ implies (GT g)P (GT ′ g′).

1.2 Monadic Parametricity 27

The former follows from the strictness of T rel. For the latter, take g, g′ such that g P g′
and a strategy tree t. In the case t = ⊥Tree⊥ ,

(GT g⊥Tree⊥ , GT ′ g′⊥Tree⊥) = (⊥,⊥) ∈ (∆A →̇ T rel(∆B)) →̇ T rel(∆C).

In the case t = Ans c, we have

(GT g (Ans c), GT ′ g′ (Ans c)) =
(λh. valT c, λh. valT c) ∈ (∆A →̇ T rel(∆B)) →̇ T rel(∆C)

by val-acceptability of T rel. Finally, if t = Que a f then

(GT g (Que a f), GT ′ g′ (Que a f)) =
(λh. bindT (h a) (λb.g (f b)h), λh. bindT ′(h a) (λb.g′ (f b)h)).

Take (h, h′) ∈ ∆A →̇ T rel(∆B). Using bind-acceptability of T rel, it suffices to check
(λb.g (f b)h, λb.g′ (f b)h) ∈ ∆B →̇ T rel(∆C). It follows directly from the assumption
g P g′. Lemma proved. Note that the proof is not constructive since the case distinction
in use is classical and relies on the excluded middle axiom.

Representation theorem

Lemma 1.2.36. For any t ∈ Tree⊥, fun2tree (tree2fun t) = t.

Proof. We note that fun2tree ◦tree2fun is a homomorphism for Tree. Thus, the statement
follows from initiality of fold. Let us give a direct formal proof using the minimal
invariance property. We verify (tree2funContTree⊥

t)Que Ans = t. For that, it is sufficient
to show

λt.(tree2funContTree⊥
t)Que Ans = kleisli ηTree

or unfolding the definition of tree2fun and using the minimal invariance (1.2),

λt.(fix GContTree⊥
) t Que Ans = kleisli (fix δ).

Define the relation Q ∈ Rel(Tree⊥ → (A→ TB)→ TC,Tree→ Tree⊥) by

f Qf ′ iff λt.f tQue Ans = kleisli f ′.

Then the goal can be equivalently expressed as (fix GContTree⊥
)Q (fix δ). It is not difficult

to see that Q is admissible and ⊥Q⊥. Thus, by fixpoint induction, it is sufficient to
prove (GContTree⊥

g)Q (δ g′), for g : Tree⊥ → (A → TB) → TC and g′ : Tree → Tree⊥
such that g Q g′. Unfolding the definitions of G and δ, the goal is to show for every
t ∈ Tree⊥

kleisli ([ϕContTree⊥
, ψg

ContTree⊥
] ◦ unroll) t Que Ans = kleisli (fold ◦F(g′) ◦ unfold) t.

28 Monadic Parametricity

The case t = ⊥Tree⊥ is trivial. The case t = Ans c, for c ∈ C, is easy. After simplifications,
we get a trivial equality with Ans c on both sides of it. In the case t = Que a f , on the
left-hand side we compute

kleisli ([ϕContTree⊥
, ψg

ContTree⊥
] ◦ unroll) (Que a f) Que Ans =

= (λh. bindContTree⊥
(h a) (λb.(g ◦ f) b h))Que Ans

= (bindContTree⊥
(Que a) (λb.g (f b)Que))Ans

= Que a (λb.g (f b)Que Ans).

The right-hand side simplifies as

kleisli (fold ◦F(g′) ◦ unfold) (Que a f) = Que a ((kleisli g′) ◦ f).

Thus, it is sufficient to show λb.g (f b)Que Ans = (kleisli g′) ◦ f which holds by exten-
sionality and the assumption on g, g′.

Proofs of the following results are similar to the proofs in the total case.

Theorem 1.2.37. For any pure F ∈ Func and T ∈ Monad,

tree2funT (fun2tree F) = FT .

We first prove that the statement holds for an arbitrary continuation monad with a
pointed result domain.

Lemma 1.2.38. Given pure F , tree2funContS (fun2tree F) = FContS holds for any cppo
S.

Proof. The proof is similar to the one of Lemma 1.2.27. First, we define a continuous
and strict function convq,a : Tree⊥ → S for given q : A→ (B → S)→ S and a : C → S
as

convq,a = λt.tree2funContS t q a.

Then we construct an acceptable, strict and admissible monadic relation T rel
convq,a for

monads ContTree⊥ and ContS as an instantiation of T rel
Cont withW = ⟨convq,a⟩ and utilize

the purity of F . By Lemma 1.2.6, to prove that T rel
convq,a is strict and acceptable it

sufficient to show (⊥Tree⊥ ,⊥S) ∈ ⟨convq,a⟩ and that ⟨convq,a⟩ is acceptable which both
hold.

As in the total case, for T ∈ Monad we define

ΦT : (A→ ContTCB)→ ContTCC)→ (A→ TB)→ TC

and prove

Lemma 1.2.39. For any pure F ∈ Func and T ∈ Monad, ΦT (FContTC
) = FT .

Proof. The proof repeats the one of Lemma 1.2.28. We only have to check that T rel
Φ

defined as in Lemma 1.2.28 is strict and admissible which is guaranteed by Lemma 1.2.8
since ∆TC is obviously strict and admissible.

1.2 Monadic Parametricity 29

The alternative proof Apparently, like in the total case, the alternative proof using
tree monads is possible, but we did not formalize it in Coq.

1.2.6. Generalizations
In this subsection, we argue that it is possible to extend the notion of monadic para-
metricity to arbitrary second-order types. The question of possible generalizations to
types of order higher than two is discussed in Conclusion.
Consider a general type n-Func of second-order functionals with n functional argu-

ments

n-Func = ∀T.(A1 → TB1)→ · · · → (An → TBn)→ TC

≃ ∀T.(A1 → TB1)× · · · × (An → TBn)→ TC.

Definition 1.2.40. We say that F ∈ n-Func is monadically parametric if

(FT , FT ′) ∈ (∆A1 →̇ T rel(∆B1)) →̇ . . . →̇ (∆An →̇ T rel(∆Bn)) →̇ T rel(∆C)

holds for all T, T ′ ∈ Monad and acceptable monadic relations T rel for T, T ′.

Parametricity Theorem guarantees the existence of monadically parametric functionals
of type n-Func.

Corollary 1.2.41 (of Theorem 1.2.11). Every second-order functional F : n-Func im-
plemented in λ→ with monadic interpretation is monadically parametric.

Definition 1.2.42. In the total case, one defines a set of strategy trees n-Tree as the
minimal set generated inductively by constructors

– Ans : C → n-Tree

– Quei : Ai → (Bi → n-Tree)→ n-Tree, i = 1, . . . , n.

In the partial case, a cpo of strategy trees is obtained as a solution of the domain equation

X ≃ C +B1 × (A1 → X⊥) + · · ·+Bn × (An → X⊥).

Similar to the case of one functional argument, we define functions

tree2fun : n-Tree→ n-Func and fun2tree : n-Func→ n-Tree.

tree2fun = ΛT.tree2funT with tree2funT defined by structural recursion as

– tree2funT (Ans c) = λk1 . . . λkn. valT c

– tree2funT (Quei a f) = λk1 . . . λkn. bindT (ki a) (λb.tree2funT (f b) k1 . . . kn), for i =
1, . . . , n,

30 Monadic Parametricity

and fun2treeF = FContn-TreeQue1 . . .Quen Ans. The results of representation theorems
1.2.26 and 1.2.37 are generalized for n-Func.

Theorem 1.2.43. Given a pure F ∈ n-Func, tree2funT (fun2tree F) = FT holds (ex-
tensionally) for any T ∈ Monad.

Proof. In both settings, proofs are similar to corresponding proofs of the aforementioned
theorems. The author provides a formal Coq proof of the theorem in the total setting
which uses dependent types.

Characterization for the type n-Func with a parameter typeD (equivalently, with finitely
many parameter types D1, . . . , Dk)

n-FuncD = ∀T.D → (A1 → TB1)→ · · · → (An → TBn)→ TC

is similar, with parameterized strategies of type

n-TreeD = D → n-Tree.

A parameterized strategy is a forest that for any input value d : D returns a correspond-
ing strategy for computing the functional.

1.3. Monadic Parametricity for State Monads
In the previous section, we demonstrated that one can effectively extract a strategy tree
for a parametric functional on one of two conditions, either ContR ∈ Monad for all result
sets (cpos, as the case may be) R, or if TTree ∈ Monad. Perhaps surprisingly, it turns out
that parametricity in the state monad State alone allows for extraction of such strategies.
In this section, we consider the type of functionals

FuncState =
∏

S .(A→ StateSB)→ StateSC

and show that in the total case it is possible to extract a unique strategy tree represen-
tation. We show that, as in the general case, there exists a bijection between strategy
trees and parametric computations of type FuncState. However, there is no such bijec-
tion in the partial case. For brevity, we write valS and bindS for valStateS and bindStateS ,
correspondingly. It is an interesting question, what monads else imply the existence of
such strategy representation.

1.3.1. Relational Parametricity

We show that while purity at the first order can be captured by the classical notion of
relational parametricity [Rey83], it is too weak to distinguish pure second-order func-
tionals.

1.3 Monadic Parametricity for State Monads 31

The first order First, let us discuss purity at the first-order. Intuitively, a stateful
function f : A→ StateSB may be considered as “pure” if there exists a function g : A→
B such that f = valS ◦ g, i.e., f is side-effect free. In this case, purity can be extensionally
captured by relational parametricity as shown by the theorem below. First, we introduce
the following notation.

Definition 1.3.1. For sets S, S′ and X,X ′ and relations R ∈ Rel(S, S′) and Q ∈
Rel(X,X ′), we define T param

R (Q) ∈ Rel(StateSX,StateS′X ′) by

T param
R (Q) = R →̇ Q×R.

Theorem 1.3.2. For f :
∏

S .A→ StateSB, the following are equivalent.

1. there exists g : A→ B such that fS = valS ◦ g for all S.

2. for all S, S′ and relations R ∈ Rel(S, S′), (fS , fS′) ∈ ∆A →̇ T param
R (∆B).

Proof. Assume S ̸= ∅ (the case S = ∅ is obvious). The direction 1⇒ 2 is easy. Indeed,
for S, S′ take R ∈ Rel(S, S), a ∈ A and sR s′. Then f a s = (g a, s) and f a s′ = (g a, s′),
and the assertion follows.
Towards 1 ⇒ 2, given S, pick s0 ∈ S and define g : A → B by g a = fst (fS a s0).

We claim that fS′ = valS′ ◦ g for all S′. Indeed, take a ∈ A and an arbitrary s′ ∈ S′

and define R = {(s0, s′)} ∈ Rel(S, S′). If fS a s0 = (b, s1) and fS′ a s′ = (b′, s′1) then
since s0Rs′ the assumption on f yields b = b′ and s′1 = s′ (since s1Rs′1). Thus,
(valS′ ◦ g) a s′ = (g a, s′) = (fst (fS a s0), s′) = fS′ a s′.

Since
∏

S .A1 → · · · → Ak → StateSB ≃
∏

S .A1 × · · · × Ak → StateSB, the theorem is
valid for an arbitrary first-order type.

The second order Let us first try to adapt the relational parametricity approach for
a characterization of pure second-order computations F : FuncState, i.e., those F that
produce side-effects only through calls to their functional argument.

Definition 1.3.3. We say that a functional F :
∏

S .(A → StateSB) → StateSC is
relationally parametric if for all S, S′ and relations R ∈ Rel(S, S′)

(FS , FS′) ∈ (∆A →̇ T param
R (∆B)) →̇ T param

R (∆C).

However, it turns out we can provide an example of a functional parametric in that
sense but not pure.

Definition 1.3.4. The snapback functional

Fsnap :
∏

S .(A→ StateSB)→ StateSB

is defined by (Fsnap)S k s = (b, s) where k a0 s = (b, s1).

32 Monadic Parametricity

It can be understood as a functional that takes a snapshot of the current state of a
computational device, invokes its argument function k to compute a result b but discards
a new state and instead restores the initial one. Intuitively, Fsnap is not pure since it does
not propagate the state changes incurred by k, but reveals it’s own effect of memorization
and further recovery of the state.

Proposition 1.3.5. Fsnap is relationally parametric.

Proof. The assertion is easy to show. Take k : A→ StateSB and k′ : A→ StateSB such
that (k, k′) ∈ ∆A →̇ T param

R (∆B) and sR s′, and let (b, s1) = k a0 s and (b′, s′1) =
k′ a0 s

′. The assumption on k, k′ implies b = b′ which together with sR s′ proves
((Fsnap)S k, (Fsnap)S′ k′) ∈ T param

R (∆B).

Thus, the attempt to employ relational parametricity for FuncState fails. The relational
parametricity proved to be not strong enough to exclude the snapback functional from
a class of parametric functionals in the sense of Definition 1.3.3. The problem of the
approach is that T rel does not impose any relation on input and output states for neither
of components S, S′ individually. This allows to do the trick of replacing the actual pair
of states by an initial one, like in Fsnap.

1.3.2. Monadic Parametricity
Since the relational parametricity is unsuitable to reason about propagation of side-
effects componentwise and thus, to capture the intuitive notion of purity, in our next
attempt we proceed with an approach similar to the general case of monadic parametric-
ity. First, we define a notion of an acceptable monadic relation.

Definition 1.3.6. Given sets S, S′, for each X,X ′ and Q ∈ Rel(X,X ′) fix a relation
T rel(Q) ∈ Rel(StateSX,StateS′X ′). We say that a mapping (X,X ′, Q) 7→ T rel(Q) is an
acceptable monadic relation (for S, S′) if

– for all X,X ′, Q ∈ Rel(X,X ′),

(valS , valS′) ∈ Q →̇ T rel(Q);

– for all X,X ′, Q ∈ Rel(X,X ′), Y, Y ′, R ∈ Rel(Y, Y ′),

(bindS , bindS′) ∈ T rel(Q) →̇ (Q →̇ T rel(R)) →̇ T rel(R).

Consider some examples.

Lemma 1.3.7. For any S, S′, R ∈ Rel(S, S′), Q 7→ T param
R (Q) is an acceptable monadic

relation.

Proof. We check the two properties of acceptability. Given R ∈ Rel(S, S′) and Q ∈
Rel(X,X ′), take sR s′ and cQ c′ then (valS c s, valS′ c′ s′) = ((c, s), (c′, s′)) ∈ Q×R, and

1.3 Monadic Parametricity for State Monads 33

the val-acceptability holds. To prove the bind-case, we take t T param
R (P) t′ and f (P →̇

T param
R (Q)) f ′ with P ∈ Rel(X,X ′), Q ∈ Rel(Y, Y ′) and show

(bindStateS t f)T
param
R (Q) (bindStateS t

′ f ′).

Indeed, for sR s′, let (x, s1) = t s and (x′, s′1) = t′ s′. Then xP x′ and s1Rs
′
1 hold.

Therefore, if (y, s2) = f x s1 and (y′, s′2) = f x′ s′1 then y Qy′ and s2Rs′2.

Definition 1.3.8. Given S, S′, X,X ′ and a relation Q ∈ Rel(X,X ′), define T rel
0 (Q) ∈

Rel(StateSX,StateS′X ′) by

f T rel
0 (Q) f ′ ≡ ∀s s1 s′ s′1 xx′.(x, s1) = f s ∧ (x′, s′1) = f ′ s′ =⇒

(∃u′.xQu′) ∧ (∃u.uQx′)∧
(Inv s1 =⇒ xQx′ ∧ Inv s ∧ Tran (s, s′) (s1, s

′
1))

with Tran ∈ Rel(S × S′, S × S′) and Inv ⊆ S.

Lemma 1.3.9. For S, S′, if Tran ∈ Rel(S × S′, S × S′) is reflexive and transitive then
Q 7→ T rel

0 (Q) is an acceptable monadic relation.

Proof. Let us abbreviate

Φ(Q, s, s1, s
′, s′1, x, x

′) ≡ (∃u′.xQu′) ∧ (∃u.uQx′)∧
(Inv s1 =⇒ xQx′ ∧ Inv s ∧ Tran (s, s′) (s1, s

′
1)).

For the val-case, given cQ c′, we have x = c, x′ = c′, s1 = s and s′1 = s′ that yield xQx′
by the assumption, and the first two conjuncts of Φ follow trivially. The third conjunct
follows from reflexivity of Tran.
For the bind-case, take t T rel

0 (Q) t′ and f (Q →̇ T rel
0 (R)) f ′, for some Q ∈ Rel(X,X ′),

R ∈ Rel(Y, Y ′), and assume Φ(Q, s, s1, s
′, s′1, x, x

′) where (x, s1) = t s and (x′, s′1) = t′ s′.
Assume (y, s2) = f x s1 and (y′, s′2) = f ′ x′ s′1. We have to prove Φ(R, s, s2, s

′, s′2, y, y
′).

Take u′ such that xQu′ and let (z′, q′) = f ′ u′ s′1. From the assumption on f, f ′, we get
Φ(R, s1, s2, s

′
1, q

′, y, z′) that yields the existence of v′ such that y R v′. Analogously, one
shows ∃v.v R y′.
Assume now Inv s2. Application of the assumption f (Q →̇ T rel

0 (R)) f ′ to inferred
xQu′ yields

Inv s2 =⇒ y R v′ ∧ Tran (s1, s
′
1) (s2, q

′) ∧ Inv s1

and thus, Inv s1. Then from Φ(Q, s, s1, s
′, s′1, x, x

′) we conclude xQx′, Inv s and
Tran (s, s′) (s1, s

′
1). Using again the assumption on f, f ′ with xQx′, we get

Inv s2 =⇒ y R y′ ∧ Tran (s1, s
′
1) (s2, s

′
2) ∧ Inv s1

from which we easily deduce y R y′ and Tran (s, s′) (s2, s
′
2) by transitivity of Tran.

34 Monadic Parametricity

Definition 1.3.10. A functional F ∈ FuncState is monadically parametric in state mon-
ads (pure for state monads, or simply pure) if

(FS , FS′) ∈ (∆A →̇ T rel(∆B)) →̇ T rel(∆C)

holds for all S, S′ and for all acceptable monadic relations (for State) T rel for S, S′.

The latter definition excludes the snapback functional from the class of pure functionals.

Theorem 1.3.11. Let F ∈ FuncState be pure for state monads. Let Test = bool and
define ktest : A → StateTestB by ktest a s = (b0, true). If FTest ktest false = (c, false) then
FS k s = (c, s), for all S, s ∈ S and k : A→ StateSB.

Test set is intended to track if the functional argument k of F is called. When we
apply the functional FTest to ktest, the latter — when called — raises a global boolean
flag to true. If the flag remains unset after the evaluation of FTest ktest, we can conclude
(relying on purity of F) that F does not call its argument and thus, must be constant.

Proof (of Theorem 1.3.11). We define an acceptable monadic relation as T rel
0 instanti-

ated with relations Inv s ≡ s = false, Inv ⊆ Test, and Tran p p1 ≡ snd p = snd p1,
Tran ∈ Rel(Test × S,Test × S). Obviously, Tran is reflexive and transitive. Let us now
show that

ktest (∆A → T rel
0 (∆B)) k

holds. For a : A, s : S, let k a s = (b1, s1). Since for all s′ : Test, ktest a s′ = (b0, true),
the implication part of (ktest a)T rel

0 (∆B) (k a) has the form true = false ⇒ _ and thus,
trivially holds. It is left to show ∃u′.false = u′ and ∃u.u = b1 which are also trivial.
Since F is pure, we obtain (FTest ktest, FS k) ∈ T rel

0 (∆C), i.e., false = false ⇒ b0 =
b1 ∧ false = false ∧ s = s1 which proves the required.

There is no contradiction in that T param is an acceptable monadic relation and the
fact that T param is too weak to exclude Fsnap from the class of pure functionals, since
Definition 1.3.10 of purity universally quantifies over all acceptable monadic relations
while T param is just a particular instance of the class of acceptable monadic relations.

1.3.3. Strategy Trees
In Definition 1.2.19, we introduced the notion of strategy trees that define question-
answer dialogues. For a set S, we will denote tree2funS = tree2funStateS and define
tree2fun : Tree→ FuncState by

tree2fun = ΛS.tree2funS .

In order to extract an element of Tree from F ∈ FuncState, we construct a specific set
Test as

Test = (optionA)×A∗ ×B∗.

1.3 Monadic Parametricity for State Monads 35

We refer to the components of s : Test = (x, a⃗, b⃗) using a notation for records, by
s.arg = x, s.que = a⃗, s.ans = b⃗. For s = (x, a⃗, b⃗), we write s[que := b⃗′] for (x, a⃗, b⃗′), and
use similar notation to denote updates of the other components. For b⃗ : B∗, r⃗

b
denotes

the state (None, ε, b⃗). We assume that B is not empty, and write b0 for a default element
of B.
The following function serves for extraction of intentional information from a given

second-order functionals and helps to construct a strategy tree for it.

Definition 1.3.12. The function ktest : A→ StateTestB is given by

– ktest a s = (b0, s), if s.arg = Some _

– ktest a s = (b0, s[arg := Some a]), if s.arg = None and s.ans = ε

– ktest a s = (b, s[ans := b⃗, que := a⃗a]), if s.arg = None, s.ans = b⃗b and s.que = a⃗

Intuitively, ktest continues to replay prerecorded answers while arg-flag is not set to
Some _ and records asked questions in the que component. As soon as all the answers
from ans are consumed, ktest stores the next asked question in arg. After that, no more
changes to the state are made.
The que-component of Test serves merely for a logging purpose and does not affect

the computation. All the obtained questions are appended to an initial list as shown by
the following technical lemma.

Lemma 1.3.13. For any F : FuncState pure in state monads, if FTest ktest s = (c, s1)
then for all b⃗ : B∗, FTest ktest (s[que := b⃗s.que]) = (c, s1[que := b⃗s1.que]).

Proof. For b⃗ : B∗, define R ∈ Rel(Test,Test) by Rs s1 ≡ s1 = s[que := b⃗s.que].
By Lemma 1.3.7, T param

R is an acceptable monadic relation. Clearly, ktest (∆A →̇
T param
R (∆B)) ktest. Therefore, (FTest ktest, FTest ktest) ∈ T param

R (∆C) by purity of F which
proves the required.

Definition 1.3.14. For sets S, S′, let Tran ∈ Rel(S, S) and Inv ∈ Rel(S, S′). For
Q ∈ Rel(X,X ′), define a relation T rel

Tran,Inv(Q) ∈ Rel(StateSX,StateS′X ′) by

f T rel
Tran,Inv(Q) f ′ ≡ ∀s s′ s1 s′1 xx′. f s = (x, s1) ∧ f ′ s′ = (x′, s′1) =⇒

(∃u′.xQu′) ∧ (∃u.uQx′) ∧ Tran s s1∧
(Inv s s′ =⇒ xQx′ ∧ Inv s1 s′1).

One can additionally introduce a Tran′ transition relation for a primed component if
needed. Similar to Lemma 1.3.9, we prove

Lemma 1.3.15. If the relation Tran is reflexive and transitive then the monadic relation
Q 7→ T rel

Tran,Inv(Q) is acceptable.

36 Monadic Parametricity

Proof. Let us abbreviate T rel = T rel
Tran,Inv and

Φ(Q, s, s1, s
′, s′1, x, x

′) ≡ (∃u′.xQu′) ∧ (∃u.uQx′) ∧ Tran s s1∧
(Inv s s′ =⇒ xQx′ ∧ Inv s1 s′1).

The val-case easily follows from reflexivity of Tran. For the bind-case, take t T rel(Q) t′

and f (Q →̇ T rel(R)) f ′ and assume that Φ(Q, s, s1, s′, s′1, x, x′) holds where (x, s1) = t s
and (x′, s′1) = t′ s′. Assume (y, s2) = f x s1 and (y′, s′2) = f ′ x′ s′1. We have to prove
Φ(R, s, s2, s

′, s′2, y, y
′). Take u′ such that xQu′ and let (z′, q′) = f ′ u′ s′1. From the

assumption on f, f ′, we get Φ(R, s1, s2, s
′
1, q

′, y, z′) that yields the existence of v′ such
that y R v′ and Tran s1 s2 from which we deduce Tran s s2 by transitivity. Analogously,
one shows ∃v.v R y′.
Assume now Inv s s′. From Φ(Q, s, s1, s

′, s′1, x, x
′), we deduce xQx′ and Inv s1 s′1. The

former when used with f (Q →̇ T rel(R)) f ′ yields Inv s1 s′1 ⇒ y R y′ ∧ Inv s2 s′2. The rest
is easy.

The next three lemmas show that FTest indeed cannot modify the state by its own,
but all the effects come from the argument function ktest which for each asked question
consumes at most one prerecorded answer. Moreover, if in the final state s the flag
s.arg is raised, i.e., s.arg = Some _, then all the initially prerecorded answers must be
consumed during the computation and a number of asked questions equals a number of
prerecorded answers.

Lemma 1.3.16. If FTest ktest r⃗b = (c, r1) and r1.arg = Some _ then r1.ans = ε.

Proof. We instantiate Lemma 1.3.15 with S = S′ = Test and define

Tran r r1 ≡ (r.arg = None ∧ r1.arg = Some _ =⇒ r1.ans = ε)∧
(r.ans = ε =⇒ r1.ans = ε)

Inv r r′ ≡ r = r′.

Tran is obviously reflexive. Let us show transitivity. Take r, r1, r2 such that Tran r r1
and Tran r1 r2. The second conjunct r.ans = ε ⇒ r2.ans = ε is obvious. For the first
conjunct, let r.arg = None and r2.arg = Some _. Consider the two cases: r1.arg = None
and r1.arg = Some _. In the first case, we have r1.arg = None and r2.arg = Some _ and
by Tran r1 r2 we conclude r2.ans = ε. In the second case, we have r.arg = None and
r1.arg = Some _, and thus r1.ans = ε by Tran r r1, and hence r2.ans = ε by Tran r1 r2.
The monadic relation T rel = T rel

Tran,Inv is acceptable by Lemma 1.3.15. Moreover,
ktest (∆A →̇ T rel(∆B)) ktest holds. Indeed, for a ∈ A, let (c, r1) = ktest a r and (c′, r′1) =
ktest a r

′. Then Tran r r1 holds by definition of ktest. If r = r′ then obviously c = c′ and
r1 = r′1. By purity of F , we obtain

(FTest ktest)T
rel(∆C) (FTest ktest)

that yields r.arg = None ∧ r1.arg = Some _ ⇒ r1.ans = ε. The required directly follows.

1.3 Monadic Parametricity for State Monads 37

The next lemma states that for pure F the number of consumed answers equals the
number of questions asked during a computation of FTest ktest.

Lemma 1.3.17. If FTest ktest r⃗b = (c, r1) then there exists d⃗ ∈ B∗ such that b⃗ = d⃗r1.ans
and |r1.que| = |d⃗|.
Proof. We instantiate the format of Lemma 1.3.15 with S = S′ = Test and

Tran r r1 ≡ ∃a⃗ b⃗. r1.que = r.que a⃗ ∧ r.ans = b⃗r1.ans ∧ |⃗a| = |⃗b|
Inv r r′ ≡ r = r′.

Certainly, the relation Tran is reflexive and transitive. The result then follows from
purity of F .

The next lemma states that if the flag r1.arg is raised in the final state r1 of a compu-
tation FTest ktest r⃗b then all the prerecorded answers are worked off.

Lemma 1.3.18. For any pure F : FuncState and b⃗ ∈ B∗, if FTest ktest r⃗b = (c, r1) and
r1.arg = Some _ then |r1.que| = |⃗b|.
Proof. Lemma 1.3.17 yields existence of d⃗ ∈ B∗ such that b⃗ = d⃗r1.ans and |r1.que| = |d⃗|.
Since r1.ans = ε by Lemma 1.3.16, the required follows.

Figure 1.3 presents a functional implementation of fun2tree : FuncState → Tree in
OCaml. Notice that the function is applicable to any F : FuncState whether it is pure
or not, and extracts a strategy tree t even for non-pure total functionals. However, as
we show further, t corresponds to F only on the assumption of purity of F , and this
correspondence is one-to-one.
The program for fun2tree may in general fail to terminate and produce any strategy.

We first show that if fun2tree returns t and F is pure then t is a valid representation of
F . We argue later in Subsection 1.3.4 that fun2tree always terminates on pure inputs.
In order to reason about fun2tree formally, we formalize a graph Fun2tree of the function
as a well-founded relation.

Definition 1.3.19. The relation

Fun2treeAux ⊆ FuncState ×B∗ × Tree

is inductively defined by the following clauses:

– if F ktest r⃗b = (c, r1) and r1.arg = None then Fun2treeAux (F, b⃗,Ans c);

– if F ktest r⃗b = (c, r1) and r1.arg = Some a, and let f : B → Tree be such that
Fun2treeAux (F, b⃗b, f b) holds, for all b : B, then Fun2treeAux (F, b⃗,Que a f).

We define
Fun2tree (F, t) ≡ Fun2treeAux (F, ε, t).

Indeed, one can show by induction that fun2tree is a graph of a function, i.e., for all
t1, t2 ∈ Tree, Fun2tree (F, t1) and Fun2tree (F, t2) imply t1 = t2.

38 Monadic Parametricity

type (’a,’b,’c) tree =
| Ans of ’c
| Que of ’a * (’b → (’a,’b,’c) tree)

let rec tree2fun = function
| Ans c → fun k →

fun s → (c,s)
| Que (a,f) → fun k →

fun s → let (b,s1) = k a s in tree2fun (f b) k s1

type (’a,’b,’c) test =
{ arg : ’a option; que : ’a list; ans : ’b list }

let initTest bs = {arg = None; que = []; ans = bs}

let kTest b0 = fun a s →
match s.arg with

| Some _ → (b0, s)
| None →

match s.ans with
| [] → (b0, {arg = Some a; que = s.que; ans = s.ans})
| b :: bs →

(b, {arg = s.arg; que = s.que @ [a]; ans = bs})

let fun2tree b0 ff =
let rec fun2tree_aux ff bs =

let (c,s) = ff (kTest b0) (initTest bs) in
match s.arg with

| None → Ans c
| Some a →

Que (a, fun b → fun2tree_aux ff (bs @ [b]))
in
fun2tree_aux ff []

Figure 1.3.: Functional implementation of tree2fun and fun2tree in OCaml

1.3 Monadic Parametricity for State Monads 39

First, we show the easy part: fun2tree is an inverse of tree2fun.
Theorem 1.3.20. For all t ∈ Tree, Fun2tree (tree2fun t, t).
Proof. By induction on t we show Fun2treeAux (tree2fun t, ε, t). Let t = Ans c. Then
tree2fun (Ans c) ktest rε = (c, rε) and rε.arg = None hold, and the assertion follows. Let
t = Que a f , and assume the induction hypothesis

Fun2treeAux (tree2fun (f b), ε, f b) (IH)

holds for all b : B. We have ktest a rε = (b0, (Some a, ε, ε)), and let

tree2funTest (Que a f) ktest rε = tree2funTest (f b0) ktest (Some a, ε, ε) = (c, r1)

for some c : C, r1 : Test. We need to show that r1.arg = Some a and that for every
b : B, Fun2treeAux (tree2fun (Que a f), b, f b) holds. The former is a consequence of the
following lemma which can be easily verified by induction on t.

Lemma 1.3.21. If tree2funTest t ktest s = (c, s1) and s.arg = Some _ then s1 = s, for all
t : Tree, c : C, s, s1 : Test.
Towards Fun2treeAux (tree2fun (Que a f), b, f b), we prove another lemma.

Lemma 1.3.22. For all f : B → Tree, a, b, b⃗ and t,

Fun2treeAux (tree2fun (f b), b⃗, t) =⇒ Fun2treeAux (tree2fun (Que a f), b⃗b, t).

Proof. By induction on t.
For the base case t = Ans c, assume Fun2treeAux (tree2fun (f b), b⃗,Ans c). Then by

definition of Fun2treeAux, tree2funTest (f b) ktest r⃗b = (c, s) and s.arg = None. Denote
s1 = s[que := as.que]. Since s1.arg = None, it is sufficient to prove

tree2funTest (Que a f) ktest rb⃗b = (c, s1)

or after simplification, tree2funTest (f b) ktest (None, a, b⃗) = (c, s1). The latter follows in
turn from Lemma 1.3.13.
In the case t = Que a f , assume the induction hypothesis

∀a : A, b, b′ : B, b⃗ : B∗, g : B → Tree.
Fun2treeAux (tree2fun (g b′), b⃗, f b) =⇒

Fun2treeAux (tree2fun (Que a g), b′⃗b, f b) (1.3)

and assume Fun2treeAux (tree2fun (g b), b⃗,Que a f). The latter implies by definition of
Fun2treeAux that

tree2funTest (g b) ktest r⃗b = (c, s) (1.4)
for some c and s such that s.arg = Some a and

∀d : B.Fun2treeAux (tree2fun (g b), b⃗d, f d). (1.5)

We need to show Fun2treeAux (tree2fun (Que a1 g), b⃗b,Que a f), for an arbitrary a1 : A.
For that, we define s1 = s[que := a1s.que] and prove

40 Monadic Parametricity

1) tree2funTest (Que a1 g) ktest rb⃗b = (c, s1),

2) s1.arg = Some a, and

3) ∀d : B.Fun2treeAux (tree2fun (Que a1 g), b⃗bd, f d).

Claim 1) simplifies to tree2funTest(g b) ktest (None, a1, b⃗) = (c, s1) which in turn follows
from (1.4) and Lemma 1.3.13. Since s1.arg = s.arg = Some a, 2) holds. Towards 3),
fix some d : B and apply the induction hypothesis (1.3). Then it is only left to show
Fun2treeAux (tree2fun (g b), b⃗d, f d) which in turn is implied by (1.5).

Lemma 1.3.22 together with (IH) finish the proof of Theorem 1.3.20.

Next we show that whenever fun2tree returns a strategy t ∈ Tree for a pure F , F is
determined by t.

Theorem 1.3.23. Suppose that F ∈ FuncState is pure for state monads and that
Fun2tree (F, t) holds for some t ∈ Tree. Then F = tree2fun t.

The assertion follows from a more general statement involving the auxiliary relation
Fun2treeAux that we prove below. First, let us introduce the following definition.

Definition 1.3.24. Given a set S and a function k : A→ StateSB, we define a relation
MatS k ⊆ A∗ ×B∗ × S × S inductively by

– MatS k (ε, ε, s, s), for all s : S;

– if MatS k (⃗a, b⃗, s, š) and k a š = (b, s′) then MatS k (⃗aa, b⃗b, s, s′), for all a⃗,⃗b,s,š,s′,a,b.

Given k : A → StateSB, MatS k relates a sequence of questions (asked to k) to a
sequence of answers (received from k). Intuitively, MatS k (⃗a, b⃗, s, s′) asserts that a⃗ and
b⃗ match each other relative to k and s, s′ taken as initial and final states, correspond-
ingly. Namely, starting from a state s, if we successively apply k to the arguments in a⃗,
threading intermediate states through, we finish in the state s′ and b⃗ contains a list of
answers obtained along the way.

Lemma 1.3.25. The following statements are true.

1. For all a⃗, b⃗, and s, s1, s2, MatS k (⃗a, b⃗, s, s1) implies |⃗a| = |⃗b|.

2. MatS k is injective, i.e., for all a⃗, b⃗, and s, s1, s2,

MatS k (⃗a, b⃗, s, s1) ∧MatS k (⃗a, b⃗, s, s2) =⇒ s1 = s2.

3. MatS k is transitive, i.e., for all a⃗1, b⃗1, a⃗2, b⃗2 and s, s1, s2,

MatS k (⃗a1, b⃗1, s, s1) ∧MatS k (⃗a2, b⃗2, s1, s2) =⇒ MatS k (⃗a1a⃗2, b⃗1⃗b2, s, s2).

4. For all a⃗1, b⃗1, a⃗2, b⃗2 and s, s2, if MatS k (⃗a1a⃗2, b⃗1⃗b2, s, s2) and |⃗a1| = |⃗b1| then there
exists s1 such that MatS k (⃗a1, b⃗1, s, s1).

1.3 Monadic Parametricity for State Monads 41

5. For all a⃗1, b⃗1, a⃗2, b⃗2 and s, s1, s2,

MatS k (⃗a1a⃗2, b⃗1⃗b2, s, s2) ∧MatS k (⃗a1, b⃗1, s, s1) =⇒ MatS k (⃗a2, b⃗2, s1, s2).

Proof. Claim 1 is easily seen by induction on structure of Mat.
Claim 2 is proved by induction on Mat in MatS k (⃗a, b⃗, s, s1). Consider two cases. In

the first case, a⃗ = ε, b⃗ = ε, s = s1 and MatS k (ε, ε, s, s). Hence s1 = s2 = s, and the
claim is true. For the inductive case, assume MatS k (⃗a, b⃗, s, š1) and k a š1 = (b, s1) and
the induction hypothesis

∀š2.MatS k (⃗a, b⃗, s, š2) =⇒ š1 = š2. (IH)

From MatS k (⃗aa, b⃗b, s, s2) we conclude that for some š2, MatS k (⃗a, b⃗, s, š2) and k a š2 =
(b, s2) hold. From (IH), we derive š1 = š2, and hence s1 = s2.
Claim 3 is shown similarly by induction on Mat in MatS k (⃗a2, b⃗2, s1, s2).
Claims 4,5 are proved by tail-induction on b⃗2.

Theorem 1.3.23 is a direct consequence of the following characterisation of Fun2treeAux.

Theorem 1.3.26. Suppose that F ∈ FuncState is pure for a state monad and that
Fun2treeAux (F, b⃗, t) holds, for given t ∈ Tree. Suppose furthermore that FTest ktest r⃗b =

(_, r) and MatS k (r.que, b⃗, s, š) hold. If FS k s = (c1, s1) and tree2fun t k š = (c2, s2) then
c1 = c2 and s1 = s2.

The proof of Theorem 1.3.26 is by induction on t : Tree. It reduces to the next two
lemmas covering the base case and the inductive case.

Lemma 1.3.27 (Base case). Let F : FuncState be pure. If FTest ktest r⃗b = (c, r) and
MatS k (r.que, b⃗, s, s1) and r.arg = None hold then FS k s = (c, s1).

The proof uses an acceptable monadic relation in the following general format.

Definition 1.3.28. Let S, S′ be sets. Let Tran ∈ Rel(S, S), Tran′ ∈ Rel(S′, S′), and
Re,Gu ∈ Rel(S×S′, S×S′), and Q ∈ Rel(X,X ′). Define a relation T rel

Tran,Tran′,Re,Gu(Q) ∈
Rel(StateSX,StateS′X ′) by

f T rel
Tran,Tran′,Re,Gu(Q) f ′ ≡ ∀s s′ s1 s′1 xx′. f s = (x, s1) ∧ f ′ s′ = (x′, s′1) =⇒

(∃u′.xQu′) ∧ (∃u.uQx′) ∧ Tran s s1 ∧ Tran′ s′ s′1∧
(Re (s, s′) (s1, s′1) =⇒ xQx′ ∧Gu (s, s′) (s1, s

′
1)).

The relation asserts that if changes in states are constrained by the rely-condition
Re (s, s′) (s1, s′1) then also the guarantee-condition Gu (s, s′) (s1, s

′
1) is satisfied. The

rely-guarantee method was originally developed in [Jon83] for verification of parallel
programs. The essential requirement for rely-guarantee conditions is that for two con-
secutive constrained transitions, a guarantee-predicate of the first one implies a rely-
predicate of the second one. We prove

42 Monadic Parametricity

Lemma 1.3.29. If Tran, Tran′ and Gu are reflexive and transitive, and

Re (s, s′) (s2, s′2) ∧ Tran s s1 ∧ Tran s1 s2 ∧ Tran′ s′ s′1 ∧ Tran′ s′1 s
′
2 =⇒

Re (s, s′) (s1, s′1) ∧ (Gu (s, s′) (s1, s
′
1) =⇒ Re (s1, s′1) (s2, s′2)) (1.6)

holds then Q 7→ T rel
Tran,Tran′,Re,Gu(Q) is an acceptable monadic relation.

Proof. Let us abbreviate T rel = T rel
Tran,Tran′,Re,Gu and

Φ(Q, s, s1, s
′, s′1, x, x

′) ≡ (∃u′.xQu′) ∧ (∃u.uQx′) ∧ Tran s s1 ∧ Tran′ s′ s′1∧
(Re (s, s′) (s1, s′1) =⇒ xQx′ ∧Gu (s, s′) (s1, s

′
1)).

For the val-case, given cQ c′, we have x = c, x′ = c′, s1 = s and s′1 = s′ that yield xQx′
by the assumption, and the first two conjuncts of Φ follow trivially. The third and fourth
conjuncts follow from reflexivity of Tran, and the last one is implied by reflexivity of Gu.
For the bind-case, take t T rel(Q) t′ and f (Q →̇ T rel(R)) f ′ with Q ∈ Rel(X,X ′),

R ∈ Rel(Y, Y ′), and assume that Φ(Q, s, s1, s
′, s′1, x, x

′) holds where (x, s1) = t s and
(x′, s′1) = t′ s′. Assume (y, s2) = f x s1 and (y′, s′2) = f ′ x′ s′1. We have to prove
Φ(R, s, s2, s

′, s′2, y, y
′). Take u′ such that xQu′ and let (z′, q′) = f ′ u′ s′1. From the

assumption on f, f ′, we obtain Φ(R, s1, s2, s
′
1, q

′, y, z′) that yields existence of v′ such
that y R v′. Analogously, one shows ∃v.v R y′. From Φ(R, s1, s2, s

′
1, q

′, y, z′) we also
get Tran s1 s2 and thus, Tran s s2 holds by transitivity of Tran. Similarly, one shows
Tran′ s′ s′2.
Towards the implication part, assume Re (s, s′) (s2, s′2). Since all the premises of (1.6)

are true, we obtain

Re (s, s′) (s1, s′1) (1.7)

and

Gu (s, s′) (s1, s
′
1) =⇒ Re (s1, s′1) (s2, s′2). (1.8)

From (1.7) and Φ(Q, s, s1, s
′, s′1, x, x

′) we obtain xQx′ and Gu (s, s′) (s1, s
′
1). The latter

together with (1.8) yields

Re (s1, s′1) (s2, s′2). (1.9)

Again, we use the assumption f (Q →̇ T rel(R)) f ′ together with xQx′ and conclude
Φ(R, s1, s2, s

′
1, s

′
2, y, y

′) which applied to (1.9) yields Gu (s1, s
′
1) (s2, s

′
2). Therefore, by

transitivity of Gu we conclude Gu (s, s′) (s2, s
′
2).

Proof of Lemma 1.3.27. We instantiate Lemma 1.3.29 w.r.t. state sets Test and S and

1.3 Monadic Parametricity for State Monads 43

define the following relations.

Tran r r1 ≡ ∃a⃗ b⃗.TranP (r, r1, a⃗, b⃗)

TranP (r, r1, a⃗, b⃗) ≡ r1.arg = None =⇒ r.arg = None ∧ |⃗a| = |⃗b|∧
r1.que = r.que a⃗ ∧ r.ans = b⃗ r1.ans

Tran′ r r1 ≡ True
Re (r, s) (r1, s1) ≡ r1.arg = None∧

(∀x⃗ y⃗.TranP (r, r1, x⃗, y⃗) =⇒ ∃š.MatS k (x⃗, y⃗, s, š))
Gu (r, s) (r1, s1) ≡ ∃a⃗ b⃗.TranP (r, r1, a⃗, b⃗) ∧MatS k (⃗a, b⃗, s, s1)

Note that TranP is injective in the sense, if TranP r1 r2 a⃗1 b⃗1 and TranP r1 r2 a⃗′1 b⃗′1 then
a⃗1 = a⃗′1 and b⃗1 = b⃗′1.
We first show that the definitions above indeed satisfy the conditions of Lemma 1.3.29.

Tran is reflexive. For r : Test, take a⃗ = b⃗ = ε, and TranP r r ε ε is clearly true. Tran
is transitive. Indeed, let Tran r1 r2 and Tran r2 r3. Then there exist a⃗1, b⃗1 and a⃗2, b⃗2
such that TranP r1 r2 a⃗1 b⃗1 and TranP r2 r3 a⃗2 b⃗2. Put a⃗ = a⃗1a⃗2 and b⃗ = b⃗1⃗b2 and show
TranP (r1, r3, a⃗, b⃗). Suppose r3.arg = None. Then r2.arg = None and thus, r1.arg = None.
Also, |⃗a1a⃗2| = |⃗b1⃗b2| as well as r3.que = r2.que a⃗2 = r1.que a⃗1a⃗2, and r3.ans = b⃗2 r2.ans =
b⃗1⃗b2 r1.ans hold clearly. Tran′ is obviously reflexive and transitive.
Check the condition (1.6). Let a⃗1, b⃗1 and a⃗2, b⃗2 be such that TranP r r1 a⃗1 b⃗1 and

TranP r1 r2 a⃗2 b⃗2, and let Re (r, s) (r2, s2), i.e., r2.arg = None and

∀x⃗ y⃗.TranP (r, r2, x⃗, y⃗) =⇒ ∃š.MatS k (x⃗, y⃗, s, š). (1.10)

First, we show Re (r, s) (r1, s1). The bit r1.arg = None directly follows from r2.arg = None
and TranP r1 r2 a⃗2 b⃗2. As for the implication part, let x⃗, y⃗ such that TranP r r1 x⃗ y⃗. Since
TranP r r1 a⃗1 b⃗1, we conclude from injectivity of TranP that x⃗ = a⃗1 and y⃗ = b⃗1. Thus,
it is left to show ∃š.MatS k (⃗a1, b⃗1, s, š). Indeed, by transitivity of TranP, we conclude
TranP r r2 (⃗a1a⃗2) (⃗b1⃗b2), hence by (1.10) there exists s′ such that MatS k (⃗a1a⃗2, b⃗1⃗b2, s, s′),
and thus by Lemma 1.3.25, claim 4, since |⃗a1| = |⃗b1|, we obtain ∃š.MatS k (⃗a1, b⃗1, s, š).
We now show the Gu (r, s) (r1, s1) =⇒ Re (r1, s1) (r2, s2) part of (1.6). Assume

Gu (r, s) (r1, s1). Then by definition of Gu there exist a⃗, b⃗ such that TranP (r, r1, a⃗, b⃗)
and MatS k (⃗a, b⃗, s, s1). By injectivity of TranP, a⃗ = a⃗1 and b⃗ = b⃗1 necessarily, hence

MatS k (⃗a1, b⃗1, s, s1). (1.11)

Since r2.arg = None holds, it is only left to show

∀x⃗ y⃗.TranP (r1, r2, x⃗, y⃗) =⇒ ∃š.MatS k (x⃗, y⃗, s1, š).

Take x⃗, y⃗ such that TranP (r1, r2, x⃗, y⃗). From injectivity of TranP, we conclude x⃗ = a⃗2
and y⃗ = b⃗2. Therefore, the goal is to show ∃š.MatS k (⃗a2, b⃗2, s1, š). Indeed, by tran-
sitivity of TranP, TranP (r, r2, a⃗1a⃗2, b⃗1⃗b2), hence by (1.10), there exists s′2 such that

44 Monadic Parametricity

MatS k (⃗a1a⃗2, b⃗1⃗b2, s, s′2). Put š = s′2. Then by Lemma 1.3.25, claim 5, we obtain
MatS k (⃗a2, b⃗2, s1, s′2) using (1.11).
We abbreviate T rel = T rel

Tran,Tran′,Re,Gu which is an acceptable monadic relation by
Lemma 1.3.29. Let us now show that T rel(∆B) relates ktest a and k a, for all a : A. Let
(x, r1) = ktest a r and (b, s1) = k a s. The bits ∃u′.x = u′, ∃u.u = b and Tran′ s s1 are
trivial. To show Tran r r1, i.e., ∃a⃗ b⃗.TranP (r, r1, a⃗, b⃗), put a⃗ = a, b⃗ = x. If r1.arg = None
then r.arg = None, r1.que = r.que a and r.ans = xr1.ans necessarily, and the goal is
proved. Now assume Re (r, s) (r1, s1), thus r1.arg = None and

∀x⃗ y⃗.TranP (r, r1, x⃗, y⃗) =⇒ ∃š.MatS k (x⃗, y⃗, s, š). (1.12)

From the fact TranP (r, r1, a, x) proved above and (1.12), we conclude that there exists
š such that MatS k (a, x, s, š) which is only possible if š = s1, by definition of Mat. This
proves Gu (r, s) (r1, s1).
Now we prove the main statement of the lemma. Since F is pure for state monads

and ktest (∆A →̇ T rel(∆B)) k holds, we have (FTest ktest)T rel(∆C) (FS k). Let (c, r1) =
FTest ktest r⃗b and (c′, s′1) = FS k s. There exist a⃗1, b⃗1 such that TranP (r⃗

b
, r1, a⃗1, b⃗1). Since

r1.arg = None holds by the assumption of the lemma, we infer a⃗1 = r1.que and b⃗1 = b⃗.
Indeed, we compute r1.que = r⃗

b
.que a⃗1 = εa⃗1 = a⃗1, and the former holds. For the

latter, we have b⃗ = r⃗
b
.ans = b⃗1r1.ans. By the assumption of the lemma, r1.que and b⃗

are matched with MatS k and hence, |r1.que| = |⃗b| by Lemma 1.3.25, claim 1. Hence
|⃗a1| = |r1.que| = |⃗b| = |⃗b1| + |r1.ans| = |⃗a1| + |r1.ans|, hence |r1.ans| = 0 and thus,
r1.ans = ε.
Let us prove Re (r⃗

b
, s) (r1, s

′
1). r1.arg = None holds by the assumption. Let a⃗′, b⃗′ be

such that TranP (r⃗
b
, r1, a⃗

′, b⃗′). By injectivity of TranP, a⃗′ = a⃗1 and b⃗′ = b⃗1 for a⃗1, b⃗1 de-
fined in the previous paragraph. Hence, it is sufficient to show ∃š.MatS k (⃗b, r1.que, s, š)
which is true by assumption of the lemma.
From Re (r⃗

b
, s) (r1, s

′
1), we obtain c = c′ and Gu (r⃗

b
, s) (r1, s

′
1). From the latter, rea-

soning in a similar way as above we derive MatS k (r1.que, b⃗, s, s′1). Finally, using the
latter and the assumption MatS k (r1.que, b⃗, s, s1) we infer s′1 = s1 by Lemma 1.3.25,
claim 2.

Lemma 1.3.30 (Inductive case). Let F : FuncState be pure. If FTest ktest r⃗b = (c, r) and
FTest ktest r⃗bb = (c′, r′) and r.arg = Some a then r′.que = r.que a.

Notice that in contrast to the base case, the inductive case no longer involves the state
set S and an argument k but operates entirely on the specific state set Test. To prove
the lemma, we use an acceptable monadic relation in the following generic format.

Definition 1.3.31. Let S, S′ be sets. Let Tran ∈ Rel(S, S), Tran′ ∈ Rel(S′, S′) and
Inv1, Inv2 ∈ Rel(S, S′). For X,X ′ and Q ∈ Rel(X,X ′), define a monadic relation

1.3 Monadic Parametricity for State Monads 45

T rel
Tran,Tran′,Inv1,Inv2(Q) ∈ Rel(StateSX,StateS′X ′) by

f T rel
Tran,Tran′,Inv1,Inv2(Q) f ′ ≡ ∀s s′ s1 s′1 xx′.f s = (x, s1) ∧ f ′ s′ = (x′, s′1) =⇒

(∃u′. xQu′) ∧ (∃u. uQx′) ∧ Tran s s1 ∧ Tran′ s′ s′1∧
(Inv1 s s′ =⇒ Inv1 s1 s′1 ∧ xQx′ ∨ Inv2 s1 s′1).

T rel
Tran,Tran′,Inv1,Inv2 generalizes T rel

Tran,Inv from Definition 1.3.14, and does not seem to be
an instance of any relation defined previously.

Lemma 1.3.32. If Tran,Tran′ are reflexive and transitive and furthermore,

Inv2 s s′ ∧ Tran s s1 ∧ Tran′ s′ s′1 =⇒ Inv2 s1 s′1 (1.13)

holds then Q 7→ T rel
Tran,Tran′,Inv1,Inv2(Q) is an acceptable monadic relation.

Proof. Let us abbreviate T rel = T rel
Tran,Tran′,Inv1,Inv2 and

Φ(Q, s, s1, s
′, s′1, x, x

′) ≡ (∃u′.xQu′) ∧ (∃u.uQx′) ∧ Tran s s1 ∧ Tran′ s′ s′1∧
(Inv1 s s′ =⇒ Inv1 s1 s′1 ∧ xQx′ ∨ Inv2 s1 s′1).

For the val-case, given cQ c′, we have x = c, x′ = c′, s1 = s and s′1 = s′ that yield
xQx′ by the assumption, and the first two conjuncts of Φ follow trivially. The third
and fourth conjuncts follow from reflexivity of Tran, and the last one is trivial.
For the bind-case, take t T rel(Q) t′ and f (Q →̇ T rel(R)) f ′ for Q ∈ Rel(X,X ′), R ∈

Rel(Y, Y ′), and assume that Φ(Q, s, s1, s′, s′1, x, x′) holds where (x, s1) = t s and (x′, s′1) =
t′ s′. Assume (y, s2) = f x s1 and (y′, s′2) = f ′ x′ s′1. We now prove Φ(R, s, s2, s′, s′2, y, y′).
Take u′ such that xQu′ and let (z′, q′) = f ′ u′ s′1. From the assumption on f, f ′, we
get Φ(R, s1, s2, s′1, q′, y, z′) that yields the existence of v′ such that y R v′. Analogously,
one shows ∃v.v R y′. From Φ(R, s1, s2, s

′
1, q

′, y, z′), we also obtain Tran s1 s2, and thus
Tran s s2 by transitivity of Tran. Similarly, one shows Tran′ s′ s′2.
Assume Inv1 s s′. Then Inv1 s1 s′1∧xQx′∨Inv2 s1 s′1 holds and thus, two cases are pos-

sible. In the first case, Inv1 s1 s′1 and xQx′, we apply the assumption f (Q →̇ T rel(R)) f ′

to xQx′ and get Inv1 s1 s′1 =⇒ Inv1 s2 s′2 ∧ y R y′ ∨ Inv2 s2 s′2 which proves the goal. In
the second case, Inv2 s1 s′1, from (1.13) we obtain Inv2 s2 s′2.

Proof (of Lemma 1.3.30). We instantiate Lemma 1.3.32 with S = S′ = Test and define
the following relations.

Tran r r1 ≡ Tran′ r r1 ≡
(r1.arg = None =⇒ r.arg = None)∧
(r.arg = Some _ =⇒ r = r1)∧
(r.ans = ε =⇒
r = r1 ∨ r1.ans = ε ∧ r1.arg = Some _ ∧ r1.que = r.que)

Inv1 r r′ ≡ r.arg = None ∧ r′.arg = None ∧ r′.ans = r.ans b ∧ r′.que = r.que
Inv2 r r′ ≡ ∃a. r.arg = Some a ∧ r.ans = ε ∧ r′.ans = ε ∧ r′.que = r.que a

46 Monadic Parametricity

Note that Inv1 depends on b : B assumed by the lemma. The defined relations satisfy the
conditions of Lemma 1.3.32. It is clear that Tran and Tran′ are reflexive and transitive.
Let us check the condition (1.13). Assume Tran r r1, Tran′ r′ r′1 and Inv2 r r′ hold. From
the latter, there exists a such that r.arg = Some a and r.ans = ε ∧ r′.ans = ε ∧ r′.que =
r.que a. Since r.arg = Some a, from Tran r r1 we obtain r1 = r. Therefore, the first
two conjuncts of Inv2 r1 r′1, r1.arg = Some a and r1.ans = ε hold. Since r′.ans = ε,
by Tran′ r′ r′1 two cases are possible. In the first case, r′ = r′1, the bit r′1.ans = ε is
true, and r′1.que = r′.que = r.que a = r1.que a holds. In the second case, we have
r′1.ans = ε and r′1.que = r′.que. From the latter, we deduce r′1.que = r′.que = r.que a =
r1.que a, and (1.13) is proved. By Lemma 1.3.32, the monadic relation T rel

Tran,Tran′,Inv1,Inv2
is acceptable. Let us abbreviate it as T rel.
It is straightforward to show ktest (∆A →̇ T rel(∆B)) ktest. For a ∈ A, let (b, r1) =

ktest a r and (b′, r′1) = ktest a r
′. The bits ∃u′.b = u′, ∃u.u = b′ are trivial. Let us

show Tran r r1. Indeed, by definition of ktest, r1.arg = None ⇒ r.arg = None and
r.arg = Some _ ⇒ r = r1 are true. If r.ans = ε then either r.arg = Some _ and thus,
r = r1, or r.arg = None, and hence r1.arg = Some _, r1.ans = ε and r1.que = r.que
hold. Tran′ r′ r′1 can be shown analogously. Let us prove the remaining implication part.
Assume Inv1 r r′, hence r.arg = None and r′.arg = None. We consider two possible cases:
r.ans = ε and r.ans = dd⃗, for some d, d⃗. In the former case, r′.ans = b and Inv2 r1 r′1 can
be easily seen. In the latter case, we deduce c = c′ and Inv1 r1 r′1.
Since F is pure for state monads and ktest (∆A →̇ T rel(∆B)) ktest holds, we have

(FTest ktest)T rel(∆C) (FTest ktest). Let (c, r1) = FTest ktest r⃗b and (c′, r′1) = FTest ktest r⃗bb
and r1.arg = Some a. Since Inv1 r⃗b r⃗bb and not Inv1 r1 r′1, we have Inv2 r1 r′1, hence
r′1.que = r1.que a which proves the lemma.

Proof of Theorem 1.3.26. By induction on t ∈ Tree.
Consider the case t = Ans c. Assume Fun2treeAux (F, b⃗,Ans c) holds. Then by defi-

nition of Fun2treeAux, there exists r such that (c, r) = FTest ktest r⃗b and r.arg = None.
Assume MatS k (r.que, b⃗, s, š), and let (c1, s1) = FS k s and (c2, s2) = tree2fun (Ans c) k š.
From the latter we get c2 = c and s2 = š. In view of these equalities, the goal rewrites
to c1 = c and s1 = š that directly follow from Lemma 1.3.27 covering the base case.
For the case t = Que a f , assume the induction hypothesis

∀b, b⃗, s, š, s1, s2, r, c1, c2.Fun2treeAux (F, b⃗, f b)∧
FTest ktest r⃗b = (_, r) ∧MatS k (r.que, b⃗, s, š)∧

FS k s = (c1, s1) ∧ tree2fun (f b) k š = (c2, s2) =⇒ c1 = c2 ∧ s1 = s2 (IH)

Assume Fun2treeAux (F, b⃗,Que a f) holds. By definition of Fun2treeAux, there exist c, r
such that (c, r) = FTest ktest r⃗b and r.arg = Some a, and Fun2treeAux (F, b⃗b, f b) holds,
for all b : B. Assume MatS k (r.que, b⃗, s, š), and let (c1, s1) = FS k s and (c2, s2) =
tree2fun (Que a f) k š. From the latter, putting (b, s′2) = k a š, we get tree2fun (f b) f s′2 =
(c2, s2) and also, by definition of Mat,

MatS k (r.que a, b⃗b, s, s′2). (1.14)

1.3 Monadic Parametricity for State Monads 47

Our goal is to prove c1 = c2 and s1 = s2. For that, we apply (IH) together with
(1.14), and the only thing left to show is that for all r′ such that FTest ktest r⃗bb = (_, r′),
r′.que = r.que a holds. The latter directly follows from Lemma 1.3.30. Theorem 1.3.26
proved.

Thus, we have shown that if fun2tree terminates for a given functional F : FuncState
and returns t ∈ Tree then t is a valid strategy for F .

1.3.4. Existence of Strategy Trees

Below we show that for any pure functional F : FuncState there indeed exists a strategy
tree t such that F = tree2fun t. Theorem 1.3.20 implies that such a representation
(if it exists) is unique. Indeed, suppose F = tree2fun t1 = tree2fun t2. Then by
Theorem 1.3.20, Fun2tree (F, t1) and Fun2tree (F, t2) hold, hence t1 = t2 by functionality
of Fun2tree.
To prove existence of a tree strategy for any pure F : FuncState, we introduce the

following definitions, though not formalized formally in Coq.

Definition 1.3.33. For a set X, consider a set X∗ of all finite sequences of elements
of X. A tree over a set X is an arbitrary prefix-closed subset T ⊆ X∗. We write
x⃗ ⪯ y⃗ for x⃗ is a prefix of y⃗. We call X∗ a full (infinite) tree over X. A branch (or
infinite branch) through T is an infinite sequence x⃗ = x0x1 . . . such that for all n ∈ N,
x⃗ ↾n= x0x1 . . . xn ∈ T . We say that T is a well-founded tree if there are no branches
through T .
We define a set of inductive trees over X as a minimal set Treeind(X) such that

– {ε} ∈ Treeind(X);

– for any f : X → Treeind(X) and x ∈ X, {ε} ∪
∪

x∈X{x(f x)} ∈ Treeind(X) holds,
with xU denoting a set of sequences {xu | u ∈ U}, for U ⊆ X∗.

In other words, there is a one-to-one correspondence between inductive trees from
Treeind(X) and elements from the inductive set Tree′X generated by two constructors

– Leaf : Tree′X and

– Node : (X → Tree′X)→ Tree′X .

Formally, every t ∈ Tree′X represents a tree {x⃗ | Legal t x⃗} where the predicate Legal ⊆
Tree′X ×X∗ is defined by

– Legal t ε, for all t ∈ Tree′X ;

– if Legal (f x) x⃗ then Legal (Node f) (xx⃗), for all x ∈ X.

We give the following characterization of inductive trees.

48 Monadic Parametricity

Lemma 1.3.34. The tree T ⊆ X∗ is inductive if and only if it is well-founded and

x⃗x ∈ T =⇒ x⃗x′ ∈ T , for all x⃗ ∈ X∗, x, x′ ∈ X. (1.15)

Proof. The “if” direction is easy by induction on tree structure. For the “only if”, we
give a classical proof using the axiom of choice. Let T be well-founded, and assume
for contradiction that T is not inductive. Then T ̸= {ε}, and for all x ∈ X, x ∈ T .
For every x ∈ T , define T 0

x = {x⃗ | xx⃗ ∈ T }. Certainly, every T 0
x is a tree. Since T is

not inductive, there exists x0 such that T 0
x0

is not inductive. Repeating the argument,
we construct recursively an infinite sequence x0x1 . . . which is a branch through T . A
contradiction with well-foundedness of T .

Theorem 1.3.35. Let F ∈ FuncState be pure for a state monad. There exists t : Tree
such that Fun2tree (F, t).

Proof. The theorem is formalized in Coq only partially. The complete mathematical
pen-and-paper proof follows. Consider the full tree B∗. Assume for contradiction that
there exists a branch b⃗ = b0b1b2 . . . through B∗ such that

(snd (FTest ktest r⃗b↾n)).arg = Some _ for all n ∈ N. (1.16)

Let B∞ be a coinductive type of finite and infinite lists (streams) over B. Now let
the set Test∞ be defined similar to Test except that the ans-component has the type
B∞. Let ι : Test→ Test∞ be a naturally defined embedding of Test into Test∞, and let
k∞test be an extension of ktest to Test∞. In the following, we will omit the coercion ι and
assume that Test ⊆ Test∞ if it does not lead to a confusion.
The following four lemmas are formalized in Coq.

Lemma 1.3.36. FTest∞ k∞test s = FTest ktest s whenever s ∈ Test ⊆ Test∞.

Proof. We prove the claim by a simulation argument using the following monadic re-
lation. Let R ∈ Rel(Test,Test∞) be defined by Rr r′ ≡ ι r = r′. The monadic re-
lation T param

R is acceptable by Lemma 1.3.7. It can be easily seen that ktest (∆A →̇
T param
R (∆B)) k

∞
test.

Since F is pure, we conclude (FTest ktest)T param(∆C) (FTest∞ k∞test). Now take r : Test,
and let FTest ktest r = (c, r1) and FTest∞ k∞test (ι r) = (c′, r′1). Then c = c′ and ι r1 =
r′1.

Similar to Lemmas 1.3.16, 1.3.17, we prove the following two lemmas. The first lemma
states that if ktest raises the flag indicating a called argument then all the prerecorded
answers must be consumed (even if the list is infinite).

Lemma 1.3.37. For a pure F and b⃗ ∈ B∞, if FTest∞ k∞test r⃗b = (r1, c) and r1.arg =
Some _ then r1.ans = ε.

The next lemma states that a pure F when applied to k∞test can consume only finitely
many prerecorded answers to produce a result. This amount equals the number of asked
questions.

1.3 Monadic Parametricity for State Monads 49

Lemma 1.3.38. For a pure F and b⃗ ∈ B∞, if FTest∞ k∞test r⃗b = (r1, c) then there exists
d⃗ : B∗ such that b⃗ = d⃗ r1.ans and |r1.que| = |d⃗|.

We introduce the following notation. For r, r′ ∈ Test∞ and b⃗ ∈ B∞, we write r ∼
b⃗
r′ iff

r.ans b⃗ = r′.ans and all the other components are equal. The following lemma holds.

Lemma 1.3.39. For d⃗ : B∗ and a non-empty stream b⃗∞ : B∞, if FTest ktest rd⃗ = (c, r1)
and FTest∞ k∞test rd⃗⃗b = (c′, r′1) then either r1.arg = None and r1 ∼b⃗

r′1, or r1.arg = Some _
and |r1.que| < |r′1.que| hold.

Proof. Let b⃗ : B∞ be an non-empty stream of answer values. Instantiate Lemma 1.3.32
with S = Test, S′ = Test∞ and define

Tran r r1 ≡ r.arg = Some _ =⇒ r = r1

Tran′ r r1 ≡ |r.que| ≤ |r1.que|
Inv1 r r′ ≡ r.arg = None ∧ r ∼

b⃗
r′

Inv2 r r′ ≡ r.arg = Some _ ∧ r.ans = ε ∧ |r.que| < |r′.que|.

It is not difficult to see that Tran and Tran′ are reflexive and transitive. Moreover,
Inv2 r r′ ∧ Tran r r1 ∧ Tran′ r′ r′1 =⇒ Inv2 r1 r′1 holds. Indeed, Inv2 r r′ yields r.arg =
Some _, hence r = r1 by Tran r r1. Thus, r1.arg = Some _ and r1.ans = ε hold.
Also, |r1.que| = |r.que| < |r′.que| ≤ |r1.que| and thus, |r1.que| < |r1.que| holds. By
Lemma 1.3.32, T rel = T rel

Tran,Tran′,Inv1,Inv2 is an acceptable monadic relation.
We verify ktest (∆A →̇ T rel(∆B)) k

∞
test. For a : A, let (b1, r1) = ktest a r and (b′1, r

′
1) =

k∞test a r
′. The goal is to show

(∃u′. b1 = u′) ∧ (∃u. u = b′1) ∧ Tran r r1 ∧ Tran′ r′ r′1∧
(Inv1 r r′ =⇒ Inv1 r1 r′1 ∧ b1 = b′1 ∨ Inv2 r1 r′1).

The first two conjuncts are trivial. The bit Tran r r1 is easy, and Tran′ r′ r′1 holds since
the que-component may only grow when applying ktest. Let us show the last conjunct.
Assume Inv1 r r′ that yields r.arg = None and r ∼

b⃗
r′. We consider two cases. The

first case is r.ans = ε. Then r1 = r[arg := Some a], and we can show Inv2 r1 r′1. Indeed,
r1.arg = Some _ and r1.ans = ε are obvious. The bit |r1.que| < |r′1.que| does hold since
|r1.que| = |r.que| = |r′.que| (by r ∼

b⃗
r′) and |r′1.que| = |r′.que| + 1 (as r′.ans is non-

empty by the assumption on b⃗). In the second case, r.ans = b1v⃗ with v⃗ = r1.ans, we
verify Inv1 r1 r′1∧b1 = b′1. The bit b1 = b′1 can be derived from r ∼

b⃗
r′ and the fact r′.ans

is non-empty. Moreover, from r ∼
b⃗
r′ we derive r′.ans = b1r

′
1.ans and thus, r1 ∼b⃗

r′1.
Obviously, r1.arg = None holds.
Since the monadic relation T rel = T rel

Tran,Tran′,Inv,Inv′ is acceptable and F is pure, we
obtain (FTest ktest)T rel(∆C) (FTest∞ k∞test). The latter and Inv1 rd⃗ rd⃗⃗b which obviously
holds, imply the required.

50 Monadic Parametricity

We proceed with the proof of the theorem. Let b⃗ ∈ B∞ be an infinite list of bi satisfy-
ing (1.16) and let (c′, r′1) = FTest∞ k∞test r⃗b. By Lemma 1.3.38, there exists d⃗ : B∗ such
that b⃗ = d⃗ r′1.ans and |d⃗| = |r′1.que|. Suppose r′1.arg = Some _. Then by Lemma 1.3.37 we
obtain r′1.ans = ε and thus, b⃗ = d⃗, a contradiction. Therefore, we conclude r′1.arg = None
and r′1.ans is infinite (and thus, non-empty). Denote r′1.ans by v⃗.
Let (c, r1) = FTest ktest rd⃗. As rd⃗ ∼v⃗ r⃗b = r

d⃗v⃗
, two cases are possible by Lemma 1.3.39.

1) r1.arg = None and r1 ∼v⃗ r
′
1 hold. It leads to a contradiction with the assumption (1.16)

on b⃗, namely, that (snd(FTest ktest r⃗b↾|d⃗|
)).arg = Some _. 2) r1.arg = Some _ and |r1.que| <

|r′1.que|. Then by Lemma 1.3.18, |r1.que| = |d⃗|, and thus |d⃗| < |d⃗|, a contradiction. In
both cases, we arrive to a contradiction which implies classically that for every branch
b⃗ = b0b1b2 . . . through B∗ there exists n such that (snd (FTest ktest r⃗b↾n)).arg = None. For
a branch b⃗, find a minimal n

b⃗
∈ N with the latter property. We refer to the finite prefix

b⃗ ↾n
b⃗
as a cut of the branch b⃗. Lemma 1.3.39 implies that if d⃗ is a cut of a branch b⃗ then

d⃗ is a cut of every b⃗′ such that d⃗ ⪯ b⃗′. Define

T = {x⃗ | x⃗ ⪯ d⃗, d⃗ is a cut of some branch b⃗ in B∗}.

Clearly, T is well-founded. Moreover, T possesses the property (1.15). Indeed, if x⃗b ∈ T
then x⃗ cannot be a cut and thus, x⃗b′ ∈ T , for all b′ ∈ B. Hence by Lemma 1.3.34, T is
inductive, and there exists tF ∈ Tree′X such that T = {⃗b | Legal tF b⃗}. Let us define the
function

subtree : Tree′X → X∗ → Tree′X
by induction as follows

– subtree t ε = t

– subtree Leaf x⃗ = Leaf

– subtree (Node f)xx⃗ = subtree (f x) x⃗.

Cuts in T correspond to leaves in tF , as stated by the next lemma.

Lemma 1.3.40. The sequence b⃗ is a cut in tF iff Legal tF b⃗ and subtree tF b⃗ = Leaf
hold.

We define a translation function from Tree′B to the set of strategy trees TreeA,B,C

transF : Tree′B → B∗ → Tree

inductively by

– transF Leaf b⃗ = Ans c, for c = fst (FTest ktest r⃗b);

– for f : B → Tree′B, transF (Node f) b⃗ = Que a g with g = λb.transF (f b) (⃗bb),

g : B → Tree, and a =

{
a′ if (snd (FTest ktest r⃗b)).arg = Some a′

a0 otherwise
for a default

element a0 ∈ A.

1.3 Monadic Parametricity for State Monads 51

We show that transF tF ε is indeed a strategy tree for F . For that, we make use of
Theorem 1.3.23 and verify Fun2tree (F, transF tF ε). The latter in turn follows from a
more general statement

∀t∀⃗b.Legal tF b⃗ ∧ t = subtree tF b⃗ =⇒ Fun2treeAux (F, b⃗, transF t b⃗)

which we prove by induction on t. For the base case, t = Leaf, from Leaf = subtree tF b⃗
and Legal tF b⃗ we conclude by Lemma 1.3.40 that b⃗ is a cut. Therefore, FTest ktest r⃗b =

(c, s), with s.arg = None, and transF Leaf b⃗ = Ans c take place. Hence, by definition
of Fun2treeAux, we conclude Fun2treeAux (F, b⃗,Ans c). For the inductive case, assume
t = Node f and the induction hypothesis

∀b∀⃗b.Legal tF b⃗ ∧ f b = subtree tF b⃗ =⇒ Fun2treeAux (F, b⃗, transF (f b) b⃗).

Since t = Node f = subtree tF b⃗, b⃗ is not a cut. Hence for (c, s) = FTest ktest r⃗b,
we conclude s.arg = Some a. By definition, we have transF t b⃗ = Que a g with g =
λb.transF (f b) (⃗bb). To prove Fun2treeAux (F, b⃗,Que a g), by definition of Fun2treeAux,
it is necessary to verify Fun2treeAux (F, b⃗b, g b) for any b. We take b ∈ B and apply the
induction hypothesis. All is left to show are Legal tF b⃗b and f b = subtree tF b⃗b which
both clearly hold, since b⃗ is not a cut.

From Theorems 1.3.20, 1.3.23 and 1.3.35 we deduce

Corollary 1.3.41. There is a one-to-one correspondence between total pure second-order
functionals of type FuncState and strategy trees.

1.3.5. Generalizations
Similar to the general case of parametricity (Section 1.2.6), it is possible to characterize
purity for second-order functional of type

n-FuncState =
∏

S .(A1 → StateSB1)→ · · · → (An → StateSBn)→ StateSC ≃∏
S .(
∏

i∈[1,n].Ai → StateSBi)→ StateSC

in terms of strategy trees of type n-Tree generated by constructors

Ans : C → n-Tree and Quei : Ai → (Bi → n-Tree)→ n-Tree, i = 1, . . . , n.

The proof uses similar technique as in the case of one functional parameter. In the case
on n arguments, since consecutive questions may be asked to any of the given functional
arguments, we tweak the specific state set Test as

Test = option (
∑

i∈[1,n].Ai)× (
∑

i∈[1,n].Ai)
∗ × (

∑
i∈[1,n].Bi)

∗.

Let b0i be a default element of Bi, for i = 1, . . . , n. The test function

ktest :
∏

i∈[1,n].Ai → StateSBi

is defined by

52 Monadic Parametricity

– ktest i a s = (b0i , s), if s.arg = Some _

– ktest i a s = (b0i , s[arg := Some (i, a)]), if s.arg = None and s.ans = ε

– ktest i a s = (b′, s[ans := b⃗, que := a⃗a]), if s.arg = None, s.ans = (b, j)⃗b and s.que = a⃗

where b′ =
{
b i = j

b0i otherwise
and b0i is a default element of type Bi.

In the third case, we analyse whether the next prerecorded answer in s.ans is of appro-
priate type. In the positive case, we return this answer, otherwise the default element
is returned.
The relation

Fun2treeAux ⊆ FuncState ×B∗ × n-Tree

is inductively defined by the following clauses:

– if F ktest r⃗b = (c, r1) and r1.arg = None then Fun2treeAux (F, b⃗,Ans c);

– if F ktest r⃗b = (c, r1) and r1.arg = Some (i, a), and let f : Bi → n-Tree be such that
Fun2treeAux (F, b⃗(i, b), f b) holds, for all b : Bi, then Fun2treeAux (F, b⃗,Quei a f).

Define Fun2tree (F, t) ≡ Fun2treeAux (F, ε, t). We can prove the following results.

Theorem 1.3.42. For all t ∈ n-Tree, Fun2tree (tree2fun t, t).

Theorem 1.3.43. Suppose that F ∈ n-FuncState is pure for a state monad and that
Fun2tree (F, t) holds for some t ∈ n-Tree. Then F = tree2fun t.

Proof. A proof is analogous to the proof of Theorem 1.3.23. We only mention that
relation MatS k ⊆ (

∑
i∈[1,n].Ai)

∗ × (
∑

i∈[1,n].Bi)
∗ × S × S defined similarly as in Defini-

tion 1.3.24 must additionally ensure that types of questions and answers match compo-
nentwise.

Theorem 1.3.44. Let F ∈ n-FuncState be pure for a state monad. There exists t ∈
n-Tree such that Fun2tree (F, t).

1.3.6. The Partial Case
Let us consider the type

FuncState =
∏

S .(A→ StateSB)→ StateSC

where A,B,C are cpos and → denotes a type of continuous functions. Characterization
of second-order partial functions of type FuncState pure for state monads, however, meets
certain problems. The first difficulty is in the requirement of admissibility of acceptable
monadic relations which is not easy to achieve in general. One possible solution is to
assume that cpos A,B,C and state cpos S are discrete.

1.3 Monadic Parametricity for State Monads 53

First, we try to prove that the snapback functional Fsnap :
∏

S .(A → StateSB) →
StateSB is not pure. In the partial case, Fsnap is defined by

(Fsnap)S k s =

{
⊥ k a0 s = ⊥
(b, s) k a0 s = (b, s1)

Let us formulate a

Conjecture 1.3.45. Let F ∈ FuncState be pure for a state monad. Let Test = bool and
define ktest : A → StateTestB by ktest a s = (b0, true). If FTest ktest false = (c, false) then
FS k s = (c, s), for all S, s ∈ S and k : A→ StateSB.

Intuitively, the conjecture seems valid. If FTest ktest false = (c, false) then F does not
query its functional argument, and thus computation FS k s must return a constant
non-bottom value for any k and s.
Remind a definition of the monadic relation T rel

0 . For S, S′, X,X ′, Q ∈ Rel(X,X ′),
T rel
0 (Q) ∈ Rel(StateSX,StateS′X ′) is defined as

f T rel
0 (Q) f ′ ≡ ∀s s1 s′ s′1 xx′.(x, s1) = f s ∧ (x′, s′1) = f ′ s′ =⇒

(∃u′.xQu′) ∧ (∃u.uQx′)∧
(Inv s1 =⇒ xQx′ ∧ Inv s ∧ Tran (s, s′) (s1, s

′
1))

with Tran ∈ Rel(S × S′, S × S′) and Inv ⊆ S. By Lemma 1.3.9, T rel
0 is acceptable.

Moreover, clearly, it is strict. Generally, we can not prove its admissibility since Q may
not respect the orderings onX,X ′: x1Qx′1 and x2Qx′2 with x1 ⊑ x2 does not necessarily
imply x′1 ⊑ x′2. However, T rel

0 is admissible if we restrict S, S′ and X,X ′ to discrete cpos.
Indeed, let S, S′ and X,X ′ be discrete. Then any Q ∈ Rel(X,X ′) is admissible. Given
chains (ti)i∈N and (t′i)i∈N such that

⊔
i∈N ti = t ∈ StateSX and

⊔
i∈N t

′
i = t′ ∈ StateS′X ′

and ti T rel
0 (Q) t′i, for all i ∈ N, assume t s = (x, s1) and t′ s′ = (x′, s′1). Then there exists

i0 such that ti0 s = (x, s1) and t′i0 s
′ = (x′, s′1). Hence t T rel

0 (Q) t′ by assumption on
ti0 , t

′
i0
.

Next, we try to prove the conjecture similarly to the total case. We instantiate T rel
0

with Inv s ≡ s = false, Inv ⊆ Test, and Tran p p1 ≡ snd p = snd p1, Tran ∈ Rel(Test ×
S,Test × S). Moreover, ktest (∆A →̇ T rel

0 (∆B)) k holds. Hence, using purity of F , we
obtain FTest ktest T rel

0 (∆C)FS k. However, T rel
0 contains no information why FS k s must

be non-bottom. This proof attempt fails.
Certainly, a weaker version of the conjecture is true.

Theorem 1.3.46. Let F ∈ FuncState be pure for a state monad. For Test and ktest
defined as above, if FTest ktest false = (c, false) and FS k s = (c1, s1) then c = c1 and
s1 = s, for all S, s ∈ S and k.

It is interesting if the stronger version is still provable. We leave it as an open question.

54 Monadic Parametricity

Interestingly, there is no bijection between strategy trees and partial pure functions
of type FuncState. Take A = B = C = unit = {⋆}, and consider the following strategy
trees.

t0 = ⊥
t1 = Que ⋆ (λ_.⊥)
t2 = Que ⋆ (λ_.Que ⋆ (λ_.⊥))
. . .

t∞ = Que ⋆ (λ_.Que ⋆ (λ_.Que ⋆ (λ_. . . .)))

t∞ is an “infinite” tree defining a computation that performs infinitely many queries to
its functional argument and thus, fails to produce a result. All the ti, i ∈ N ∪ {∞}, are
undistinguishable using state monads. They correspond to the same non-terminating
computation, i.e., tree2funS ti k = ⊥, for all i. Hence, we conclude that there is no
analogue of Theorem 1.3.20 in the partial case. However, the author believes that some
version of Theorem 1.3.23 still holds. It is an open question if it really does.

1.4. Monadic Parametricity and Continuity
For the set of all number sequences B = N → N (also called a Baire space), we say
that a functional F : B → N defined on the Baire space is continuous at f : B if there
exists m ∈ N such that for any g : B, f(m) = g(m) implies F f = F g, where f(n)
denotes a tuple ⟨f 0, . . . , f (n − 1)⟩, that is F f depends only on a finite prefix f(m).
It is easy to see that this definition of continuity coincides with a standard definition if
one equips B with Baire metric ρ(f, g) = 2−min {k|f k ̸=g k} and N with the discrete metric
ρ(x, y) = |x − y|. Generally, we say that a total F : (A → B) → C is continuous at
f : A→ B if F f depends only on finitely many terms of f .
Let us introduce the following notations J·K = tree2fun and J·K∗ = tree2funId.

Definition 1.4.1. We say that F : (A→ B)→ C is strongly continuous if there exists
a strategy tree t ∈ TreeA,B,C such that F = JtK∗. Clearly, strongly continuous F is
continuous at every f .

In [Esc12], Escardó recovers a classical result that any functional of type B→ N definable
in Gödel’s system T is strongly continuous. However, our Parametricity Theorem 1.2.11
shows more than that. Namely, from it we conclude that every definable functional
F : (A→ B)→ C is strongly continuous and can be lifted to a monadically parametric
function F ♯ :

∏
T .(A→ TB)→ TC such that F = F ♯

Id for the identity monad Id.
In the partial case, we use a standard notion of ⊔-continuity and a domain of strategy

trees as a solution of the domain equation X ≃ C + B × (A → X⊥) as described in
Subsection 1.2.5. Summarizing all above, we formulate

Theorem 1.4.2. The class of strongly continuous functionals coincides with a class of
functionals for which a parametric monadic lifting is defined, in both total and partial
settings.

1.5 Applications 55

The theorem is valid for a general case of n functional arguments.
We notice that for the partial case, the class of strongly continuous functionals is a

strict subclass of continuous functionals as shown by the following counterexample. It
makes use of a continuous parallel-or function por : bool2⊥ → bool⊥ defined by

por (x, y) =


true x = true or y = true
false x = false and y = false
⊥ otherwise.

Consider the functional F : (bool→ bool⊥)→ (bool→ bool⊥)→ bool⊥ defined by

F f g = por (f true, g true).
Then F is not strongly continuous. Indeed, if t for F existed, it could be neither ⊥
nor Ans _ since F is not constant. Neither could it be of the form t = Que1 _ _ sinceJtK∗⊥ η = ⊥ and F ⊥ η = true. Analogously, t could not start with Que2. Of course, it
is not a surprise that por is not strongly continuous since every strategy tree defines a
sequential computation while por is essentially “parallel”.

1.5. Applications
In this section, we discuss possible applications of the notion of monadic parametricity.

1.5.1. Modulus of Continuity
Suppose F is a second-order strongly continuous functional of type (N → N) → N, and
be F ♯ :

∏
T .(N → TN) → TN its parametric monadic lifting, i.e., F = F ♯

Id for the
identity monad Id. Then for each f : N→ N we can effectively extract an upper bound
on number of arguments needed for computation of F f (modulus of continuity of F at
f) by means of the functional

ModN F f = max (snd (F ♯
StateN∗ (instr f) ε)) + 1

where instr f : N→ StateN∗N = λa.λl⃗.(f a, l⃗ a) instruments the argument f by means of
recording of a list of visited indices; we assume max ε = −1. Below we prove that ModN
computes what it is supposed to. For that, we consider a general modulus of continuity
functional applicable to strongly continuous functionals of type (A→ B)→ C,

ModF f = snd (F ♯
State(A×B)∗

(instr f) ε)

with instr f : A→ State(A×B)∗B = λa.λl⃗.(f a, l⃗ (a, f a)).
Definition 1.5.1. For a strategy tree t ∈ TreeA,B,C and f : A → B, we can extract a
list of visited nodes when traversing t using f for selection of branches by means of the
function

deps : Tree→ (A→ B)→ (A×B)∗

defined recursively by

56 Monadic Parametricity

– deps (Ans c) f = ε

– deps (Que a k) f = (a, f a)(deps (k (f a)) f)

or, alternatively, by means of deps′ t k = snd (JtKState(A×B)∗ (instr f) ε). By induction on
t, we can show the two definitions are equivalent, i.e., deps t k = deps′ t k for all t, k.

The next statement is clear.

Lemma 1.5.2. If F : (A → B) → C is strongly continuous with a strategy t ∈ Tree
such that F = JtK∗ then ModF f = deps t f .

Definition 1.5.3. We define the function

subtree : Tree→ (A×B)∗ → Tree

recursively by

– subtree t [] = t

– subtree (Ans c) _ = Ans c

– subtree (Que a f) ((_, b) r⃗) = subtree (f b) r⃗

Lemma 1.5.4. For all t and f , subtree t (deps t f) = Ans (JtK∗f).
Proof. By induction on t.

Lemma 1.5.5. For all t, f and g, if l = deps t f and ∀(a, b) ∈ l. f a = g a hold then
deps t f = deps t g.

Proof. By induction on t. The case t = Ans c is trivial. If t = Que a k, using the induction
hypothesis we deduce deps t f = (a, f a) (deps (k (f a)) f) = (a, g a) (deps (k (g a)) g) =
deps t g.

Lemma 1.5.6. Given t and f , if l = deps t f and ∀(a, b) ∈ l. f a = g a then JtK∗f = JtK∗g.
Proof. By Lemma 1.5.5, we have deps t f = deps t g = l. By Lemma 1.5.4, we therefore
have subtree t l = Ans (JtK∗f) = Ans (JtK∗g) and hence, JtK∗f = JtK∗g.
Now we can prove that the function Mod is correct.

Theorem 1.5.7. Given strongly continuous F : (A → B) → C and f, g : A → B, let
m = ModF f . If for all (a, b) ∈ m, f a = g a then F f = F g.

Proof. Since F is strongly continuous, there exists a strategy tree t ∈ Tree such that
F = JtK∗ and thus, it is sufficient to show JtK∗f = JtK∗g. The last equality directly follows
from Lemmas 1.5.6 and 1.5.2.

1.5 Applications 57

For a continuous function F : (N→ B)→ C, we define

ModN F f = max (snd (split (ModF f))) + 1

where split : (A×B)∗ → A∗ ×B∗ is a list components splitting function.
As a corollary of Theorem 1.5.7, we obtain

Theorem 1.5.8. Let F : (N → B) → C be strongly continuous, f : N → B and
m = ModN F f . Then for every g : N → B if f i = g i holds for all i < m, then
F f = F g.

Alternatively, the modulus of continuity ModN can be defined in terms of Maybe monad
(which is a kind of exception monad). Consider the functional ModMaybe recursively
defined by

ModMaybe F f n =

{
ModMaybe F f (n+ 1) if F ♯

Maybe (instr
′ n f) = None

n otherwise

with
instr′ n f x = if x < n then Some (f x) else None

and define Mod′N F f = ModMaybe F f 0. Surely, the implementation of Mod′N using excep-
tions suffers from some inefficiency which makes the implementation with side-effects
ModN preferable in practice. Similar to Theorem 1.5.8, we show that Mod′N is also correct.

Theorem 1.5.9. Let F : (N → B) → C be strongly continuous, f : N → B and
m = Mod′N F f . Then for every g : N → N if f i = g i holds for all i < m, then
F f = F g.

Termination of Mod′N follows from the well-foundedness of strategy trees for pure func-
tionals.
Notice that for practical use it is convenient if ModF f returns both the result of F f

and the modulus of F at f . For instance, for the state monad one may define

ModN F f = let (v,m) = F ♯
StateN∗ (instr f) ε in (v,max m+ 1)

John Longley in [Lon99] considered two possible applications of Mod, for implementa-
tion of general search algorithms and for algorithms for exact real-number computations.
In what follows, we discuss the algorithm for exact real-number integration presented
by Longley.

Exact integration We represent real numbers in the interval [−1, 1] by infinite “streams”
of type real = nat → bit with bit = {-1, 0, 1} being a set of signed bits. The stream
r : real represents a real number

∑∞
i=0(r i) ·2−(i+1). Representations of real numbers are

not unique. For example, the stream of zeros 0∞ and the stream 1(-1)∞ both represent
the real value 0; 10∞ and 01∞ both represent the real 1

2 , and so on.

58 Monadic Parametricity

We construct an algorithm that takes as input n ∈ N and a total strongly continuous
F : real → real representing a continuous real-valued function f : [0, 1] → [0, 1] and
computes

∫ 1
0 f dx to within ε = 2−n. Essentially, the presented algorithm finds a parti-

tion of [0, 1] such that on every subinterval [xi, xi+1] of the partition the variation of f
does not exceed ε, and returns a Riemann sum

∑N
i=0(f xi) · (xi+1 − xi). For that, it is

sufficient to know a value of f x to within ε in every point x ∈ [0, 1]. For F : real→ real
representing f and ε = 2−k, we define F |ε that represents f within ε by

F |ε=2−k x = λi : nat. if i < k then F x i else 0.

That is, F |ε yields first k bits of output of F precisely and replaces the rest bits with
zeros. Obviously, if F is strongly continuous then so is F |ε.

exception OneIsReached

let integrate′ (F : real →real) n (x : real) (acc : real) =
let (y,m) = ModN F |ε=2−n x in
let acc′ = acc+ y · 2−m in
try

let x′ = x+ 2−m in
integrate′ F n x′ acc′

with
OneIsReached →acc′

let integrate (F : real →real) n =
integrate′ F n 0∞ 0∞

Figure 1.4.: Exact integration algorithm in ML

The algorithm for exact integration by Longley is given in Figure 1.4. The algo-
rithm proceeds as follows. Put x0 = 0 which is represented by 0∞, and let (y0,m0) =
ModN F |ε 0∞. Then only m0 input bits are required for F |ε 0∞ to produce y0 and hence,
F |ε returns the same result when applied to any stream with 0’s at the firstm0 positions,
including 0m01∞. This means that |f x−y0| ≤ ε, for all x ∈ [x0, x0+δ0] with δ0 = 2−m0 .
Hence,

∫ x1

x0
f dx is approximated by y0 ·δ0 to within ε·δ0. We put x1 = x0+δ0 and repeat

the process. In this way, a partition {xi}i∈[0,N] is constructed such that |f xi − yi| ≤ ε
for all x ∈ [xi, xi+1]. One can show that the algorithm indeed terminates at some step
N and xN = 1.

Theorem 1.5.10 ([Lon99]). The exact integration algorithm terminates.

Since for each i ∈ [0, N − 1],
∫ xi+1

xi
f dx is approximated by yi · δi to within ε · δi and∑

i δi = 1, the algorithm produces a correct result.
On the figure above, integrate′ takes as parameters a function F : real → real, a

natural n such that ε = 2−n is the required precision of integral computation, a current

1.6 Conclusion 59

point x in which the value of F is computed, and an accumulator for a result acc. The
addition operation raises the exception OneIsReached when the sum reaches the value 1.
The value 2−m is represented by 0m10∞. Multiplication of y by 2−m can be efficiently
implemented as a “right shift” of y by m positions.
We don’t give a formal proof for the correctness of the algorithm, but the key point of

such a proof would be that purity of F ♯ (strong continuity of F) is a sufficient condition
for the correctness of integrate′, i.e., F ♯ should neither change a state nor raise any
exceptions by itself.

1.5.2. Formal Reasoning About Programs

Our results are applicable for verification of algorithms that take pure second-order func-
tionals as input. Using the representation result, one can always assume that the input
is given directly by means of a strategy tree which enables naturally the reasoning by
induction. For a concretely given input, e.g., in a form of a program defined in some
restricted language, one might establish its purity in the sense of relational parametric-
ity or use the result of Parametricity Theorem which guarantees purity of definable
functionals.
In the previous subsection, we considered a design of certified algorithms for exact

integration which are based on the extraction of intentional information from pure func-
tionals representing computable real functions of type real → real. The next chapter
presents another case study — formalization and verification of fixpoint solver RLD in
Coq.
As shown by Keuchel and Schrijvers in [KS12], the results of Section 1.2 can be ex-

tended and applied for “modular reasoning in the purely functional setting of polymor-
phic monadic mixin components”. Similarly as pure monadically parametric second-
order functionals are characterized by first-order objects — strategy trees, the authors
show that polymorphic monadic mixin components correspond to monomorphically-
typed first-order tree-like representations. The latter allows to eliminate a higher-order
parameter of the mixin component.

1.6. Conclusion
The main result of this chapter is in providing two equivalent characterizations of monad-
ically parametric second-order functionals in both the total and the partial settings. The
first characterization is extensional and is based on preservation of relations similar to
the parametricity by Reynolds [Rey83]. In order to adapt the technique to monadic
case, we introduced a notion of the acceptable monadic relation. We should note that
the latter also appears in [Voi09] (named as monad action) where it was used to derive
free theorems for monadic programs in the sense of Wadler [Wad89]. The second, inten-
tional, characterization of monadically parametric second-order functionals is based on
representation of those as strategy trees that define question-answer dialogues. In [Voi09]
however, this intentional characterization was not considered.

60 Monadic Parametricity

Resumptions, a notion similar to strategy trees, appear in O’Hearn and Reynolds’ pa-
per [OR00] for intentional characterization of Algol’s procedures. The work presented
in the thesis differs from loc.cit. by a more general monadic formulation and by gen-
eralization of the extensional characterization to monads other than the state monad.
In [KS12], it was mentioned that strategy trees also can be interpreted as coroutines also
known in functional programming as the coroutine monad, or the resumption monad.
Decision trees as strategies for sequentially realizable functionals appear in [Lon02], but
not in the monadic context.
The Parametricity Theorem states basically that every functional implemented in

λ→ with monadic semantics is monadically parametric. We argue that second-order
monadically parametric functionals are essentially strongly continuous functionals.
As a special case, we have considered a notion of parametricity for second-order func-

tionals polymorphic in states. The results of [HKS10b] were generalized for arbitrary
second-order types. Also, a more complete formalization of Theorem 1.3.35 is provided
in the thesis.
Finally, we have formulated several applications of the notion of purity, including the

verification of algorithms that take pure second-order functionals as input. Among such
algorithms are generic local fixpoint algorithms and algorithms for exact real arithmetic.

Open questions
Extraction of strategies using other types of effects? What kind of monads allow
for extraction of a strategy tree or other kind of strategy? The studied cases include
State, Cont, TTree. Are there more examples? For instance, it is seemingly impossible
to use exceptions for this purpose. The exception monad is unable to distinguish the
trees Que 0 (λb.Que 0 (λb′.Ans b′)) and Que (0, λb.Ans b). In both cases, if k raises no
exceptions, we arrive to the same answer b. If it does, only one question is asked and
the exception is propagated.

Generalization to higher types. Connection with game semantics. Apparently, it is
possible to give a definition of monadic parametricity similar to Definition 1.2.17 for all
types of λ→. However, the question is left open what are corresponding strategies for
types of order higher than two. It could be the case that strategies in the sense of game
semantics, like in [HO00, AM96, AMJ94], are the appropriate generalization. However,
then it is not clear yet how one could characterise their existence by parametricity.
Generally, connection with the game semantics should be better understood. Another
possible approach is in utilizing of Kripke relations of varying arity as in [JT93]. This
might be an interesting question for further investigation.
It is hard to think of a practical example of a parametric higher-order functional.

One example however that may come into our minds is a kind of algorithm for solving
differential or integral equations from analysis that takes as arguments a third-order dif-
ferentiation/integration functional F and some real-value parameter function f . Char-
acterization of higher-order monadically parametric functionals, though, seems to be
mostly of academic interest.

2. Verified Generic Fixpoint Algorithms

2.1. Introduction

Many problems in programs analysis and other application areas may be expressed in
terms of solutions to constraint systems of the form x ⊒ Fx, x ∈ V , where V is a set
of variables, or unknowns, and Fx is a function returning a value in a semi-lattice of
abstract properties D. Given a constraint system S of the above form representing a
particular problem, the goal is then to compute efficiently a solution to S that is, an
assignment σ from variables V to abstract values from D such that all the constraints
are satisfied, i.e., σ x ⊒ Fx σ, for x ∈ V .
The main tool for solution of such constraint systems is a fixpoint computation al-

gorithm. Starting with least “bottom” values for unknowns, the algorithm iteratively
picks a next unknown x according to some evaluation strategy and tries to satisfy the
constraint for x. It continues to increase values of unknowns iteratively until a required
solution is found.
Fixpoint algorithms are often reimplemented and reinvented for many particular ap-

plication domains and even kinds of analysis. For example, in the verified compiler
CompCert [Ler09], one can find two versions of the same solver instantiated for the
forward and backward analyses. By contrast, generic solvers do not make any assump-
tions on the application domain. Generic reusable implementations are very useful since
they can be freely instantiated for a wide range of applications: they are parametric
in a lattice of abstract values D and do not depend on the kind of right-hand sides.
Additionally, such implementations allow to separate the iteration logic from the logic
of application itself which may ease the reasoning about the correctness of the tool.
Another important quality of a “good” solver is its well-behavedness in a certain sense.

The exact solver returns a minimal solution for complete lattices D and monotonic con-
straint systems. In order to apply the solver with widening and narrowing acceleration
techniques, it must additionally implement a chaotic iteration strategy in the sense of
Cousot and Cousot [CC77b]. Intuitively, the latter means that evaluations of right-hand
sides are performed atomically, i.e., two consecutive accesses to a variable x during the
evaluation of the right-hand side return same values.
In practise, a full solution to the constraint system is not always needed. One might

only be interested in values for a small subset of unknowns — a local solution. Starting
with a given list of interesting variables, the local solver explores the system and evaluates
only those unknowns whose values are necessary to satisfy the interesting constraints.
The variables needed to compute a local solution are not known in advance. Moreover,
the dependencies between unknowns may even change during the evaluation. It is the

62 Verified Generic Fixpoint Algorithms

task of the fixpoint solver to avoid unnecessary computations and use an optimal strategy
for picking the constraints.
Fixpoint algorithms are at the heart of many analysis tools and compilers. If these

tools are to be trusted, the fixpoint algorithm must be verified. Since effective fixpoint
solvers often exhibit a very intricate behaviour, they are hard to prove correct and their
implementation is error-prone. At the same time, testing gives no guarantees about
correctness of solvers. In practice, it may happen that even those solvers that were
repeatedly used on real-life samples, are erroneous. That was exactly the case with the
initial version of the solver RLD for that a counterexample was found while we were
trying to prove its correctness, despite the fact that it worked correctly in all the practical
cases. After the error was discovered, the author inspected another fixpoint solver used
in the static analyser Goblint [VV09] and found a bug in its implementation!
The simplest workaround is to implement a certified validator that a posteriori checks

that a result returned by the untrusted solver is consistent and indeed satisfies the given
constraint system. Proving correctness of the verifier is significantly easier that proving
correctness of the solver. However, the author thinks this is still a poor solution for
safety-critical tools which must comply highest safety standards. A certificate for the
checker does not guarantee that the solver will produce anything meaningful. In contrast,
a certificate for the solver supplied with termination contracts would guarantee that the
solver always return correct results. What one should do when the validator once gives
a negative answer?
The main contribution of this chapter is the development of the generic local exact

certified fixpoint solver RLDE.

Related Work Since verification of fixpoint solvers is a rather non-trivial and time con-
suming task, there were not so many attempts previously to develop an efficient certified
local fixpoint solver. For example, in the recent paper [BLMP13], only a fixpoint checker
is formally verified while the non-verified solver based on general iteration techniques by
Bourdoncle [Bou93] is implemented in OCaml.
The CompCert verified compiler project [Ler09] and other known publications on cer-

tified analysis [BCDdS02, KN03, BGL04, CGD04] formalize variants of Kildall’s worklist
algorithm [Kil73]. This algorithm is a standard tool for the data flow analysis [Muc97].
It is generic in the sense that it does not depend on the application domain and thus,
can be used with any abstract join-semilattice D. Kildall’s algorithm operates on the
control flow graph of the given program. That is, each vertex of the graph represents
an instruction in the program. There is an edge between vertices p and q if q can be
executed immediately after p. In order to apply the algorithm, the control graph must
be given explicitly, for example, through a function succs which maps each p to a set of
successor instructions. The function succs must be precomputed statically. Thus, the
algorithm cannot be considered as a generic one in our sense.
Other attempts to construct a local generic solver are made by Le Charlier and Van

Hentenryck in [CH92] which presented the top-down solver TD and by Fecht and Seidl
in [FS99] presenting the worklist based recursive solver with time-stamps. For these

2.1 Introduction 63

solvers, pen-and-paper arguments for the partial correctness are provided. In both pub-
lications, it is assumed that right-hand sides are given as computable function imple-
mented in some programming language. However, the purity of right-hand sides as
a necessary condition for correctness of the solvers is not mentioned. To the author’s
knowledge, neither of these solvers has ever been verified formally, by means of a theorem
prover or a proof assistant.

The Coq Proof Assistant
The interactive proof assistant Coq [Coq12] is based on the formal language Calculus
of Inductive Constructions which is an extension of original Calculus of Construction
of Coquand and Huet [CH88] by inductive definitions [CP88, PPM89]. The calculus is
strongly normalizing which intuitively means that every computation in Coq terminates.

Terms and types The specification language of Coq is strongly typed, that is, every
term definable in the language has a type. Every type, in its turn, is also a term of
another type which is called sort. Coq has the following built-in sorts

– Set, the sort of data types and program specifications

– Prop, the sort of logical proposition

– Type, the sort of Set and Prop

For example, the type of terms 42 and 2 + 3 is nat, the inductive type of natural numbers.
The term nat in turn has type Set. The term 5 :: nil has type list nat, and list is
of type Type→ Type, that is for any type A : Type, listA is a type.
The keywords Definition and Fixpoint are used in Coq to define non-recursive terms

and recursive functions, respectively. The Coq’s underlying logic supports only struc-
tural recursion over well-founded structures (see the paragraph on Inductive definitions
below) that generalizes a primitive recursion. In the case of recursive definitions, Coq
uses a syntactic termination check in order to preserve the strong normalization. It
requires that some function parameter (also called a principal parameter) structurally
decreases within every recursive call. For example, the function that computes a sum of
two natural numbers is defined with the first argument being a principal argument as
follows.

Fixpoint plus (n m : nat) : nat :=
match n with

| 0 => m
| S p => S (plus p m)

end.

The function performs a recursive call on p which obtained from n by pattern matching
and thus, is structurally smaller than n.

64 Verified Generic Fixpoint Algorithms

Propositions The Curry-Howard correspondence [SU06] is at the heart of Coq. A
proposition P is a term of the sort Prop. Moreover, at the same time, P itself is a
type. There are two distinguished propositions True and False of type Prop (which are
inductively defined) in Coq. One can define propositions using implications (which are
usual arrows of Coq’s type system), universal quantification (which are dependent types)
and inductive constructions for conjunction, disjunction and existential quantifications.
To prove a proposition P means to show that P is inhabited, that is, to construct a

proof term p of type P . It is the user who is in charge to construct p which will be
only type-checked by the kernel of Coq. There are two ways to build p. First, the
user may define p explicitly which is however not always convenient since a term may
be very large even in the case of a simple proposition. The second way, is to use a
suite of tactics, i.e., commands for interactive construction of proofs. The formulated
proposition is posed as goal in a context of initial assumptions (possibly empty). The
user then applies a sequence of tactics in order to rewrite, simplify, transform the goal or
assumptions, introduce new assumptions, decompose the goal into simpler goals, or solve
the goal. The proof process ends when all the subgoals generated during the process are
solved. Actually, tactics may be used for construction of terms of any type and not only
propositions.
A type of predicates (relations) on a set A is a type A→ Prop of functions from A to

Prop. In this chapter, we shall think of logical relations in the above sense, and we shall
write a usual arrow → for logical implications instead of double arrows =⇒ .

Inductive definitions Coq allows to introduce inductive types that consist of well-
founded tree-shaped structures. Such a type may represent an infinite set, but each
element of it is constructed in a “well-founded” manner. New inductive definitions in
Coq are introduced by means of the keyword Inductive. For example, the type of
natural numbers nat is defined in Coq’s standard library inductively as

Inductive nat : Set :=
| O : nat
| S : nat -> nat.

providing two constructors, a zero and a successor function, correspondingly. Thus, every
structure of type nat is either O or can be produced from O by finitely many applications
of S.
The inductive reasoning in Coq is very convenient since the system automatically

generates induction principles from inductive definitions. For example, for nat the usual
induction scheme is generated

nat_ind
: forall P : nat -> Prop,

P 0 -> (forall n : nat, P n -> P (S n)) -> forall n : nat, P n

Coq imposes certain restrictions on what it accepts as a legal inductive definition.
Every well-formed inductive definition must satisfy the positivity condition (for a precise

2.2 RLD Solver 65

definition refer to the Coq manual [Coq12], Section 4.5.3). Violation of the condition
would lead to inconsistency of the calculus since it would be possible to break the strong
normalization property and construct a proof of False.

Extraction Since every constructive proof corresponds to a certain program by Curry-
Howard isomorphism, it is possible to effectively extract this program. Coq implements
a mechanism of extraction of ML programs (in OCaml, Haskell, or Scheme) from
proofs.
For a further reading on Coq, refer to the Coq tutorial [GP07] and the Coq’Art

textbook [BC04].

2.2. RLD Solver
This section is organized as follows. In Subsection 2.2.1 we present the solver RLD.
In Subsection 2.2.2 we prove that the solver is partially correct. In Subsection 2.2.3 we
define a subclass of right-hand sides for which RLD is exact. In Subsection 2.2.4 we
present an exact modification RLDE. In Subsection 2.2.5 we provide sufficient conditions
for termination of RLD (RLDE).

2.2.1. Description of RLD
In what follows, we give an informal description of the algorithm RLD and provide it’s
stateful implementation in ML-like language. We do not define yet formally the notions
of constraint system and solver, but instead appeal to intuitive understanding. The
precise definitions and discussion on sufficient conditions for correctness of the solver
follow in Subsection 2.2.2.
The algorithm RLD performs on a constraint system denoted by

x ⊒ Fx, x ∈ V,

with a fixed set of variables (or unknowns) V over a bounded join-semilattice

D = (D,⊔,⊑,⊥)

that consists of a carrier D equipped with a partial ordering ⊑ and a least upper bound
operation ⊔, and has a distinguished least element ⊥. We assume that the binary
operation ⊔ is total, that is, for every x, y ∈ D there exists a least upper bound x⊔ y of
x and y, i.e., x, y ⊑ x⊔ y and for all z such that x, y ⊑ z, x⊔ y ⊑ z holds. Generally, we
require neither completeness nor the ascending chain condition for D. We assume that
for every x ∈ V , right-hand side Fx is a function of type (V → D)→ D implemented in
some programming language.
One basic idea of the algorithm RLD is in pre-evaluation of variables instead of using

their current values. Namely, as soon as a value of some variable y is requested during
evaluation of the right-hand side Fx, the algorithm does not naively use the current

66 Verified Generic Fixpoint Algorithms

value for y but instead, it first tries to compute a best possible approximation for y
relative to a current variable assignment. This allows to reduce the overall number of
performed iterations. The second idea is to minimize the amount of touched variables.
The algorithm runs for a finite list of interesting variables provided by the user. RLD
tries to solve only those interesting variables and the variables they transitively depend
on. For that, the algorithm relies on self-observation in order to discover variable depen-
dencies (with respect to the current variable assignment) as they are encountered during
evaluation of right-hand sides. The solver records the information about dependencies
in a dedicated data-structure by means of side-effects.
The algorithm RLD maintains the following mutable data structures (we use the array

notation to denote access to components of these structures).

1. Finite structure σ mapping variables from V to abstract values from D. Since
the overall size of V can be large or even infinite, the algorithm tracks only finite
number of observed variables. To extend σ to all unknowns from V , we define the
auxiliary function

σ⊥ x =

{
σ [x] if x ∈ dom(σ)

⊥ otherwise
that returns a current value of σ [x] if it is defined and ⊥ otherwise. The function
σ⊥ releases us of having to track manually which variables were already introduced
to σ and which not and thus, to avoid problems by evaluations of right-hand sides.

2. Finite map infl that stores dependencies between variables. More exactly, for a
variable x, infl [x] returns an over-approximation of a set of variables y, for which
evaluation of Fy on the current σ⊥ depends on x. Again, we track only finite
number of observed variables and define the auxiliary function

infl∅ x =

{
infl [x] if x ∈ dom(infl)
∅ otherwise.

In practical implementations, infl can be define as a finite mapping either to lists
of V or to finite sets of V . However, different implementation of infl may lead to
different orders of evaluations of variables and different outputs of the solver.

3. Finite set stable ⊆ V . Intuitively, if variable x is marked as “stable” then either x
is already “solved” in the sense that a computation for x has completed and σ gives
a solution for x (i.e., σ⊥ x ⊒ Fx σ⊥ holds) and all those variables x transitively
depends on, or x is “called” and it is in the call stack of solve function and its
value is being processed.

The structures receive initial values σinit = ∅, stableinit = ∅, inflinit = ∅.
The algorithm RLD proceeds as follows (see Fig. 2.1).
– The function solve_all is invoked by main for a list X ⊆ V of interesting variables

from the initial state. The function solve_all calls the recursive worker function
solve for every x ∈ X in turn.

2.2 RLD Solver 67

let σ⊥ x =
if x ∈ dom(σ) then σ[x] else ⊥

let infl∅ x =
if x ∈ dom(infl) then infl[x] x else ∅

let extract_work x =
let work = infl∅ x in
infl[x] := ∅;
stable := stable \ work;
work

let rec evalget x y =
solve y;
infl[y] := infl[y] ∪ {x};
σ⊥ y

and solve x =
if (x /∈ stable) then begin

stable := stable ∪ {x};
let d = F x (evalget x) in
let cur = σ⊥ x in
let new = cur ⊔ d in

if (new ̸⊑ cur) then begin
σ[x] := new;
let work = extract_work x in

solve_all work
end

end

and solve_all X =
foreach x ∈ X do solve x

let main X =
σ := ∅; infl := ∅; stable := ∅;
solve_all X;
(σ⊥, stable)

Figure 2.1.: The recursive solver tracking local dependencies (RLD)

68 Verified Generic Fixpoint Algorithms

– The function solve when called for some variable x first checks whether x is already
marked as being stable. If so, the function returns; otherwise, the algorithm adds
x to the set stable and tries to satisfy the constraint σ x ⊒ Fx σ. For that, it
evaluates a value d of the right-hand side Fx by invoking Fx (evalget x).

– After the latter returns, solve computes new = cur ⊔ d with cur being a current
value of σ⊥x, and compares new and cur. If new is subsumed by cur, the constraint
for x is satisfied, and solve returns. Otherwise, the value of σ for x gets updated
with new. Since the current value of σ [x] has changed, all constraints of variables
y dependent on x may not be satisfied any more and must be re-evaluated. For
that, the function solve removes those variables from stable (destabilizes them) by
invoking extract_work function and schedules them for reevaluation. The function
extract_work returns the set of those variables as work and additionally resets
infl [x], since some of dependencies may be outdated. This allows to keep precision
of the information stored by infl. Then solve_allwork is recursively called.

– As we mentioned, the right-hand side Fx is not evaluated directly on σ⊥, but on the
partially applied stateful function evalgetx. For every variable y accessed by Fx,
evalgetx y first computes a better approximation for y by recursive call to solvey.
Additionally, evalget keeps a track of variables y visited during evaluation of Fx.
We say that y influences x, or x depends on y. The discovered dependencies are
stored in infl. Only after infl structure is updated appropriately, the current value
of σ y is returned by evalgetx y.

– Note that the structure stable prevents the solver from infinite recursive descent
into solving x if x depends on itself like, say, for Fx σ = σ x. If solve was once
called for x then x is marked as stable, and further recursive calls to solvex
immediately return.

The comparison new ̸⊑ cur can be replaced by the equality check new ̸= cur. This
may be beneficial in the case if every element of the (semi-)lattice D has a unique
representation and the equality operation can be implemented more efficiently than the
ordering relation.
The following two distinguishing features of RLD must be emphasized. The first

feature is in how the solver behaves when a variable x changes its value. The solver
performs destabilizations only locally, i.e., only for variables that are influenced by x
immediately, and triggers a reevaluation of these variables at once. This aspect distin-
guishes RLD, for example, from another local solver, the top-down solver TD [CH92]
by Le Charlier and Van Hentenryck which destabilizes recursively all the variables that
also indirectly (transitively) depend on x. Thus, this feature of RLD leads to more
algorithmic shortcuts allowing to avoid unnecessary recomputations. The second fea-
ture is in how RLD evaluate right-hand sides. During evaluation of Fx(eval x) two
consecutive accesses to some y may yield different values. The reason is that y may get
recomputed in-between due to some variable dependencies. That makes evaluations of
right-hand sides essentially non-atomic and thus, RLD does not belong to the family

2.2 RLD Solver 69

of chaotic iteration [CC77b] schemes. However, this feature is rather a deficiency of the
solver than its advantage, as we will see later.
In the following subsections, we show that RLD is a local solver in a certain sense

and returns parts of a minimal solutions for a subclass of monotonic constraint systems.

2.2.2. Correctness
Notice that the algorithm RLD is formulated in Figure 2.1 as being applicable to any
right-hand side function F implemented in ML. However, it only makes sense to apply
the algorithm to constraint functions that do not produce any side-effects by themselves.
In this subsection, we formulate precisely sufficient conditions for partial correctness

of RLD and prove that it indeed belongs to the family of local generic solvers.

Which right-hand side functions F are allowed? As we mentioned, the algorithm
uses side-effects for extracting intentional information about variable dependencies of its
functional argument F while the latter is implemented in some specification language,
for example, in ML. However, if we pose no restrictions on F , we might experience
a problem if the specification language provides non-functional features. Consider, for
instance, the following two ML-snippets

let a = ref 0
let f : int → int =

fun x → incr a; x + 1

and

exception Exn
let g : int → int =

fun x → raise Exn

that define legal ML-functions f and g of type int→ int. However, both functions pro-
duce effects: f mutates a store and g raises an exception, but these effectful behaviours
are not reflected in ML-types of functions. If F is allowed to produce any kind of effects,
correctness of the algorithm cannot be guaranteed. For example, if F modifies any of
the structures maintained by RLD or influences its flow of control by any other means,
the result returned by the solver when applied to such F might not make any sense.
In order to reason about the solver RLD formally, we will provide a purely functional

implementation of the algorithm by means of passing of the world as a state parameter.
We prove the correctness of RLD relative to a subclass of right-hand sides represented
by monadically parametric functionals of type

V →
∏

T .(V → TD)→ TD

in the sense of Definition 1.2.17. This means that effects of the evaluation of (Fx)T σ
are attributed only to the effects produced by the effectful function σ, for any monad
T . We shall omit the index of a projection if it is clear from context. We remind

70 Verified Generic Fixpoint Algorithms

that Theorems 1.2.25 and 1.2.26 imply that there exists a one-to-one correspondence
between monadically parametric functions of the above type and strategy trees of type
V → TreeV,D,D. Let us remind the main definitions related to strategy trees.

Definition 2.2.1. Given sets A, B and C, the set of strategy trees TreeA,B,C is a
minimal set generated by constructors:

– Ans : C → TreeA,B,C

– Que : A→ (B → TreeA,B,C)→ TreeA,B,C

Definition 2.2.2. Given a monad T , we define the function

J·KT : TreeA,B,C → (A→ T B)→ T C

recursively by

– JAns cKT = λk. valT c

– JQue a fKT = λk. bindT (k a) (λb.Jf bKT k).
Define JtK = ΛT.JtKT . We will also refer to J·K as the monadic interpreter of strategy
trees. We write J·K∗ for J·KId.

Example 2.2.3. For state monad StateS , we have

– JAns cKS = λs.(c, s)

– JQue a fKS = λk.λs.let (b1, s1) = k a s in Jf b1KS k s1.
Example 2.2.4. Given h = valStateS ◦σ = λa.λs.(σ a, s) with σ : A → B, that is, h has
no effects on state, then JtKS h s = (c, s1) implies s = s1, for all t, s, s1, and c.
Based on results of the previous chapter, we give

Definition 2.2.5. The right-hand side functional F : V →
∏

T .(V → TD) → TD is
monadically parametric (pure) if there exists a (unique) strategy function F ∈ V →
TreeV,D,D such that Fx = JFxK extensionally, for all x ∈ V .

Example 2.2.6. Given a pure F and σ : V → D, (Fx)StateS (valStateS ◦σ) s = (d, s1)
implies s = s1, for all s, s1, and d.
We introduce a monadic version of the instrumentation function instr that allows for

extraction of modulus of continuity from pure functionals.

instrT :
∏

A,B.(A→ TB)→ (A→ StateTlist (A×B)TB)

by
instrT AB f = λa.λl. bindT (f a) (λb. valT (b, l ++ [(a, b)]))

2.2 RLD Solver 71

where StateT is a state monad transformer and ++ is the list append function. Intuitively,
instrT f records the arguments accessed by f along with respective values returned by
f . Instantiated for StateS , we have

instrStateS AB f = λa.λl.λs.let (b, s1) = f a s in ((b, l ++ [(a, b)]), s1).

Intuitively, a variable x depends on a variable y relative to the variable assignment σ
if a value σ y is accessed during the evaluation of Fx σ. By means of instr, we define
a notion of variable dependencies formally. We remind a definition of the modulus of
continuity functional (see Definition 1.5.1). For t ∈ TreeA,B,C and σ : A→ B, define

deps t σ = snd(JtKStatelist (A×B)
(instrId σ) [])

which yields a query trace of computation of JtK∗σ, i.e., a list of queried unknowns a : A
along with received answers σ a : B. Notice that (a, b) ∈ deps t σ implies b = σ a. For a
monadically parametric F :

∏
T .(A → TB) → TC and its strategy tree t ∈ TreeA,B,C ,

by depsF σ we denote deps t σ.

Definition 2.2.7. For a pure right-hand side function F : V →
∏

T .(V → D)→ D, we
say that a variable x depends on a variable y (or y influences x) relative to the variable
assignment σ : V → D if (y, σ y) ∈ depsFx σ.

Solutions of constraint systems Below we define precisely the notions of a solution
and a local solution to the constraint system S = (V,D, F) over a semilattice D with a
set of unknowns V and a monadically parametric functional

F : V →
∏

T .(V → TD)→ TD.

Definition 2.2.8. We say that the variable assignment σ : V → D is a solution to the
constraint system S if σ x ⊒ (Fx)Id σ holds for all x ∈ V .

In contrast, a local solution σ satisfies constraints only for a subset of variables and
their dependencies as formulated below.

Definition 2.2.9. Let X ⊆ V . We say that the pair (σ,X ′) is a local solution to S
relative to X if

1. X ⊆ X ′;

2. for all x ∈ X ′ and y, (y, σ y) ∈ depsFx σ implies y ∈ X ′;

3. σ x ⊒ (Fx)Id σ holds for all x ∈ X ′.

In particular, this means that the restriction σ ↾X′ is a solution to the constraint system
(X ′, F ↾X′).

72 Verified Generic Fixpoint Algorithms

Note that if D has a greatest element ⊤D, we can trivially extend any local solution
(σ,X ′) to a global one by putting ⊤D for all x ∈ V \X ′ as

σX′ x =

{
σ x x ∈ X ′

⊤D otherwise.

Lemma 2.2.10. Let (σ,X ′) be a local solution to the constraint system S = (V,D, F)
relative to X ⊆ V . Then σX′ is a solution to S.

Proof. We take x ∈ V and show σX′ x ⊒ (Fx)Id σX′ . If x /∈ X ′, the statement is obvious.
In the case x ∈ X ′, by Lemma 1.5.6, it is sufficient to show σ x ⊒ JFxK∗σ and σ z = σX′ z,
for all z such that (z, _) ∈ depsFx σ, which both follow from the locality of σ.

Definition 2.2.11. We say that a partial function

AV,D : (V →
∏

T .(V → TD)→ TD)× Pfin(V)⇀ (V → D)× Pfin(V)

parametrically polymorphic in V and D is (a denotational semantics of) a local solver
if given a constraint system S = (V,D, F) over a bounded join-semilattice D for a set
of unknowns V with a pure F , A when applied to a pair (F,X) for a finite set X ⊆ V
of interesting variables yields a local solution (σ,X ′) of S relative to X whenever it
terminates.

Definition 2.2.12. We say that the solver AV,D is a chaotic iteration solver if it main-
tains a mapping σ : V → D and, when computing for a given S, it performs a sequence
of updates σ0, σ1, . . . starting from an initial σ0 such that the following is true. On every
step i, a variable x ∈ V is selected which is updated with respect to the current σi. That
is,

σi+1 y =

{
σi x ⊔ (Fx)Id σi if x = y
σi y otherwise.

The class of chaotic iteration solvers is important since they allow for using with widening
and narrowing operators [CC77a, Cou81] or a combined operator [ASV13].

Erroneous optimization Our experience shows that design of fixpoint algorithms is
error-prone.
When starting to reason about the algorithm RLD from Figure 2.1, one might feel

tempted to avoid to call solve for variables whose reevaluation has already been trig-
gered, but has not yet been completed. We note that the meaning of the set stable is
twofold. First, it contains all the variables x for which a call solvex has already ter-
minated. Those variables are solved, i.e., their corresponding constraints are satisfied.
Second, it contains variables being currently processed, for which reevaluation of right-
hand sides is triggered but not yet finished, and corresponding constraints may not be
satisfied. Therefore, it seems reasonable to distinguish this kind of “called” variables
and prevent them from redundant destabilization since their recomputation is pending.

2.2 RLD Solver 73

let σ⊥ x = if x ∈ dom(σ) then σ[x] else ⊥

let infl∅ x = if x ∈ dom(infl) then infl[x] else []

let extract_work x =
let work = infl∅ x in
infl[x] := [];
(* do _not_ reevaluate called variables: *)
let work′ = filter (λx.x /∈ called) work in
iter (λx.stable := stable \ {x}) work′;
work′

let rec evalget x y =
solve y;
infl[y] := x :: infl[y];
σ⊥ y

and solve x =
if (x /∈ stable) then begin

stable := stable ∪ {x};
(* mark x as called: *)
called := called ∪ {x};
let d = F x (evalget x) in
(* remove x from called: *)
called := called \ {x};
let cur = σ⊥ x in
let new = cur ⊔ d in

if (new ̸⊑ cur) then begin
σ[x] := new;
let work = extract_work x in

solve_all work
end

end

and solve_all X = iter solve X

let main X =
σ := ∅; infl := ∅; stable := ∅; called := ∅;
solve_all X;
(σ⊥, stable)

Figure 2.2.: The erroneous optimization of RLD

74 Verified Generic Fixpoint Algorithms

t ⊒ s s

s ⊒ v x v ⊔ x

x ⊒ s u v s ⊔ u ⊔ v

u ⊒ v

⊤
v 6⊑ ⊥

a

v ⊑ ⊥

v ⊒ s s

Figure 2.3.: Counterexample for the erroneous optimization

By destabilization of a variable we mean removing of the variable from the set of sta-
ble variables with subsequent reevaluation of the respective right-hand side. The above
observation would lead to the following optimization.
We introduce an extra data structure, the set of variables called with an initial value

calledinit = ∅ (see Fig. 2.2, occurrences of called are highlighted). It distinguishes a
subset of “stable” variables which are currently being processed. Variable x is added to
called just before a reevaluation of Fx starts and gets removed from called right after
the evaluation returns. The function extract_work does not destabilize variables from
infl [x] which currently belong to called. Thus, recomputation for those variables is
not triggered. One can show that called ⊆ stable is invariant for every function of the
algorithm, i.e., if called ⊆ stable holds before a function call then the property holds
after the call, whenever it terminates.
This optimization appears to be wrong as shown by the counterexample that ap-

pears in Fig.2.3. It should be noted however that the counterexample works only if
infl structure maps variables to lists of variables and recording of new dependencies is
implemented as

infl [y] := x :: infl [y]

Still, a similar counterexample can be constructed for any other implementation of infl
(like sets or other kinds of collections). The counterexample defines a constraint system
over the three-element lattice D = ({⊥, a,⊤},⊑,⊔) with ⊥ ⊏ a ⊏ ⊤. Figure 2.3 repre-
sents right-hand sides of the constraint system by means of strategy trees. Here, round
nodes denote queries to variables while rectangle boxes denote answers expressed in
terms of constants and received values of queried variables. Conceptually, query nodes
have one outgoing edge for every value of D corresponding to every possible received
value for the variable. In the figure, however, we merge edges with equal subtrees for

2.2 RLD Solver 75

the sake of simplicity. In the example, the right-hand sides could be represented in a
ML-like language by

Ft k = let s1 = k s in s1
Fs k = let v1 = k v in let x1 = k x in v1 ⊔ x1
Fx k = let s1 = k s in let u1 = k u in let v1 = k v in s1 ⊔ u1 ⊔ v1
Fu k = let v1 = k v in if (v1 ⊑ ⊥) then a else ⊤
Fv k = let s1 = k s in s1

Let us trace the computations done by the solver when solve_all [t] is called from the
initial state (the full trace can be found in Appendix B.1).
The algorithm calls solve t which in turn recursively calls solve s. During the run

of solve s, the algorithm recursively computes new values of variables v, x, and u in
that order. For the sake of brevity, we skip a description of those steps (cf. lines 1–54
in Appendix B.1), but we note that they lead to a change in σ[s]. Before the new value
of σ[s] = a is returned by solve s, the algorithm recomputes all the variables dependent
on s. These are variables from infl [s] = [x;v]. Thus, the algorithm resets infl [s] to []
and removes both x and v from stable and called (lines 60–64). The state prior to the
call solve_all [x;v] is

σ = {s 7→ a,u 7→ a,x 7→ a}
infl = {u 7→ [x],v 7→ [x;u; s],x 7→ [s]}
stable = {s, t,u}
called = {t}

1. solvex is invoked, and the variable x is put back into the sets stable and called.
The state prior to reevaluation of the right-hand side Fx is

σ = {s 7→ a,u 7→ a,x 7→ a}
infl = {u 7→ [x],v 7→ [x;u; s],x 7→ [s]}
stable = {s, t,u,x}
called = {t,x}

During the evaluation of Fx (evalgetx) the algorithm traverses the tree Fx and tries to
solve variables s, u and v in turn.

– Since s,u ∈ stable, the algorithm does not descend into solving them. The struc-
tures σ, stable and called are not changed, but the solver records that x depends
on s and u, i.e., x is added to infl [s] and infl [u] (lines 71–75).

– The algorithm recomputes v (a call to solve v), that gets a large value a since
σ[s] = a (lines 76–88). Since σ[v] has increased, variables influenced by v must be
recomputed. These are variables from infl [v] = [x;u; s]. However, the algorithm
does not destabilize x since x ∈ called at the moment (lines 89–93). Thus, the
variable u is destabilized and recomputed (since u ∈ stable \ called) and gets a

76 Verified Generic Fixpoint Algorithms

greater value ⊤ (lines 95–107). At this point, although infl [u] = [x;x], the
variable x is again not recomputed since x ∈ called (line 108). Thus, the value of
x remains as before, σ[x] = a. Then s gets recomputed, but this does not lead to
a change in the state (lines 115–120). Finally, solve s returns (line 121).

2. solve v is called, but v ∈ stable \ called at this moment (lines 125–126).
Finally, the algorithm returns the variable assignment

σ1 = {s 7→ a, t 7→ a,u 7→ ⊤,v 7→ a,x 7→ a}

which is not a solution since the constraint for x is not satisfied, as

σ1 x = a ⊏ ⊤ = (Fx)Id σ1.

The example demonstrates how small, seemingly correct, modifications of the algo-
rithm may lead to subtle errors. The erroneously optimized version was used for some
time in practice, and was featured in the draft of the book [SWH10]. The counterexam-
ple was one of our guiding motivations for a rigorous verification of the fixpoint algorithm
RLD.

Functional implementation In the functional implementation of algorithm RLD, the
global state is made explicit, and passed into function calls by means of a separate
parameter. Accordingly, the modified state together with the computed value (if there
is any) are jointly returned. The type of a state is

type state = (V ⇀ D)× (V ⇀ listV)× Pfin(V)

where listV is a type of lists of elements of V and Pfin(V) is a type of finite sets of
elements of V . The three components correspond to the finite (partial) map σ, the finite
(partial) map infl, and the set stable of the imperative implementation, respectively.
We implement and verify the version of RLD with infl mapping variables to lists of
variables.
To facilitate the state handling, we introduce the following auxiliary functions:

– getval : state→ V → D implements the function σ⊥;

– setval : V → D → state → state when applied to x and d updates the current
value of σ [x] with d;

– get_stable : state→ Pfin(V) extracts the component stable of a given state;

– is_stable : V → state→ bool checks if a given variable x is in stable;

– add_stable : V → state→ state adds a given variable to stable;

– rem_stable : V → state→ state removes a given variable from stable;

– get_infl : V → state→ listV implements the function infl∅;

2.2 RLD Solver 77

let extract_work x = fun s →
let w = get_infl x s in
let s0 = rem_infl x s in
let s1 = foldl (fun s y →rem_stable y s) s0 w in

(w, s1)

let rec evalget x y : StatestateD = fun s →
let s0 = solve y s in
let s1 = add_infl y x s0 in

(getval s1 y, s1)

and solve x = fun s →
if is_stable x s then s else

let s0 = add_stable x s in
let (d, s1) = F x (evalget x) s0 in
let cur = getval s1 x in
let new = cur ⊔ d in

if (new ⊑ cur) then s1 else
let s2 = setval x new s1 in
let (w, s3) = extract_work x s2 in

solve_all w s3

and solve_all w = fun s →
match w with
| [] → s
| x :: xs → solve_all (solve x s) xs

let main X =
let sinit = (∅, ∅, ∅) in
let s = solve_all X sinit in
(getval s, get_stable s)

Figure 2.4.: Functional implementation of RLD with explicit state passing

78 Verified Generic Fixpoint Algorithms

– add_infl : V → V → state → state when applied to variables y and x updates
the infl-component of a state as infl [y] := x :: infl [y];

– rem_infl : V → state→ state when applied to a variable x resets the component
infl [x] in a given state to [].

The auxiliary function extract_work : V → state→ listV ×state applied to a variable
x puts w = infl [x] that stores (an over-approximation of) a set of variables immediately
influenced by x relative to a current variable assignment, resets infl [x] to [], and sub-
tracts w from the component stable of a given state. The mutually recursive functions
evalget, solve and solve_all of the algorithm are then given in Figure 2.4. Provided a
list of interesting variables X ⊆ V , the algorithm calls the function solve_all from the
initial state sinit = (∅, ∅, ∅).
From now on, RLD refers to this functional implementation. Our goal is to prove

Theorem 2.2.13. The algorithm RLD is a local solver.

The proof argument consists of the four main steps.

1. Implementation of the functional program in Coq.

2. Instrumentation of the functional program by means of auxiliary data structures —
ghost variables.

3. Providing (strong enough) invariants for the instrumented program.

4. Deduction of the correctness statement from invariants.

Step 1. Formalization in Coq The implementation of the algorithm in Coq is not
straightforward since Coq does not support a general recursion. The underlying logic of
Coq (Calculus of Inductive Constructions) only supports recursion over inductively de-
fined types that generalizes the primitive recursion. The recursive definition is accepted
by Coq only if it is provably terminating.
As generality is a desirable property of RLD, we neither make any assumptions con-

cerning the semilattice D (e.g., with respect to the ascending chain property), nor do
we assume finiteness of the set of variables V . Therefore, termination of the algorithm
cannot be guaranteed in general. However, even having those assumed, it is not clear
how one could implement the algorithm in the general setting. For example, it is defi-
nitely not possible to give a straightforward implementation using the standard Fixpoint
tool since the definition by Fixpoint must provide a structurally decreasing argument.
Another opportunity could be in use of the Function command which generalizes Fix-
point [Coq12]. It still requires a decreasing argument, but not necessarily a structurally
decreasing one. Instead, a measure or a well-founded relation must be provided that
guarantees termination of all recursive calls. In other words, Function provides Noethe-
rian induction over well-founded ordered types. As we will see in Subsection 2.2.5, it
appears to be possible to define such a well-founded relation along in the context of

2.2 RLD Solver 79

necessary assumption, but some more problems arise at this point. Currently, Func-
tion does not support mutually defined functions. Even if we unfold bodies of all the
functions except of solve and try to pass explicitly the function

fun s →
let s0 = solve y s in
let s1 = add_infl y x s0 in

(getval s1 y, s1)

as an argument to a right-hand side Fx, Coq complains again since Function does not
allow for λ-expressions with recursive calls inside. The presence of mutually inductive
definitions makes the algorithm very hard to implement in the general setting. Despite
being possible theoretically, such implementation would also significantly complicate the
formal reasoning.
In view of the mentioned difficulties, our formalization of the algorithm in Coq relies

on a representation of partial functions through their graphs. For that, we define an
interpreter J·K#

state of strategy trees operating on graphs of stateful functions. Recall
that we consider relations as function to Prop.

Definition 2.2.14. Given a strategy tree t and a graph k of a partial function of type
A→ StatestateB, i.e., k is of type A→ S → B × S → Prop, JtK#

state k defines a graph of
a function of type StatestateC inductively by

– JAns cK#
state k s (c, s) for all s : state, c : C;

– if k a s (b, s1) and Jf bK#
state k s1 (c, s2) then JQue a fK#

state k s (c, s2), for all s, s1, s2 :
state, a : A, b : B, c : C, f : B → TreeA,B,C .

The following mutual recursive definitions of relations mimic the functional implemen-
tation of the algorithm. Since well-formed inductive definition in Coq must satisfy the
positivity condition, we implement a separate relation for the partially applied function
evalgetx. Thus, for evalget we have

Inductive EvalGet :
Var.t -> Var.t -> state -> D.t * state -> Prop :=
| EvalGet0 :

forall x y s s0 s1 d,
Solve y s s0 ->
s1 = add_infl y x s0 ->
d = getval s0 y ->
EvalGet x y s (d, s1)

with EvalGet_x :
Var.t -> (Var.t -> state -> D.t * state -> Prop) -> Prop :=
| EvalGet_x0 :

forall x (f : Var.t -> state -> D.t * state -> Prop),

80 Verified Generic Fixpoint Algorithms

(forall y s0 ds1,
f y s0 ds1 -> EvalGet x y s0 ds1) ->

EvalGet_x x f

EvalGet defines a graph of evalget. EvalGet_x x f holds if f is a subrelation of EvalGetx.

with Wrap_Eval_x :
Var.t -> (Var.t -> state -> D.t * state -> Prop) ->
@Tree Var.t D.t D.t ->
state -> D.t * state -> Prop :=
| Wrap_Eval_x0 :

forall x f t s0 ds1,
EvalGet_x x f ->
[[t]]# f s0 ds1 ->
Wrap_Eval_x x f t s0 ds1

with Eval_rhs :
Var.t ->
state -> D.t * state -> Prop :=
| Eval_rhs0 :

forall x f s0 ds1,
EvalGet_x x f ->
Wrap_Eval_x x f (rhs x) s0 ds1 ->
Eval_rhs x s0 ds1

To simulate the evaluation of a right-hand side, we implement two relations Wrap_Eval_x
and Eval_rhs. The former implements reevaluation of JtK#

state for arbitrary t : TreeV,D,D

and f , which is a subrelation of the graph of stateful evalgetx. The latter obtained
by substitution of t by rhsx, a strategy tree for Fx, which is pure by assumption. The
separation into Wrap_Eval_x and Eval_rhs is needed for proof development purposes.
We construct stronger invariants for Wrap_Eval_x that can be proven by induction on t
and deduce the necessary invariant for Eval_rhs. Note that in the definition of Eval_rhs
we universally quantify over all subrelations f of EvalGetx and thus, EvalGetx itself is
included, clearly. The direct application of JtK# to (EvalGetx) were not possible here
since it would violate the positivity condition for EvalGet, as we mentioned before.
The relation for functions solve and solve_all are defined by

with Solve :
Var.t -> state -> state -> Prop :=
| Solve0 :

forall x s, is_stable x s -> Solve x s s
| Solve1 :

forall x d s s2,
~ is_stable x s ->

2.2 RLD Solver 81

let s1 := prepare x s in
Eval_rhs x s1 (d, s2) ->
let cur := getval s2 x in
let new := D.join cur d in
D.Leq new cur ->
Solve x s s2

| Solve2 :
forall x d s s2 s5 s6 work,
~ is_stable x s ->
let s1 := prepare x s in
Eval_rhs x s1 (d, s2) ->
let cur := getval s2 x in
let new := D.join cur d in
~ D.Leq new cur ->
let s4 := setval x new s2 in
(work, s5) = extract_work x s4 ->
SolveAll work s5 s6 ->
Solve x s s6

with SolveAll :
list Var.t -> state -> state -> Prop :=
| SolveAll0 :

forall s, SolveAll [] s s
| SolveAll2 :

forall x xs s s1 s2,
Solve x s s1 ->
SolveAll xs s1 s2 ->
SolveAll (x :: xs) s s2.

Solve and SolveAll have separate constructors for each if-branch and match-case in
solve and solve_all. The helper function prepare adds variable x to stable

Definition prepare x s := add_stable x s.

The function extract_work (with the helper function handle_work) extracts a list of
variables that are subject for reevaluation

Definition handle_work (w : list Var.t) (s : state) :=
let f s x := rem_stable x s in
List.fold_left f w s.

Definition extract_work x (s : state) : (list Var.t * state)
:= let w := get_infl s x in

let s := rem_infl x s in
let s := handle_work w s in

(w, s).

82 Verified Generic Fixpoint Algorithms

The defined predicates relate a state before the call of a respective function with a
value (if there is any) and a state after the function returns. Therefore, they can be used
to reason about properties of the algorithm even if its termination is not guaranteed,
such as partial correctness. We show that each of the defined relations is indeed a graph
of a partial function. By structural induction on definition of predicates we prove

Lemma 2.2.15. The relations EvalGet, Wrap_Eval_x, Eval_rhs, Solve, SolveAll are
graphs of partial functions, i.e.,

(∀x, y, s, p, p′. EvalGet x y s p ∧ EvalGet x y s p′ → p = p′)∧
(∀x, y, f, f ′, s, p, p′.

EvalGet_x x f ∧ EvalGet_x x f ′ ∧ f y s p ∧ f ′ y s p′ → p = p′)∧
(∀x, f, f ′, t, s, p, p′. Wrap_Eval_x x f t s p ∧ Wrap_Eval_x x f ′ t s p′∧

(∀y, s1, p1, p′1, f y s1 p1 ∧ f ′ y s1 p′1 → p1 = p′1)→ p = p′)∧
(∀x, s, p, p′. Eval_rhs x s p ∧ Eval_rhs x s p′ → p = p′)∧
(∀x, s, s1, s′1. Solve x s s1 ∧ Solve x s s′1 → s1 = s′1)∧
(∀w, s, s1, s′1. SolveAll w s s1 ∧ SolveAll w s s′1 → s1 = s′1).

Proof. By induction on structure of relations.

Step 2. Instrumentation When trying to capture the behaviour of the solver by means
of invariants, we run into difficulties to formulate invariants strong enough for proving
the partial correctness. The internal logic of the algorithm is hard to express in terms of
the values of structures presented in the implementation alone. Our solution is to intro-
duce additional components into the state that do not affect the operational behaviour
of the algorithm but store an auxiliary information. The auxiliary data structures ap-
pear in the program as ghost structures, i.e., they are not allowed to appear in case
distinctions or pattern matching constructions and may not be written into ordinary
structures. Thus, they influence neither the flow of control of the program nor the
values of usual structures but allow to express extra-functional properties of behaviour
of the program. The technique of introducing auxiliary ghost structures originally ap-
peared for verification of parallel programs [OG76, Han73]. Currently they are used also
in other application areas, e.g., in the specification language JML [PBB+04].
We introduce two auxiliary data structures: the sets called and queued of variables.

Intuitively, called stores a subset of variables from stable currently being processed, for
which reevaluation by solve has been started and not yet returned. The structure
queued stores a set of variables that have been destabilized (queued for reevaluation),
i.e., removed from the set stable by the algorithm, and have not yet been reevaluated by
solve. Thus, sets stable and queued have no common elements. The union of the sets
gives a set of all the variables ever touched by the algorithm.
Accordingly, the type state′ for the instrumented implementation is

type state′ = (V ⇀ D)× (V ⇀ listV)× Pfin(V)× Pfin(V)× Pfin(V) .

2.2 RLD Solver 83

The five components correspond to the finite (partial) map σ, the finite (partial) map
infl, and the sets stable, called, and queued, respectively. We shall use a record notation
to denote components of states, e.g., s.stable, s.called etc. We introduce the following
auxiliary functions and relations:

– add_called : V → state′ → state′ adds a given variable to called;

– rem_called : V → state′ → state′ removes a given variable from called;

– add_queued : V → state′ → state′ adds a given variable to queued;

– rem_queued : V → state′ → state′ removes a given variable from queued;

– is_called : V → state′ → Prop checks if a given variable is in called;

– is_solved : V → state′ → Prop checks if a given variable is in (stable \ called).

The last two relations will be used in definitions of invariants.
To capture the information about evaluations of right-hand sides, we provide instrR

that is a relational version of instr defined for graphs of stateful functions of type
A→ StateSB.

Definition 2.2.16. For sets A,B, S and a relation f : A → S → B × S → Prop, we
define instrR f : A→ (S × list (A×B))→ B × (S × list (A×B))→ Prop by

(instrR f) a (s, l) (b, (s1, l ++ [(a, b)])) iff f a s (b, s1)

for all a, b, s, s1, l of respective types.

In the instrumented implementation, we use the relational monadic tree interpreter
instantiated with Statestate′×list (V×D). If JtK#

state′×list (V×D) (instrR f) (s, l) (d, (s1, l1))
holds then l1 equals l suffixed with all the variables accessed by f along with the respec-
tive values returned by f , in the order they were met.
The instrumented relations Wrap_Eval_x and Eval_rhs are given below. The changes

relative to non-instrumented versions are indicated by the comments.

(* . . . *)
with Wrap_Eval_x :

Var.t -> (Var.t -> state’ -> D.t * state’ -> Prop) ->
@Tree Var.t D.t D.t ->
state’ * list (Var.t * D.t) ->
D.t * (state’ * list (Var.t * D.t)) -> Prop :=
| Wrap_Eval_x0 :

forall x f t sl dsl0,
EvalGet_x x f ->
(* use instrumented f *)
let f’ := instrR f in

84 Verified Generic Fixpoint Algorithms

(* it additionally returns a list of visited variables. . . *)
(* along with their values: *)
[[t]]# f’ sl dsl0 ->

Wrap_Eval_x x f t sl dsl0

with Eval_rhs :
Var.t ->
state’ -> D.t * (state’ * list (Var.t * D.t)) -> Prop :=
| Eval_rhs0 :

forall x f s dsl0,
EvalGet_x x f ->
(* the list of accessed variables is initially [] *)
Wrap_Eval_x x f (rhs x) (s,[]) dsl0 ->
Eval_rhs x s dsl0

(* . . . *)

The instrumented function extract_work for a given x : V additionally removes all the
variables influenced by x from the set called and adds them to the set queued for the
current state, as defined below.

Definition handle_work (w : list Var.t) (s : state’) :=
let f s x :=
(* remove x from called: *)
let s := rem_called x s in
let s := rem_stable x s in
(* add x to queued: *)
let s := add_queued x s in
s in

List.fold_left f w s.

Definition extract_work (x : Var.t) (s : state’)
: (list Var.t * state’)
:= let w := get_infl s x in

let s := rem_infl x s in
let s := handle_work w s in
(w, s).

For the instrumented Solve, a given x : V is removed from queued and added to called
right before the reevaluation of the right-hand side for x, and gets removed from called
right after the reevaluation terminates.

(* . . . *)
with Solve :

Var.t -> state’ -> state’ -> Prop :=
| Solve0 :

2.2 RLD Solver 85

forall x s, is_stable x s -> Solve x s s
| Solve1 :

forall x d s s2 ps,
~ is_stable x s ->
(* remove from x queued and add it to called: *)
let s1 := prepare x s in
Eval_rhs x s1 (d, (s2, ps)) ->
(* remove x from called: *)
let s3 := rem_called x s2 in
let cur := getval s3 x in
let new := D.join cur d in
D.Leq new cur ->
Solve x s s3

| Solve2 :
forall x d s s2 s5 s6 ps work,
~ is_stable x s ->
(* remove x from queued and add it to called: *)
let s1 := prepare x s in
Eval_rhs x s1 (d, (s2, ps)) ->
(* remove x from called: *)
let s3 := rem_called x s2 in
let cur := getval s3 x in
let new := D.join cur d in
~ D.Leq new cur ->
let s4 := setval x new s3 in
(* add destabilized variables to queued and *)
(* remove them from called and stable: *)
(work, s5) = extract_work x s4 ->
SolveAll work s5 s6 ->
Solve x s s6

(* . . . *)

where

Definition prepare x s :=
let s1 := rem_queued x s in
let s2 := add_stable x s1 in
let s3 := add_called x s2 in

s3.

All the rest definitions remain unchanged. As in the non-instrumented case, we prove
by structural induction the following technical lemma.

Lemma 2.2.17. The instrumented relations EvalGet, Wrap_Eval_x, Eval_rhs, Solve,
SolveAll are graphs of partial functions.

86 Verified Generic Fixpoint Algorithms

It is intuitively clear that the instrumentation does not alter the relevant behaviour
of the algorithm and thus, the subsequent verification of the instrumented version also
establishes the correctness of the original one. Below, we provide a rigorous proof of
that statement.
For the rest of this paragraph let us use a primed notation, e.g., state′, Solve′ etc. for

names of the instrumented versions while using unprimed ones for the original versions
of structures and relations. First, we define the simulation relation

∼⊆ state× state′

as the graph of the projection from state′ to state. We will use infix notation for ∼
below. Formally, s ∼ s′ iff s.σ = s′.σ, s.infl = s′.infl and s.stable = s′.stable hold. For
graphs of stateful functions f : X → state→ Y × state→ Prop and f ′ : X → state′ →
Y × state′ → Prop we define a lifted simulation by

f ∼# f ′ iff ∀x, s, s′, y, s1. s ∼ s′ ∧ f x s (y, s1)→
∃y′, s′1. f ′ x s′ (y′, s′1) ∧ y = y′ ∧ s1 ∼ s′1.

Then, we show by induction that each component of the algorithm simulates its in-
strumented version. Thus, they yield equal results when started in related states after
discarding the instrumentation. The following lemma holds.

Lemma 2.2.18 (simulation).

(∀x, y, s, s′, s1, d. EvalGet x y s (d, s1) ∧ s ∼ s′ →
∃d′, s′1. EvalGet′ x y s′ (d′, s′1) ∧ d = d′ ∧ s1 ∼ s′1)∧

(∀x, f. EvalGet_x x f → ∃f ′. EvalGet_x′ x f ′ ∧ f ∼# f ′)∧
(∀x, t, s, s′, d, s1, l′. Wrap_Eval_x x t s (d, s1) ∧ s ∼ s′ →

∃d′, s′1, l′1. Wrap_Eval_x′ x t (s′, l′) (d′, (s′1, l′1)) ∧ d = d′ ∧ s1 ∼ s′1)∧
(∀x, s, s′, d, s1. Eval_rhs x s (d, s1) ∧ s ∼ s′ →

∃d′, s′1, l′. Eval_rhs′ x s′ (d′, (s′1, l′)) ∧ d = d′ ∧ s1 ∼ s′1)∧
(∀x, s, s′, s1. Solve x s s1 ∧ s ∼ s′ → ∃s′1. Solve′ x s′ s′1 ∧ s1 ∼ s′1)∧
(∀w, s, s′, s1. SolveAll w s s1 ∧ s ∼ s′ → ∃s′1. SolveAll′ w s′ s′1 ∧ s1 ∼ s′1)

Proof. By induction on structure of relations.

Step 3. Invariants Before formulating invariants, we first provide several technical
lemmas that relate finite sequences of pairs of A × B with functions f : A → B and
traces generated by f in a tree t ∈ TreeA,B,C , for sets A,B,C. Remind a definition of the
function subtree : TreeA,B,C → list (A × B) → TreeA,B,C . When applied to t and ps,
subtree t ps yields a subtree of t which is obtained if we use B-components of elements
of ps as choice values for Que-branchings.

2.2 RLD Solver 87

Fixpoint subtree (t : Tree A B C) (ps : list (A * B))
: Tree A B C :=
match t, ps with

| _, nil => t
| Ans _, _ => t
| Que x k, (_, b) :: r => subtree (k b) r

end.

Further, we refer to finite sequences of type list (A× B) as paths. We say that a path
ps : list (A×B) is valid for f : A→ B if it agrees with f on all its elements.

Definition valid (f : A -> B) (ps : list (A * B)) : Prop :=
forall p, In p ps ->

let (a, b) := p in b = f a.

We say that a path ps : list (A × B) is legal for t ∈ TreeA,B,C if t and ps satisfy the
following predicate.

Fixpoint legal (t : Tree A B C) (ps : list (A * B)) : Prop :=
match t, ps with

| _, nil => True
| Ans _, _ :: _ => False
| Que x k, (a, b) :: r => a = x /\ legal (k b) r

end.

Intuitively, legal t ps expresses that one can walk in t along ps (always staying within
t), for every (a, b) ∈ ps using the value b as an argument of the Que-branching function.
For example, for the tree t ∈ Tree{x,y},N,N defined by

t = Que x (λx.if x = 0 then (Ans 1) else (Que y (λy.Ans y)))

paths [], [(x, 0)], [(x, 1), (y, 0)] are legal, while [(x, 0), (y, 0)] is not.
We show that traces generated by deps are valid and legal paths leading to Ans-leaves.

Lemma 2.2.19. For all t : TreeA,B,C and f : A→ B, the following holds

– valid f (deps t f);

– legal t (deps t f);

– subtree t (deps t f) = Ans (JtK∗f).
Proof. By induction on t.

The reverse is also true as shown by the following lemma.

Lemma 2.2.20. Given t ∈ TreeA,B,C , ps : list (A × B), f : A → B, and c : C, if
valid f ps, legal t ps and subtree t ps = Ans c hold then ps = deps t f and c = JtK∗f .

88 Verified Generic Fixpoint Algorithms

Proof. By induction on ps.

In what follows, we construct invariants for every component of the instrumented
implementation. We start first with some simple specifications.

Definition Inv_0 (s : state’) : Prop :=
let ’(sigma, infl, stable, called, queued) := s in

VS.Subset called stable /\
VS.Empty (VS.inter stable queued).

Inv_0 asserts that in the state s, the set called is a subset of stable and sets of stable and
queued variables do not intersect. By structural induction, one can show that Inv_0 is
indeed invariant for all the components of the algorithm. For instance, we have that if
Inv_0 s holds for s : state′ then Solve x s s′ implies Inv_0 s′, for all x : V , s′ : state′,
and similarly for other components of the solver.
The following specification relates the three state components, stable, called and

queued, before and after a terminating function call.

Definition Inv_1 (s s’ : state’) : Prop :=
let ’(_, _, stable, called, queued) := s in
let ’(_, _, stable’, called’, queued’) := s’ in

VS.Subset stable stable’ /\
VS.Subset called’ called /\
VS.Subset queued’ queued.

Merely, Inv_1 asserts that the set stable always grows, and called and queued components
may only shrink. We call a state s (a transition from s to s′) consistent if Inv_0 s
(respectively, Inv_1 s s′) holds. Again, one can show by induction that all main functions
of the algorithm modify states consistently, i.e., Inv_1 is a valid transition relation for
every main function of the algorithm. Since sinit.called = sinit.queued = ∅, we have
s.called = s.queued = ∅ for any x : V and s : state such that Solve x sinit s. However,
Inv_0 and Inv_1 alone are not sufficient to prove correctness of the solver since they do
not speak about σ and infl components. As we will see, to relate all the components is
a non-trivial task indeed.
In order to provide strong invariants for the algorithm, we define several more auxiliary

relations. The relation

Definition Inv_corr (s : state’) : Prop :=
let sigma := getval s in

(forall x : Var.t,
is_solved x s ->
let val := [[rhs x]]* sigma in
D.Leq val (sigma x)) /\

(forall (x v : Var.t) d,
is_solved x s ->

2.2 RLD Solver 89

In (v,d) (deps (rhs x) sigma) ->
In x (get_infl s v) /\
(is_stable v s \/ is_queued v s)).

specifies which states can be considered as correct. Remind that is_solved x s abbrevi-
ates x ∈ s.stable\s.called. The first conjunct of Inv_corr asserts that for every variable x
that is “solved” in s the constraint for x is satisfied, i.e., getval s x ⊒ JrhsxK∗(getval s)
holds (hence the name solved). The second conjunct states how dependencies of x are
treated by the solver. Namely, it assert that infl∅x over-approximates the set of actual
dependencies of x returned by deps (rhsx) (getval s). Moreover, every v influencing x
relative to getval s must be either marked as stable or as queued. Thus, reasoning about
dependencies is made possible with respect to a set of destabilized variables distinguished
by means of the auxiliary data structure queued.
The relation

Definition Inv_corr_var (s : state’) x :=
let ’(_, _, stable, _, queued) := s in
let sigma := getval s in

forall v d,
In (v,d) (deps (rhs x) sigma) ->
In x (get_infl s v) /\
(is_stable v s \/ is_queued v s).

specifies that dependencies of x are treated correctly by the solver. It partially repeats
the second conjunct of Inv_corr, but the point is that is_solved x s for a given x may
not hold. For example, x is marked as called at the start of solve, and Inv_corr allows
to reason about dependencies of x during the run of solve x.

Definition Inv_sigma (s s’ : state’) : Prop :=
forall z : Var.t, D.Leq (getval s z) (getval s’ z).

The transition relation Inv_sigma asserts that current values of variables in s′ are larger
than those in s.
The relation

Definition Inv_sigma_infl (s0 s1 : state’) : Prop :=
forall z,

let d0 := getval s0 z in
let d1 := getval s1 z in
(D.Leq d1 d0 -> incl (get_infl s0 z) (get_infl s1 z)) /\
(~ D.Leq d1 d0 ->
forall u,

In u (get_infl s0 z) -> is_solved u s1).

relates changes in the structures σ and infl. Here, incl implements a set inclusion on
lists. Inv_sigma_infl asserts that, for every variable z : V , if the value of z did not

90 Verified Generic Fixpoint Algorithms

increase then s′.infl stores more influences of z; otherwise, if the value of z is altered
in state′, then all the variables influenced by z in state are solved in state′. Now we
construct invariants for each component of the algorithm.

– Invariant for EvalGet.
The following specification relates arguments x, y : V , s : state′ with the result
value (d, s′) : D × state′ of the call evalget x y s whenever it terminates.

Definition Inv_EvalGet
(x y : Var.t) (s : state’) (p : D.t * state’) : Prop :=

let (d,s’) := p in
Inv_0 s ->
Inv_corr s ->

When starting from a consistent and correct state s,
Inv_0 s’ /\
Inv_1 s s’ /\
Inv_corr s’ /\

a new consistent and correct state s′ is returned (the transition from s to s′ is
consistent)

d = getval s’ y /\

along with a new value of y;
is_stable y s’ /\

moreover, y is stable in s′ (since solve y is triggered recursively from evalget x y s);

Inv_sigma s s’ /\

current variable assignment can not decrease (since σ always gets updated accu-
mulatively);

Inv_sigma_infl s s’ /\

variable dependencies are processed correctly;
In x (get_infl s’ y).

additionally, the solver records that y influences x (since y was met in the right-
hand side for x). For the rest of invariants, only distinctive parts of specifications
are explained.

– Invariant for EvalGet_x.
The definition is straightforward since EvalGet_x models a partial application of
evalget to x.

Definition Inv_EvalGet_x
(x : Var.t)
(f : Var.t -> state’ -> D.t * state’ -> Prop) : Prop :=

2.2 RLD Solver 91

forall y s ds1,
f y s ds1 -> Inv_EvalGet x y s ds1.

– Invariant for Wrap_Eval_x.
The following specification relates an input (s, ps) : state′× list (V ×D) with the
result value (d, (s′, ps′)) : D × (state′ × list (V ×D)) of the call

JtKstate′×list (V×D)(instrstate′ (evalgetx)) (s, ps)

whenever it terminates. Remind that the function proceeds recursively on t which
is a subtree of rhsx taking as a parameter a list ps of already visited variables
along with their received values. The invariant states that

Definition Inv_Wrap_Eval_x
(x : Var.t)
(f : Var.t -> state’ -> D.t * state’ -> Prop)
(t : Tree Var.t D.t D.t)
(sl : state’ * list (Var.t * D.t))
(dsl’ : D.t * (state’ * list (Var.t * D.t))) : Prop :=
let (s, ps) := sl in
let ’(d, (s’, ps’)) := dsl’ in
Inv_0 s ->
Inv_corr s ->
(forall p,

In p ps ->
is_stable (fst p) s /\ D.Leq (snd p) (getval s (fst p))) ->

if ps is a partial path of stable variables such that the recorded values do not exceed
current values of the recorded variables

legal (rhs x) ps ->
subtree (rhs x) ps = t ->

and ps is a legal path in rhsx leading to a given subtree t
Inv_0 s’ /\
Inv_1 s s’ /\
(forall p,

In p ps’ -> D.Leq (snd p) (getval s’ (fst p))) /\
Inv_corr s’ /\
Inv_sigma s s’ /\
Inv_sigma_infl s s’ /\

then a longer path ps′ (that actually extends ps) of stable visited variables is
returned together with a consistent and correct state s′, and new recorded values
of variables from ps′ are smaller than their values in s′ (we recall that all updates
are accumulative);

92 Verified Generic Fixpoint Algorithms

legal (rhs x) ps’ /\
subtree (rhs x) ps’ = Ans d /\

the result path ps′ is a legal path in rhsx and leads to an answer d;
(is_called x s’ ->
valid (getval s) ps ->
(forall p,

In p ps -> In x (get_infl s (fst p))) ->

moreover, if x ∈ s′.called (and therefore, x ∈ s.called by Inv_1 s s′) and ps is valid
relative to getval s and if all the variables mentioned in the path ps are recorded
as dependencies of x

valid (getval s’) ps’ /\
(forall p,

In p ps’ -> In x (get_infl s’ (fst p))) /\
Inv_corr_var s’ x).

then ps′ is valid also for getval s′ and all the variables mentioned in ps′ are recorded
as dependencies of x. We notice that from the fact x ∈ s′.called one can deduce
that none of variables influencing x and mentioned in ps changed its value. Other-
wise, x would be recursively recomputed and removed from the called component
which would contradict the assertion x ∈ s′.called. Since is_called x s′ holds
and Inv_corr s′ speaks only about variables not from s′.called, one additionally
needs the proposition Inv_corr_var s′ x in order to reason about dependencies of
x. When x gets removed from called by solve the second conjunct of Inv_corr for
x is automatically fulfilled thanks to Inv_corr_var s′ x part.

– Invariant for Eval_rhs.
Since Eval_rhs is defined through Wrap_Eval_x by putting [] as an initial partial
path in t, we obtain the following specification.

Definition Inv_Eval_rhs
(x : Var.t) (s : state’)
(dsl’ : D.t * (state’ * list (Var.t * D.t))) : Prop :=
let ’(d, (s’, ps)) := dsl’ in
Inv_0 s ->
Inv_corr s ->
Inv_0 s’ /\
Inv_1 s s’ /\
Inv_corr s’ /\
Inv_sigma s s’ /\
Inv_sigma_infl s s’ /\
(forall p,

In p ps -> D.Leq (snd p) (getval s’ (fst p))) /\
legal (rhs x) ps /\
subtree (rhs x) ps = Ans d /\

2.2 RLD Solver 93

(is_called x s’ ->
d = [[rhs x]]* (getval s’) /\
deps (rhs x) (getval s’) = ps /\
(forall p,

In p ps -> In x (get_infl s’ (fst p))) /\
Inv_corr_var s’ x).

Note that in the case is_called x s′ we can deduce that ps is a trace of getval s′
in rhsx and thus, valid (getval s′) ps holds. By Lemma 2.2.20, we then conclude
d = JrhsxK∗(getval s′).

– Invariant for Solve.
The specification

Definition Inv_Solve (x : Var.t) (s s’ : state’) : Prop :=
Inv_0 s ->
Inv_corr s ->
Inv_0 s’ /\
Inv_1 s s’ /\
Inv_sigma s s’ /\
Inv_sigma_infl s s’ /\
Inv_corr s’ /\
(~ is_stable x s -> is_solved x s’).

relates arguments x and s with the result state s′ of the call of solve x s whenever
it terminates. If the state s is consistent and correct then so is s′. In the case
x /∈ stable, x is eventually solved in s′.

– Invariant for SolveAll. The specification
Definition Inv_SolveAll

(w : list Var.t) (s s’ : state’) : Prop :=
Inv_0 s ->
Inv_corr s ->
(forall x, In x w -> ~ is_called x s) ->
Inv_0 s’ /\
Inv_1 s s’ /\
Inv_sigma s s’ /\
Inv_sigma_infl s s’ /\
Inv_corr s’ /\
(* all variables from worklist are solved: *)
(VS.Subset

(VS.union (of_list w) (get_solved s))
(get_solved s’)).

relates the arguments w : listV and s : state′ with the result s′ : state′ of the
call solve_all w s whenever it terminates. It states that all the variables solved in

94 Verified Generic Fixpoint Algorithms

s together with variables from w are solved in s′. In view of Inv_0 s′, we conclude
that none of the variables from w are in s′.queued. Note that w = infl [x] (for some
x) may contain spurious (outdated) dependencies, i.e., variables not dependent on
x on the current variable assignment, which still get recomputed, though. However,
it is safe to reevaluate them as confirmed by Inv_corr s′ that asserts correctness
of the final state s′, i.e., all the needed dependencies are appropriately processed.

We show that the above defined relations are invariants of the respective functions.

Lemma 2.2.21 (invariants). For the instrumented implementation of RLD, the follow-
ing is true.

(∀x, y, s, p. EvalGet x y s p→ Inv_EvalGet x y s p)∧
(∀x, f. EvalGet_x x f → Inv_EvalGet_x x f)∧
(∀x, t, s, p. Wrap_Eval_x x t s p→ Inv_Wrap_Eval_x x t s p∧
(∀x, s, p. Eval_rhs x s p→ Inv_Eval_rhs x s p∧
(∀x, s, s′. Solve x s s′ → Inv_Solve x s s′)∧
(∀w, s, s′. SolveAll w s s′ → Inv_SolveAll w s s′)

Proof. By induction on structure of relations. Inv_Wrap_Eval_x and Inv_SolveAll are
proved by extra induction on t and w, respectively.

The proof is direct but not that short taking around 800 lines of Coq code together
with necessary technical lemmas.

Proof of Theorem 2.2.13 Having verified the invariants, we now prove that Theo-
rem 2.2.13 holds, i.e., RLD is a local solver. Let sinit : state be an initial state with
sinit.stable = ∅ and sinit.σ = sinit.infl = ∅. Assume that RLD applied to (F,X) with
pure F terminates, and let s : state be such that SolveAll X sinit s. According to
Definition 2.2.11, we have to show that

1. X ⊆ get_stable s;

2. is_stable s x and (y, _) ∈ depsFx (getval s) imply is_stable s y, for all x, y : V ;

3. getval s x ⊒ (Fx)Id (getval s) holds for every x ∈ get_stable s.

We exploit the invariants for the instrumented solver and the simulation lemma. Until
the end of this paragraph, we use primed notation for instrumented functions and states.
Let s′init be an instrumented initial state with s′init.stable = s′init.called = s′init.queued = ∅
and s′init.sigma = s′init.infl = ∅. Obviously, sinit ∼ s′init holds. By Lemma 2.2.18, there
exists s′ : state′ such that

SolveAll′ X s′init s
′ and s ∼ s′.

By Lemma 2.2.21,
Inv_SolveAll x s′init s

′

2.2 RLD Solver 95

holds. Since the premises of Inv_SolveAll x s′init s
′ (namely, these are Inv_0 s′init,

Inv_corr s′init and ∀x.x ∈ X → ¬is_called′ x s′init) are trivially fulfilled, we have

Inv_1 s′init s
′ (a)

Inv_corr s′ (b)
X ∪ (s′init.stable \ s′init.called) ⊆ (s′.stable \ s′.called) (c)

Since (a) asserts s′init.called ⊇ s′.called, we deduce s′.called = ∅. Hence, from (c) we
conclude

X ⊆ s′.stable . (d)

From (b), we obtain

∀x ∈ s′.stable. getval s′ x ⊒ JrhsxK∗ (getval s′) (e)
and

∀x ∈ s′.stable. ∀y. (y, _) ∈ deps (rhsx) (getval s′)→ y ∈ s′.stable . (f)

Since s ∼ s′, (d), (e) and (f) prove the theorem.
Notice that instead of the two step proof using simulation relation, one could alter-

natively eliminate ghost structures directly from proofs for the instrumented version
and construct a direct proof for the original version of the solver. The invariants for
the original version can be obtained by existentially quantifying the instrumentation
components in respective invariants for the instrumented version. To show that such
existentially quantified invariants are indeed preserved, one eliminates the existential
quantifiers in premises yielding fixed but arbitrary instrumentation values of the start-
ing state. Then these instrumentation values are updated by means of the auxiliary
functions add_queued, rem_queued, etc., imitating the algorithm, and used as existential
witnesses in the conclusion statement. The remaining proof obligations then follow step
by step the corresponding proofs for the instrumented versions. For a formal account
of this proof-transforming procedure in the context of Hoare logic, refer to [HP07]. We
will follow this approach in future version of development since it will allow to reduce
the size of Coq code, although with some overhead for the formulation of invariants and
the maintenance of proofs.

2.2.3. Exactness
In many applications, right-hand sides F arise as monotonic functions. In this case, one
would expect that a “good” solver produces more precise results. However, as shown by
the example below, RLD is not an exact solver generally, i.e., it may fail to return a
precise solution even if the right-hand sides are monotonic functions.

Definition 2.2.22. We say that the monadically parametric function F :
∏

T .(A →
TB) → TC is monotonic if it is monotonic for Id, i.e., for all f1, f2 : A → B such that
∀x : A.f1 x ⊑B f2 x, we have FId f1 ⊑C FId f2.

96 Verified Generic Fixpoint Algorithms

t ⊒ s s

s ⊒ v x v ⊔ x

x ⊒ s u

v v ⊔ a
u 6⊑ ⊥

v u

b
u 6⊑ ⊥

v ⊔ a
u ⊑ ⊥

(2)

u ⊑ ⊥

(1)

u ⊒ v v

v ⊒ s s

Figure 2.5.: Counterexample to the monotonic case

Definition 2.2.23. We say that the constraint system (V,D, F) with monadically para-
metric F : V →

∏
T .(V → TD) → TD is monotonic if Fx is monotonic for every

x ∈ V .

Theorem 2.2.24 (Knaster-Tarski). Given a complete lattice D and a monotonic func-
tion f : D → D, i.e., such that

∀d1, d2 : D. d1 ⊑ d2 implies f d1 ⊑ f d2

the set of fixed points of f in D forms a complete lattice.

Corollary 2.2.25. For every monotonic constraint system S = (V,D, F) over a complete
lattice D, there exists a least solution µ : V → D of S such that µx = (Fx)Id µ holds for
all x ∈ V .

Definition 2.2.26. We say that a local solver AV,D is exact if, for any monotonic
constraint system (V,D, F) over a complete lattice D, A when applied to a pair (F,X)
for a finite set X ⊆ V of interesting variables, if it terminates, returns a local solution
(σ,X ′) of S relative to X such that for the least solution µ of S, µ ↾X′= σ ↾X′ holds.

Consider a constraint system with pure right-hand sides defined by strategy trees as
in Figure 2.5 over the lattice D = ({⊥, a, b,⊤},⊑,⊔) where ⊥ ⊏ a, b ⊏ ⊤, and a and b
are incomparable. These right-hand sides could be represented in a ML-like language by

Ft k = let s1 = k s in s1
Fs k = let v1 = k v in let x1 = k x in v1 ⊔ x1

2.2 RLD Solver 97

Fx k = let s1 = k s in let u1 = k u in

if (u1 ⊑ ⊥) then
let v1 = k v in

let u2 = k u in

if (u2 ⊑ ⊥) then v1 ⊔ a else b

else

let v1 = k v in v1 ⊔ a
Fu k = let v1 = k v in v1
Fv k = let s1 = k s in s1

Although a result of the query k s is not used to produce a return value of Fx k, the
dependency on s triggers a recomputation of x once a value of s changes. Note that
there is a path in a tree for Fx for that variable u is queried twice. These two Que-nodes
are marked by (1) and (2) in the above figure.
It is not difficult to check that all the right-hand sides are monotonic functions and

the least solution µ of the system is

µx = a, x ∈ {t, s,x,u,v}.

Suppose, we want to compute a local solution relative to X = {t}. Will RLD return an
exact local solution for {t}? The answer is negative. To figure out the problem, let us
introduce a ghost structure called to RLD and trace computations done by the solver.
Consider the following implementation with the type of states

type state′′ = (V ⇀ D)× (V ⇀ listV)× Pfin(V)× Pfin(V)

where as before, components correspond to the finite (partial) map σ, the finite (partial)
map infl, and the sets stable, called, respectively.

let extract_work x = fun s →
let w = get_infl x s in
let s0 = rem_infl x s in
let s1 =

foldl (fun s y →rem_stable y (rem_called y s)) s0 w in
(w,s1)

(* . . . *)
and solve x = fun s →

if is_stable x s then s else
let s0 = add_called x (add_stable x s) in
let (d, s1) = Fx (evalget x) s0 in
let s2 = rem_called x s1 in
let cur = getval s2 x in
let new = cur ⊔ d in

98 Verified Generic Fixpoint Algorithms

if (new ⊑ cur) then s2 else
let s3 = setval x new s2 in
let (w, s4) = extract_work x s3 in

solve_all w s4
(* . . . *)

The rest of functions are as in Figure 2.4. We trace the computations performed when
solve_all [t] is called from the initial state sinit (the full trace can be found in Ap-
pendix B.2).
From the initial state, solve t is called, which in turn recursively invokes solve s.

During the run of solve s, the algorithm performs the following recursive evaluations.
First, it tries to recompute v, which is however only depends on s, and the latter is
stable, hence v does not change its value. Then the algorithm proceeds with variables x,
u and v, in that order. For brevity, we skip a description of these computation steps (cf.
lines 1–56 in Appendix B.2), but we note that σ[s] gets finally updated. Before this new
value of σ[s] = a is returned by solve s, the algorithm must recompute all the variables
dependent on s. These are variables from infl [s] = [x;v] (line 57). Thus, infl [s] is reset
to [], and x and v are removed from stable and called (lines 58–61). The state prior to
the call solve_all [x;v] is

σ = {s 7→ a,x 7→ a}
infl = {u 7→ [x;x],v 7→ [x;u; s],x 7→ [s]}
stable = {s, t,u}
called = {t}

1. For recomputation of x, solve x is called, and variable x is put back into stable
and called. Thus, the state prior to reevaluation of the right-hand side Fx is

σ = {s 7→ a,x 7→ a}
infl = {u 7→ [x,x],v 7→ [x;u; s],x 7→ [s]}
stable = {s, t,u,x}
called = {t,x}

During the evaluation of JFxK (evalgetx) the algorithm traverses the tree Fx and re-
computes encountered variables as described below.

– Since s,u ∈ stable, the algorithm does not descend into solving them. The struc-
tures σ, stable and called do not change, but the solver records that x depends on
s and u, i.e., x is added to infl [s] and infl [u] (lines 69–72).

– Since σ[u] = ⊥, the algorithm continues with the upper branch of (1) in Fx.
Thus, it recomputes v, which gets a larger value a (as σ[s] = a) (lines 73–81).
Since the value of σ[v] has changed, variables influenced by v must be recomputed
before solve v returns. These are variables from infl [v] = [x;u; s]. They get
removed from the sets stable and called, and get recomputed by calling consequently

2.2 RLD Solver 99

solvex, solveu, and solve s (lines 91–155). At the end end of their run, the state
components are (the infl component is omitted)

σ = {s 7→ a,u 7→ a,v 7→ a,x 7→ a}
stable = {s, t,u,v,x}
called = {t}

Thus, the value σ[u] is altered and equals a. The algorithm returns from solve v
and continues traversing Fx. Notice that change in σ[v] caused another round
of a recursive recomputation of x, while the parent evaluation of Fx has not yet
terminated. After the call to solve v returns, we observe that x is solved, i.e.,
x ∈ stable \ called. This is a crucial observation for a modification of the solver
considered in the next subsection.

– The solver hits the branching (2) in Fx, and u ∈ stable (lines 157–158). This time,
the solver must follow the lower branch of (2), with u ̸⊑ ⊥, as σ[u] = a, and it hits
an Ans-leaf with a “bad” value b.

Thus, evaluation of Fx (evalget x) finishes with a current state having

σ = {s 7→ a,u 7→ a,v 7→ a,x 7→ a}

and σ[x] gets updated with a ⊔ b = ⊤. Since σ[x] has strictly increased, more recompu-
tations are triggered which we omit here (lines 159–304).
2. For recomputation of v, solvev is called, but v is solved at this moment, i.e.,

v ∈ stable \ called, and the call returns immediately (lines 305–306).
Finally, the algorithm terminates and returns a solution σ1 : V → D such that σ1 x =
⊤ and thus, σ1 is not minimal. The reason why the “bad” value b is reached in Fx during
the run of the solver is that u changes its value between branchings (1) and (2). While
passing through Fx, the algorithm picks different branches at (1) and at (2) — the upper
one, u ⊑ ⊥, in the former case and the lower one, This demonstrates that computations
of right-hand sides are not atomic in general. u ̸⊑ ⊥, in the latter case. Note that the
Ans-leaf b is not reachable by JFxK∗σ, for any effect-free variable assignment σ : V → D.
Notice that the counterexample also reveals that RLD is not a chaotic iteration solver

that makes him hardly usable with widening/narrowing operators in general. Indeed, for
the variable assignment σ0 such that σ0 s = σ0 u = σ0 v = a, we have JFxK∗σ0 = a which
is strictly smaller than ⊤, while the top value was assigned to σ[x] once the Ans-leaf b
was reached.
Although RLD does not return a minimal solution generally, it is however exact for

a subclass of monotonic strategy functions.

Definition 2.2.27. We say that a strategy tree t has an unique-lookup property if for
any legal path in t any variable v : V is queried at most once on this path. Formally,

Definition uniq_lookup t :=
forall ps, legal t ps -> NoDup (fst (split ps)).

100 Verified Generic Fixpoint Algorithms

where split is a standard Coq function splitting a list of pairs into a pair of lists, and
NoDup asserts that a list has no duplicated elements in it.

For example, the property does not hold for the tree Fx as in Figure 2.5, since there
exists a path through Fx such that the variable u is met twice, at the Que-nodes (1)
and (2).

Theorem 2.2.28. Given a monotonic constraint system S = (V,D, F) over the complete
lattice D with pure F such that F x enjoys the unique-lookup property for every x ∈ V ,
RLD when applied to (F,X) — if it terminates — returns a local solution (σ,X ′) such
that σ ↾X′= µ ↾X′ for the least solution µ of S.

Proof. To show this, we construct invariants for every function of the algorithm that
relate a current variable assignment with an arbitrary solution of the constraint system.
Namely, we establish that for every solution µ : V → D the condition getval s ⊑ µ is
preserved by all components of the algorithm. This implies the assertion of the theorem.
We define the following invariants. Each of them has an extra premise isMonotone (F)∧
hasUniqueLookup (rhs) which is omitted for brevity.

Inv_EvalGetmon x y s (d, s
′) ≡

∀µ : V → D. (∀z.µ z ⊒ Jrhs zK∗µ) ∧ getval s ⊑ µ→ getval s′ ⊑ µ
Inv_Wrap_Eval_xmon x f t (s, l) (d, (s

′, l′)) ≡
∀µ : V → D. (∀z.µ z ⊒ Jrhs zK∗µ) ∧ getval s ⊑ µ→ getval s′ ⊑ µ

Inv_eval_rhsmon x s (d, s
′) ≡

∀µ : V → D. (∀z.µ z ⊒ Jrhs zK∗µ) ∧ getval s ⊑ µ→
getval s′ ⊑ µ ∧ d ⊑ getval s′ x

Inv_EvalGetmon x s s
′ ≡

∀µ : V → D. (∀z.µ z ⊒ Jrhs zK∗µ) ∧ getval s ⊑ µ→ getval s′ ⊑ µ
Inv_solve_allmon w s s′ ≡

∀µ : V → D. (∀z.µ z ⊒ Jrhs zK∗µ) ∧ getval s ⊑ µ→ getval s′ ⊑ µ

By induction on structure of relations we prove

Lemma 2.2.29. For the instrumented implementation of RLD the following is true.

(∀x, y, s, r′. EvalGet′ x y s r′ → Inv_EvalGetmon x y s r
′)∧

(∀x, f. EvalGet_x′ x f → Inv_EvalGet_xmon x f)∧
(∀x, t, r, r′. Wrap_Eval_x x t r r′ → Inv_Wrap_Eval_xmon x t r r

′)∧
(∀x, s, r′. Eval_rhs x s r′ → Inv_Eval_rhsmon x s r

′)∧
(∀x, s, s′. Solve′ x s s′ → Inv_Solvemon x s s

′)∧
(∀w, s, s′. SolveAll′ w s s′ → Inv_SolveAllmon w s s′)

2.2 RLD Solver 101

Let sinit : state′ be an initial state with σ = infl = ∅ and stable = called = queued =
∅, and let µ be a least solution to S which exists by Corollary 2.2.25. Assume that
RLD when applied to (F,X) terminates and let s be a state returned by the call
solve_allX sinit that is, SolveAll′X sinit s holds. Since getval sinit x = ⊥D ⊑ µx,
for all x : V , by Lemma 2.2.29, we have

getval s ⊑ µ. (2.1)

We need to show that getval s x = µx holds for all x ∈ X ′.
Let σX′ be an extension of getval s defined by

σX′ x =

{
getval s x x ∈ X ′

⊤D otherwise.

By Lemma 2.2.10, σX′ is a solution to S. Since X ′ is deps-closed,

JF xK∗ (getval s) = JF xK∗ σX′ (2.2)

holds by Lemma 1.5.6, for all x ∈ X ′. For x ∈ X ′, we get

µx ⊒ getval s x by (2.1)
⊒ JF xK∗ (getval s) by Theorem 2.2.13
= JF xK∗ σX′ by (2.2)
⊒ JF xK∗ µ by monotonicity of F and minimality of µ
= µx since µ is a solution to S.

Therefore, µx = getval s x = JF xK∗ (getval s) holds, for all x ∈ X ′. This proves
Theorem 2.2.28.

Although theoretically, one can always transform a definable pure function F into G
such that FId σ = GId σ and G has a unique-lookup property, practically that requires
availability of the source code of F .
Apparently, RLD implements a chaotic iteration strategy when restricted to the class

of unique-lookup right-hand sides, but we have no formal proof of this conjecture yet.

2.2.4. RLDE
In this subsection we present a modification of the solver RLD that is exact (called
RLDE).
The idea of improvement comes from a careful inspection of behaviour of the instru-

mented RLD and its invariants. Considering the example displayed in Figure 2.5,
we observed that for the unknown x, during a computation of the right-hand side
Fx (evalgetx), another variable v gets a strictly larger value which in turn causes
another round of recursive recomputation for x. We have also mentioned that after

102 Verified Generic Fixpoint Algorithms

exception IsSolved

let σ⊥ x = if x ∈ dom(σ) then σ[x] else ⊥

let infl∅ x = if x ∈ dom(infl) then infl[x] x else ∅

let extract_work x =
let work = infl∅ x in
infl[x] := ∅;
stable := stable \ work;
called := called \ work;
work

let rec evalget x y =
solve y;
infl[y] := infl[y] ∪ {x};
if not (x ∈ called) then

raise IsSolved
else
σ⊥ y

and solve x =
if (x /∈ stable) then begin

stable := stable ∪ {x};
called := called ∪ {x};
try

let d = F x (evalget x) in
called := called \ {x};
let cur = σ⊥ x in
let new = cur ⊔ d in

if (new ̸⊑ cur) then begin
σ[x] := new;
let work = extract_work x in

solve_all work
end

with IsSolved → ()
end

and solve_all X = foreach x ∈ X do solve x

let main X =
σ := ∅; infl := ∅; stable := ∅; called := ∅;
solve_all X;
(σ⊥, stable)

Figure 2.6.: The recursive solver tracking local dependencies, exact (RLDE)

2.2 RLD Solver 103

solve v returns, x does not belong to called any more. Notice also that the invariant
Inv_Wrap_Eval_x (namely, its Inv_corr part) guarantees that in this case (after the in-
ternal recursive call to solve v returns) x is solved, i.e., x ∈ stable \ called holds and the
constraint for x is satisfied. This is a crucial observation that allows us to conclude that
it is safe to interrupt computation of Fx (evalgetx) as soon as it is discovered that x
is solved. This allows to avoid bad cases like in the previous example when the reached
Ans-leaf b spoils the result solution, although it is not reachable in Fx when using any
effect-free variable assignment σ : V → D, as well as to avoid unnecessary computations
of nodes that are not reachable in this sense.
Thus, the idea of improvement is to check whether x is still in called while computing

the right-hand side for x and interrupt as soon as the condition fails. To implement
this idea, we adjust the original RLD in the following way (Figure 2.6). Similar to
the instrumented version of RLD, we introduce the data structure called, which stores
a set of suspended variables for that solve was called but the latest call has not yet
terminated. When solve x is called, x is added to both stable and called sets. In
evalgetx y, after solve y returns and infl is updated accordingly, we check if x ∈ called.
If yes, we proceed normally, otherwise the exception IsSolved is raised and thus, the
current evaluation of Fx (evalgetx) gets cancelled. If the exception is caught in solve,
the latter returns immediately. Otherwise, we remove x from called, update the current
value of x and recompute the variables dependent on x if needed. The purely functional
implementation can be found in Appendix B.3.
We prove the modified algorithm RLDE correct. Moreover, whenever it terminates

it returns an exact solution if the input constraint system is monotonic defined over a
complete lattice. We have

Theorem 2.2.30. The algorithm RLDE is an exact local solver.

The proof is similar to the proofs of Theorems 2.2.13 and 2.2.28. The purely functional
implementation using the exception transformer monad ErrorT can be found in Ap-
pendix. The invariants are similar as for RLD, with small modifications. Below is one
of invariants for the instrumented version implemented in Coq.

Definition Inv_Eval_rhs
(x : Var.t) (s : state’)
(dsl’ : option D.t * (state’ * list (Var.t * D.t))) :=
let ’(od, (s’, ps)) := dsl’ in
is_called x s ->
Inv_0 s ->
Inv_corr s ->
Inv_0 s’ /\
Inv_1 s s’ /\
Inv_corr s’ /\
Inv_sigma s s’ /\
Inv_sigma_infl s s’ /\

104 Verified Generic Fixpoint Algorithms

(forall p,
In p ps ->
D.Leq (snd p) (getval s’ (fst p))) /\

legal (rhs x) ps /\
(od = error -> ~ is_called x s’) /\
(forall d, od = value d -> subtree (rhs x) ps = Ans d) /\
(forall d,

od = value d ->
is_called x s’ /\
d = [[rhs x]]* (getval s’) /\
deps (rhs x) (getval s’) = ps /\
(forall p,

In p ps -> In x (get_infl s’ (fst p))) /\
Inv_corr_var s’ x) /\

(* monotonic case *)
(forall mu,

is_monotone rhs ->
is_solution rhs mu ->
leqF (getval s) mu ->
leqF (getval s’) mu /\
(forall d, od = value d -> D.Leq d (mu x))).

Proposition 2.2.31. RLDE is a chaotic iteration solver.

Proof. Variable x gets updated only in the case if no exception was raised during eval-
uation of the right-hand side. The invariant Inv_Eval_rhs states that in this case
d = Jrhs xK∗ (getval s′), i.e., d is a value of the right-hand side on a current variable
assignment.

The last proposition is not implemented in Coq.
Since RLDE is a chaotic iteration solver, it is possible to use it with widening and

narrowing operators or a combined operator. For that, the condition new ̸⊑ cur must
be replaced by new ̸= cur.

2.2.5. Termination and Complexity

In what follows, we provide sufficient conditions for termination of RLD and RLDE
and analyse the complexity of the algorithms.
To prove termination of a functional program it is sufficient to provide a termi-

nation argument, i.e., a well-founded (also called noetherian) relation (A,≺A) such
that every recursive call is carried on with an argument value smaller with respect to
≺A [Wal94, GWB98]. Intuitively, a binary relation (A,≺A) is well-founded if it forbids
infinite descending chains of the form · · · ≺ ai ≺A · · · ≺A a1 ≺A a0. For example, sup-
pose the interpreter has to evaluate a term, say f a0, for a0 ∈ A, that leads necessarily to

2.2 RLD Solver 105

a recursive evaluation of another term f a1, a1 ∈ A, from which in turn a recursive com-
putation of another term f a2, a2 ∈ A arises, etc. The sequence of evaluated arguments
a0, a1, a2, · · · forms a trace of computation of the term f a0. Intuitively, the program
terminates if every trace is finite, i.e., there always exists k such that the term f ak
can be evaluated without further recursive calls to f . Thus, providing a well-founded
relation (A,≺A) such that ai+1 ≺ ai holds for every pair of adjacent values from each
trace guarantees termination of the algorithm.
We begin with the definition of well-foundedness.

Definition 2.2.32. We say that (A,≺A) is a noetherian relation iff ≺A is a binary
relation on A and there exists no countable infinite descending chains. That is

noe (A,≺A) ⇐⇒ ∀c : N→ A.¬(∀i.ci+1 ≺A ci).

Further, we will omit the index A if it is clear from context.
Example 2.2.33. (N, <) is noetherian.
Example 2.2.34. If B is a finite set, then (2B,⊃) is noetherian.
In the constructive world of Coq, the notion of well-foundedness is defined by means

of the inductive predicate of accessibility.

Inductive Acc (A : Type) (R : A -> A -> Prop) (x : A) : Prop :=
Acc_intro : (forall y : A, R y x -> Acc R y) -> Acc R x

The predicates essentially states that an element x is accessible iff all the smaller elements
are accessible. For example, in (N, <), 0 is accessible since there are no numbers smaller
than it, 1 is accessible since 0 is accessible, 2 is accessible since both 0 and 1 are accessible,
and so on.

Definition 2.2.35. We say that (A,≺A) is well-founded iff all its elements are accessible.
Formally,

wf (A,≺A) ⇐⇒ ∀x : A. Acc(x)

For well-founded relations, the well-founded induction scheme holds.

Theorem 2.2.36 (well-founded induction scheme). For a well-founded relation (A,≺A),

(∀x : A. (∀y : A. y ≺A x→ P (y))→ P (x))→ ∀a : A.P (a)

holds for all properties P .

We can show that in the classical setting both notions coincide.

Proposition 2.2.37. For a well-founded relation (A,≺A),

noe (A,≺A) ⇐⇒ wf (A,≺A)

is provable on assumption of the excluded middle axiom.

106 Verified Generic Fixpoint Algorithms

Proof. ⇒) Suppose (A,≺A) is noetherian, but not well-founded. Then there exists an
element a0 such that ¬Acc(a0). Then ¬(∀y.y ≺A a0 → Acc(y)) holds which is classically
equivalent to ∃y.y ≺A a0∧¬Acc(y). Take a1 such that a1 ≺ a0 and ¬Acc(a1). Repeating
the argument, we construct a2 ≺ a1 such that ¬Acc(a2), and so on. Thus, there exists
an infinite decreasing chain · · · ≺ a2 ≺ a1 ≺ a0. Contradiction.
⇐) Suppose (A,≺A) is well-founded. We show by well-founded induction a stronger

statement ∀x : A.P (x) with

P (x) ≡ ∀c : N→ A.¬(c0 = x ∧ ∀i.ci+1 ≺ ci).

Take x such that the induction hypothesis

∀y.y ≺ x→ P (y) (IH)

holds. To show P (x), take a chain c, and suppose ∀i.ci+1 ≺ ci ∧ c0 = x. Construct
c′ : N→ A as c′i = ci+1, for all i, and take y = c′0 = c1. Using (IH) with y and c′, we get
¬(c′0 = y ∧ ∀i.c′i+1 ≺ c′i) which contradicts the assumption on c.

Below, we provide some standard constructions of well-founded relations.

Definition 2.2.38. For binary relations (A,≤A) and (B,≤B), we define a symmetric
product relation (A×B,≤sym) by

(a1, b1) ≤sym (a2, b2) ⇐⇒ (a1 ≤A a2 ∧ b1 = b2) ∨ (a1 = a2 ∧ b1 ≤B b2).

Lemma 2.2.39. The symmetric product (A×B,≺sym) of well-founded relations (A,≺A)
and (B,≺B) is well-founded.

Proof. By well-founded induction on both arguments.

In the proof of termination, we use the lexicographical product construction defined as
follows.

Definition 2.2.40. For binary relations (A,≤A) and (B,≤B), a lexicographical product
(A×B,≤lex) is defined by

(a1, b1) ≤lex (a2, b2) ⇐⇒ a1 ≤A a2 ∨ a1 = a2 ∧ b1 ≤B b2.

Lemma 2.2.41. The lexicographical product (A × B,≺lex) of well-founded relations
(A,≺A) and (B,≺B) is well-founded.

Proof. By well-founded induction on both arguments.

Lemma 2.2.42. (inverse image) Given a well-founded relation (B,≺B) and f : A→ B,
define a1 ≺A a2 by f a1 ≺B f a2. Then (A,≺A) is well-founded.

Definition 2.2.43. We say that a binary relation (A,≤)

2.2 RLD Solver 107

1. satisfies the ascending chain condition if (A,>) is well-founded, i.e., there is no
infinite strictly ascending chains a : N→ D with a0 < a1 < · · · < ak < · · · ;

2. has a finite height h if for all ascending chains a : N → D, a0 ≤ a1 ≤ · · · , there
exists k ≤ h such that ak = ak+1 = . . . , and h is minimal with such property

where x < y ⇐⇒ x ≤ y ∧ x ̸= y.

Let V → D be a set of functions from V to a partially ordered set D = (D,⊑).
Consider a pointwise ordering on V → D, i.e., for σ1, σ2 : V → D, we define ⊑V→D by

σ1 ⊑V→D σ2 ⇐⇒ σ1 x ⊑D σ2 x, for all x ∈ V.

The following is true.

Lemma 2.2.44. Given a join-semilattice D = (D,⊑,⊔) and finite V ,

1. (V → D,⊑V→D) is a join-semilattice;

2. (V → D,⊑V→D) satisfies the ascending chain condition whenever D does;

3. (V → D,⊑V→D) has a finite height h · |V | whenever D has a height h.

Theorem 2.2.45. For any finite constraint system S = (V,D, F) with monadically
parametric F over a join-semilattice D = (D,⊔,⊑) that satisfies the ascending chain
condition,

1. the algorithm RLD (RLDE) when called with (F,X), for a finite X ⊆ V , termi-
nates;

2. furthermore, if D has a finite height h and m is a limit of number of different
variables occurring in Fx, for all x ∈ V , then the algorithm terminates in O(h ·
m · |V |).

Proof. 1) Perhaps to some surprise, the construction of a termination argument is fairly
simple. Recall that the invariants for the algorithms imply that values of variables cannot
decrease (the Inv_sigma conjunct) and the state component s.stable of stable variables
tends to grow after every function call (the Inv_1 conjunct). The only point in the algo-
rithm where stable temporarily shrinks is when extracting the worklist by extract_work
function while the only possible reason for destabilization is a strictly increased value of
some variable x. This gives us a clue on how to construct the termination argument for
RLD.
We introduce a well-founded relation (state,≺state) on states as a lexicographical

product on sigma and stable components ignoring the value of infl component. Thus,
p ≺state q iff either for some variable x : V the value of x is strictly larger in p than in
q and all the rest variables did not decrease, or (in the case all the respective values are
same) there are more stable variables in p than in q.

Lemma 2.2.46. (state,≺state) is well-founded.

108 Verified Generic Fixpoint Algorithms

Proof. ≺state is a well-founded relation as a lexicographical product of well-founded
relations — the reverse ordering on functions ⊐V→D and the reverse set inclusion ⊃2V

on subsets of V .
The lemma is fully formalized in Coq. The formal proof is straightforward but quite

cumbersome despite the apparent simplicity of informal arguments. In broad strokes,
the formal proof evolves as follows. First, given a binary relation (A,≤A), one defines
a type of finite products An (vectors) and a pointwise product of relations (An,≤n) on
vectors using Coq’s dependent types. The inductive definitions are

Inductive vector {A} : nat -> Type :=
| vec_nil : vector 0
| vec_cons : forall n, A -> vector n -> vector (S n).

and

Inductive lp_vector {A} {leA : relation A}
: forall n, relation (vector A n) :=
| lp_nil : lp_vector (n:=0) (vec_nil A) (vec_nil A)
| lp_cons :

forall a a’ n v v’,
leA a a’ ->
lp_vector (n:=n) v v’ ->
lp_vector (n:=S n) (vec_cons a v) (vec_cons a’ v’).

respectively. Second, one shows that if (A,≤A) satisfies the ascending chain condition
then (An,≤n) also does. Third, one defines a natural embedding ϕ : (V → D) → Dn

for n = |V | preserving the pointwise ordering. The latter allows to establish well-
foundedness of (V → D,⊐V→D) using Lemmas 2.2.39 and 2.2.42 and the ascending
chain condition. Fourth, one shows that (2V ,⊃2V). Finally, one infers well-foundedness
of ≺state. The whole implementation takes more than 400 lines of Coq code.

We define the equivalence of states ≡state by

Definition eq_state s1 s2 :=
getval s1 = getval s2 /\ get_stable s1 = get_stable s2.

and define ⪯state=≺state ∪ ≡state by

Definition precEq_state s1 s2
:= prec_state s1 s2 \/ eq_state s1 s2.

The following transitivity properties hold.

Lemma 2.2.47. 1. ∀q, r, s : state.q ≺state r → r ≺state s→ q ≺state s

2. ∀q, r, s : state.q ⪯state r → r ≺state s→ q ≺state s

3. ∀q, r, s : state.q ≺state r → r ⪯state s→ q ≺state s

2.2 RLD Solver 109

4. ∀q, r, s : state.q ⪯state r → r ⪯state s→ q ⪯state s

For each function of the algorithm, we show that whenever it terminates on the input
state s1 and returns a state s2 then s2 ⪯state s1 that is, in s2 all the variable have larger
values and the set of stable variables grows. By structural induction on definition of the
graph of RLD (RLDE) we prove the following lemma.

Lemma precEq_invariant :
(forall x y s1 ds2,

EvalGet x y s1 ds2 ->
let (d,s2) := ds2 in precEq_state s2 s1) /\

(forall x f,
EvalGet_x x f ->
forall y s1 ds2,

f y s1 = ds2 -> let (d,s2) := ds2 in precEq_state s2 s1) /\
(forall x f t s1 ds2,

Wrap_Eval_x x f t s1 ds2 ->
let (d,s2) := ds2 in precEq_state s2 s1) /\

(forall x s1 ds2,
Eval_rhs x s1 ds2 ->
let (d,s2) := ds2 in precEq_state s2 s1) /\

(forall x s1 s2,
Solve x s1 s2 -> precEq_state s2 s1) /\

(forall w s1 s2,
SolveAll w s1 s2 -> precEq_state s2 s1).

Consider, for example, a proof for the invariant for EvalGet, the simplest one. Given
x, y : V , s, s0, s1 : state and d : D such that Solve y s s0 and the induction hypothesis
s0 ⪯state s holds, and let s1 = add_infl y x s0, d = getval s0 y, one needs to show that
s1 ⪯state s. This immediately follows from Lemma 2.2.47, since s1 ≡state s0. To prove
the Wrap_Eval_x part one requires extra induction on t. Finally, we formulate

Theorem termination (Hwell : well_founded prec_state) :
forall x s1, exists s2, Solve x s1 s2.

which claims that every call to solvex s terminates, for all x : V , s : state. The sketch
of the proof appears below. To show ∀s, x. ∃s′. Solve x s s′, we apply the well-founded
induction scheme for ≺state (Theorem 2.2.36). Take s : state, x : V and assume the
induction hypothesis

∀q : state. q ≺state s→ ∀x : V. ∃r : state. Solve x q r (IH)

The goal is to show that there exists s′ such that Solve x s s′.

1. If is_stable x s take s′ = s.

110 Verified Generic Fixpoint Algorithms

2. If ¬is_stable x s, define s0 = add_stable x s. Then s0 ≺state s holds. Using (IH)
we can show that

∀y, q. q ≺state s→ ∃p2 : D× V. EvalGet x y s1 p2 (2.3)

Indeed, given y and q such that q ≺state s, by (IH) there exists r : state such
that Solve y q r holds. Define r1 = add_infl y x r and d = getval r y. Then
EvalGet x y q (d, r1) holds. Define a relation

f = λy.λq : state.λp : D× state. EvalGet x y q p.

One can easily check that f satisfies EvalGet_x x f . Then using (2.3), we prove by
induction on strategy tree

∀t : Tree.∀q : state. q ≺ s→ ∃p : D× state. Wrap_Eval_x x f t q p (2.4)

Using (2.4) with the strategy tree F x, we conclude that there exist d, s1 such that
Eval_rhs x s0 (d, s1). Define values cur = getval s1 x and new = d⊔cur. Two cases
are possible.
a) new ⊑ cur. Put s′ = s1.
b) new ̸⊑ cur. Let s2 = setvalxnew s1 and (w, s3) = extract_work x s2. One

can show that s3 ≺ s holds. By induction on lists, we the show

∀l : listV, q : state, q ≺state s→ ∃s4, SolveAll l q s4 (2.5)

Applying (2.5) with w and s3, we get s4. Finally, put s′ = s4.

Termination is proven.
2) First, we note that each variable x can be destabilized (i.e., removed from the set

stable) at most h·|V | times. The variable x can be destabilized only if some other variable
y strictly increases its value (as the values of variables are updated accumulatively). For
y, this may happen at most h times since h is the height of D. Therefore, every variable
x depending on y can be destabilized at most h times. By the assumption that m is a
limit of number of variables x can depend on, we obtain that each x can be destabilized
at most h ·m times. Thus, during computation only h ·m · |V | reevaluations of right-hand
sides are possible, since every evaluation of the right-hand side Fx can be triggered only
if x is not in stable, i.e., it was destabilized. The assertion of the theorem follows. The
complexity argument is not formalized in Coq.
Theorem 2.2.45 proven.

2.2.6. The Totalized Version of RLD and Extraction
Although RLD (and its exact modification) is proven correct, it is not executable in the
relational form implemented in Coq and cannot be extracted as an OCaml program.
In order to utilize Coq’s extraction facility, we apply a standard trick of totalization of

2.3 Conclusion 111

the algorithm by bounding a priori the maximal depth of recursion. For that, we pass
an additional natural parameter to each main function of the algorithm. This parameter
keeps a bound for a number of possible recursive calls. Each consecutive recursive call
is performed with an old value of n (received from the caller) decreased by one. Once a
maximum depth of recursion is reached that is, n reaches 0, the algorithm aborts with
an exception. The algorithm is then used with a threshold value n0. In practice, n0 can
always be chosen suitably large such that this depth of recursion is never reached.
This trick allows to define the algorithm by primitive recursion on a principal natural

parameter n and thus, the Coq’s extraction mechanism is applicable. The totalized ver-
sion of RLD is given in Figure 2.7. Error denotes the exception monad, and StateT is the
state monad transformer. For efficiency reasons, one can slightly tweak the algorithms
and avoid an extra recursive call to solve_all by distinguishing a case in solve_all
when a worklist w contains exactly one element.

Coq’s extraction tool is applicable to this implementation. The problem of correctness
of the extracted implementation of the algorithm in ML is thus reduced to correctness
of the Coq’s extraction facility.

2.3. Conclusion
We have presented a certified solver RLD and proved that it is exact for a special
subclass of constraint systems, but not exact in general. We have presented a novel
solver RLDE which is exact and moreover, belongs to the class of chaotic iteration
solvers. The latter fact makes it possible to adapt RLDE for using with widening and
narrowing operators or a combined operator introduced in [ASV13]. This version of
RLDE differs from the version published in the technical report [HKS13] and is more
optimal. The current version of the solver became possible by virtue of characterization
of purity in the general monadic framework rather than for states only.
We have formulated sufficient conditions for termination of both presented solvers.

These are the finiteness of a constraint system and the ascending chain condition of a
(semi-)lattice.
We have performed some experimental evaluations of RLD results of which are not

included in the thesis. During experiments, an interesting phenomenon was revealed.
On all available benchmarks, RLD and RLDE perform better if the list of variables
w is reversed prior to calling solve_allw. It is interesting to investigate if there is any
fundamental reason for such a behaviour or is it just a coincidence, or benchmark specific
phenomenon. Tweaked in that way versions of the solvers perform 10–20% better than
TD by Le Charlier and Van Hentenryck on our benchmarks while the original versions
perform comparably equal to TD.
Further possible directions of work include versions of RLD (RLDE) that support

constraint systems with side-effects and systems with multiple constraints for the same
variable.

112 Verified Generic Fixpoint Algorithms

Fixpoint solve (n : nat) (x : Var.t) (s : state) : Error state :=
match n with
| 0 => error
| S k =>

if is_stable_b x s then
value s

else
let s0 := add_stable x s in
do p <- F x (evalget k x) s0;
let (d, s1) := p in
let cur := getval s1 x in
let new := D.join cur d in

if D.leq new cur then
value s1

else
let s2 := setval x new s1 in
let (w, s3) := extract_work x s2 in

solve_all k w s3
end

with solve_all (n : nat) (w : list Var.t) (s : state) : Error state :=
match n with
| 0 => error
| S k =>

match w with
| [] => value s
(*| [x] => solve k x s*)
| x :: l => (solve k x s) >>= solve_all k l

end
end

with evalget (n : nat) (x y : Var.t) : (StateT state) Error D.t :=
match n with
| 0 => fun s => error
| S k =>

fun s =>
do s1 <- solve k y s;
let s2 := add_infl y x s1 in
let d := getval s1 y in
value (d, s2)

end.

Figure 2.7.: The totalized version of RLD implemented in Coq

References
[AJ94] Samson Abramsky and Achim Jung. Domain theory. In Handbook of Logic

in Computer Science, pages 1–168. Clarendon Press, 1994.

[AM96] Samson Abramsky and Guy McCusker. Linearity, sharing and state: a fully
abstract game semantics for idealized algol with active expressions. Electr.
Notes Theor. Comput. Sci., 3, 1996.

[AMJ94] Samson Abramsky, Pasquale Malacaria, and Radha Jagadeesan. Full ab-
straction for pcf. In Masami Hagiya and John C. Mitchell, editors, TACS,
volume 789 of Lecture Notes in Computer Science, pages 1–15. Springer,
1994.

[ASV13] Kalmer Apinis, Helmut Seidl, and Vesal Vojdani. How to combine widening
and narrowing for non-monotonic systems of equations. In Hans-Juergen
Boehm and Cormac Flanagan, editors, PLDI, pages 377–386. ACM, 2013.

[BC04] Yves Bertot and Pierre Castéran. Interactive Theorem Proving and Program
Development: Coq’Art: The Calculus of Inductive Constructions. Texts in
Theoretical Computer Science. An EATCS Series. Springer, 2004.

[BCDdS02] Gilles Barthe, Pierre Courtieu, Guillaume Dufay, and Simão Melo de Sousa.
Tool-assisted specification and verification of the javacard platform. In
Hélène Kirchner and Christophe Ringeissen, editors, AMAST, volume 2422
of Lecture Notes in Computer Science, pages 41–59. Springer, 2002.

[BGL04] Yves Bertot, Benjamin Grégoire, and Xavier Leroy. A structured approach
to proving compiler optimizations based on dataflow analysis. In Filliâtre
et al. [FPMW06], pages 66–81.

[BHK13] Andrej Bauer, Martin Hofmann, and Aleksandr Karbyshev. On monadic
parametricity of second-order functionals. In Frank Pfenning, editor, FoS-
SaCS, volume 7794 of Lecture Notes in Computer Science, pages 225–240.
Springer, 2013.

[BKV10] Nick Benton, Andrew Kennedy, and Carsten Varming. Formalizing do-
mains, ultrametric spaces and semantics of programming languages, 2010.
Submitted to Math. Struct. in Comp. Science.

[BLMP13] Sandrine Blazy, Vincent Laporte, André Maroneze, and David Pichardie.
Formal verification of a C value analysis based on abstract interpretation.
In SAS, 2013. To appear.

114 REFERENCES

[Bou93] François Bourdoncle. Efficient chaotic iteration strategies with widenings.
In In Proceedings of the International Conference on Formal Methods in
Programming and their Applications, pages 128–141. Springer-Verlag, 1993.

[CC77a] Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lat-
tice model for static analysis of programs by construction or approximation
of fixpoints. In Robert M. Graham, Michael A. Harrison, and Ravi Sethi,
editors, POPL, pages 238–252. ACM, 1977.

[CC77b] Patrick Cousot and Radhia Cousot. Automatic synthesis of optimal invari-
ant assertions: Mathematical foundations. In Proceedings of the 1977 sym-
posium on Artificial intelligence and programming languages, pages 1–12,
New York, NY, USA, 1977. ACM.

[CGD04] Solange Coupet-Grimal and William Delobel. A uniform and certified ap-
proach for two static analyses. In Filliâtre et al. [FPMW06], pages 115–137.

[CH88] Thierry Coquand and Gérard P. Huet. The calculus of constructions. Inf.
Comput., 76(2/3):95–120, 1988.

[CH92] Baudouin Le Charlier and Pascal Van Hentenryck. A universal top-down fix-
point algorithm. Technical Report CS-92-25, Brown University, Providence,
RI 02912, 1992.

[Cou81] Patrick Cousot. Semantic foundations of program analysis. In Steven S.
Muchnick and Neil D. Jones, editors, Program Flow Analysis: Theory and
Applications, chapter 10, pages 303–342. Prentice-Hall, Inc., Englewood
Cliffs, New Jersey, 1981.

[CP88] Thierry Coquand and Christine Paulin. Inductively defined types. In Per
Martin-Löf and Grigori Mints, editors, Conference on Computer Logic, vol-
ume 417 of Lecture Notes in Computer Science, pages 50–66. Springer, 1988.

[Esc12] Martín Escardó. Continuity of Gödel’s system T functionals. Online, http:
//www.cs.bham.ac.uk/~mhe/dialogue/dialogue.html, July 2012.

[FPMW06] Jean-Christophe Filliâtre, Christine Paulin-Mohring, and Benjamin Werner,
editors. Types for Proofs and Programs, International Workshop, TYPES
2004, Jouy-en-Josas, France, December 15-18, 2004, Revised Selected Pa-
pers, volume 3839 of Lecture Notes in Computer Science. Springer, 2006.

[Fre90] Peter J. Freyd. Recursive types reduced to inductive types. In LICS, pages
498–507. IEEE Computer Society, 1990.

[Fre91] Peter J. Freyd. Remarks on algebraically compact categories. In Applications
of Categories in Computer Science. Proceedings of the LMS Symposium,
Durham, volume 177, pages 95–106, 1991.

http://www.cs.bham.ac.uk/~mhe/dialogue/dialogue.html
http://www.cs.bham.ac.uk/~mhe/dialogue/dialogue.html

REFERENCES 115

[FS99] Christian Fecht and Helmut Seidl. A faster solver for general systems of
equations. Sci. Comput. Program., 35(2):137–161, 1999.

[GMT08] Georges Gonthier, Assia Mahboubi, and Enrico Tassi. A Small Scale Reflec-
tion Extension for the Coq system. Rapport de recherche RR-6455, INRIA,
2008.

[GP07] Eduardo Giménez and Castéran Pierre. A tutorial on [co-]inductive types
in coq, August 2007. http://coq.inria.fr/documentation.

[GWB98] Jürgen Giesl, ChristophWalther, and Jürgen Brauburger. Termination anal-
ysis for functional programs. In Automated Deduction — A Basis for Ap-
plications, Vol. III, Applied Logic Series 10, pages 135–164. Kluwer, 1998.

[Han73] Per Brinch Hansen. Concurrent programming concepts. ACM Comput.
Surv., 5(4):223–245, 1973.

[HKS10a] Martin Hofmann, Aleksandr Karbyshev, and Helmut Seidl. Verifying a local
generic solver in Coq. In Radhia Cousot and Matthieu Martel, editors, SAS,
volume 6337 of Lecture Notes in Computer Science, pages 340–355. Springer,
2010.

[HKS10b] Martin Hofmann, Aleksandr Karbyshev, and Helmut Seidl. What is a pure
functional? In Samson Abramsky, Cyril Gavoille, Claude Kirchner, Fried-
helm Meyer auf der Heide, and Paul G. Spirakis, editors, ICALP (2), volume
6199 of Lecture Notes in Computer Science, pages 199–210. Springer, 2010.

[HKS13] Martin Hofmann, Aleksandr Karbyshev, and Helmut Seidl. On the veri-
fication of local generic solvers. Technical report, Technische Universität
München, 2013.

[HO00] J. M. E. Hyland and C.-H. Luke Ong. On full abstraction for pcf: I, ii, and
iii. Inf. Comput., 163(2):285–408, 2000.

[HP07] Martin Hofmann and Mariela Pavlova. Elimination of ghost variables in
program logics. In Gilles Barthe and Cédric Fournet, editors, Proc. Trust-
worthy Global Computing, LNCS 4912, volume 4912 of Lecture Notes in
Computer Science, pages 1–20. Springer, 2007.

[Jon83] Cliff B. Jones. Tentative steps toward a development method for interfering
programs. ACM Trans. Program. Lang. Syst., 5(4):596–619, 1983.

[JT93] Achim Jung and Jerzy Tiuryn. A new characterization of lambda definabil-
ity. In Marc Bezem and Jan Friso Groote, editors, TLCA, volume 664 of
Lecture Notes in Computer Science, pages 245–257. Springer, 1993.

[KA13] Aleksandr Karbyshev and Kalmer Apinis. Solvers: verified fixpoint algo-
rithms. https://github.com/karbyshev/solvers/, 2013.

http://coq.inria.fr/documentation
https://github.com/karbyshev/solvers/

116 REFERENCES

[Kar13] Aleksandr Karbyshev. Purity: the accompanying Coq implementation.
https://github.com/karbyshev/purity/, 2013.

[Kat05] Shin-ya Katsumata. A semantic formulation of ⊤⊤-lifting and logical pred-
icates for computational metalanguage. In C.-H. Luke Ong, editor, CSL,
volume 3634 of Lecture Notes in Computer Science, pages 87–102. Springer,
2005.

[Kil73] Gary A. Kildall. A unified approach to global program optimization. In
Patrick C. Fischer and Jeffrey D. Ullman, editors, POPL, pages 194–206.
ACM Press, 1973.

[KN03] Gerwin Klein and Tobias Nipkow. Verified bytecode verifiers. Theor. Com-
put. Sci., 3(298):583–626, 2003.

[KS12] Steven Keuchel and Tom Schrijvers. Modular monadic reasoning, a (co-
)routine. In Ralf Hinze, editor, Implementation and Application of Func-
tional Languages, 24th Symposium, Pre-Proceedings, 2012.

[Ler09] Xavier Leroy. A formally verified compiler back-end. J. Autom. Reasoning,
43(4):363–446, 2009.

[Lon99] John Longley. When is a functional program not a functional program? In
ICFP, pages 1–7, 1999.

[Lon02] John Longley. The sequentially realizable functionals. Ann. Pure Appl.
Logic, 117(1-3):1–93, 2002.

[Mog91] Eugenio Moggi. Notions of computation and monads. Inf. Comput.,
93(1):55–92, 1991.

[Muc97] Steven S. Muchnick. Advanced Compiler Design and Implementation. Mor-
gan Kaufmann, 1997.

[OG76] Susan S. Owicki and David Gries. Verifying properties of parallel programs:
An axiomatic approach. Commun. ACM, 19(5):279–285, 1976.

[OR00] Peter W. O’Hearn and John C. Reynolds. From algol to polymorphic linear
lambda-calculus. J. ACM, 47(1):167–223, 2000.

[PBB+04] Mariela Pavlova, Gilles Barthe, Lilian Burdy, Marieke Huisman, and Jean-
Louis Lanet. Enforcing high-level security properties for applets. In Jean-
Jacques Quisquater, Pierre Paradinas, Yves Deswarte, and Anas Abou El
Kalam, editors, CARDIS, pages 1–16. Kluwer, 2004.

[Pit96] AndrewM. Pitts. Relational properties of domains. Inf. Comput., 127(2):66–
90, 1996.

https://github.com/karbyshev/purity/

REFERENCES 117

[PPM89] Frank Pfenning and Christine Paulin-Mohring. Inductively defined types
in the calculus of constructions. In Michael G. Main, Austin Melton,
Michael W. Mislove, and David A. Schmidt, editors, Mathematical Founda-
tions of Programming Semantics, volume 442 of Lecture Notes in Computer
Science, pages 209–228. Springer, 1989.

[Rey83] John C. Reynolds. Types, abstraction and parametric polymorphism. In
IFIP Congress, pages 513–523, 1983.

[Sim98] Alex K. Simpson. Lazy functional algorithms for exact real functionals. In
Lubos Brim, Jozef Gruska, and Jirí Zlatuska, editors, Proc. MFCS, LNCS
1450, volume 1450 of Lecture Notes in Computer Science, pages 456–464.
Springer, 1998.

[SU06] Morten Heine Sørensen and Pawel Urzyczyn. Lectures on the Curry-Howard
Isomorphism, Volume 149 (Studies in Logic and the Foundations of Math-
ematics). Elsevier Science Inc., New York, NY, USA, 2006.

[SWH10] Helmut Seidl, Reinhard Wilhelm, and Sebastian Hack. Übersetzerbau: Anal-
yse und Transformation. Springer Verlag, 2010.

[Coq12] The Coq Development Team. The Coq proof assistant reference manual.
TypiCal Project (formerly LogiCal), 2012. Version 8.4.

[Voi09] Janis Voigtländer. Free theorems involving type constructor classes: func-
tional pearl. In Graham Hutton and Andrew P. Tolmach, editors, ICFP,
pages 173–184. ACM, 2009.

[VV09] Vesal Vojdani and Varmo Vene. Goblint: Path-sensitive data race analysis.
In Annales Univ. Sci. Budapest., Sect. Comp, volume 30, pages 141–155,
2009.

[Wad89] Philip Wadler. Theorems for free! In FPCA, pages 347–359, 1989.

[Wad95] Philip Wadler. Monads for functional programming. In Johan Jeuring and
Erik Meijer, editors, Advanced Functional Programming, volume 925 of Lec-
ture Notes in Computer Science, pages 24–52. Springer, 1995.

[Wal94] Christoph Walther. On proving the termination of algorithms by machine.
Artif. Intell., 71(1):101–157, 1994.

Appendices

A. Appendix to Chapter 1

A.1. Proof of Theorem 1.2.11
Proof. One proves the following stronger statement by induction on typing derivations.
Given Γ ⊢ e : τ and environments η for Γ and T and η′ for Γ and T ′ then

∀x. (η x) JΓ(x)Krel
T rel (η

′ x) implies JeKT (η)T rel(JτKrel
T rel) JeKT ′(η′).

Thus, assume
∀c. JcKT Jτ cKrel

T rel JcKT ′ (A.1)
and

∀x. (η x) Jτ cKrel
T rel (η

′ x). (A.2)
(Const) (valT JcKT)T rel(JτKrel

T rel) (valT ′JcKT ′) follows from acceptability of T rel and the
assumption (A.1).
(Var) (valT (η x))T rel(JτKrel

T rel) (valT ′(η x)) follows from acceptability of T rel and the
assumption (A.2).
(Abs) Assume that Γ, x : τ1 ⊢ e : τ2 and

JeKT (η1)T rel(Jτ2Krel
T rel) JeKT ′(η′1) (A.3)

for all η1 for (Γ, x : τ1) and T and η′1 for (Γ, x : τ1) and T ′. To show is

(valT (λv.JeKT (η[x7→v])))T rel(Jτ1 → τ2Krel
T rel) (valT ′(λv.JeKT ′(η′[x7→v]))).

For that, we apply acceptability of T rel (for val) and take v Jτ1Krel
T rel v

′. It is left to show

(JeKT (η[x 7→v]))T rel(Jτ2Krel
T rel) (JeKT ′(η[x7→v′]))

and it follows from the induction hypothesis (A.3).
(App) Assume that Γ ⊢ e1 : τ1 → τ2, Γ ⊢ e2 : τ1 such that

Je1KT (η1)T rel(Jτ1 → τ2Krel
T rel) Je1KT ′(η′1) (A.4)

for all η1 for Γ and T and η′1 for Γ and T ′, and

Je2KT (η2)T rel(Jτ1Krel
T rel) Je2KT ′(η′2) (A.5)

for all η2 for Γ and T and η′2 for Γ and T ′. To show is

(bindT (Je1KT (η)) (bindT (Je2KT (η))))T rel(Jτ2Krel
T rel)

(bindT ′(Je1KT ′(η′)) (bindT ′(Je2KT ′(η′)))).

122 Appendix to Chapter 1

Applying acceptability of T rel (for bind), we obtain two goals:

Je1KT (η)T rel(Jτ1Krel
T rel →̇ T rel(Jτ2Krel

T rel) Je1KT ′(η′)

which holds by (A.4), and

bindT (Je2KT (η)) ((Jτ1Krel
T rel →̇ T rel(Jτ2Krel

T rel)) →̇ T rel(Jτ2Krel
T rel)) bindT ′(Je2KT ′(η′)).

For the latter, assume f : Jτ1KT → T Jτ2KT and f ′ : Jτ1KT ′ → T ′Jτ2KT ′ such that

f (Jτ1Krel
T rel →̇ T rel(Jτ2Krel

T rel) f
′. (A.6)

It is sufficient to show

(bindT (Je2KT (η)) f)T rel(Jτ2Krel
T rel) (bindT ′(Je2KT ′(η′)) f ′)

which follows from acceptability of T rel (for bind) and assumptions (A.5), (A.6).
(Prod) Assume that Γ ⊢ e1 : τ1, Γ ⊢ e2 : τ2 such that

Je1KT (η1)T rel(Jτ1Krel
T rel) Je1KT ′(η′1) (A.7)

for all η1 for Γ and T and η′1 for Γ and T ′, and

Je2KT (η2)T rel(Jτ2Krel
T rel) Je2KT ′(η′2) (A.8)

for all η2 for Γ and T and η′2 for Γ and T ′. To show is

bindT (Je1KT (η)) (bindT (Je2KT (η)) ◦ (curry valJτ1KT×Jτ2KT
T))

T rel(Jτ1Krel
T rel ×̇ Jτ2Krel

T rel)

bindT ′(Je1KT ′(η)) (bindT ′(Je2KT ′(η)) ◦ (curry valJτ1KT ′×Jτ2KT ′
T ′)).

Using acceptability of T rel (for bind) we obtain the following two goals:

Je1KT (η)T rel(Jτ1Krel
T rel) Je1KT ′(η′)

which holds by (A.7) and

(bindT (Je2KT (η)) ◦ (curry valT))
(Jτ1Krel

T rel →̇ T rel(Jτ1Krel
T rel ×̇ Jτ2Krel

T rel)
)

(bindT ′(Je2KT ′(η′)) ◦ (curry valT ′)).

For the latter, take x, x′ such that x Jτ1Krel
T rel x

′ and show, after simplification,

(bindT (Je2KT (η)) (curry valT x))T rel(Jτ1Krel
T rel ×̇ Jτ2Krel

T rel)

(bindT ′(Je2KT ′(η)) (curry valT ′ x′)).

A.1 Proof of Theorem 1.2.11 123

Again, we apply acceptability of T rel (for bind) and get two goals. The first one

Je2KT (η)T rel(Jτ2Krel
T rel) Je2KT ′(η′)

follows from (A.8). To prove the second one we take y, y′ such that y Jτ2Krel
T rel y

′ and show

valT (x, y)T rel(Jτ1Krel
T rel ×̇ Jτ2Krel

T rel) valT (x′, y′).

Indeed, it follows from acceptability of T rel (for val) and the assumptions on x, x′ and
y, y′.
(Fst) Assume that Γ ⊢ e : τ1 × τ2,

JeKT (η1)T rel(Jτ1 × τ2Krel
T rel) JeKT ′(η′1) (A.9)

for all η1 for Γ and T and η′2 for Γ and T ′. To show is

(bindT (JeKT (η)) (valT ◦π1))T rel(Jτ1Krel
T rel) (bindT ′(JeKT ′(η)) (valT ′ ◦π1)).

Applying acceptability of T rel (for bind), we obtain two goals:

JeKT (η)T rel(Jτ1 × τ2Krel
T rel) JeKT ′(η′)

which holds by (A.9) and

(valT ◦π1) (Jτ1 × τ2Krel
T rel →̇ T rel(Jτ1Krel

T rel)) (valT ′ ◦π1).

For the latter, take p, p′ such that p Jτ1 × τ2Krel
T rel p

′ and show

(valT (fst p))T rel(Jτ1Krel
T rel) (valT ′(fst p′)).

It holds by acceptability of T rel (for val) and the assumption on x, x′.
(Snd) Similarly to (Fst).
(Let) Assume that Γ ⊢ e1 : τ1, Γ, x : τ1 ⊢ e2 : τ2 and

Je1KT (η1)T rel(Jτ1Krel
T rel) Je1KT ′(η′1) (A.10)

for all η1 for Γ and T and η′1 for Γ and T ′, and

Je2KT (η2)T rel(Jτ2Krel
T rel) JeKT ′(η′2) (A.11)

for all η2 for (Γ, x : τ1) and T and η′2 for (Γ, x : τ1) and T ′. We show

(bindT (Je1KT (η)) (λv.Je2KT (η[x 7→v])))T rel(Jτ2Krel
T rel)

(bindT ′(Je1KT ′(η)) (λv.Je2KT ′(η′[x 7→v]))).

After application of acceptability of T rel (for bind) the two new goals are

Je1KT (η)T rel(Jτ1Krel
T rel) Je1KT ′(η′)

124 Appendix to Chapter 1

which holds by (A.10) and

λv.Je2KT (η[x 7→v]) (Jτ1Krel
T rel →̇ T rel(Jτ2Krel

T rel))λv.Je2KT ′(η′[x 7→v]).

For the second one, take v, v′ such that v (Jτ1Krel
T rel) v

′ and show

(Je2KT (η[x7→v]))T rel(Jτ2Krel
T rel) (Je2KT ′(η[x 7→v′])).

It follows from the induction hypothesis (A.11).
(Rec) (for the partial case only) Assume that Γ, x : τ1, f : τ1 → τ2 ⊢ e : τ2 and

JeKT (η1)T rel(Jτ2Krel
T rel) JeKT ′(η′1) (A.12)

for all η1 for (Γ, x : τ1, f : τ1 → τ2) and T and η′1 for (Γ, x : τ1, f : τ1 → τ2) and T ′. We
have to establish

(valT (fix (λh.λv.JeKT (η[f 7→h][x 7→v]))))T rel(Jτ1 → τ2Krel
T rel)

(valT ′(fix (λh.λv.JeKT ′(η′[f 7→h][x7→v])))).

Apply acceptability of T rel (for val) and take v, v′ such that v (Jτ1Krel
T rel) v

′. We show

fix (λh.λv.JeKT (η[f 7→h][x 7→v])) Jτ1 → τ2Krel fix (λh.λv.JeKT ′(η′[f 7→h][x 7→v])).

Since Jτ1 → τ2Krel
T rel = Jτ1Krel

T rel →̇ T rel(Jτ2Krel
T rel) is admissible by Lemma 1.2.10, we apply

the fixpoint induction principle (Lemma 1.1.9). First,

⊥ (Jτ1Krel
T rel →̇ T rel(Jτ2Krel

T rel))⊥

holds by strictness of T rel. Second, we show that for all h : Jτ1Krel
T → T Jτ2Krel

T and
h′ : Jτ1Krel

T ′ → T ′Jτ2Krel
T ′ such that h (Jτ1Krel

T rel →̇ T rel(Jτ2Krel
T rel))h

′

λv.JeKT (η[f 7→h][x7→v]) (Jτ1Krel
T rel →̇ T rel(Jτ2Krel

T rel))λv.JeKT ′(η[f 7→h′][x7→v])

holds. For that, we take v, v′ such that v (Jτ1Krel
T rel) v

′ and show

JeKT (η[f 7→h][x7→v])T rel(Jτ2Krel
T rel) JeKT ′(η[f 7→h′][x7→v′]).

Indeed, it holds by induction hypothesis (A.12).

B. Appendix to Chapter 2

B.1. Trace of cex to the erroneous modification of RLD
Below is the full trace of counterexample from Fig. 2.3 to the erroneous optimization of
RLD. The counterexample only works for the implementation as in Fig. 2.2.

1 * solve t
2 | sigma = [||]
3 | infl = [||]
4 | stable = {t}
5 | called = {t}
6 evaluate [[t]]
7 * solve s
8 | sigma = [||]
9 | infl = [||]

10 | stable = {s, t}
11 | called = {s, t}
12 evaluate [[s]]
13 * solve v
14 | sigma = [||]
15 | infl = [||]
16 | stable = {s, t, v}
17 | called = {s, t, v}
18 evaluate [[v]]
19 * solve s
20 s is stable, return
21 constraint for v is satisfied: Bot >= Bot
22 return
23 * solve x
24 | sigma = [||]
25 | infl = [|s -> [v], v -> [s]|]
26 | stable = {s, t, v, x}
27 | called = {s, t, x}
28 evaluate [[x]]
29 * solve s
30 s is stable, return
31 * solve u
32 | sigma = [||]
33 | infl = [|s -> [x, v], v -> [s]|]
34 | stable = {s, t, u, v, x}
35 | called = {s, t, u, x}
36 evaluate [[u]]
37 * solve v
38 v is stable, return
39 value of u has increased: Bot < ()
40 | sigma = [|u -> ()|]
41 | infl = [|s -> [x, v], v -> [u, s]|]
42 | stable = {s, t, u, v, x}
43 | called = {s, t, x}
44 extracted worklist = []
45 return
46 * solve v

126 Appendix to Chapter 2

47 v is stable, return
48 value of x has increased: Bot < ()
49 | sigma = [|u -> (), x -> ()|]
50 | infl = [|s -> [x, v], u -> [x], v -> [x, u, s]|]
51 | stable = {s, t, u, v, x}
52 | called = {s, t}
53 extracted worklist = []
54 return
55 value of s has increased: Bot < ()
56 | sigma = [|s -> (), u -> (), x -> ()|]
57 | infl = [|s -> [x, v], u -> [x], v -> [x, u, s], x -> [s]|]
58 | stable = {s, t, u, v, x}
59 | called = {t}
60 extracted worklist = [x, v]
61 | sigma = [|s -> (), u -> (), x -> ()|]
62 | infl = [|u -> [x], v -> [x, u, s], x -> [s]|]
63 | stable = {s, t, u}
64 | called = {t}
65 recompute variables from [x, v]:
66 * solve x
67 | sigma = [|s -> (), u -> (), x -> ()|]
68 | infl = [|u -> [x], v -> [x, u, s], x -> [s]|]
69 | stable = {s, t, u, x}
70 | called = {t, x}
71 evaluate [[x]]
72 * solve s
73 s is stable, return
74 * solve u
75 u is stable, return
76 * solve v
77 | sigma = [|s -> (), u -> (), x -> ()|]
78 | infl = [|s -> [x], u -> [x, x], v -> [x, u, s], x -> [s]|]
79 | stable = {s, t, u, v, x}
80 | called = {t, v, x}
81 evaluate [[v]]
82 * solve s
83 s is stable, return
84 value of v has increased: Bot < ()
85 | sigma = [|s -> (), u -> (), v -> (), x -> ()|]
86 | infl = [|s -> [v, x], u -> [x, x], v -> [x, u, s], x -> [s]|]
87 | stable = {s, t, u, v, x}
88 | called = {t, x}
89 extracted worklist = [u, s]
90 | sigma = [|s -> (), u -> (), v -> (), x -> ()|]
91 | infl = [|s -> [v, x], u -> [x, x], x -> [s]|]
92 | stable = {t, v, x}
93 | called = {t, x}
94 recompute variables from [u, s]:
95 * solve u
96 | sigma = [|s -> (), u -> (), v -> (), x -> ()|]
97 | infl = [|s -> [v, x], u -> [x, x], x -> [s]|]
98 | stable = {t, u, v, x}
99 | called = {t, u, x}

100 evaluate [[u]]
101 * solve v
102 v is stable, return
103 value of u has increased: () < Top
104 | sigma = [|s -> (), u -> Top, v -> (), x -> ()|]
105 | infl = [|s -> [v, x], u -> [x, x], v -> [u], x -> [s]|]
106 | stable = {t, u, v, x}
107 | called = {t, x}
108 extracted worklist = []

B.2 Trace of cex to the monotonic case for RLD 127

109 return
110 * solve s
111 | sigma = [|s -> (), u -> Top, v -> (), x -> ()|]
112 | infl = [|s -> [v, x], v -> [u], x -> [s]|]
113 | stable = {s, t, u, v, x}
114 | called = {s, t, x}
115 evaluate [[s]]
116 * solve v
117 v is stable, return
118 * solve x
119 x is stable, return
120 constraint for s is satisfied: () >= ()
121 return
122 return
123 constraint for x is satisfied: () >= ()
124 return
125 * solve v
126 v is stable, return
127 return
128 value of t has increased: Bot < ()
129 | sigma = [|s -> (), t -> (), u -> Top, v -> (), x -> ()|]
130 | infl = [|s -> [t, v, x], v -> [x, s, u], x -> [s, s]|]
131 | stable = {s, t, u, v, x}
132 | called = {}
133 extracted worklist = []
134 return

B.2. Trace of cex to the monotonic case for RLD
Below is the full trace of counterexample from Fig. 2.5 to monotonic case for RLD. The
counterexample demonstrate that RLD is not an exact solver. The counterexample only
works for the implementation as described in Subsection 2.2.3.

1 * solve t
2 | sigma = [||]
3 | infl = [||]
4 | stable = {t}
5 | called = {t}
6 evaluate [[t]]
7 * solve s
8 | sigma = [||]
9 | infl = [||]

10 | stable = {s, t}
11 | called = {s, t}
12 evaluate [[s]]
13 * solve v
14 | sigma = [||]
15 | infl = [||]
16 | stable = {s, t, v}
17 | called = {s, t, v}
18 evaluate [[v]]
19 * solve s
20 s is stable, return
21 constraint for v is satisfied: bot >= bot
22 return
23 * solve x
24 | sigma = [||]
25 | infl = [|s -> [v], v -> [s]|]
26 | stable = {s, t, v, x}

128 Appendix to Chapter 2

27 | called = {s, t, x}
28 evaluate [[x]]
29 * solve s
30 s is stable, return
31 * solve u
32 | sigma = [||]
33 | infl = [|s -> [x, v], v -> [s]|]
34 | stable = {s, t, u, v, x}
35 | called = {s, t, u, x}
36 evaluate [[u]]
37 * solve v
38 v is stable, return
39 constraint for u is satisfied: bot >= bot
40 return
41 * solve v
42 v is stable, return
43 * solve u
44 u is stable, return
45 value of x has increased: bot < a
46 | sigma = [|x -> a|]
47 | infl = [|s -> [x, v], u -> [x, x], v -> [x, u, s]|]
48 | stable = {s, t, u, v, x}
49 | called = {s, t}
50 extracted worklist = []
51 return
52 value of s has increased: bot < a
53 | sigma = [|s -> a, x -> a|]
54 | infl = [|s -> [x, v], u -> [x, x], v -> [x, u, s], x -> [s]|]
55 | stable = {s, t, u, v, x}
56 | called = {t}
57 extracted worklist = [x, v]
58 | sigma = [|s -> a, x -> a|]
59 | infl = [|u -> [x, x], v -> [x, u, s], x -> [s]|]
60 | stable = {s, t, u}
61 | called = {t}
62 recompute variables from [x, v]:
63 * solve x
64 | sigma = [|s -> a, x -> a|]
65 | infl = [|u -> [x, x], v -> [x, u, s], x -> [s]|]
66 | stable = {s, t, u, x}
67 | called = {t, x}
68 evaluate [[x]]
69 * solve s
70 s is stable, return
71 * solve u
72 u is stable, return
73 * solve v
74 | sigma = [|s -> a, x -> a|]
75 | infl = [|s -> [x], u -> [x, x, x], v -> [x, u, s], x -> [s]|]
76 | stable = {s, t, u, v, x}
77 | called = {t, v, x}
78 evaluate [[v]]
79 * solve s
80 s is stable, return
81 value of v has increased: bot < a
82 | sigma = [|s -> a, v -> a, x -> a|]
83 | infl = [|s -> [v, x], u -> [x, x, x], v -> [x, u, s], x -> [s]|]
84 | stable = {s, t, u, v, x}
85 | called = {t, x}
86 extracted worklist = [x, u, s]
87 | sigma = [|s -> a, v -> a, x -> a|]
88 | infl = [|s -> [v, x], u -> [x, x, x], x -> [s]|]

B.2 Trace of cex to the monotonic case for RLD 129

89 | stable = {t, v}
90 | called = {t}
91 recompute variables from [x, u, s]:
92 * solve x
93 | sigma = [|s -> a, v -> a, x -> a|]
94 | infl = [|s -> [v, x], u -> [x, x, x], x -> [s]|]
95 | stable = {t, v, x}
96 | called = {t, x}
97 evaluate [[x]]
98 * solve s
99 | sigma = [|s -> a, v -> a, x -> a|]

100 | infl = [|s -> [v, x], u -> [x, x, x], x -> [s]|]
101 | stable = {s, t, v, x}
102 | called = {s, t, x}
103 evaluate [[s]]
104 * solve v
105 v is stable, return
106 * solve x
107 x is stable, return
108 constraint for s is satisfied: a >= a
109 return
110 * solve u
111 | sigma = [|s -> a, v -> a, x -> a|]
112 | infl = [|s -> [x, v, x], u -> [x, x, x], v -> [s], x -> [s, s]|]
113 | stable = {s, t, u, v, x}
114 | called = {t, u, x}
115 evaluate [[u]]
116 * solve v
117 v is stable, return
118 value of u has increased: bot < a
119 | sigma = [|s -> a, u -> a, v -> a, x -> a|]
120 | infl = [|s -> [x, v, x], u -> [x, x, x], v -> [u, s], x -> [s, s]|]
121 | stable = {s, t, u, v, x}
122 | called = {t, x}
123 extracted worklist = [x, x, x]
124 | sigma = [|s -> a, u -> a, v -> a, x -> a|]
125 | infl = [|s -> [x, v, x], v -> [u, s], x -> [s, s]|]
126 | stable = {s, t, u, v}
127 | called = {t}
128 recompute variables from [x, x, x]:
129 * solve x
130 | sigma = [|s -> a, u -> a, v -> a, x -> a|]
131 | infl = [|s -> [x, v, x], v -> [u, s], x -> [s, s]|]
132 | stable = {s, t, u, v, x}
133 | called = {t, x}
134 evaluate [[x]]
135 * solve s
136 s is stable, return
137 * solve u
138 u is stable, return
139 * solve v
140 v is stable, return
141 constraint for x is satisfied: a >= a
142 return
143 * solve x
144 x is stable, return
145 * solve x
146 x is stable, return
147 return
148 * solve v
149 v is stable, return
150 constraint for x is satisfied: a >= a

130 Appendix to Chapter 2

151 return
152 * solve u
153 u is stable, return
154 * solve s
155 s is stable, return
156 return
157 * solve u
158 u is stable, return
159 value of x has increased: a < top
160 | sigma = [|s -> a, u -> a, v -> a, x -> top|]
161 | infl = [|s -> [x, x, v, x], u -> [x, x, x], v -> [x, x, x, u, s], x -> [s, s]|]
162 | stable = {s, t, u, v, x}
163 | called = {t}
164 extracted worklist = [s, s]
165 | sigma = [|s -> a, u -> a, v -> a, x -> top|]
166 | infl = [|s -> [x, x, v, x], u -> [x, x, x], v -> [x, x, x, u, s]|]
167 | stable = {t, u, v, x}
168 | called = {t}
169 recompute variables from [s, s]:
170 * solve s
171 | sigma = [|s -> a, u -> a, v -> a, x -> top|]
172 | infl = [|s -> [x, x, v, x], u -> [x, x, x], v -> [x, x, x, u, s]|]
173 | stable = {s, t, u, v, x}
174 | called = {s, t}
175 evaluate [[s]]
176 * solve v
177 v is stable, return
178 * solve x
179 x is stable, return
180 value of s has increased: a < top
181 | sigma = [|s -> top, u -> a, v -> a, x -> top|]
182 | infl = [|s -> [x, x, v, x], u -> [x, x, x], v -> [s, x, x, x, u, s], x -> [s]|]
183 | stable = {s, t, u, v, x}
184 | called = {t}
185 extracted worklist = [x, x, v, x]
186 | sigma = [|s -> top, u -> a, v -> a, x -> top|]
187 | infl = [|u -> [x, x, x], v -> [s, x, x, x, u, s], x -> [s]|]
188 | stable = {s, t, u}
189 | called = {t}
190 recompute variables from [x, x, v, x]:
191 * solve x
192 | sigma = [|s -> top, u -> a, v -> a, x -> top|]
193 | infl = [|u -> [x, x, x], v -> [s, x, x, x, u, s], x -> [s]|]
194 | stable = {s, t, u, x}
195 | called = {t, x}
196 evaluate [[x]]
197 * solve s
198 s is stable, return
199 * solve u
200 u is stable, return
201 * solve v
202 | sigma = [|s -> top, u -> a, v -> a, x -> top|]
203 | infl = [|s -> [x], u -> [x, x, x, x], v -> [s, x, x, x, u, s], x -> [s]|]
204 | stable = {s, t, u, v, x}
205 | called = {t, v, x}
206 evaluate [[v]]
207 * solve s
208 s is stable, return
209 value of v has increased: a < top
210 | sigma = [|s -> top, u -> a, v -> top, x -> top|]
211 | infl = [|s -> [v, x], u -> [x, x, x, x], v -> [s, x, x, x, u, s], x -> [s]|]
212 | stable = {s, t, u, v, x}

B.2 Trace of cex to the monotonic case for RLD 131

213 | called = {t, x}
214 extracted worklist = [s, x, x, x, u, s]
215 | sigma = [|s -> top, u -> a, v -> top, x -> top|]
216 | infl = [|s -> [v, x], u -> [x, x, x, x], x -> [s]|]
217 | stable = {t, v}
218 | called = {t}
219 recompute variables from [s, x, x, x, u, s]:
220 * solve s
221 | sigma = [|s -> top, u -> a, v -> top, x -> top|]
222 | infl = [|s -> [v, x], u -> [x, x, x, x], x -> [s]|]
223 | stable = {s, t, v}
224 | called = {s, t}
225 evaluate [[s]]
226 * solve v
227 v is stable, return
228 * solve x
229 | sigma = [|s -> top, u -> a, v -> top, x -> top|]
230 | infl = [|s -> [v, x], u -> [x, x, x, x], v -> [s], x -> [s]|]
231 | stable = {s, t, v, x}
232 | called = {s, t, x}
233 evaluate [[x]]
234 * solve s
235 s is stable, return
236 * solve u
237 | sigma = [|s -> top, u -> a, v -> top, x -> top|]
238 | infl = [|s -> [x, v, x], u -> [x, x, x, x], v -> [s], x -> [s]|]
239 | stable = {s, t, u, v, x}
240 | called = {s, t, u, x}
241 evaluate [[u]]
242 * solve v
243 v is stable, return
244 value of u has increased: a < top
245 | sigma = [|s -> top, u -> top, v -> top, x -> top|]
246 | infl = [|s -> [x, v, x], u -> [x, x, x, x], v -> [u, s], x -> [s]|]
247 | stable = {s, t, u, v, x}
248 | called = {s, t, x}
249 extracted worklist = [x, x, x, x]
250 | sigma = [|s -> top, u -> top, v -> top, x -> top|]
251 | infl = [|s -> [x, v, x], v -> [u, s], x -> [s]|]
252 | stable = {s, t, u, v}
253 | called = {s, t}
254 recompute variables from [x, x, x, x]:
255 * solve x
256 | sigma = [|s -> top, u -> top, v -> top, x -> top|]
257 | infl = [|s -> [x, v, x], v -> [u, s], x -> [s]|]
258 | stable = {s, t, u, v, x}
259 | called = {s, t, x}
260 evaluate [[x]]
261 * solve s
262 s is stable, return
263 * solve u
264 u is stable, return
265 * solve v
266 v is stable, return
267 constraint for x is satisfied: top >= top
268 return
269 * solve x
270 x is stable, return
271 * solve x
272 x is stable, return
273 * solve x
274 x is stable, return

132 Appendix to Chapter 2

275 return
276 * solve v
277 v is stable, return
278 constraint for x is satisfied: top >= top
279 return
280 constraint for s is satisfied: top >= top
281 return
282 * solve x
283 x is stable, return
284 * solve x
285 x is stable, return
286 * solve x
287 x is stable, return
288 * solve u
289 u is stable, return
290 * solve s
291 s is stable, return
292 return
293 constraint for x is satisfied: top >= top
294 return
295 * solve x
296 x is stable, return
297 * solve v
298 v is stable, return
299 * solve x
300 x is stable, return
301 return
302 * solve s
303 s is stable, return
304 return
305 * solve v
306 v is stable, return
307 return
308 value of t has increased: bot < top
309 | sigma = [|s -> top, t -> top, u -> top, v -> top, x -> top|]
310 | infl = [|s -> [t, x, x, v, x], u -> [x, x], v -> [x, x, x, u, s], x -> [s, s]|]
311 | stable = {s, t, u, v, x}
312 | called = {}
313 extracted worklist = []
314 return
315 The result solution:
316 [|s -> top, t -> top, u -> top, v -> top, x -> top|]

B.3. Functional implementation of RLDE

B.3 Functional implementation of RLDE 133

let extract_work x = fun s →
let w = get_infl x s in
let s0 = rem_infl x s in
let s1 = foldl (fun s y →rem_stable y (rem_called y s)) s0 w in

(w, s1)

let rec evalget x y : ErrorT (Statestate)D = fun s →
let s0 = solve y s in
let s1 = add_infl y x s0 in

if not (is_called x s1) then
(error, s1)

else
(value (getval s1 y), s1)

and solve x = fun s →
if is_stable x s then s else

let s0 = add_stable x s in
let s1 = add_called x s0 in
let (o, s2) = F x (evalget x) s1 in

match o with
| error → s2
| value d →

let s3 = rem_called x s2 in
let cur = getval s3 x in
let new = cur ⊔ d in

if (new ⊑ cur) then s3 else
let s4 = setval x new s3 in
let (w, s5) = extract_work x s4 in

solve_all w s5

and solve_all w = fun s →
match w with
| [] → s
| x :: xs → solve_all (solve x s) xs

let main X =
let sinit = (∅, ∅, ∅) in
let s = solve_all X sinit in

(getval s, get_stable s)

Figure B.1.: Functional implementation of RLDE with explicit state passing

	Introduction
	Monadic Parametricity
	Introduction
	Monadic Parametricity
	Acceptable Monadic Relations
	Parametricity Theorem
	Purity
	Second Order: the Total Case
	Second Order: the Partial Case
	Generalizations

	Monadic Parametricity for State Monads
	Relational Parametricity
	Monadic Parametricity
	Strategy Trees
	Existence of Strategy Trees
	Generalizations
	The Partial Case

	Monadic Parametricity and Continuity
	Applications
	Modulus of Continuity
	Formal Reasoning About Programs

	Conclusion

	Verified Generic Fixpoint Algorithms
	Introduction
	RLD Solver
	Description of RLD
	Correctness
	Exactness
	RLDE
	Termination and Complexity
	The Totalized Version of RLD and Extraction

	Conclusion

	References
	Appendices
	Appendix to Chapter 1
	Proof of Theorem 1.2.11

	Appendix to Chapter 2
	Trace of cex to the erroneous modification of RLD
	Trace of cex to the monotonic case for RLD
	Functional implementation of RLDE

