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Abstract

In this thesis field theoretical methods are applied to few- and many-body systems of strongly
interacting ultracold quantum gases, mainly using the functional renormalization group (fRG).
First, the quantum mechanical three-body problem of resonantly interacting bosons is solved
exactly within a two-channel model. It is shown how the recently observed universality of
the three-body parameter in Efimov physics can be explained from two-body physics only. In
a derivative expansion the four-body problem is analyzed. The four-body sector is governed
by a limit cycle flow and one finds that no additional four-body parameter is introduced in
the renormalization procedure. The second part of this thesis studies a single impurity im-
mersed in a majority Fermi sea. The impurity undergoes a transition from a polaron state to
a molecule for increasing attraction. In this context we develop a new, numerical fRG tech-
nique which allows the computation of Green’s functions with full frequency and momentum
dependence including full self-energy feedback. We compute the decay rates of excited states,
predict the existence of a highly excited repulsive polaron state and propose a radio-frequency
experiment to measure the impurity spectral function. Using a non-self-consistent T-matrix
approximation the impurity problem in two spatial dimensions as well as for mass imbalance
is studied. Our results are in excellent agreement with recent experiments and exemplify the
intricate interplay between few- and many-body physics in ultracold atomic systems.





Kurzfassung

In dieser Dissertation werden feldtheoretische Methoden auf Wenig- und Vielteilchenssys-
teme stark wechselwirkender, ultrakalter Quantengase angewandt, hauptsächlichlich unter
Verwendung der funktionalen Renormierungsgruppe (fRG). Zuerst leiten wir die exakte
Lösung des Dreikörperproblems resonant wechselwirkender Bosonen in einem Zwei-Kanal-
Model her. Es wird gezeigt, wie die kürzlich beobachtete Universalität des Dreikörperpara-
meters allein auf Basis von Zweiteilchen-Physik erklärt werden kann. In einer Ableitungsent-
wicklung wird das Vierteilchen-Problem analysiert. Der Vierteilchensektor wird bestimmt
durch einen Limit-Cycle-Fluss und man findet, dass kein weiterer Vierkörperparameter in
der Renormierungsprozedur eingeführt wird. Der zweite Teil dieser Dissertation betra-
chtet ein Fremdatom im Fermisee einer Majoritätsspezies. Für wachsende Attraktion voll-
zieht das Fremdatom einen Übergang von einem polaronischen Zustand zu einem Molekül.
In diesem Zusammenhang entwickeln wir eine neue, numerische fRG Methode, welche,
unter Einbindung der vollen Selbstenergie-Rückwirkung, die Berechnung von Greensfunk-
tionen mit voller Impuls- und Frequenzabhängigkeit erlaubt. Wir berechnen die Zerfall-
sraten der angeregten Zustände, sagen die Existenz eines hoch angeregten, repulsiven Polaron-
zustandes voraus, und schlagen ein Radiofrequenz-Experiment vor um die Spektralfunk-
tion des Fremdatoms zu messen. Anhand einer nicht-selbstkonsistenten T-Matrixnäherung
analysieren wir das Fremdatom-Problem in zwei räumlichen Dimensionen. Unsere Ergeb-
nisse sind in exzellenter Übereinstimmung mit Experimenten und veranschaulichen das kom-
plizierte Zusammenspiel von Wenig- und Vielteilchenphysik in ultrakalten, atomaren Syste-
men.
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Chapter One

Introduction

IN a system of many particles without any interactions, the single particle is ignorant of the
others and some might regard the systems as rather simple and uninteresting. As soon as

interactions are switched on the situation becomes, however, much more complex and intrigu-
ing. The particles start to influence each other and instead of non-interacting ‘bare’ particles
one deals with ‘dressed’ quasiparticles – effective degrees of freedom – whose properties, such
as their dispersion relation or their mutual interactions differ from the non-interacting case.

Due to instabilities in the effective interactions and the resulting symmetry breaking, even
truly new degrees of freedom may emerge such as composite Cooper pairs, molecules or
magnons. The description of this transformation from the simple to the complex is one aim
of theoretical physics. Since, furthermore, it is the microscopic few-body interactions that lay
the basis for the complicated, macroscopic many-body physics, a deep understanding of the
link between both the few- and many-body physics becomes indispensable.

When interactions are weak many well-controlled, theoretical approaches exist to describe
many-body systems [1, 2, 3, 4, 5]. The story becomes, however, increasingly complicated
when strong interactions are at work and no small parameter is available. In order to improve
the theoretical tools to tackle such problems, it is desirable to find experimentally realizable
systems which allow a reliable comparison of theory and experiment. Ultracold atoms provide
such a system [6] and in this theoretical thesis we apply functional renormalization group
techniques to ultracold atomic systems in the intricate strong coupling regime. The functional
renormalization group provides a way to study problems ranging from few- to many-body
physics in a unified framework. For this reason the link between few- and many-body physics
becomes particularly transparent in this approach which helps to systematically improve the
approximations used in the solution of many-body problems. Along this line we obtain results
in excellent agreement with experimental findings and predict effects which have subsequently
been observed in cold atom experiments.

The role of ultracold atoms

Dilute vapors of atoms can be confined in magnetic and optical traps using the intrinsic po-
larizability and magnetic moment of the atoms. Using various experimental techniques [7]
these vapors can then be cooled to extremely low temperatures of O (nK)which makes them to
what is today known as ultracold atoms. In terms of absolute temperatures ultracold atoms are
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among the coolest matter known in nature.1 With the exception of liquid Helium, at such low
temperatures the absolute ground state of the system is a solid and the ultracold gas is there-
fore in a metastable state. The decay of the ultracold vapor towards the solid state takes mainly
place due to three-body recombination collisions of atoms [11]. To increase the lifetime of the
ultracold atomic samples these processes have to be suppressed which is why the atomic gas has
to be made very dilute. Although in consequence the typical interparticle distance d becomes
rather large, it is because of the ultracold temperatures that the thermal de Broglie wavelength
of the atoms can by far exceed the interparticle spacing d and quantum (statistical) effects be-
come relevant. Exploiting this fact and the progress in experimental techniques led to the first
realization of an almost ideal Bose-Einstein condensate (BEC) in 1995 [12, 13], awarded with
the Nobel prize in 2001. Similarly, a degenerate, two-component Fermi gas was achieved in
1999 [14], leading to the observation of superfluid pairing and the realization of the BEC-BCS
crossover [15], see also [16].

Ultracold atoms can be described exceptionally well by theoretical physics for various rea-
sons. Most importantly, the interactions between the atoms can be modeled in very simple
terms although at first sight the interaction potential V (r ) of two colliding atoms is rather
complicated. In terms of this interaction potential, the corresponding interaction Hamilto-
nian is given by

Ĥint =

∫

d 3 r

∫

d 3 r ′ψ̂†(r′)ψ̂(r′)V (|r− r′|)ψ̂†(r)ψ̂(r). (1.1)

with creation and annihilation operators ψ̂†, ψ̂ of bare atoms of mass m and where at large
distances r the atoms interact via a van-der Waals type potential with a tail ∼ 1/r 6 [17]which
is a short-range potential [18]. The ultralow temperatures imply a very small collision energy
E = ħh2k2/m of the atoms. The scattering amplitude – which carries the full information
about the non-relativistic two-body scattering – is then given by the (s-wave) low-energy ex-
pansion (in three spatial dimensions)2

f (k) =
1

−1/a− i k +O (k2)
. (1.2)

The key to simplicity and an efficient description of ultracold atoms is that this scattering am-
plitude remains the exactly same no matter which concrete short-range interaction potential
is chosen. This applies in particular to the simple contact interaction V (r ) ∼ δ(r ) so that
ultracold atoms can theoretically be described by the much simpler Hamiltonian

Ĥint = gΛ

∫

d 3 r ψ̂†(r)ψ̂(r)ψ̂†(r)ψ̂(r). (1.3)

1In relative scales the temperatures are not as cold as they might seem: for instance, in experimentally realizable
two-component Fermi gases the Fermi temperature TF itself is very low so that the lowest achievable relative
temperature T /TF is today only on the percent level. This is comparable but not less than what is found in typical
metals at room temperature [8] or neutron stars [9, 10].

2Unless stated otherwise, we will work in ‘natural’ units ħh = 2m = kB = 1.
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Here, the coupling constant gΛ is chosen such that it yields the desired scattering length a in
Eq. (1.2). As long as all scales such as temperature or a possible Fermi energy are small the
low-energy limit is justified and the Hamiltionian (1.3) is a valid representation of the true
interaction Hamiltonian (1.1). In fact here we encounter a first example of the consequences
of the concept of universality to be discussed in more detail in Chapter 2 and which is a guid-
ing principle in the description of systems ranging from few- to many-body physics: the ob-
servable macrophysics, e.g. f (k), is independent of the exact realization of the microphysics,
e.g. V (r ), and it is described in terms of a few relevant parameters only; here the scattering
length a.

As a theorist one then arrives at a very pleasant situation: in contrast to other (strong
coupling) systems such as high-Tc superconductors or the quark-gluon plasma, we deal not
only with a Hamiltonian in whose validity we have large confidence – in contrast, e.g. to
the question of how well the Fermi-Hubbard model describes the physics of high-temperature
superconducting materials – but which is also rather simple – in contrast, e.g., to the standard
model governing the phase diagram of QCD.

There are also other advantages to cold atoms which make them interesting, among them
in particular Feshbach resonances and optical lattices. Using so-called Feshbach resonances
it is possible to adjust the interaction parameter gΛ and accordingly the scattering length a
almost at will. This tunability of the interaction strength opens up a whole new realm of pos-
sibilities and allows to enter the strong coupling regime in an experimentally controlled and
rather simple way. Furthermore, using optical lattices, the kinetic part of the Hamiltonian can
be manipulated and lattice Hamiltonians, such as the Fermi- or Bose-Hubbard model, can be
implemented. This led for instance to the observation of the Mott-Insulator to superfluid tran-
sition [19] and the detailed experimental study of the phase diagram of the Fermi-Hubbard
model is under way [20]. Using similar techniques, lower spatial dimensions with d < 3
can be studied. Today imaging techniques are available which even allow for the single-site re-
solved detection of atoms in optical lattices [21, 22] and which admit the study of the real-time
evolution of correlation functions in lattice systems far from equilibrium [23].3

It is important to keep in mind that there are also severe limitations to ultracold atoms.
For instance, cold atomic systems are finite systems and they are subject to the external trap-
ping potential which complicates the direct comparison of experimental data to theoretical
calculations which are often performed for bulk systems and in the thermodynamic limit.
Also the experimental analyzing techniques are rather limited in comparison to the plethora
of methods available for solid state systems. Most information about the cold atom clouds is
obtained from absorption imaging. During the imaging process the sample is unfortunately
destroyed so that experiments have to repeated very often to collect the necessary statistics.
Furthermore, the more sophisticated the data, the more relevant corrections to ‘ideal’ physics
become: range corrections, the intricate calibration of the temperature and atom number mea-
surement, and the relevance of transversal modes in reduced dimensions are among the com-

3There are many more possibilities to be listed: dipolar gases [24], reduced and mixed dimensions [25, 26],
(multiflavor) fermions [27], mass- [28] and spin-imbalance [29], artificial gauge fields [30], deterministic single-
lattice site preparation of many-body states [31], and many more (for a comprehensive overview and review see
e.g. [6, 32]).
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plications. Finally, it should be emphasized that ultracold atoms are after all artificial systems
which indeed help to understand complex physics’ questions. But in the end, it is worthwhile
to take the step back to, e.g., hard condensed matter physics, and apply the knowledge gained.

Despite these limitations, we have seen that ultracold atoms provide a large toolbox to set
up systems virtually at will, which is why ultracold atomic gases are often highlighted for their
role as universal quantum simulators [20] reviving Feynman’s original idea [33]. The idea is
that Hamiltonians, whose physics is too complicated to be solved analytically or by numeri-
cal means on a classical computer, can be designed in the laboratory and it is nature, namely
the experiment itself, which then performs the calculation. In a sense, the experiment can be
viewed as an instance of a very specialized quantum computer, and much research is focused
on proposals of how to experimentally realize Hamiltonians of interest. Recent experiments
studying the unitary Fermi gas [34, 35] or the realization of the Bose-Hubbard Hamiltonian
[19, 36] can be interpreted as such quantum simulations, where ultracold atoms provide an
ideal basis for testing theoretical many-body techniques versus experimental data. In this re-
gard, in particular the excellent agreement between experiment and theory for the unitary
Fermi gas, a long standing, strong coupling many-body problem [16], is truly remarkable
[35, 37]. The possibility to improve our theoretical methods as well as our understanding of
many-body physics on the basis of detailed experiments which can directly test the theoretical
predictions makes ultracold atoms so appealing for many branches of theoretical physics, rang-
ing from hard condensed matter physics [38], to quantum information processing [39, 40], to
nuclear matter [41], to high-energy and black-hole physics [42, 43].

Outline

Few-body Efimov physics. In the first part of this thesis, cf. Chapters 2 and 3, we focus
on the few-body aspect of cold atoms. This is an important aspect on its own since the few-
body physics ultimately determines the stability of the cold atomic samples. On the other
hand a thorough investigation of the few-body physics leads to effects not present in standard
condensed matter systems. A prominent example is the Efimov effect [44]which is introduced
in detail in the beginning of Chapter 2: three particles interacting via resonant short-range
potentials form an infinite number of three-body bound states which obey universal scaling
relations. These states exist even in a regime where the two-body interaction does not support
a bound state. Although predicted in 1970 in the context of nuclear physics, Efimov states
have been first observed in ultracold atoms [45].

We study the Efimov effect from a functional renormalization group (fRG) perspective.4

One finds that the well-known unitary, non-Gaussian renormalization group fixed point in
the two-body sector is supplemented by a universal RG limit cycle running of the six-point
correlation function. The Efimov effect has profound consequences regarding universality as
a new three-body parameter has to be introduced in addition to the scattering length a which
fixes the overall phase of this limit cycle. A priori this three-body parameter is not expected to
be a universal number. Nonetheless, recent observations [47] suggest such a universality of the

4For a review on the application of the fRG to the Efimov effect in the case of zero-range interactions, see
[46].
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three-body parameter and its origin had been unclear. On the basis of an exact solution of the
three-body problem, we show in Chapter 2 how the observed universality can quantitatively
be explained in terms of the standard two-channel model of ultracold atoms close to a Feshbach
resonance. This model is of great relevance for the many cold atom experiments that employ
Feshbach resonances. By studying also the non-universal corrections due to the finite range
of the microscopic interaction potentials, our results give further insight into the limitations
of universality in cold atomic systems in general and how the microscopical details governing
the collisions of atoms and molecules have impact on the observable physics.

Furthermore, it had been an open question whether further parameters are necessary
when going to the four-body problem. From the numerical solution of the four-body prob-
lem for the lowest four-body bound states, Greene and coworkers [48] conjectured that no
such parameters are needed. They however could not access the particularly interesting, scale-
invariant unitarity point for infinite scattering length at the scattering threshold where physics
truly becomes universal. In Chapter 3 we study the four-body problem using RG equations.
Within a derivative expansion we are able to support the conjecture that indeed no four-body
parameter is needed for the consistent renormalization of four-body physics by studying the
problem directly for the highly excited states in the scaling limit.

Many-body polaron physics. The second part of this thesis is related to the quantum simu-
lation aspect of cold atoms and the question: can the Stoner transition to itinerant ferromag-
netism be realized in a Fermi gas of ultracold atoms? This question has recently been debated
[49, 50, 51, 52, 53, 54, 55, 56] and first measurements seemed in favor of such a transition
[49]. The situation exemplifies how subtle differences between the paradigm condensed mat-
ter and cold atom systems can complicate an attempted quantum simulation. These subtle
differences arise from the microscopic physics and can be understood from a simple argument:
consider a three-dimensional electron gas with screened interactions (the condensed matter
system) versus a two-component, ultracold Fermi gas (the quantum simulator). Both systems
are described by an effective Hamiltonian Ĥ with a contact interaction ∼ gΛ(ψ̂

†ψ̂)2 as given
by Eq. (1.3). In the electron gas the interaction represents the screened Coulomb interaction
which is repulsive, i.e. gΛ > 0. Contrarily, the contact interaction in the cold atomic system
is determined by the short-range interatomic van der Waals potential which is attractive and
thus gΛ < 0. In consequence, although both the cold atom as well as the condensed matter
system may feature the same positive scattering length a, the former system remains micro-
scopically attractive – and features an associated molecular bound state – and thus can simulate
the screened electron gas only in a very limited regime [49, 50, 51].

In Chapter 4 we study this highly controversial problem [49, 50, 51, 52, 53, 54, 55, 56]
in the limit of extreme spin imbalance where a single ↓-impurity is immersed in a Fermi sea
of ↑-atoms. In the context of this so-called Fermi polaron problem, we developed a new, nu-
merical fRG technique which allows to study the RG flow of full spectral functions. In terms
of diagrams, our method is similar to a selfconsistent Ward-Luttinger approach [37, 57, 58].
The results from the fRG are in excellent agreement with recent diagrammatic Monte Carlo
calculations [59, 60] for various ground state properties and depending on the interaction
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strength one finds a transition in the ground state from a molecular to a dressed impurity state
which interacts attractively with the majority atoms. Additionally, the algorithm allows the
calculation of the decay rates of the molecule and attractive polaron across the transition.

But most importantly, the resulting spectral function reveals that the impurity can also
propagate as a highly excited, metastable repulsive polaron. In the limit of a going to zero
from above, quasiparticle weight is shifted towards the repulsive polaron excitation which,
in this regime, becomes stable. This can be viewed as an a posteriori justification for using
a weakly-coupled effective (Fermi liquid) field theory for stable, repulsively interacting po-
larons in the limit of small positive scattering length a. Only in this limit a quantum simu-
lation of the repulsive Fermi gas of ‘standard’ condensed matter physics is possible. Contrar-
ily, when approaching the regime of strong repulsion the repulsive polaron decays into the
low-lying molecular states via three- and higher-body processes and the attempted quantum
simulation becomes impossible. For this reason the Stoner transition to ferromagnetism in
a spin-imbalanced, repulsive Fermi gas cannot be straightforwardly studied using ultracold
atoms.

Using a non-selfconsistent T-matrix approach, we study the polaron problem in two spa-
tial dimensions in Appendix A and find that it has very similar features compared to the three-
dimensional case. Calculating the radio-frequency response, we show that a recent experiment
by the group of Köhl in Cambridge [61] can be reinterpreted in terms of polarons rather than
confinement induced molecules. Following our predictions [62, 63] (cf. also Appendix B),
repulsive polarons have recently been observed experimentally in two and three dimensions
using radio-frequency spectroscopy [64, 65].



Chapter Two

Efimov physics beyond universality

IN this chapter we present an exact solution of the quantum three-body problem using func-
tional renormalization. Three particles interacting via resonant, short-range interaction

potentials build a series of three-body bound states. Their existence is connected to a universal
discrete scaling symmetry and the appearance of a new three-body parameter which had been
presumed to be a non-universal quantity. Recent experiments with cold atomic gases close
to Feshbach resonances suggest, however, that this parameter exhibits universal behavior. In
the following, we present an extended yet simple model for Bose gases close to Feshbach res-
onances and derive the exact solution of the corresponding three-body problem. Our results
explain the observed behavior of the three-body parameter and we provide new predictions
for the deviation from universal scaling of the lowest Efimov states which can be tested in
future experiments.

In Section 2.1 we give a brief review on Efimov physics which is largely based on the
excellent review by Braaten and Hammer, see [66]. Section 2.2 explains the main methods
how Efimov trimers have experimentally been measured and we elucidate the observed ap-
parent universality of the three-body parameter. In Section 2.3 we then introduce a simple
two-channel model describing the physics of ultracold atoms close to a Feshbach resonance
and determine the model parameters by solving the corresponding two-body problem. The
following Section 2.4 introduces the functional renormalization group method used to solve
the three-body problem, the truncation of the effective action is given and the renormaliza-
tion group equations are derived, which are solved in Section 2.5. In Section 2.6 we develop a
numerical procedure to determine the bound state spectrum and we present the results in Sec-
tion 2.7. In Sections 2.8 and 2.9 we study the extent of universality for the low-lying Efimov
states. We compare our result to experiments and conclude in Section 2.10.

2.1 Universality in cold atoms

In cold quantum gases, one deals with atoms interacting via pairwise short-range potentials.
The scattering properties of these systems can be described solely in terms of the s-wave scat-
tering length a, when their average interparticle distance d = 1/n1/3, as well as their de-Broglie
wave length λ= h/p is much larger than the characteristic length scale of their potential range
r0, that is d ≫ r0 and p ≪ 1/r0. As we have seen in the introduction in Chapter 1, these
conditions are fulfilled for dilute atomic gases at ultralow temperatures and they ensure that
the kinetic energy of the atoms is so small that they are neither able to resolve the short-range



8 CHAPTER 2. EFIMOV PHYSICS BEYOND UNIVERSALITY

details of the interaction potential nor can they probe these short distances by merely being
located ‘on top of each other’.

Being characterized by a single parameter, cold atoms are an example of a system which
exhibits universality. Quite generally, a phenomenon is called universal, if the observables are
independent of the microscopic details such that the system is characterized by a few variables
only. Universality appears, for instance, in the physics close to critical points. A critical
point is the end point of a line of a first order phase transition. One of the most prominent
examples is the liquid-gas transition. As illustrated in the pressure-temperature phase diagram
shown in Fig. 2.1, a line T = T (P ) marks the phase transition from a liquid to a gaseous
phase with an associated discontinuity of the density. This line terminates in the critical point
beyond which the phase transition becomes a crossover. The gas and the liquid phase have the
same density ρc at the critical point, which is approached according to a power law, ρ −
ρc = C (T − Tc )

β [66]. While the coefficient C is non-universal, the exponent β is the
same for a whole class of systems. It does not matter which specific gas of particles is chosen
and, even more impressively, the same critical exponent β appears in systems which are at
first sight completely unrelated to the liquid-gas transition as for example in solids featuring a
ferro- to paramagnetic phase transition. All these systems are then said to belong to the same
universality class and they are described by a common universal effective field theory which
has only a few parameters as input.

In the context of cold atoms, there is a more narrow notion of universality and physics is
termed universal if observables depend only on the scattering length a and on no other param-
eter [11, 67, 68]. For instance, the physics of a weakly interacting Bose-Einstein condensate
can universally be described by the expansion parameter na3. One speaks of non-universal
corrections when there are residual dependencies on microscopic details such as the scale r0,
which characterizes the range of the interatomic potentials.

liquid

gas

crossover regim
e

FIGURE 2.1: Phase diagram of the liquid gas transition [66]. The critical line (solid) terminates in
the so-called critical point (dot) beyond which the phase transition becomes a crossover. Physics
close to such a critical point is related to the existence of a renormalization group fixed point
and exhibits universality as well as scale invariance.
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The appearance of universality is intimately related to the existence of renormalization
group fixed points [69, 70]. Various theories, although being different on the microscopic
level, may flow to the same fixed point and thus, at large distances, lead to the same observable
physics. The non-relativistic system of cold atoms is governed by the existence of two fixed
points [71, 72, 73]. One is a weak coupling or so-called Gaussian fixed point, the other a
strong coupling fixed point which corresponds to unitary interactions. In the context of Bose-
Einstein condensation, universality is usually connected to the Gaussian fixed point and is
thus a weak coupling phenomenon.

In the following we will be interested in the universality associated to the non-perturbative
fixed point. Here, the system is characterized by a large scattering length, |a| ≫ r0, and univer-
sality applies as well. The most simple example of a universal observable is the existence of a
weakly bound molecule (the so-called dimer) with binding energy

εD =
ħh2

ma2
, (2.1)

where ħh is Planck’s constant and m the mass of the atoms. Other examples are found in the
case of a two-component Fermi gas. In the unitarity limit where the scattering length diverges,
a→∞, the chemical potential of the Fermi gas is measured to be [34]1

µ= ξ εF , ξ = 0.376(4), (2.2)

which is in excellent agreement with theoretical results [37, 75, 76, 77]. Here ξ is the so-called
Bertsch parameter [78] which is a universal number. Similar, excellent agreement between
theory and experiment is found for the critical temperature Tc/TF [34, 37, 79, 80]. It is one of
the remarkable consequences of universality that theoretical insight and methods developed
with having cold atoms in mind can then be applied to other systems ranging from neutron
stars [41] to hard condensed matter physics [6, 38].

The Efimov effect

When three identical bosons interact with resonant short-range potentials (a ≫ r0) a new
universal quantum phenomenon is revealed. This was first realized by Vitaly Efimov in 1970.
He showed the existence of an infinite series of three-body bound states in the resonance limit,
a → ∞ [44, 81].2 The binding energies of the so-called Efimov trimers form a geometric
spectrum so that the binding energies of consequent levels exhibit a constant ratio3

ET
n

ET
n+1

= e
2s0
π = 515.03 . . . , s0 = 1.00624 . . . (2.3)

1An improved experimental analysis of the Feshbach resonance position in the 6Li Fermi gas by Zürn et al.
yields a corrected value of the Bertsch parameter ξ = 0.370(5)(8) [74].

2The Efimov effect occurs quite generally if two out of three pairs of the participating particles are interacting
with a large scattering length [66].

3Here the universal number s0 is given for the case of identical bosons.
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when the unitarity point 1/a = E = 0 is approached. At this point two bosons are just at the
verge of being bound into the weakly bound dimer.

We show a typical Efimov bound state spectrum in Fig. 2.2 where the axis are rescaled
in order to make several of the three-body bound states visible. Each of the infinitely many

FIGURE 2.2: Illustration of the Efimov energy spectrum. The Efimov trimers (red solid) extend
from the atom threshold (blue hatching) at vanishing energy E = 0 and a < 0 to the side of
positive scattering length a > 0 where they merge into the atom-dimer threshold (green solid).
For negative a, the trimers are of Borromean nature as they exist in a regime where no two-
body bound state exist – a purely quantum phenomenon not present in classical mechanics.

Efimov states evolves from the three-atom threshold (dashed blue hatching) for a < 0 across the
resonance and merges into the atom-dimer scattering threshold for a > 0 (green line). Quite
counterintuitively, the trimer states exist even in a regime where no two-body bound state is
present. In this regime the Efimov states are sometimes called Borromean in reference to the
legendary Italian family: take one of the three away and the whole system falls apart.

Eq. (2.3) is a universal law as it does not depend on any short-range details. The only impor-
tant ingredients are: short-range interactions, a large scattering length |a| ≫ r0, and energies
|E | ≪ ħh2/(m r 2

0 ). The Efimov effect is a strong coupling phenomenon taking place in the
vicinity of the two-body strong-coupling RG fixed point. It was predicted by Efimov in the
context of nuclear physics and it took more than thirty years to find experimental evidence for
its existence. Its observation is an example of the broad implications of universality: instead of
being found in a nuclear system, the Efimov effect was observed using ultracold atoms close to
a Feshbach resonance [45]. Unfortunately, the search for Efimov states in the nuclear matter
context has been quite unsuccessful so far, despite much effort such as the decades of research
devoted to the search for the elusive 3He trimer [82, 83].

The Efimov effect, which existence was rigorously proven by Amado and Noble [84, 85],
demands the introduction of a new notion of universality. Although the existence of the
Efimov states, the relation (2.3), as well as the shape of the spectrum shown in Fig. 2.2 is
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universal, the absolute value of the binding energies is not universally fixed. In fact, the whole
Efimov spectrum in Fig. 2.2 can be shifted arbitrarily while leaving universal ratios such as
Eq. (2.3) unaffected. This arbitrariness necessitates the introduction of an additional three-body
parameter (3BP). This is made explicit by rewriting the Efimov binding energies as [66]

E
(n)

T
=

� 1

515.03

�n−n∗ ħh2κ2
∗

m
, (2.4)

where n∗ denotes the number of some reference Efimov state as indicated in Fig. 2.2. The wave
number κ∗ is a free parameter which is chosen to set the overall position of the spectrum. κ∗

can be regarded as the three-body parameter but this is not a unique choice. From Fig. 2.2 it is
evident that one may choose any observable which fixes the overall position of the spectrum.
This could, for instance, also be the value of the scattering length a

(n∗)
− < 0, where the reference

trimer n∗ meets the three-atom threshold. As shown by Efimov, the trimers meet the atom
threshold at values [86] (see also [66])

a(n)− = 22.6942n−n∗a(n
∗)
− , (2.5)

for large |a|/r0≫ 1.
Due to the Efimov effect, two-body universality is violated: not only the scattering length

a is needed in order to characterize the physics but an additional parameter. While in the
two-body problem non-universal corrections scale as positive powers of r0/|a| and hence are
suppressed for large |a|, the three-body parameter κ∗ never disappears. It reflects the ignorance
of the short-range details of the interatomic potentials and thus it had – until recently – been
regarded as a non-universal number.

From Efimov’s results (2.3) and (2.4) it follows that there are infinitely many weakly bound
trimers. But how does the spectrum behave for the deeply bound states? In order to answer
this question let us define two important limits. We argued that non-universal corrections to
the two-body scattering scale as powers of r0/|a|, for a detailed discussion see [66]. There are
two limits in which these corrections go to zero. One is the so-called:

Unitary or resonance limit [66]

|a| →∞, r0 finite. (2.6)

In this limit infinitely many, weakly bound trimer states exist. One may go away from the
resonance limit by lowering the absolute value of the scattering length |a|. When the inverse
wavenumber of the nth bound state 1/κ(n) or the corresponding scattering length a(n)− , where
it meets the atom threshold, becomes of order r0, the Efimov states cease to exist due to the
finite range of the interaction potentials. Hence there will be a lowest Efimov state. The
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Efimov states in this situation are illustrated as solid red lines in Fig. 2.3. As also indicated, the
low-lying states can not be expected to obey the universal geometric scaling, since here non-
universal corrections of order r0/|a| become relevant. For this reason one expects that the
specific position of the lowest state is highly dependent on microscopic details. This explains
why the three-body parameter is expected to be a non-universal number.

The resonance limit is a very physical limit and it can be realized using a shape resonance
as depicted in Fig. 2.4(a) and (b) for the case of a square well potential. Keeping the potential
range constant, the depth of the potential is fine-tuned to a critical value Vcr at which a two-
body bound state just vanishes into the continuum. Another possibility to reach the resonance
limit is the use of so-called Feshbach resonances [87, 88, 89, 90, 91, 92]. This mechanism is
employed in cold atoms and we will investigate it in more detail in Section 2.3.

The second limit in which the corrections r0/|a| go to zero is the

Zero-range or scaling limit [66]

|a| fixed, r0→ 0. (2.7)

This limit is illustrated in Fig. 2.4(c). It was explicitly studied in the context of Efimov physics
first by Frederico et al. [93]. In this limit, which is often referred to as scaling limit, the
purely theoretical, idealized situation of contact interactions is realized and the two-particle
interaction potential reads V (r′− r) = gδ(r′− r). The scattering phase shift becomes exactly
kcotδ0(k) = −1/a for the partial s-wave and vanishes identically for all higher partial waves,
δL ≡ 0 for L > 0. At first sight the zero-range limit seems quite unphysical, as interaction

Thomas collapse

scaling theory

physical theory

lowest phys. state

FIGURE 2.3: Illustration of the Efimov spectrum obtained from scaling theory (dashed black) com-
pared to a (physical) finite range model (solid red).
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(a)

(b)

(c)

FIGURE 2.4: (a) and (b): Shape resonance. The depth of a square well potential is fine-tuned to a
critical value where the scattering length diverges and the weakly bound molecule disappears
into the scattering continuum. (c) Zero-range limit. While keeping the scattering length a fixed
the range of the potential is sent to zero. In (a-c) also the wave function, which defines the
scattering length a, is indicated.

potentials in non-relativistic physics are never contact interactions. The non-universal correc-
tions due to the true physical range vanish, however, as powers of r0/|a| so that in the limit of
large scattering length the scaling limit yields accurate results (cf. the discussion in Chapter 1).
The zero-range limit has the advantage that it makes calculations feasible and in Section 2.2 we
will encounter various examples where the scaling limit is used to derive analytical results.

However, as soon as |a| or the relevant, inverse wave numbers 1/κ become of order of r0,
the scaling limit leads to unphysical or even pathological results: there are not only infinitely
many weakly bound trimer states but also infinitely many infinitely deeply bound states. The
reason for this pathological behavior is the absence of any scale r0 which prevents the system
from collapsing to infinite binding energies - and thus the collapse of the trimers to infinitely
small size. Obviously this collapse is prevented in nature by the presence of a finite potential
range and, theoretically, it is prevented by the presence of a regulating effective range term
∼ re k2/2 in the inverse scattering amplitude f (k), see Eq. (2.26) below. Such an effective range
re is for instance introduced when the range r0 is kept fixed as previously discussed following
Eq. (2.6). Furthermore, due to the absence of any short-range scale, all Efimov states exactly
obey the universal scaling relations such as Eqn. (2.4) and (2.5). The corresponding Efimov
states are illustrated as dotted lines in Fig. 2.3. However, the dependence on the three-body
parameter κ∗, cf. Eq. (2.4), is still present, and κ∗ has to be fixed to determine the overall
position of the spectrum. It is of importance – and unfortunately often not properly taken
into account in the literature – to realize that the scaling limit only leads to valid predictions
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when |a| is much larger than the range r0.4 For the deep Efimov states accessible in experiments
with cold atoms this is typically not realized, and, strictly speaking, scaling theory cannot be
applied.

As mentioned above, it is, however, very tempting to apply results from scaling theory
because it allows to derive analytical expressions for many physical observables. For example,
already Efimov showed [81, 86] that the atom-dimer scattering length aAD at the atom-dimer
scattering threshold (green solid line in Fig. 2.3) obeys [66]

aAD = (b1− b0 tan[s0 ln(aκ∗)+β]a (2.8)

where the bi are universal coefficients, first calculated in [94]. Universal results like this can
easily be used to fit experimental data, but once again, they are applicable only if |a| ≫ r0.

The collapse of the trimer states to infinite binding energies is connected to what was
found by Thomas prior to the calculation by Efimov [95]. He considered atoms interacting
via a square well potential where he performed the scaling limit r0 → 0 while keeping a con-
stant, cf. Fig. 2.4 (c). He showed that there exists a three-body bound state with binding energy
Etri ∼−ħh2/(m r 2

0 )→−∞. In 1979, Efimov succeeded to connect Thomas’ and his own work
and showed that there are the above mentioned infinitely many, deep trimer states where the
deepest of those scales as Etri ∼−ħh2/(m r 2

0 )→−∞ [86].

Efimov effect and the renormalization group. The Efimov effect also leaves its traces in
a renormalization group analysis of the three-body problem [66] and it presents one of the
extremely rare cases where a renormalization group limit cycle [97, 98] is realized in nature.

4As we will see below, |a| has often to be up to two orders of magnitude larger than of r0 or |re | to be safely in
the scaling regime.
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FIGURE 2.5: Renormalization group flow of the three-body coupling constant with logarithmic
RG scale k in units of the UV cutoff scale Λ as computed in [96] for (a) bosons, (b) SU(2)
fermions.



2.1. UNIVERSALITY IN COLD ATOMS 15

The connection between limit cycles and Efimov physics was first discussed in [99] and studied
in detail using effective field theory by Bedaque, Hammer, and van Kolck [100, 101]. Later
the connection was also analyzed in [96, 102, 103, 104, 105, 106].

As mentioned before, the two-body sector is governed by a strong coupling fixed point
[70, 72, 73, 107]. The existence of the fixed point directly implies that the system exhibits
scale invariance so that the system is invariant under the continuous scale transformations
[66, 108, 109, 110]

a→ λa r→ λr t → λ2 t . (2.9)

The Efimov effect changes the situation. One finds that the running of the three-body coupling
exhibits a flow which is log-periodic in the RG momentum scale k as shown in Fig. 2.5(a).
This result was obtained from the functional renormalization group [96] and it is similar to
the calculation performed by Bedaque et al. [100, 101]. The period of the flow is given by the
Efimov number s0, which Efimov showed to obey [44]

s0 cosh
πs0

2
=

8
p

3
sinh

πs0

6
. (2.10)

The log-periodic structure of the limit cycle flow reflects the geometric spectrum (2.4): when
the RG scale is changed by a multiple factor of expπ/s0 new divergencies appear in the flow
of the three-body coupling and these divergencies correspond to the appearance of new bound
states. The three-body parameter κ∗ also appears in the renormalization group framework and
it sets the overall phase of the renormalization group flow. In a sense [66], κ∗ labels a continu-
ous set of universality classes. The periodic structure of the flow with its fixed frequencyπ/s0
reveals that the continuous scale invariance present in the two-body problem is broken and
only a discrete scale invariance remains. This symmetry breaking is purely quantum, and one
may speak of a quantum anomaly as discussed in [111, 112, 113]. The system is now invariant
only under the discrete scale transformations [66]:

κ∗→ κ∗ a→ λn
0 a r→ λn

0 r t → λ2n
0 t

with
λ0 = eπ/s0 . (2.11)

The quantum anomaly is connected to the physics of two particles interacting via an inverse
square potential. The reason is that the quantum mechanical solution of the three-body prob-
lem can be reduced to the solution of a Schrödinger equation with an 1/R2 potential [66]. We
studied this problem and its connection to the renormalization group limit cycle in [111].

It is worth mentioning that scale invariance is a very important feature when considering
many-body systems such as the unitary Fermi gas [16]. It allows to derive many exact relations
such as the vanishing of the bulk viscosity [109] or the exact time evolution of the system
[114, 115, 116, 117, 118]. Contrarily, if one considers unitary bosons, scale invariance is
broken rendering calculations much more difficult. For two-component fermions with a mass-
imbalance smaller than a factor of 13.6 [119, 120] no Efimov effect, however, takes place.
Instead of showing a periodic limit cycle the atom-dimer coupling exhibits an RG fixed point
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tied to the renormalization group running of the two-body sector, cf. Fig. 2.5(b). Thus no
quantum anomaly appears, scale invariance is preserved, and calculations can safely exploit
this important symmetry.

2.2 Observation of Efimov physics with ultracold atoms

Basically there are two experimental routes which have been taken to reveal Efimov physics
with cold atoms. One is the direct photo association of Efimov trimers using radio-frequency
spectroscopy. The other is an indirect detection by measuring three-body loss enhancements
caused by Efimov physics. For the latter one exploits the instability of cold atomic gases caused
by the recombination of atoms into molecular bound states. The binding energy gained in the
formation of a molecule is transferred into kinetic energy of the atoms participating in the
process. When this energy exceeds the trap depth, the atoms have sufficient momentum to
escape from the trapping potential. Having escaped from the trap, these atoms are obviously
not present in a subsequent absorption image, by which the number of trapped atoms is deter-
mined experimentally. By measuring the remaining fraction of atoms as function of time the
loss rate can then be inferred.

In order for momentum to be a conserved quantity, such collisional loss processes have to
involve at least three atoms.5 The third atom ensures momentum conservation by carrying
away a portion of the binding energy released in the recombination process. Since three atoms
are involved, the loss rate is proportional to the third power of density [11],

ṅ =−K3n3, (2.12)

where K3 is the three-body loss coefficient and n the density of atoms. As discussed in Chap-
ter 1, the existence of loss processes in ultracold atomic gases is quite natural: after all, the true
ground state of the system is not the gas of atoms but a solid – with the exception of the helium
where the atoms would form a liquid. In consequence, ultracold gases are in a metastable state
and the loss process discussed above is one of the many ways by which the system can reach
its true ground state.

Let us now briefly discuss three observables which are related to three-body decay and
which can be used to detect Efimov physics.

Three-atom recombination maxima for a < 0. The first possibility to find evidence for
Efimov states is the measurement of the loss coefficient K3 in dependence of negative scattering
length a. In the scaling limit, cf. Eq. (2.7), K3 can be expressed as [66]

K3 = 3C (a)
ħh2a4

m
. (2.13)

When no Efimov state is present, one finds a pure a4 scaling with a constant coefficient C (a)
[121, 122]. This scaling is due to the process schematically shown in Fig. 2.6(a), where two

5Two-body decay processes are also possible. These can, however, be often made sufficiently small in order to
be neglected [11].
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atoms form a virtual scattering state (dashed line). This state subsequently interacts with a

(a) (b)

deeply 
bound

weakly 
bound

(c)

FIGURE 2.6: Collisional processes leading to three-body decay of ultracold atomic gases. Solid lines
represent atoms, dashed lines molecules and dotted lines with three arrows Efimov trimers. (a)
Three-atom recombination. (b) In the presence of a trimer a new decay channel opens up. (c)
Atom-dimer recombination at the atom-dimer scattering threshold.

third atom (dashed vertex). The outgoing, deeply bound molecule as well as the outgoing
atom can be on-shell, physical scattering states. The evaluation of the corresponding matrix
element yields Eq. (2.13).

The situation changes, when an Efimov state is nearby or even crosses the atom scattering
threshold at the scattering length a where the measurement is performed. In this case a new,
fast decay channel opens up. The new process contributing to Fig. 2.6(a) is schematically
depicted in Fig. 2.6(b). When the third atom enters, a new state, the trimer, can be formed.
This trimer has typically a very short lifetime and it decays quickly into deeply bound states.
Furthermore, when the trimer is energetically close to the atom threshold at zero energy, it is
almost gapless and thus the corresponding matrix element becomes very large. This leads to a
large enhancement of the loss which is visible as a resonance in K3 = K3(a).

This additional modification due to Efimov physics is described by the scattering length
dependent prefactor C (a) in Eq. (2.13), which, in the resonance limit, has to obey C (22.7a) =
C (a) due to the discrete scale invariance of Efimov physics. The loss process for a < 0 was first
discussed by Esry, Greene and Burke [123] and shortly after in [124, 125, 126, 127]. Using
effective field theory, Braaten and Hammer succeeded to derive an analytical expression for
C (a) in the scaling limit [126]

C (a) = 4590
sinh (2η−)

sin2[s0 ln(a/a−)] + sinh2 η−
. (2.14)

Here a− is a representative of the three-body parameter as described in the previous section
and η− reflects the finite lifetime of the trimer state involved. By fine-tuning the parameters a−
and η−, Eq. (2.14) can be used to fit the experimental results. Three-body loss enhancements
due to Efimov physics have been found in many cases [45, 47, 128, 129, 130, 131, 132, 133, 134,
135, 136] and in Fig. 2.7 we show two examples. While in Fig. 2.7(a) the first measurement of
an Efimov loss resonance for identical bosons [45] is shown, Fig. 2.7(b) displays the loss co-
efficient in a three-component 6Li Fermi gas [128] compared to a functional renormalization
group calculation [137].
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FIGURE 2.7: (a) First indirect observation of an Efimov trimer in a ultracold gas of 133Cs atoms.
The measured recombination length (symbols) is shown versus the scattering length a and com-
pares well with results from scaling theory (solid curve) [Figure taken from [45] by courtesy
of R. Grimm]. (b) Three-body loss coefficient K3 as function of magnetic field in a three-
component 6Li Fermi gas. The resonances are due to Efimov states. Experimental data from
[128] (symbols) versus a functional renormalization group calculation [137].

Three-atom recombination minima for a > 0. For a > 0, three atoms at the atom threshold
at E = 0, cf. Fig. 2.2, can recombine into the weakly bound dimer state (green solid line in
Fig. 2.2). In this case the two processes shown in Fig. 2.6(a) and (b) do not lead to enhance-
ment but rather a reduction of losses, since both processes conspire in such a way that the
corresponding matrix elements interfere destructively with each other. In the scaling limit,
the corresponding coefficient C (a) obeys the equation [66, 125]

C (a) = 67.1 e−2η+(cos2[s0 ln(a/a+)] + sinh2 η+)+ 16.8 (1− e−4η+). (2.15)

Similarly to Eq. (2.14), a+ is a possible representative of the three-body parameter and η+ deter-
mines the lifetime of the trimer responsible for the minimum. Recombination minima were
for instance observed in [45], cf. Fig. 2.7(a, inset). The existence of these minima may become
of great importance for many-body physics as they might help to stabilize strongly interacting
repulsive Bose or SU(N ) Fermi gases for a/r0≫ 1.

Loss resonances in atom-dimer scattering. It is also possible to prepare a mixture of weakly
bound dimers and free atoms in which both constituents interact with each other. During this
process, depicted in Fig. 2.6(c), the weakly bound dimer can fall into a deeply bound molecular
state and the participating atoms leave the trap. Similar to the discussion below Eq. (2.13), a
close-by trimer state leads to an enhanced loss and the corresponding loss rate is parametrized
by [138]6

ṅD = ṅA=−β(a)nD nA. (2.16)

6Here we neglect dimer-dimer scattering as well as the three-atom recombination also present in these mix-
tures.
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In the scaling limit, the coefficientβ has been calculated using effective field theory [139] and
has the form

β(a) =CAD(a)
ħha

m
, (2.17)

with

CAD(a) = 20.3
sinh(2η∗)

sin2[s0 ln(a/a∗)] + sinh2 η∗
, (2.18)

and where again, a∗ and η∗ are representatives of the three-body parameter and the lifetime
of the trimer, respectively. The enhanced atom-dimer loss has been studied for instance in
[138, 140]. Note that in the case of a > 0, non-universal corrections become generally par-
ticularly important, as the atom-dimer threshold itself (green solid line in Fig. 2.2) exhibits a
strong dependence on microscopic details when a becomes of the order of r0.

Photo association of trimers. The last possible route taken to detect Efimov physics is the
direct formation of Efimov trimers. Recently the group of Jochim succeeded to use radio-
frequency (rf) modulations to associate trimers from a mixture of atoms and dimers in an
two-component mixture of 6Li atoms [141]. By applying an rf pulse, one hyperfine spin is
flipped and a trimer is associated in the final state. By measuring the rf response it was then
possible to directly determine the binding energy of the Efimov bound state, which, however,
is very short-lived. Similar results have been reported in [129, 142].

The apparent universality of the three-body parameter

In Section 2.1 we have seen that for potentials with a finite range r0 there always exists a low-
est Efimov state in the spectrum. From now on, we will identify this state with the number
n = 0. As discussed above, one key experimental signature of Efimov physics is the reso-
nant enhancement of the three-body recombination rate when the nth Efimov state meets the
atom threshold at a scattering length a

(n)
− . In practice, it is, however, often only the lowest

Efimov state at a− ≡ a
(0)
− that can be observed because of large atom losses as the scattering

length increases, cf. Eq. (2.13). As more experimental data have been accumulated in recent
years [47, 128, 129, 130, 131, 132, 133, 134, 135], a puzzling observation came to light: in most
experiments, the measured values for a− clustered around a− ≈−9.45 lvdw, no matter which al-
kali atoms were used. In consequence, this observation suggests a three-body parameter which
is indeed independent of the microscopic details. But where does this apparent ‘universality of
the three-body parameter’ come from? A possible answer to this question is based on the ob-
servation that, typically, Efimov trimers which are accessible with ultracold atoms appear in
a situation where the scattering length is tuned via a Feshbach resonance. Here the scattering
length is greatly modified and enhanced due to the presence of a molecule in a closed scatter-
ing channel. Thus the underlying microscopical mechanism is similar in all experiments. If
the three-body parameter is additionally not too sensitive to the remaining differences, the
observed ’universality’ may appear not too surprising after all.
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Feshbach resonances are characterized by an additional parameter, the width r ∗, which
introduces a new scale into the system. In the following we present a theory for the three-body
physics of ultracold atoms close to a Feshbach resonance of arbitrary width. For so-called
open-channel dominated resonances, where r ∗/lvdw is very small, we find as a main result
that the lowest Efimov state appears at a− ≈ −8.3 lvdW consistent with experiments. These
open-channel dominated Feshbach resonances can, under certain conditions, be described by a
single-channel picture. Such a single-channel picture has been employed in recent, independent
work by Wang and coworkers [143] and Chin [144] where results similar to ours have been
found. Irrespective of the short distance behavior, single-channel potentials with a van der
Waals tail are known to have lvdw as the only relevant length scale at energies much smaller
than the depth of the potential well [145]. In the absence of genuine three-body forces, it
is plausible that this result extends to the three-particle Efimov problem and thus, that lvdw
provides the characteristic scale for the three-body parameter.

While being consistent with the observed correlation between a− and the van der Waals
length lvdw for a number of different alkalis, such a single-channel description does not apply
in general and suggests a universality of the ratio a−/lvdw which is far too general even within
the constraint that only two-body interactions play a role. In particular, a single-channel
description cannot apply for closed-channel dominated Feshbach resonances. In this case, it is
known that the three-body parameter is set by the intrinsic length r ⋆ which determines the
strength of the Feshbach coupling [146, 147].

In the following, we present an exact solution for the Efimov spectrum within a standard
two-channel model [92] which incorporates the finite range of the Feshbach coupling and
properly recovers both limits of open-channel and closed-channel dominated resonances. It
provides a complete description of the trimer spectrum in terms of only two, experimentally
accessible, parameters: the van der Waals length lvdw and the intrinsic length r ⋆. Depending
on the dimensionless resonance strength sres = 0.956 lvdw/r ⋆ [92], there is a continuous change
in the relation between the trimer energy and the scattering length, with the lowest Efimov
state appearing at a− ≈−8.3 lvdw as sres≫ 1 while a− ≈−10.3 r ⋆ in the opposite limit sres≪ 1.
This model provides a minimum description of the Efimov spectrum which is based on two-
body physics only and has no adjustable parameter. It explains why the ratio a−/lvdw is in the
observed range for open-channel dominated resonances and predicts strong deviations from
this in the intermediate regime sres = O (1).

2.3 Two-channel model

In cold atoms the scattering length a can be tuned by means of Feshbach resonances [87, 88].
Here one takes advantage of the fact that during a collision the pair of atoms can virtually
change their spin configuration. In the different spin configuration they interact then via a
different scattering potential, which is, due to the Zeeman effect, shifted with respect to the
potential of the incoming atoms when an external magnetic field is applied. For an illustration,
see Fig. 2.8. If the Zeeman energy shift ∼ µB is larger than the typical kinetic energy of the
colliding particles (in the so-called open channel), the scattering states of the spin-flipped chan-
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FIGURE 2.8: Feshbach resonance model. During their collision the atoms ψ in the open channel
can virtually flip their hyperfine spin state. The presence of a magnetically tunable molecule
φ in the closed channel leads to an enhanced scattering cross section. A detailed discussion is
given in the main text.

nel are energetically inaccessible. Thus the latter is called the closed channel. Both the open
and the closed channel typically support many vibrational bound states. When tuning the
magnetic field, vibrational bound states of the closed channel cross the scattering threshold of
the open channel which causes an enhancement of the scattering cross section. In the follow-
ing we explain this mechanism, which leads to so-called Feshbach resonances, by introducing
a simple two-channel model.

Let us concentrate on one of the closed-channel molecular states which we denote by the
field φ, cf. Fig. 2.8. Its bare energy is detuned by an amount Emol from the open-channel
threshold. Due to the coupling of the open and closed channel, the closed-channel molecule is
renormalized and becomes a quantum mechanical superposition of open- and closed-channel
states. When this renormalized state is crossing the threshold it causes a resonance in the
scattering length which can be parametrized by the phenomenological formula [92]

a(B) = abg−
2

r ∗µ(B −B0)
. (2.19)

Here, µ is the difference in the magnetic moment between the molecule and the open-channel
atoms, and B0 is the magnetic field where the divergence in a appears. abg denotes the back-
ground scattering length caused by the scattering solely in the open channel when no coupling
to the closed channel is present. The parameter r ∗ characterizes the width of the resonance
as function of the magnetic field. It is determined by the dimensionless ‘strength’ sres of the
Feshbach resonance which is given by [92]

sres =
ā

r ∗
, (2.20)
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and where we introduced the so-called mean scattering length [148]

ā =
4π

Γ(1/4)2
lvdw = 0.95598 . . . lvdw. (2.21)

We will find that r ∗ plays an important role in our study of non-universal corrections in
Efimov physics. Feshbach resonances characterized by sres ≪ 1 (sres ≫ 1) are termed closed-
(open-)channel dominated resonances.

Our goal is to explain the observed universality of the three-body parameter mentioned
in Section 2.2 within a simple model. The experimental observations indicate that the first
Efimov bound state appears for rather large scattering lengths a of order a− ∼−10 lvdw. Typi-
cal background scattering lengths are of the order of the van der Waals length7 [92], such that
the scattering length needed to enter the regime of Efimov trimers is mainly due to the second
term in Eq. (2.19), which originates from the coupling of the open to the closed channel. Based
on the dominant role of this term, we are justified to neglect the first term in Eq. (2.19). The
scattering length is then given by

a(B) =−
2

r ∗ν̃(B)
, ν̃(B) =µ(B −B0), (2.22)

where ν̃(B) defines the renormalized dimer binding energy. Neglecting the background in-
teraction potential altogether, the system is described by the following classical action for
non-relativistic bosons [91, 149, 150, 151, 152],

S =

∫

r,t

n

ψ∗(r, t )[i∂t −∇2]ψ(r, t )+ φ∗(r, t )

P cl
φ

︷ ︸︸ ︷
�

i∂t −∇2/2+ Emol(B)
�

φ(r, t )
o

+
g

2

∫

r1,r2,t
χ (r2− r1)

�

φ
�

r1+ r2

2
, t

�

ψ∗(r1, t )ψ∗(r2, t )+ c .c .
�

, (2.23)

where we use natural, non-relativistic units ħh = 2m = 1. Here, ψ denotes the atoms in the
open channel and φ the molecule in the closed channel. We introduced the bare detuning
of the closed-channel molecule Emol(B) = µ(B − Bres), cf. Fig. 2.8, where Bres describes the
threshold crossing of the molecule when no closed- to open-channel coupling were present.
The molecule φ has the same classical, Schrödinger propagator as the atoms besides a factor of
two reflecting that the molecule consists of two atoms and thus has twice the mass.

The term ∼ g describes the conversion of two atoms into the closed-channel molecule
with coupling strength g : two atoms ψ at separation |r2− r1| are annihilated and a molecule
φ is created at the corresponding center of mass coordinate. Note, that for a description of

7 6Li and 133Cs are examples of alkalis which feature a large background scattering length, |abg|/lvdw≫ 1. While
6Li is fermionic and thus less relevant for our study, 133Cs has a background scattering length which is large and
positive. As the Efimov phenomenon we are after appears for negative scattering length, however, the second term
in Eq. (2.19) is even more dominant in this case.
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universal features of Efimov physics, like the asymptotic ratio a(n+1)
− /a(n)− → eπ/s0 , this atom-

molecule conversion amplitude ∼ g may be taken as pointlike in coordinate space [66, 100,
101] which simplifies calculations considerably. In reality, however, it is apparent that the
conversion coupling has a finite range σ which is determined by the scale of the wave function
overlap between the open- and closed-channel states. As has been pointed out by a number
of authors [149, 150, 153, 154, 155, 156], this can be accounted for by a form factor χ (r )
in Eq. (2.23). Although the precise form of χ (r ) depends on the (short-range) details of the
interatomic potentials, and thus is unknown, we choose an exponential form factor χ (r ) ∼
e−r/σ/r . This form mimics the asymptotics of the bound state wave function in the closed
channel (green dashed line in Fig. 2.8) which is a weakly bound state for the usually small
magnetic fields employed in experiments. In momentum space this leads to χ (p) = 1/(1+
σ2 p2).

As we will show below, the characteristic range σ is given by the van der Waals or the mean
scattering length ā ≈ 0.96 lvdw. In physical terms, this reflects the fact that the classical turning
point in the closed-channel states is of the order of lvdw because, as just mentioned, for typical
magnetic field-tuned Feshbach resonances, it is only the weakly bound states in the closed
channel which are close to the continuum threshold that are experimentally accessible. In
contrast to the more standard Gaussian cutoff [149, 150, 153], our choice forχ (r ) is optimal in
the sense that the resulting effective range re = 3 ā of two-body scattering near an open-channel
dominated Feshbach resonance (see Eq. (2.34) below) agrees very well with the standard result
re ≈ 2.92 ā [145] for a single-channel potential with an 1/r 6 tail.

The action (2.23) has three open parameters: g , Bres, and σ . Our goal is to fix these
by experimentally observable two-body physics. All three-body observables will then be a
prediction with no adjustable parameters at all. In order to achieve this let us derive the two-
body scattering properties of the model (2.23).

Determination of model parameters

The two-body problem can be solved exactly by computing the renormalization of the dimer
propagator P cl

φ
, cf. Eq. (2.23). Evaluating the standard ladder diagram one obtains the full

inverse, retarded dimer propagatorG−1
φ

which reads

G−1
φ
(E ,q) =−E +

q2

2
+ Emol(B)− iε−

g 2/(32π)

σ
�

1+σ
q

− E
2 +

q2

4 − iε
�2

, (2.24)

and where the last term can be interpreted as the self-energy of the dimer. Note that due to the
finite range of the ‘Yukawa’-type coupling∼ g the regularization of the ladder is automatically
taken care of such that the corresponding integral can be straightforwardly evaluated.

The scattering of two atoms in the open channel is mediated by the exchange of the
molecule φ. Evaluating the tree-level diagram shown in Fig. 2.9 (where the dashed (solid) line
denotes the propagation of a full dimer (atom) and the dot represents the Yukawa coupling
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∼ g ) one obtains the scattering amplitude

f (k) =
g 2χ (k)2

16π
Gφ(2k2,0). (2.25)

Here, the scattering is evaluated in the center of mass frame with incoming atoms of momenta
±k and total energy E = 2k2 with k = |k|. The low-energy expansion of the scattering
amplitude defines the scattering length and effective range:

f (k) =
1

−1/a+ re k2/2+O (k4)− i k
. (2.26)

By expanding the exact solution (2.25) in small k and comparing the result with Eq. (2.26) the
experimentally accessible scattering length can be extracted from our model. One finds

1

a
=

1

2σ
−

16π

g 2
Emol(B). (2.27)

The bound state energy spectrum can in turn be obtained from the poles of dimer Green’s
function Gφ(E ,0) in Eq. (2.24). It is shown in Fig. 2.10(a) in dependence of the magnetic field
for finite coupling g > 0 (solid line) and also for the case when no open- to closed-channel
coupling is present, g = 0 (dashed line). It is possible to derive an analytical expression for
the dimer energy ED = ED(B) but as it is a very lengthy expression we refrain from showing
it here explicitly. In Fig. 2.10(b) we display the scattering length obtained from Eq. (2.27) in
dependence of B for the same parameters as in Fig. 2.10(a).

Without any coupling between the open and closed channel, i.e. g = 0, the bound state
spectrum is very simple. There is the two-atom threshold at E = 0 and the closed-channel
molecule at E = µ(B −Bres). Contrarily, for nonzero g the position where the dimer reaches
the threshold and then vanishes in the scattering continuum, is shifted by8 ∆B = Bres−B0 and
accordingly the resonance in a(B) appears at B0, cf. Fig. 2.10(b). The resonance shift ∆B is
readily obtained from Eq. (2.27) evaluated at B = B0, and one finds

µ∆B =µ(B0−Bres) =
g 2

32πσ
. (2.28)

8Note,∆B must not be confused with the magnetic width of the Feshbach resonance.

FIGURE 2.9: Tree level diagram yielding the effective atom-atom scattering amplitude Eq. (2.25).
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FIGURE 2.10: (a) Energy spectrum of the two-channel model (2.23). The energy of the molecular
stateφ is shifted with respect to the non-interacting, bare state (dashed line) due to the a nonzero
coupling of closed- and open-channel states for g 6= 0 (solid line) (b) Scattering length a as
function of magnetic field B for the same parameters as in (a).

The magnetic field dependence in Eq. (2.27) can be compared to Eq. (2.22):

a =
1

1
2σ −

16π
g 2 µ(B −Bres)

=−
2

r ∗µ(B −B0)
. (2.29)

The insertion of µBres from Eq. (2.28) into this expression gives the identification of the cou-
pling g ,

g 2 =
32π

r ∗
. (2.30)

The Feshbach range r ∗ is accessible from the experimentally measured Feshbach resonance
profiles a(B) or from a fit of the dimer binding energy close to resonance. Since the resonance
position B0 is experimentally measurable as well, Eq. (2.28) fixes the parameter Bres in our
model. The only parameter now left is the range σ . Here we exploit that the resonance shift
∆B , cf. Eq. (2.28), which is always positive in our model, has previously been calculated by
Julienne and coworkers using quantum defect theory for a multi-channel model with micro-
scopic interaction potentials that have a van der Waals tail [157]. They obtain (see Eq. (15) in
[150])

µ∆B =
2

r ∗ā

1− abg/ā

1+
�

1− abg/ā
�2

abg→0
=

1

r ∗ā
. (2.31)
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Comparing this with Eq. (2.28) finally yields9

σ = ā. (2.32)

All parameters of our model are now fixed by two-body physics only. Let us summarize
the identifications made:

from scattering length profile a(B): g ⇐⇒ r ∗

from resonance shift Eq. (2.28) compared to
measurement of B0:

µBres ⇐⇒ µB0

from resonance shift Eq. (2.28) compared to
quantum defect theory, Eq. (2.31):

σ ⇐⇒ lvdw

Finally we comment on the effective range approximation which has been employed in
recent work on Efimov physics [158, 159]. Within the effective range approximation one uses
in the three-body calculation the scattering amplitude f (k) expanded up to order k2

f (k) =
1

−1/a+ re k2/2− i k
, (2.33)

where in our model the effective range re is obtained from expanding the exact f (k) in Eq. (2.25),

re =−2r ∗+ 3σ
�

1−
4σ

3a

�

. (2.34)

It has to be emphasized that the use of Eq. (2.33) together with Eq. (2.34) is an approxima-
tion. It will not be employed in our following three-body calculation. We comment on this
approximation at this point, as on the one hand the analysis of the effective range Eq. (2.34)
is instructive and on the other hand we want to comment on the range of applicability of the
effective range approximation.

In the limit where the physical range σ goes to zero the effective range is given by

re =−2r ∗ < 0 (σ = 0), (2.35)

which is negative as required by the causality bound derived by Wigner [160], see also [161].
The resulting model respecting Eq. (2.35) is known as the effective range or resonance model.

9Note, alternatively σ can also be determined from a fit of the measured dimer energy spectrum.
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It will be studied in detail in Section 2.8. Taking the additional limit r ∗ → 0 corresponds to
the scaling limit.

We emphasize that for finite σ > 0 the limit r ∗→ 0 is well-defined and yields the physics
of open-channel dominated Feshbach resonances with an effective range given by re = 3σ on
resonance. In this case, upon integrating out the field φ in the action (2.23), one obtains an
effective action for the atoms ψ where the dynamical part of the inverse propagator P cl

φ
can

be completely neglected as can be seen from evaluating the corresponding tree-level diagram
shown in Fig. 2.9. The action then describes a single-channel model with an effective range
of the atom-atom coupling which is in good agreement with the value obtained from a single-
channel model with true van der Waals potentials [145]. Thus we may expect that our model
also describes situations well where the scattering physics is solely dominated by a background
scattering potential with a van der Waals tail. This also explains the good agreement of our
results, to be derived in the following, with the one obtained in the single-channel calculations
by Wang et al. [143]. Note however, that as long as σ > 0, the single-channel model obtained
from integrating out the field φ in the limit of open-channel dominated Feshbach resonances
is still not equivalent to a single-channel model featuring a van der Waals type interaction. The
difference is that in such a ‘standard’ single-channel model the van der Waals interaction takes
place in the density channel while the two-channel model, after integrating out φ, becomes
equivalent to a single-channel model with an interaction of finite range in the pairing channel.
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FIGURE 2.11: Molecule energy obtained from the exact expression (2.25) (solid black) compared
to the effective range approximation Eq. (2.36) and (2.34) (dashed green). The result for the
universal dimer energy ED =−2/a2 is shown as dotted, red line.

Coming back to the effective range approximation, we compare the exact bound state
spectrum as shown in Fig. 2.10(a) to the spectrum obtained from Eqn. (2.33) and (2.34) in
order to estimate the range of validity of this approximation. The result is shown in Fig. 2.11
(dashed line) for a relatively open-channel dominated resonance with sres = 10. We also show
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the universal formula ED =−2/a2 (dotted line). Within the effective range approximation the
scattering amplitude has a pole corresponding to a bound state energy

ED =−
2

r 2
e




1−

È

1−
2re

a






2

. (2.36)

The apparent breakdown for a < 2re and re > 0 is prevented by the scattering length de-
pendence of re itself, cf. Eq. (2.34). Note that keeping an effective range independent of the
scattering length is not sufficient. The effective range expansion has a wider range of appli-
cability when the closed-channel character of the resonance increases, sres → 0, since then r ∗

dominates Eq. (2.34).

2.4 Functional renormalization group approach

In the following we will exactly solve the three-body problem for the action given by Eq. (2.23)
using the functional renormalization group. Although there is no three-body coupling present
in the action (2.23), quantum fluctuations will generate an effective interaction between atoms
and dimers described by a term

∼
∫

Q1,Q2,Q3

λ3(Q1,Q2,Q3)φ
∗(Q1)ψ

∗(Q2)φ(Q3)ψ(Q1+Q2−Q3), (2.37)

where the four-momenta Qi = (Ei ,qi ) include energy and momentum. A process leading to
the generation of the vertex λ3, even in absence of a microscopic three-body coupling, is given
by the diagram

(2.38)

where dashed lines denote (full) dimer propagators, solid lines atom propagators, and the ver-
tex dots represent the atom-dimer conversion (Yukawa) coupling∼ g . The vertex λ3 develops
a complicated energy and momentum dependence and poles in this vertex signal the presence
of Efimov bound states.

Within a standard effective field theory approach the solution of the three-body problem
amounts to a self-consistent solution of the set of integral equations shown in Fig. 2.12 [100,
101, 163]. When few-body physics is concerned only, the set of equations corresponding to
these diagrams yields the exact solution of the three-body problem. It is rather remarkable how
small the set of equations is considering that one is dealing with a strong-coupling problem.
And indeed, in a many-body problem, the situation is much more complex. In this case, one
has to deal with the fact that in general there is an infinite hierarchy of coupled equations
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(a)

(b)

FIGURE 2.12: Integral equations for the (a) two-body problem (Lippmann-Schwinger equation)
and the (b) three-body problem (Skornyakov-Ter-Martirosyan (STM) equation [162]). Thick,
dashed lines denote the full dimer propagator, thin lines atoms. Further symbols are: Yukawa
coupling (small circle), bare atom-dimer coupling (gray square), and full atom-dimer vertex
(dashed, big circle).

describing infinitely high n-body couplings.10 For instance, consider the vertex λ4(φ
∗φ)2

which belongs to the four-body sector. It describes dimer-dimer scattering and is generated by
quantum fluctuations of the type

(2.39)

In the generic many-body setting, it couples back to the two-body sector by a tadpole diagram
as shown in Fig. 2.13(a). The same ‘backfeeding’ takes place for the atom-dimer coupling λ3.
In the many-body problem it influences the one- and two-body sector via the diagrams shown
in Fig. 2.13 (b-c). These diagrams in turn would yield additional contributions to the integral
equation in Fig. 2.12, rendering the exact solution of the problem inaccessible.

In the few-body problem, however, the density of particles is zero and thus no holes can be
present. This is a direct consequence of the fact that in non-relativistic few-body physics one
studies the excitations out of the vacuum state and not out of a many-body ground state, which
for example may be a filled Fermi sea or a Bose-Einstein condensate. Diagrams generating a
coupling belonging to an n′-body sector which involve a higher-n-body vertex with n > n′,
always involve the propagation of at least one hole and thus they vanish.

This can also be understood from the statistical physics point of view. While in the many-
body problem the partition function is taken with respect to the set of many-body states

10In the following we will often use the notion of n-body couplings or sectors. This shall define the set of
(interaction) terms which describe n in- and outgoing particles. Here the fundamental field ψ counts as one
particle, while the composite field φ corresponds to two particles as given by their respective charge under the
global U(1) symmetry.
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(a) (b) (c)

FIGURE 2.13: Diagrams where higher n-body couplings feed back into lower n′ < n-body sectors.
They vanish in the few-body problem.

compatible with the desired particle number (or, if grand-canonical, the chemical potential),
in the few-body problem the partition function is taken with respect to the vacuum only. In
non-relativistic physics, it is impossible to annihilate a particle out of this vacuum. This is dif-
ferent from relativistic, ‘few-body’ high-energy physics where in a sense the vacuum reminds
much more of non-relativistic many-body physics. Here, antiparticles can be excited out of
the vacuum, and thus arguments applying to non-relativistic few-body physics do not hold
anymore. In summary, with the arguments outlined above one can show the so-called vac-
uum hierarchy [46, 66] which states that in the few-body problem the n-body sector cannot
influence the n′-body sectors for n′ < n. Note that in the context of fRG flow equations the
argument becomes more subtle [164, 165]. As recently shown by Tanizaki [164], depending
on the choice of regulators there are additional equations to be considered to close the set of
few-body flow equations. In the following we, however, employ a regulator scheme which
respects the vacuum hierarchy as also pointed out in [164].

Since we only want to solve the three-body problem, we can ignore the quantum genera-
tion of the four-body and higher order couplings by virtue of the vacuum hierarchy. Therefore
the only equations to be solved are the ones displayed in Fig. 2.12. These equations have to
be solved self-consistently which means that the full, exact dimer propagator, cf. Fig. 2.12(a),
has to be inserted into the equation for the three-body coupling λ3, displayed in Fig. 2.12(b).
The solution of the three-body problem thus consists of several steps: the two-body problem
has to be solved, the three-body integral equation has to be derived, and finally, it has to be
solved as well. In order to achieve this we choose to use the functional renormalization group
for two reasons. First, the derivation of the three-body equation becomes particularly simple
in this approach, and secondly, it offers the solution of the few-body problem within a frame-
work which allows not only to tackle the few-body problem but also the much more complex
many-body problem within the same, unified approach.

The functional renormalization group (fRG) is introduced in Appendix C and some com-
putational details will be covered in Chapter 4. For detailed reviews, we refer to [166, 167, 168,
169, 170, 171, 172, 173, 174, 175]. In brief, the fRG uses an RG scale k dependent generating
functional Γk – the so-called effective average action – which interpolates between the classical
action S = Γk=Λ, when k equals the UV cutoff scale Λ of the theory, and the full (quantum)
effective action Γ = Γk=0, when k reaches the infrared, by successively including quantum
fluctuations on momentum scales p ¦ k.

The effective actionΓ= Γ[ψ,φ] is the generating functional of all 1PI vertex functions and
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thus the knowledge of Γ is equivalent to having solved the many-body Schrödinger equation.
The evolution of Γk with the RG scale k is governed by the non-perturbative renormalization
group equation [176]

∂kΓk =
1

2
Tr

1

Γ
(2)
k
+Rk

∂k Rk . (2.40)

Using this RG equation we derive the exact effective action Γ of the three-body problem in
the s-wave channel described by the underlying action (2.23). This problem presents one of
the rare examples where the RG evolution of a non-trivial problem can actually be solved
exactly. As such, it is of interest from an RG perspective alone, since it offers the possibility
to study the consequences of regulator choices in (2.40) on the basis of an exact solution. This
has to some extent been done in a similar context studying SU(2) fermions in [177] and open
questions concerning an observed regulator dependence have been resolved in [164].

The functional Γ[ψ,φ] contains all possible terms of ψ and φ allowed by the symmetries.
The first step in solving Eq (2.40) is to single out a truncation of Γk which contains the complete
information about the three-body problem. In general, infinitely many couplings of arbitrarily
high order are generated during the RG flow, e.g. terms ∼ (ψ∗ψ)n , ∼ φ∗φ∗ψ4 etc. By the
virtue of the vacuum hierarchy, however, the n ≥ 4-body sector does not feed back to the
lower n ≤ 3 body sectors. It is for this reason that we can write down an exact and complete
vertex truncation of Γk for the three-body problem. It reads

Γk =

∫

r,t

n

ψ∗(r, t )[i∂t −∇2]ψ(r, t )+φ∗(r, t )Pφ,k (i∂t ,∇2/2)φ(r, t )
o

+
g

2

∫

r1,r2,t
χ (r2− r1)

h

φ(
r1+ r2

2
, t )ψ∗(r1, t )ψ∗(r2, t )+ c .c .

i

+Γ3B
k

, (2.41)

whereΓ3B
k

is the three-body term generated by quantum fluctuations which reads [cf. Eq. (2.37)]

Γ3B
k
=−

∫

Q1,Q2,Q3

λ(k)3 (Q1,Q2,Q3)φ
∗(Q1)ψ

∗(Q2)φ(Q3)ψ(Q1+Q2−Q3). (2.42)

Note, that there are more terms in Eq. (2.41) allowed by the symmetries of the problem such
as e.g. λ2 (ψ

∗ψ)2, or ξ3 (ψ
∗ψ)3, which would be generated by diagrams of the form shown

in Fig. 2.14. These diagrams however vanish because holes appear in the loops. Note, the
coupling λ2 (ψ

∗ψ)2 generated by the diagram in Fig. 2.14(a) would induce a flow of the Yukawa
coupling g . Since λ2 remains, however, zero during the flow, the Yukawa coupling is not
renormalized, ∂k g ≡ 0. For this reason the only running couplings to be introduced in the

truncation of Γk are the inverse dimer propagator Pφ,k and the atom-dimer coupling λ(k)3 . Both
couplings are complicated functions of momenta and frequencies so that one technically has
to deal with an infinite set of coupled flow equations.

The flow equations for Pφ,k and λ(k)3 are derived upon insertion of Eq. (2.41) into Eq. (2.40)
and by taking the suitable functional derivatives with respect to the fields at fixed external
momenta. The flow equations are displayed in terms of diagrams in Fig. 2.15.
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(b)

,

(a)

FIGURE 2.14: (a) Diagram generating an atom-atom scattering term ∼ λ2(ψ
∗ψ)2 which belongs

to the two-body sector. Since it contains holes in the loop, it vanishes in the non-relativistic
vacuum. (b) Diagrams generating a three-atom scattering term ∼ γ (ψ∗ψ)3 which belongs to
the three-body sector. Since the diagrams contain holes in the loop, they vanish as well.

(a)

(b)

FIGURE 2.15: RG flow equations in terms of Feynman diagrams. Lines with one (two) arrows
denote atoms (dimers). The two thin lines cutting internal lines denote regulated, inverse
propagators P c

ψ/φ
= Pψ/φ+Rψ/φ. (a) Flow equation of the inverse dimer propagator Pφ,k . (b)

Flow equation of the atom-dimer coupling λ(k)3 .

We have now to devise an RG scheme which yields infrared vertices Pφ = Pφ,k=0 and

λ3 = λ
(k=0)
3 which in turn solve the self-consistent equations displayed in Fig. 2.12. In order

to achieve this we have to first integrate the flow of the dimer propagator and then insert
its infrared solution into the flow of λ(k)3 . Remarkably, this RG flow prescription can be
implemented by a specific choice of regulators Rψ and Rφ which we put forward in [96]. It is
based on the observation that in every diagram belonging to the three-body sector one dimer
appears in the loop while in the two-body sector only atoms are present. Thus we can choose
a dimer regulator which stays extremely large while we are lowering the atom regulator Rψ
to zero in a first RG step. The result is then the full, exact solution of the two-body problem.
In a second RG step we then lower the dimer regulator Rφ. By inspection of Fig. 2.15(b) we
see that the internal atom lines are then not regularized anymore and only a regulator on the
dimer lines remains. As a result of this second RG step we obtain the full, exact solution of
the three-body problem. A similar scheme has been used by Diehl et al. for the solution of the
atom-dimer scattering problem of fermions [177]. Moroz et al. then introduced the notion of
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the two-step RG prescription [111] for the solution of the three-body Efimov problem in the
scaling limit. Here we adapt this method to solve the three-body problem for the finite-range
action (2.23) for arbitrary energies and scattering lengths, cf. [178].

In the end, this prescription amounts to solving first the two-body problem exactly, and
then using the resulting dimer propagatorGφ = 1/Pφ,k=0 as input for the flow equation of λ(k)3
depicted in Fig. 2.15. We already derived the solution of the two-body problem in Section 2.3,
cf. Eq. (2.24). It is however instructive to re-derive this result using the fRG method. For
similar treatments, see [46, 96, 177].

Exact solution of the two-body problem

The flow equation of Pφ,k is given by

∂k Pφ,k(Q) =−
1

2

∫

P

∂̃k

g 2χ (|p+ q/2|)2
[Pψ(−P )+Rψ(−P )][Pψ(Q + P )+Rψ(Q + P )]

. (2.43)

Here, the symbol ∂̃t implies that the scale derivative only acts on the explicit k dependence of
the regulators Rψ. Equation (2.43) can be solved analytically for various regulators Rψ. The
particle-particle loop shown in Fig. 2.15(a) would diverge in the case of zero-range interactions
if no regulator were present and each choice of Rψ represents a different regularization scheme
for this loop. Here we use the particularly simple form

Rψ,k(Q) = k2 (2.44)

which simply adds a static gap to the atoms. Note that the Yukawa coupling g can be placed in
front of the integral, because ∂̃k acts only on the regulator and furthermore g is not dependent
on k anyway. After having performed the frequency integration, the flow equation reads

∂k Pφ,k (q, E ) =−
g 2

2
∂̃k

∫
d 3 p

(2π)3
χ (|p|)2

−E + 2p2+ q2/2+ 2k2
, (2.45)

where used a shift in the integration variable p→ p−q/2 which makes the angular integration
trivial. Since no coupling appearing in Eq. (2.45) is k-dependent we are allowed to replace ∂̃k

by ∂k upon which we can directly perform the RG flow by integrating the flow equation from
k = 0 up to the UV cutoff scale k = Λ. We obtain the infrared, (retarded) inverse dimer
propagator

G−1
φ
(E ,q) = Pφ(q, E ) = Pφ,Λ(q, E )+

g 2

8π2

∫ ∞

0
d p p2χ (p)2

×
�

1

−E + 2 p2+ q2/2+ 2Λ2− iε
−

1

−E + 2 p2+ q2/2− iε

�

. (2.46)

Here, Pφ,Λ(E , p) equals P cl
φ

defined in Eq. (2.23).
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For a finite value σ > 0 the momentum integral is regularized by the finite range of χ (r )
which gives an additional 1/p2 decay for large momenta. We may therefore directly take the
UV limit Λ → ∞. Note, that this is different from the case of zero-range potentials which
has been discussed previously in the context of the fRG [46, 96, 177] and which is subject of
most literature on Efimov physics [66]. In this case, χ (p) = 1 and the limit Λ→∞ cannot be
taken right away since then the second term in Eq. (2.46) diverges upon integration. Instead,
Λ has to be kept finite so that the first term in the bracket in Eq. (2.46) is responsible for the
regularization. The now convergent integral is evaluated, the Λ-dependence absorbed in the
definition of the UV dimer propagator (renormalization) and in the end the limit Λ→∞ can
be taken. We note that the limits Λ→∞ and σ → 0 are not interchangeable.

In our present case, where we have the physical cutoff 1/σ given by the range of the
conversion coupling g , no artificial UV regularization is needed. After having taken the UV
limit Λ→∞ we obtain the result previously obtained, cf. Eq. (2.24), which we display again

G−1
φ
(E ,q) =−E +

q2

2
+ Emol(B)− iε−

g 2/(32π)

σ
�

1+σ
q

− E
2 +

q2

4 − iε
�2

. (2.47)

Having solved the two-body problem and having fixed all parameters of our model as discussed
in the previous Section we can now turn to the solution of the three-body problem.

2.5 Exact solution of the three-body problem

In our two-step RG scheme, we are now left with the final step to derive and solve the flow
equation for the vertex λ(k)3 using the full, infrared propagator (2.47) as input.

Derivation of the flow equation

The derivation of the flow equation for λ(k)3 follows the previous works [96, 177] which we
extend to account for finite range potentials as well as finite scattering energies and scattering
length a. In our scheme the atomsψ are not regulated while the moleculesφ are supplemented
with a sharp momentum regulator, such that

1

Pφ(E ,q)+Rφ,k(E ,q)
=

1

Pφ(E ,q)
θ(|q| − k). (2.48)

The starting point of the second RG step is the truncation (2.41) with Pφ,k replaced by its

infrared counterpart in Eq. (2.47). The only running coupling is then λ(k)3 which depends on
three four-momenta Q1, Q2, and Q3. Following [177] this complexity can be simplified by per-
forming the calculation in the center-of-mass frame (CMF). The definitions for the kinematic
variables is equivalent to our choice in Ref. [96] and it is summarized in Fig. 2.16.
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FIGURE 2.16: Kinematics of the vertex λ(k)3 (Eψ1,q1; Eψ2,q2; E ).

In the CMF, the vertex depends only on 9 variables and we write it as11

λ(k)3 = λ
(k)
3 (

Q
ψ
1

︷ ︸︸ ︷

Eψ1,q1;

Q
ψ
2

︷ ︸︸ ︷

Eψ2,q2; E ) (2.49)

where E denotes the total incoming energy of the atom and dimer. The flow equation, dia-
grammatically shown in Fig. 2.15, then reads

∂kλ
(k)
3 (Q

ψ
1 ,Q

ψ
2 ; E ) = ∂̃k

∫

L

θ(|l| − k)

Pψ(ω, l)Pφ(−ω+ E ,−l)
× (2.50)



λ(k)3 (Q
ψ
1 , L; E )λ(k)3 (L,Q

ψ
2 ; E )

+g 2λ(k)3 (L,Q
ψ
2 ; E )

χ (|q1+
l

2 |)χ (|l+
q1
2 |)

Pψ(−ω+ E − q2
1 ,−l− q1)

+g 2λ(k)3 (Q
ψ
1 , L; E )

χ (|q2+
l

2 |)χ (|l+
q2
2 |)

Pψ(−ω+ E − q2
2 ,−l− q2)

+
g 2χ (|q2+

l

2 |)χ (|l+
q2
2 |)

Pψ(−ω+ E − q2
2 ,−l− q2)

g 2χ (|q1+
l

2 |)χ (|l+
q1
2 |)

Pψ(−ω+ E − q2
1 ,−l− q1)



,

where L= (ω, l) is the loop and Q = (E ,0) the ‘external’ momentum. We may now apply the
residue theorem to evaluate the ω integration. Here it is important to note that we assume
that singularities (bound states) arise in λ(k)3 solely from singularities in the last argument E
belonging to three-body bound states and not from the first two arguments. This is similar to
the reasoning leading to decompositions of vertex functions into bilinears as done by Giering,
Husemann, Metzner, and Salmhofer [179, 180, 181, 182]. In our case this assumptions holds
exactly as verified by our final result. Since the loop frequency only appears in the first two

11In the following, various definitions of λ(k)3 are used, which only differ in their momentum dependence.
Which of the definitions we use shall be implied by the corresponding kinematic arguments.
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arguments of λ(k)3 we may safely integrate Eq. (2.50). Furthermore we consider only energies
E ≤ 0 below the atom (a < 0) and atom-dimer threshold (a > 0), respectively, so that we do not
pick up additional bound state poles from the dimer propagator when closing the frequency
integration contour. Note that this would become a subtle issue when solving the three-body
problem for more complicated atomic potentials featuring deeply bound states.

The frequency integration puts the atom appearing in the first line in Eq. (2.50) on-shell,
ω→ l2, cf. [46, 66, 96, 177], such that it is only required to track the flow of a ‘half-on, half-off
shell vertex’ λ(k)3 , defined by

λ(k)3 (q1
,q

2
; E ) = λ(k)3 (Eψ1 = q2

1 ,q1; Eψ2 = q2
2 ,q2; E ) (2.51)

Differently to the solution of the two-body problem, we are not allowed to make the replace-
ment ∂̃k → ∂k in Eq. (2.50) as the integrand includes k-dependent couplings. Instead we per-
form the ∂̃k derivative which acts only on the step function. The flow equation then reads

∂kλ
(k)
3 (q1,q2; E ) = −

∫
d 3 l

(2π)3
δ(|l| − k)

Pφ(E − l2,−l)



λ(k)3 (q1, l; E )λ(k)3 (l,q2; E ) (2.52)

+g 2λ(k)3 (q1, l; E )
χ (|q2+

l

2 |)χ (|l+
q2
2 |)

−E + q2
2 + l2+ (q2+ l)2− iε

+g 2
χ (|q1+

l

2 |)χ (|l+
q1
2 |)

−E + q2
1 + l2+ (q1+ l)2− iε

λ(k)3 (l,q2; E )

+g 4
χ (|q1+

l

2 |)χ (|l+
q1
2 |)

−E + q2
1 + l2+ (q1+ l)2− iε

χ (|q2+
l

2 |)χ (|l+
q2
2 |)

−E + q2
2 + l2+ (q2+ l)2− iε



.

The collisions of atoms take place in the low-energy limit. Thus we may perform an s-wave
projection of the atom-dimer scattering and define [96, 177]

λ(k)3 (q1, q2; E ) =
1

2g 2

∫ 1

−1
dcosθλ(k)3 (q1,q2; E ), θ=∠(q1,q2), (2.53)

where the prefactor is defined for later convenience.12 Taking the angular average of Eq. (2.52)
and evaluating the delta function leads to the rather simple expression13

∂kλ
(k)
3 (q1, q2; E ) = −

g 2

2π2

k2

Pφ(E −k2, k)
×

h

GE (q1, k)λ(k)3 (k , q2; E )+λ(k)3 (q1, k; E )GE (k , q2)

+GE (q1, k)GE (k , q2)+λ
(k)
3 (q1, k; E )λ(k)3 (k , q2; E )

i

(2.54)

12With this choice the coupling λ(k)3 is rescaled by the quasiparticle weight Zφ ∼ 1/g 2 of the molecule at
resonance in the zero-range and broad resonance limit.

13For computational details on the angular average we refer to Appendix E.
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where we defined

GE (p , q)≡
1

2

∫ 1

−1
d cosθ

χ (
�
�
�p+

q
2

�
�
�)χ (

�
�
�q+

p
2

�
�
�)

−E + p2+ q2+ (p+ q)2− iε
. (2.55)

The function GE (p , q) can be calculated analytically for a Gaussian as well as the exponen-
tial shape function χ (r ). The resulting expression is however quite lengthly. In the limit of
vanishing range σ→ 0 it reduces to the well-known expression [66, 163, 177]

GE (q , p) =
1

4q p
log

q2+ p2+ q p − E
2 − iε

q2+ p2− q p − E
2 − iε

. (2.56)

Remarkably, the flow equation (2.54) can be integrated exactly [177]. The final result will be
a modified version of the famous Skornyakov-Ter-Martirosyan (STM) equation [162]. For the
derivation we follow closely the derivation in [177] extended to our problem.

First note that Eq. (2.54) is in a binomial (matrix) form. This is the key to be able to
integrate this equation exactly. In order to do so it is convenient to define the quantities

gE (q1, q2) = 16q1q2GE (q1, q2), (2.57)

λ̃(k)
E
(q1, q2) = 16q1q2λ

(k)
3 (q1, q2; E ), (2.58)

f
(k)

E
(q1, q2) = gE (q1, q2)+ λ̃

(k)
E
(q1, q2), (2.59)

and finally
ζE (l ) =−g 2Gφ(E − l 2, l )/(32π2). (2.60)

Using Eqs. (2.57)-(2.60) the differential flow equation (2.54) can be written in the compact
form

∂k f
(k)

E
(q1, q2) = ζE (k) f

(k)
E
(q1, k) f

(k)
E
(k , q2). (2.61)

which can be expressed as [96, 177]

∂k f
(k)

E
(q1, q2) =

∫ ∞

0
d l

∫ ∞

0
d l ′ f (k)

E
(q1, l )A

(k)
E
(l , l ′) f (k)

E
(l ′, q2) (2.62)

with
A(k)

E
(l , l ′) = ζE (k)δ(k − l )δ(k − l ′). (2.63)

Interpreting Eq. (2.62) as a matrix equations with matrices of a continuous index we may
formally write Eq. (2.62) as

∂kf
(k)
E
= f

(k)
E
·A(k)

E
·f (k)

E
(2.64)

=⇒ ∂k(f
(k)
E
)−1 =−A

(k)
E

. (2.65)
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It is remarkable how the complicated three-body problem is reduced to such a simple flow
equation. Before integrating this equation, we have to specify the initial condition at the UV
scale k = Λ for f

(k)
E

. For now we assume that there are no sizable microscopic three-body

forces, so that λ̃(Λ)3 = 0 in Eq. (2.59). This implies

f UV
E
(q1, q2) = gE (q1, q2). (2.66)

In reality, there are, however, genuine three-body forces and we will qualitatively study their
influence in Section 2.9. Respecting the initial condition (2.66), Eq. (2.65) is integrated from k
to Λ which yields

[ f
(k)

E
]−1(q1, q2) = g−1

E
(q1, q2)+

∫ Λ

k

d k ′A(k
′)

E
(q1, q2). (2.67)

The inversion of this result gives the following expression in matrix representation – note, in
this step the resummation of infinitely many diagrams takes place –

f
(k)
E
=

�

I + g ·
∫ Λ

k

d k ′A(k
′)

E

�−1

· g (2.68)

From this equation, when integrating down to the infrared scale k = 0, we then finally obtain14

fE (q1, q2) = gE (q1, q2)−
∫ Λ

0
d l gE (q1, l )ζE (l ) fE (l , q2) (2.69)

When inserting the definition of fE , Eq. (2.59), into Eq. (2.69) one finds that this is a modified
version of the famous STM equation [162] (see also [66]) – here in a version for the irreducible
vertex function λ3 and for finite range potentials. In ‘standard’ treatments of Efimov physics
using zero-range potentials, the integral in (2.69) is UV divergent and the regularization with
the cutoffΛ has to be kept. AdjustingΛ one can then control the actual position of the Efimov
states in the (1/a, E ) plane of the bound state spectrum. Therefore, in the zero-range case, the
UV cutoff Λ can be regarded as a representation of the three-body parameter.

In our case the situation is fundamentally different. Having a physical range σ present, the
integral is not divergent anymore by virtue of the form factor χ (r ) appearing in the terms gE

as well as ζE . Thus we can safely take the limit Λ→∞. In a sense, nature takes care of the
regularization by itself and the artificial three-body parameter Λ disappears from the theory.

Numerical renormalization group flow of λ(k)3

Equations (2.68) or (2.69), respectively, have to be solved numerically. For this purpose, it is
advantageous to put the vertex fE and all other functions such as gE on a logarithmic grid in

14When Eq. (2.69) is solved for energies E above the atom-dimer threshold for a > 0, a pole in ζ is picked up
in the l -integration in Eq. (2.69) leading to an imaginary part of fE . This is responsible for a finite recombination
rate at the atom-threshold.
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momentum space. In this way, one can then easily follow the RG evolution of, for instance,
λ(k)3 (q1, q2). The numerical procedure is stable and robust due to the fact that Eq. (2.68) is
not an implicit integral equation unlike the standard STM equation (2.69). Specifically, we use
dimensionless quantities and measure the momenta and RG scale k with respect to the inverse
range of the potential Λσ ≡ 1/σ and define

t = ln
k

Λσ
, ti = ln

qi

Λσ
, tmax = ln

Λ

Λσ
(2.70)

where tmax is larger than zero. If one considers the zero-range limit, σ ≡ 0, then Λσ is traded
for the UV cutoff scale Λ itself such that tmax = 0. In the case of σ > 0 any choice Λ≫ Λσ
can be used and Λ only appears because of the numerical implementation. On a discrete
logarithmic grid with spacing ∆t and extension (tmin . . . tmax), Eq. (2.68) reads in discretized
form

[ fE]t1,t2
=




δt1,t ′ +∆t

tmax∑

tl=t1

[gE]t1,tl
ζE (tl )δtl t ′






−1

t1,t ′

[gE]t ′,t2
, (2.71)

where t1, t2, t ′, tl , and t denote discrete indices labeling the points on the logarithmic RG
scale and momentum grid, respectively. In the numerical solution tmax and thus Λ is chosen
to be much larger than 1/σ so that the integral in (2.68) has converged within the numerical

accuracy. In Fig. 2.17 we show an exemplary RG flow of λ(k)3 for external energy E = 0 and
a finite, negative 1/a < 0. In the beginning of the flow the vertex λ3(t1, t2, E = 0), which
is symmetric in momentum space, remains zero, cf. Fig. 2.17(a), until it reaches the scale
k ≈ 1/σ [Fig. 2.17(b)]. From this scale on, high momentum modes become renormalized and
a log-periodic pattern, characteristic for an RG limit cycle, develops, cf. Fig. 2.17(c-d). When
the RG scale reaches the scale given by the scattering length 1/|a| the RG flow is effectively
stopped, cf. Fig. 2.17(e), and a finite number of periodic patterns remains [Fig. 2.17(f)]. The
development of each of these periodic patterns is related to the appearance of a resonant en-
hancements of λ(k)3 during the flow. This in turn gives rise to the presence of a bound state and
therefore the number of periodic patterns along the diagonal t1 = t2 axes gives the number of
Efimov states. From this observation it is already evident that when |a| becomes of the order
of σ no Efimov states can be present as essentially no flow is generated at all.

Fig. 2.17 was derived for a large value of sres ≈ 100. If sres is chosen to be small, then it is
the scale 1/r ∗ which suppresses the flow of the atom-dimer vertex in the UV so that the flow
is started only on a much smaller RG scale k. For this reason much larger values of |a| are
needed in order for λ3 to support bound states. It is important to note that a finite energy |E |
takes also the role of an IR cutoff scale such that the flow at 1/a = 0 but at finite E < 0 looks
very similar to the one shown in Fig. 2.17.
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(a) (b)

(e) (f)

(d)(c)

FIGURE 2.17: Renormalization group flow of the atom-dimer vertex λ(k)3 (q1, q2, E = 0). The solid
lines represent the scale qi = 1/σ and the dashed lines the inverse scattering length qi = 1/|a|.
For a detailed discussion, see main text.

2.6 Determination of the bound state spectrum

The knowledge of the full vertex λ3 at the infrared scale gives all information about the scatter-
ing of three bosons, such as bound states, recombination rates, and lifetimes, by evaluating the
corresponding tree-level diagrams [66]. In the following we compute the trimer bound state
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spectrum by identifying the poles of λ3(q1, q2; E ) as a function of the energy E . As shown
recently [48], such poles also exist in higher order vertices λN for N ≥ 4 which are not consid-
ered in this chapter. In Chapter 3, we will study the four-body problem using renormalization
group equations and show that the Efimov effect extends to the four-body sector. Indeed, it is
likely that there are N -body bound states for arbitrary large N , a conjecture consistent with
a recent theorem by Seiringer [183] which states that any pairwise interaction potential with
negative scattering length a has an N -body bound state for some value of N , no matter how
small |a| may be. So far, the existence of N -body Efimov states has been shown numerically
up to N = 13, see [184].

Three-body bound states are determined by the poles in the vertex function λ3 as function
of total incoming scattering energy of the atom and the dimer, cf. Fig. 2.16. Basically, the
procedure is similar to the case of simple two-atom scattering which is determined by the scat-
tering amplitude f (E ) in Eq. (2.25). The difference is that the vertex λ3 is a more complicated
quantity depending also on the momenta of the in- and outgoing atoms. Close to its poles λ3
can be parametrized by [66]

λ(n)3 (q1, q2; E )≈
B (q1, q2)

E + E (n)
T
+ i Γ(n)

T

, (2.72)

where Γ(n)
T

accounts for the possibility of unstable trimer states andB represents the momen-
tum dependent residue of the bound state pole. In our case we have neglected the background
scattering potential and use a closed-channel potential which supports only a single bound
state such that no deeply bound molecular states are present. In consequence, there are no
decay channels for the trimers and Γ(n)

T
≡ 0. The pole structure of λ3(q1, q2; E ) in Eq. (2.72)

carries over to the vertex λ̃3 defined by Eq. (2.58). Since gE , as defined by Eq. (2.57) is a regular
function of energy at E =−(E (n)

T
+ iΓ

(n)

T
), it can be neglected in Eq. (2.59) such that indeed

f
(n)

E
(q1, q2)≈

B̃ (q1, q2)

E + E
(n)

T
+ i Γ

(n)

T

. (2.73)

In order to determine the bound state energies, Eq. (2.73) is inserted into the modified STM
equation (2.69). This equation is evaluated for energies close to a possible bound state pole so
that the regular function gE can be neglected. This finally yields the matrix equation

B̃ (q1, q2) =
g 2

32π2

∫ Λ

0
d l

gE (q1, l )

Pφ(E − l 2, l )
B̃ (l , q2). (2.74)

As before, as long as σ > 0, the UV cutoffΛ can be sent to infinity. Eq. (2.74) can conveniently
be written in matrix representation as

B̃ =C · B̃ (2.75)
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with

C (q1, q2; E ) =
g 2ξ

8(3+ ξ )π2

gE (q1, q2)

Pφ(E − q2
2 , q2)

. (2.76)

Eq. (2.75) is a homogeneous matrix equation which has non-trivial solutions for B̃ only if

D ≡ det[C − I] = 0. (2.77)

It is straightforward to repeat the proceeding derivation for the case of three interacting (mass-
balanced) SU(2) fermions and for completeness we included a factor ξ in Eq. (2.75) which is
ξ = 1 for bosons and ξ = −1 for fermions. Since the second fraction in Eq. (2.76) is positive,
it is directly evident that there cannot be an Efimov effect for SU(2) fermions.

Numerical procedure

In order to find the bound state spectrum of the two-channel model (2.23) we have to calculate
the zeros of the determinant D in Eq. (2.77) where D is a function of the scattering length,
energy, resonance strength, and potential range, D = D(1/a, E , g ,σ). To evaluate D numeri-
cally, the function C − 1 from Eq. (2.77) is put on a logarithmic momentum grid as defined
by Eqn. (2.70). This grid extends from high momentum modes of order qmax ≈ 5/σ down
to low momenta of order qmin ≈ 0.01qIR where qIR is determined by the lowest out of 1/|a|
or |E |1/2. The choice of the interval qmin/max ensures convergence within numerical precision.
The unitarity point E = 1/a = 0 can be treated analytically, which we have done in Ref. [96].
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FIGURE 2.18: Determinant D evaluated for zero energy, as function of scattering length a < 0
and conveniently rescaled by a positive factor of (1+e− ln |σ/a|/2). (a) Comparison of the flow for
various grid sizes used for the numerical representation of C . Note, the results for N = 30,40
lie almost on top of each other. (b) Determinant D as function of negative scattering length
for two values of resonance strength. The smaller sres the larger |σ/a| has to be to allow the
formation of an Efimov trimer.

In Fig. 2.18(a) we show the determinant D for an open-channel dominated resonance char-
acterized by g 2 = 100/σ at E = 0 as function of ln |σ/a| for a varying number of grid points
N ×N . For the displayed range of σ/|a|, one finds convergence of the results for N ≈ 40.
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The number of necessary grid points depends on the range qmin . . . qmax. This follows also di-
rectly from our discussion of the RG flow shown in Fig. 2.17: the smaller |a| or |E |, the wider
the range where λ3(q1, q2; E ) has a non-trivial structure in momentum space. In this way
Fig. 2.18(a) nicely illustrates the necessity to keep a constant (high) resolution of logarithmic
momenta as higher excited Efimov states are studied and thus qmin is lowered. This constraint
is implemented in our numerical procedure and we find that a resolution of logarithmic mo-
menta with a grid spacing of ∆t = 0.2 leads to convergent results. As a consequence of the
logarithmic scaling of the Efimov states this implies that, for instance, about 106 grid points
are needed for the study of the fourth excited Efimov state, in particular when closed-channel
dominated Feshbach resonances are considered.

In Fig. 2.18(a) each zero-crossing of D (indicated by the circles) corresponds to the ex-
istence of an Efimov state reaching the atom threshold and the first four Efimov states are
visible in this figure. From this picture we may thus directly read off the ratio of the various
scattering length a

(n)
− . While the first Efimov states with low numbers n show deviations from

the universal scaling (2.5), this scaling is quickly recovered as unitarity, 1/a = 0, is approached.
In Fig. 2.18(b) the determinantD is shown, again as function of ln |σ/a| at E = 0, and we com-
pare an open-channel dominated resonance with sres = 1000 to a closed-channel dominated
resonance, where sres = 0.01. Similarly, we show D for the same values of sres as function of
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s     = 1000res
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FIGURE 2.19: Determinant D as function of energy |E | in the resonance limit 1/a = 0 for two
values of resonance strength. The smaller sres the smaller |Eσ2| has to be to allow the formation
of an Efimov trimer.

ln
�
�σ2E

�
� in Fig. 2.19 in the resonance limit, a =∞. Again, one can nicely read off the approach

of universality as |E | is lowered. From Figs. 2.18 and 2.19 one of our main results becomes
already apparent: as the parameter sres is decreased one finds that the overall Efimov spectrum
is pushed towards the unitarity point E = 1/a = 0. This crossover of the spectrum will be
explored in detail in the following section.
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2.7 Universal Efimov spectrum

The numerical procedure to find the bound state poles in λ3(q1, q2; E ) as described in the pre-
vious section can be used for arbitrary values in the (E , 1/a) plane. In Fig. 2.20 we show the re-
sulting Efimov spectrum including the atom-dimer threshold for an open-channel dominated
Feshbach resonance of sres = 100 [Fig. 2.20(a)], and for a resonance of intermediate strength,
sres = 1 [Fig. 2.20(b)]. The position of the trimer states in the (1/a, E ) plane is completely
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FIGURE 2.20: Rescaled Efimov spectra. (a) The Efimov spectrum in dimensionless units for an
open-channel dominated Feshbach resonance of strength sres = 100. (b) The spectrum for a
resonance of intermediate strength sres= 1. The dimer binding energy is shown in blue.

fixed by our calculation. We choose a convenient rescaling of the axis to make several Efimov
states visible. A rescaling as applied in Fig. 2.20 is made in most plots of Efimov spectra found
in literature. One should, however, keep in mind that this rescaling somewhat hides the true
shape of the levels. For this reason we find it instructive to show the spectra in Fig. 2.21 also
without rescaling of the axis. On the one hand this reveals the actual ratio of energy levels,
which is so large that the excited states are not even visible in the plots. On the other hand
the non-universal shape of the atom-dimer threshold becomes much more apparent – note
in particular the large deviations in the energy scale when comparing resonances of different
strength. The overall appearance of the spectrum remains similar as the strength of the reso-
nance sres is varied. As discussed in the previous section, it gets pushed towards the unitarity
point E = 1/a = 0 in the limit sres ≪ 1, while for open-channel dominated resonances it
reaches a maximal extent in the (1/a, E ) plane.

The detailed position of the lowest energy levels depends on both the value of the van der
Waals length lvdw – which equals σ in our model15 – and the resonance strength sres. Only in
the experimentally hardly accessible limit of highly excited Efimov states, n ≫ 1, the ratios
of a

(n)
− , a

(n)
∗ (the scattering length for which the trimer meets the atom-dimer threshold), and

E (n) of consecutive levels approach their universal values. It is instructive to quantify to which
extent the lowest states deviate from this scaling within our model. In Table 2.1 we show our
results for various dimensionless ratios for Feshbach resonances of widely different strengths.

15Up to a factor of ≈ 0.96, cf. Eq. (2.21).
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FIGURE 2.21: Efimov spectra without rescaling of the axis. (a) The Efimov spectrum in dimen-
sionless units for a open-channel dominated Feshbach resonance of strength sres = 100. (b) The
spectrum for a resonance of intermediate strength sres = 1. The dimer binding energy is shown
in blue. The universal dimer binding energy is shown as dotted red line.

A plot of these ratios as a continuous function of the resonance strength is shown in Fig. 2.22.
Already for the third state the results are close to the asymptotic behavior determined by the
universal Efimov number s0 ≈ 1.00624, regardless of the value of sres.

sres n 0 1 2 n ≫ 1

100

E (n)/E (n+1) 530.871 515.206 515.035 515.028
a
(n+1)
− /a

(n)
− 17.083 21.827 22.654 22.694

a
(n+1)
∗ /a

(n)
∗ 3.980 40.033 23.345 22.694

κ(n)∗ a(n)− 2.121 1.573 1.512 1.5076

1

E (n)/E (n+1) 515.830 515.039 515.035 515.028
a(n+1)
− /a(n)− 22.869 22.650 22.690 22.694

a(n+1)
∗ /a(n)∗ 17.183 22.303 22.716 22.694
κ(n)∗ a

(n)
− 1.500 1.511 1.508 1.5076

0.1

E (n)/E (n+1) 521.273 515.059 515.010 515.028
a
(n+1)
− /a

(n)
− 26.230 22.964 22.71 22.694

a
(n+1)
∗ /a

(n)
∗ 26.965 21.286 22.48 22.694

κ(n)∗ a(n)− 1.296 1.489 1.506 1.5076

TABLE 2.1: The ratio between consecutive trimer energies E (n) = ħh2(κ(n)∗ )
2/m and threshold scat-

tering lengths a(n)−,∗ as well as the product a(n)− κ
(n)
∗ for an open-channel (sres= 100), intermediate

(sres= 1) and closed-channel dominated (sres= 0.1) Feshbach resonance for the three lowest-lying
Efimov states n = 0,1,2. The rightmost column shows the ratios in the universal scaling limit
(E = 1/a = 0).
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By contrast, the experimentally most relevant lowest states (n = 0,1) exhibit large devi-
ations. Remarkably, our prediction a

(1)
− /a− = 17.08 for open-channel dominated resonances

is in reasonable agreement with recent measurements of the position of the second Efimov
trimer in 6Li, which find a ratio near 19.7 [140, 185], definitely smaller than the asymptotic
value 22.69. Surprisingly, for intermediate Feshbach resonances (sres ≈ 1), the interplay be-
tween the scales r ∗ and σ leads to ratios close to their asymptotic ones even for the lowest states
(see Fig. 2.22). Note that the values of a

(n)
∗ for small n are highly sensitive to the precise form of

the two-body bound state spectrum which, on its own, is strongly non-universal, cf. Fig. 2.21
and the discussion in Section 2.3. The ratios between the lowest a(n)∗ are therefore in general
not suitable for a measurement of universal ratios. As also apparent from Fig. 2.21, for open-
channel dominated resonances a

(0)
∗ approaches in our model values of a

(0)
∗ ≈ 1.3 lvdw. This is

of the order of the van der Waals length and thus comparable with typical background scatter-
ing lengths. Since we completely neglected any background interaction potentials, our model
is not valid in this regime. Nonetheless, even in more elaborate models including the back-
ground scattering, the atom-dimer threshold will remain non-universal in the regime where
the lowest Efimov state merges into it. In order to observe universal Efimov physics in the
regime of positive scattering length a one has to access the states with n ≫ 1 near threshold,
where the dimer binding energy has the universal form εb = ħh

2/ma2. In fact, the latter can
be regarded as a good measure to test if one reached the universal regime, both in theory and
experiment, cf. also Fig. 2.11.

To investigate generic features of the trimer spectrum which are independent of the precise
form of the dimer energy, we study the dependence of a(n)− and κ(n)∗ on the strength of the
Feshbach resonance. In Fig. 2.23 the behavior for the lowest, experimentally accessible, state
is shown. For open-channel dominated resonances a−/ā and āκ∗ become independent of sres
and we find

a− ≈−8.27 lvdw (2.78)

and
κ∗ lvdw = 0.26. (2.79)

This is in agreement with the results by Wang et al. [143]who find κ∗ lvdw = 0.226(2) and a− ≈
−9.73(3) lvdw using a purely single-channel model with interaction potentials which feature a
van der Waals tail.

In the limit of closed-channel dominated resonances, the van der Waals length becomes
irrelevant, and the scale for the Efimov spectrum is set by r ∗. This is also reflected by the
dominant role of r ∗ in the effective range re , cf. Eq. (2.34). Specifically, we find

a
(n)
− = ξ (n) r ∗

κ(n)∗ r ∗ = η(n), (2.80)

with numbers ξ (n) and η(n) which approach universal values as n→∞. In fact, we accurately
reproduce the results for the scaling limit (n≫ 1) of closed-channel dominated Feshbach reso-
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FIGURE 2.22: Various dimensionless ratios as function of the Feshbach resonance strength sres.
Shown are the results for the lowest level (dot-dashed), first excited state (dashed), and second
excited state (dotted). The universal scaling result is shown in red. a) Ratio of scattering lengths

a(n+1)
− /a(n)− where the consecutive trimer states meet the atom threshold at E = 0. b) Ratio

E (n)/E (n+1) of the consecutive trimer energies at unitarity 1/a = 0. c) Ratio κ(n)∗ a
(n)
− as a

measure of the distortion of the trimer levels from their universal shape in the (a, E ) plane.

nances,

a
(n≫1)
− = −12.90 r ∗ (2.81)

κ(n≫1)
∗ = 0.117/r ∗ (sres→ 0, scaling limit)

which were previously derived within an effective range model with σ ≡ 0 yet r ∗ > 0 [146,
147]. For the low-lying Efimov states scaling theory, however, does not apply as discussed in
Section 2.1. For this reason these low-lying states deviate from the limiting scaling behavior in
Eq. (2.81) and our model predicts for example for the lowest Efimov state the ratios16

a
(n=0)
− = −10.9 r ∗ (2.82)

κ(n=0)
∗ = 0.118/r ∗ (sres→ 0, lowest Efimov state)

At first sight, one expects that the precise numbers which quantify the deviations (2.82) from
the universal scaling predictions (2.81) are specific for our model (2.23) with an exponential

16Note, to obtain these values r ∗ has to be chosen as large as O (106)σ .
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FIGURE 2.23: Inverse threshold scattering length a− (solid line) and wavenumber κ∗ = κ(0)∗
(dashed line) in units of ā as functions of the resonance strength sres. The dots with error bars
show the experimental results for 7Li [131, 134], 39K [132], 85Rb [135] and 133Cs [47].

form factor χ (r ). As it turns out however, there is a larger degree of universality involved
here. As we will see in Sections 2.8 and 2.9, the deviations from the universal scaling relations
in the limit of r ∗/ā ≫ 1 are themselves universal again so that the numbers ξ (n) and η(n)

are, remarkably, not dependent on microscopic details. Note that it is possible to study the
deviations from universal scaling using a systematic expansion in the small parameter lvd w/|a|
within effective field theory as done by Ji and coworkers [186]. Such an approach, however,
requires not only an adjustable three-body parameter, but in addition further counterterms
which are necessary to renormalize the theory with an interaction of finite range at finite
scattering lengths a.

2.8 Effective range model

In this section we derive the Efimov physics of the so-called effective range or resonance model
which corresponds to the zero-range limit σ → 0 of the model (2.23). In this limit the scatter-
ing amplitude f (k) is exactly given by the expansion of f (k) up to order k2 [cf. Eq. (2.33)]

f (k) =
1

−1/a+ re k2/2− i k
. (2.83)

This can be seen from the solution of the two-body problem which is obtained by the evalua-
tion of the ladder diagram, cf. Fig. 2.12(a). Since in the resonance model χ (r )≡ 1, a ultraviolet
regularization is necessary. The resulting UV scale dependence is absorbed in the definition
of Emol in Eq. (2.23), which takes the role of a scattering length dependent UV counterterm
(renormalization). The final expression for the dimer propagator then reads

G−1
φ
(E ,q) =−E +

q2

2
− iε+

g 2

16π




−1/a+

s

−
E

2
+

q2

4
− iε




 , (2.84)
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which yields, upon evaluation of Eq. (2.25), the expression (2.83) for f (k) with

re =−
64π

g 2
=−2r ∗ < 0. (2.85)

The three-body problem is straightforwardly solved along the same lines as in Section 2.5
with Eq. (2.84) as input in the STM equation (2.69). However, note that the UV regularization
has to be kept due to the absence of a regulating form factor χ (p). The bound state spectrum
is determined as described in Section 2.6 from the solution of Eqn. (2.76) and (2.77) where
gE and Pφ are given by Eq. (2.56) and Eq. (2.84), respectively. The numerical procedure is
analogous to the discussion in Section 2.6 below Eq. (2.77), with the choice qmax =Λ.

In the following we measure all quantities in units of the ultraviolet scaleΛ= αa−1
0 with a0

conveniently chosen to be the Bohr radius and where α is an open parameter. This parameter
can be tuned to fit the results of experiments and represents as such a reincarnation of the
three-body parameter. The resulting Efimov spectra are very similar to the results shown for
instance in Fig. 2.20 and one finds that the extent of the bound states in the (1/a, E ) plane is
dependent on the dimensionless width r̃ ∗ = r ∗Λ.
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FIGURE 2.24: (a) Scattering length a− = a
(0)
− where the lowest Efimov trimer meets the atom

threshold as function of the dimensionless width r ∗Λ. (b) For large dimensionless values r ∗Λ
the scaling of a− becomes independent of the cutoff scale Λ and scales linearly with r ∗.

In this section we concentrate on the scattering lengths a
(n)
− where the trimers meet the

atom threshold and the wave numbers κ(n)∗ corresponding to the energy of the trimer at uni-
tarity. In Fig. 2.24 we show a− = a

(0)
− in units of Λ as function of r̃ ∗. As shown in Fig. 2.24(a)

we find that for r ∗Λ ≪ 1 the scattering length a− approaches a maximal value a− = β/Λ
with β a numerical constant dependent on the regularization scheme chosen; here a sharp
momentum cutoff. Although the relation a− ∼ 1/Λ is similar to the result a− ∼ lvdw derived
in Section 2.7, it is important to note that here Λ is an artificial cutoff scale which serves as a
free parameter. Note, from the relation a− ∼ 1/Λ we recover the Thomas collapse in the limit
Λ→∞.

For r ∗Λ≫ 1, that is for a large effective range |re |, the situation is different, cf. Fig. 2.24(b).
Due to its linear behavior we find that a− becomes independent of the cutoff scale Λ and



50 CHAPTER 2. EFIMOV PHYSICS BEYOND UNIVERSALITY

a(n)− = ξ
(n) r ∗ as in Eq. (2.80). In Table 2.2 we show ξ (n) and η(n) for various n and similar to

Section 2.7 we find deviations from the universal scaling, Eq. (2.81), for low n. We find that
the values ξ (n) and η(n) turn out to be new universal numbers for all n which do not depend on
the specific model or regularization scheme chosen as long as the model features a large value
of r ∗, see also Section 2.9.

n 0 1 2 3 4

ξ (n)e
− nπ

s0 -10.90 -12.72 -12.89 -12.897 -12.899

η(n)e
nπ
s0 0.118 0.117 0.117 0.117 0.117

a(n+1)
− /a(n)− 26.48 22.98 22.713 22.698 -

TABLE 2.2: Approach of universal scaling of the lowest Efimov states in the limit r ∗Λ≫ 1.

In Table 2.2 we also quantify how the ratios a
(n+1)
− /a

(n)
− quickly approach their universal

value 22.694 as n →∞. We find that the decrease of the deviations from universal scaling is
relatively well described by a the phenomenological formula

a
(n+1)
−

a
(n)
−
≈ 22.694+ γ1e−γ2n , (2.86)

where γ1 = 63(20) and γ2 = 2.7(3). The large error in the numerical constants is due to the
very large momentum grid needed in the regime r ∗→∞.

Since we find that the deviations from the universal scaling, Eq. (2.81), itself is again univer-
sal, we conjecture that there exists a universal relation of a form similar to Eq. (2.86) governing
the approach of a(n+1)

− /a(n)− towards the universal value 22.694 with universal numbers γi .

2.9 Test of universality

Let us now address the question to which extent the properties of the lowest Efimov state, such
as the scaling of a− with lvdw and r ∗, cf. Eq. (2.78) and (2.82), depend on the microscopical
details of our model (2.23). We will test two possible sources of such non-universal correc-
tions: first, a modification of the form factor determining the atom-molecule conversion and,
secondly, non-universal corrections due to a non-zero three-body force.

Form of the atom-molecule conversion coupling χ (r ). Our original idea was, cf. Sec-
tion 2.2, that the apparent universality of the three-body parameter is due to the fact that in
all experiments having measured a−, ultracold atoms close to a Feshbach resonance have been
used. This led us to the assumption that it is the Feshbach mechanism itself which causes the
observed, apparent universality. In order to support this picture we introduced the simple
two-channel model (2.23) with the specific, physically motivated form factor χ (r ) ∼ e r/σ/r .
This choice is, however, by far not the only, unique choice and we may use the freedom of
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choosing different form factors χ to test the degree of universality involved in the solution of
the corresponding three-body problem.

Specifically, we study here the results for a Gaussian form factor often employ in litera-
ture [149, 150, 153],

χ (q) = e−q2σ2/2, (2.87)

which in coordinate space yields χ (r ) ∼ e r 2/(2σ2). Using this form factor the solution of the
two-body problem is slightly modified. In particular we find

G−1
φ
(E ,q) = −E +

q2

2
+ Emol(B)− iε+

g 2

16π3/2σ
+

g 2

16π2

s

−
E

2
+

q2

4
− iε

× exp



σ2

 

−
E

2
+

q2

4
− iε

!

erfc




σ

s

−
E

2
+

q2

4
− iε




 , (2.88)

which gives, upon expansion of the scattering amplitude f (k), the identifications

1

a
= −

16π

g 2
Emol(B)+

1
p
πσ

, (2.89)

re = −2r ∗+
4σ
p
π

 

1−
p
πσ

2a

!

, (2.90)

r ∗ =
32π

g 2
, (2.91)

and by comparing the resonance shift with the quantum defect calculation by Julienne and
coworkers [157], as described in Section 2.3, we find

σ =
2
p
π

ā. (2.92)

The three-body problem is solved analogous to Section 2.5-2.7 with the Gaussian form
factor (2.87) used in the corresponding expressions. Subsequently the three-body bound state
spectrum can be determined. As a measure for the extent of universality we concentrate on
the dependence of a

(n)
− on r ∗ and lvdw. In Fig. 2.25 we show the crossover of ā/a− from the

closed- to the open-channel dominated limit (solid line) and compare the results to the one
obtained in Section 2.7 (dashed line).

In the limit of open-channel dominated resonances, sres≫ 1, we find

a− =−7.40 lvdw. (2.93)

This shows that, while the functional form of the scaling of a− with lvdw for open-channel
dominated resonances is universal, the specific prefactor is a non-universal quantity which,
however, is of the order of O (10)lvdw. Comparing the result Eq. (2.93) with the result derived
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FIGURE 2.25: Inverse threshold scattering length a− in units of ā as functions of the resonance
strength sres. We compare the result using the exponential form factor (dashed), cf. Section 2.3,
to the Gaussian form factor in Eq. (2.87) (solid).

in Section 2.7 we conjecture that in the limit of open-channel dominated resonances the typical
deviations from the experimentally observed scaling around the mean value a− ≈ −9.45lvdw
can be expected to be at the 10% level. This is also consistent with the findings of Wang
et al. [143] who find similar non-universal deviations using a variation of the depths of the
two-body potentials employed in their single-channel model calculation.

Similarly to Section 2.7, we find for closed-channel dominated resonances, sres ≪ 1, that
a− scales with the resonance width r ∗ according to

a− =−0.118 r ∗. (2.94)

Contrary to the relation (2.93) this scaling turns out to be independent of the microscopic
model chosen. It is the same for the exponential, the Gaussian, as well as a delta-function like
form factor employed in the effective range model in Section 2.8. For all Efimov states we
recover exactly the results shown in Table 2.2. The underlying reason for this new, extended
universality can be found by inspection of the expression for the effective range in the various
models, cf. Eqn. (2.34), (2.85), and (2.89). When r ∗ is large, the effective range re is dominated
by this scale, the effective atom-atom scattering is determined by the term re =−2r ∗, and the
observable physics becomes independent of the microscopical details.

Influence of a three-body force. When studying the dipole-dipole interactions between
neutral atoms in third-order perturbation theory, one finds that they induce a microscopic
three-body interaction (or force)

WAT = γ
1+ 3cosθ12 cosθ23 cosθ31

r 3
12 r 3

23 r 3
31

, (2.95)

where θi j , ri j are the angles and sides of the triangle spanned by the three atoms. The in-
teraction (2.95) is known as the Axilrod-Teller potential [187] and it is valid at large atomic
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separations ri j [17, 188]. The coefficient γ depends on the specific atoms chosen and it has
been calculated to high precision for various mixtures of atom species by Babb and coworkers
[188]. The short distance behavior of the three-body force is largely unknown and presumed
to be highly dependent on microscopic details. Also exchange interactions play a major role
at short and intermediate interparticle distances.

Here we want to study the consequences of a microscopic three-body force for the scal-
ing of the lowest Efimov trimers in a simple approximation. Eq. (2.95) is a very complicated
function of momenta which renders the exact solution of the three-body problem intractable.
In order to, nonetheless, get some insight into the question how strong the influence of the
three-body force is on the observable three-body physics, we introduce a phenomenological
atom-dimer contact interaction λ̃(Λ)3 [cf. Eq. (2.58)] in our model (2.23). Integrating out the
dimer field φ in the classical action yields an effective momentum dependent, microscopic
three-atom interaction ∼ (ψ∗ψ)3 which is determined by the evaluation of the tree-level dia-
gram shown in Fig. 2.26(a).

0 2 4 6
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- 0.05

0.00

attractive 3B-force

repulsive 3B-force

no 3B-force

(a) (b)

FIGURE 2.26: (a) Tree-level diagram which gives the effective, microscopic three-body force ∼
(ψ∗ψ)3 upon integrating out the composite molecular field φ. (b) ā/a− as function of sres. The
shaded region corresponds to the result obtained including a microscopic three-body force with

values λ̃(Λ)3 = −0.1 (attraction) up to λ̃(Λ)3 = 0.01 (repulsion) in units of ā. Here we use the
exponential form factor χ employed in Section 2.7.

As a result of the introduction of the microscopic atom-dimer force λ̃(Λ)3 one finds a new,
modified STM equation,

fE (q1, q2) = gE (q1, q2)+ λ̃
(Λ)

3 (q1, q2)−
∫ Λ

0
d l [gE (q1, l )+ λ̃(Λ)3 (q1, l )]ζE (l ) fE (l , q2). (2.96)

The bound state spectrum is derived in a similar way as in Section 2.6. In Fig. 2.26(b) we show
ā/a− as function of sres. While the solid line displays our result from Section 2.7 (λ̃(Λ)3 = 0), the

shaded region corresponds to choices of λ̃(Λ)3 ∈ (−0.1 . . . 0.01) in units of σ .
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Note that our choice of the three-body force is purely with the aim to find some insight
into the question to which extent three-body forces induce non-universal corrections. In
fact our choice of a constant λ̃(Λ)3 in momentum space leads to a momentum dependence of
λ6(ψ

∗ψ)∗ which does not bear much resemblance with the momentum structure of Eq. (2.95).
In particular our model leads to irrelevant three-body forces in the limit of closed-channel dom-
inated Feshbach resonances. Furthermore, evaluating the tree-level diagram in Fig. 2.26(a) we
find that our phenomenological three-body force carries a dependence on the external mag-
netic field due to the appearance of dimer propagators in the tree-level diagram. Nonetheless,
although we employ here only this simple toy model, we expect that the strong influence of a
three-body force on our results, cf. Fig. 2.26(b), will carry over to the inclusion of the correct,
yet unfortunately unknown, microscopic three-body interaction.

Specifically, we find that the effect of the three-body force is much more pronounced for
a repulsive three-body interaction. Contrarily, for attractive interactions, we find that the
value of a−/σ is shifted towards larger values. Remarkably, our results for a−/σ converge

to a finite value even for an arbitrarily large three-body force λ̃(Λ)3 →∞ with a shift of a−/ā
of not more than 15%. Since we expect the real three-body force to be indeed attractive due
to the induced dipole-dipole interactions this observation might explain why the influence
of three-body force appears to be rather weak for open-channel dominated resonances. This
interpretation is also in agreement with the experimental results which show only a weak
scattering of the data for a− around the isotope averaged mean value a− ≈ −9.45lvdw. In
summary, from our results this remaining scattering of a− can be attributed to a combined
effect of microscopical details of the Feshbach model, such as the form factor χ , as well as a
non-zero, attractive three-body force. We estimate that both effects yield corrections on the
10− 15% level.

2.10 Comparison to experiment and conclusion

We have presented a simple, exactly solvable model for the three-body physics of ultracold
bosonic atoms, containing only r ∗ and lvdw as experimentally accessible parameters, in which
the full Efimov spectrum is fixed without an adjustable three-body parameter. Our results pro-
vide an explanation for the observed proportionality between the scattering length a− where
the first Efimov trimer appears and the van der Waals length lvdw, which is often interpreted
as a ‘universality’ of the three-body parameter. This relation applies for open-channel dom-
inated resonances. With regard to three-body forces we showed, using a simple model, that
the presence of these forces, if attractive and short ranged, only yields a weak correction to
the results. For increasing values of r ⋆, a continuous crossover is found into the regime of
closed-channel dominated resonances, where the scale for the three-body parameter is set by
r ⋆ alone, recovering previous exact solutions [146, 147].

Comparing to the experimental data, see Fig. 2.23, the open-channel dominated resonances
in 85Rb [135] and in 133Cs [47] fit well into our prediction. The 12% deviation between the
value a− ≈ −9.45 lvdw inferred from averaging the results from different experiments and our
ratio −8.27 shows the absence of a true universality of the three-body parameter in a strict
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sense: short range physics which enters, for instance, into the details of the form factor χ (r )
leads to slightly different numbers. From both the experimental data [see Fig. 2.23] and a study
of how much our numbers change for various choices of the form factor χ (r ) [cf. Section 2.9]
we conclude that they are generically at the ten percent level.

As mentioned above, the van der Waas length does not set the scale for the Efimov spec-
trum in general. In particular, in the regime of Feshbach resonances of intermediate strength
sres ≈ 1 both scales r ∗ and σ become relevant. Our approach equally applies to this regime,
which is realized, e.g., in the case of 39K, where sres ≃ 2.1 [132]. As shown in Fig. 2.23, the
observation [132] of a considerable deviation from the result a−≈−9.45 lvdw in this case is in
qualitative agreement with our model.17 By contrast, the case of 7Li, which seems to follow
nicely the result a−≈−9.45 lvdw [131, 134] for open-channel dominated resonances despite
the even smaller value sres ≃ 0.58 [134] of the resonance strength is not consistent with our
prediction.

A possible origin of this discrepancy may be three-body forces of or beyond the Axilrod-
Teller type [187]. Whether it is indeed three-body forces or other effects not captured by
our model that will account for the discrepancy between the observed a− in 7Li, 39K and our
prediction is unknown at present. Note, however, that an explanation of the observed result
for a− in 7Li within a single-channel description [143] is likely to be inadequate due to the
rather small value of sres ≃ 0.58.

Studying in detail models with various form factors χ , we revealed a new extended uni-
versality for bosonic three-body systems which feature a large width r ∗. For these systems,
even deviations from the n≫ 1 scaling are universal themselves. Finally, we have shown that
for the lowest Efimov states within a given trimer spectrum, there are appreciable deviations
from the asymptotic scaling relations, consistent with experiments. Clearly, a more systematic
experimental investigation of these non-universal ratios and of resonances with intermediate
strength sres = O (1) is necessary to clarify to which extent the generic features of the Efimov
effect in ultracold atoms are captured by our simple model, in which the complete trimer
spectrum is obtained without any adjustable parameter from two-body physics only.

17New experimental data suggests that the value of lvdw/a− reported in [132] has to be corrected and is shifted
to a larger value [136].





Chapter Three

Renormalization group study of the four-body
problem

AS discussed in the previous Chapter, few-body physics saw a renewed interest in recent
years following the observation of three-body Efimov states in experiments using cold

atoms. The findings of Kraemer et al. [45] stimulated extensive activity in the field of three-
body physics, both experimentally and theoretically and as a result the Efimov effect in three-
body systems is a well-understood phenomenon today. The next natural step is then to raise
the question:

“What is the physics of four particles interacting with strong, short-range interactions?”

Early attempts towards an understanding of this system were made in the context of nu-
clear physics using a variety of approaches [189, 190, 191, 192]. Also the four-body physics
of 4He atoms has been investigated in much detail, for an overview see e. g. [193, 194, 195].
The simpler four-body physics of fermions with two spin states, relevant for the dimer-dimer
repulsion, has been studied in [196], while the four-body problem of fermions with isospin
symmetry was investigated in the context of α-particle condensation in [197, 198, 199].

In their pioneering work, Platter and Hammer et al. [200, 201] investigated the four-body
problem using effective interaction potentials and made the conjecture that the four-boson
system exhibits universal behavior. Calculating the energy spectrum of the lowest bound
states in dependence on the scattering length a the existence of two tetramer (four-body bound)
states associated with each trimer was conjectured. In 2009, von Stecher, D’Incao, and Greene
[48, 202] investigated the four-body problem in a remarkable quantum mechanical calculation.
They found that the Efimov trimer and tetramer states always appear as sets of states with
two tetramers associated with each of the trimer levels and calculated the bound state energy
spectrum of the lowest few sets of states. The calculation suggests that the energy levels within
one set of states are related to each other by universal ratios, which were obtained from the
behavior of these lowest sets of states.

The experimental detection of tetramer states follows similar steps as described in Sec-
tion 2.2. It is, however, even more challenging and requires extremely precise measurements.
Remarkably, Ferlaino et al. were able to observe signatures of the lowest two of the tetramer
states in a recent experiment [203] which was supported by several other observations [131,
132, 204, 205], verifying the predictions by Stecher et al. [48, 202], Platter and Hammer et
al. [200, 201], and the work which will be presented in the following [106]. Also the further
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step towards the experimental observation of five-body bound states has been taken [205]. Re-
cently, Stecher was even able to show theoretically the existence of N-body bound states for
up to N = 13 [184].

In Chapter 2 we have seen that when one uses zero-range, two-body interactions to study
the three-body problem, a three-body parameter in addition to the scattering length a has to be
introduced in order to characterize the problem completely. Similarly, one may ask if there is
a new four-body parameter entering the physics in order to renormalize the four-body problem.
This would, in accordance with the discussion in Section 2.1, reduce the universality of the few-
body problem further because more parameters are introduced in the theory. The question
of the existence or absence of a four-body parameter has been much debated in recent years
with contradictory results. While Yamashita et al. [206] conclude that a four-body parameter
enters the problem at leading order, the calculations [48, 200, 201, 202, 207] suggest otherwise.

While the calculations by Platter et al. [200, 201] and von Stecher et al. [48, 202] rely
on quantum mechanical approaches, in this work we want to shed light onto the four-body
problem from a different perspective. A lot of insight into the three-body problem had been
gained from effective field theory and renormalization group methods [66, 96, 100, 101, 208]
and it is desirable to apply these also to the four-body problem. In this Chapter we will make
a first step towards such a description that is complementary to previous quantum mechan-
ical approaches. Of special interest is the further investigation of universality and the role
of a possible four-body parameter. In this context the so-called unitarity point, defined by
E = 1/a = 0, is of particular importance. In this limit not only the scattering length a is
infinite but also all binding energies in the problem accumulate at the atom threshold at zero
energy. Only at this point the non-universal corrections which scale with powers of r0/|a| or
r 2

0 |E |, respectively, vanish and physics becomes completely universal so that, for example, the
ratio between the binding energies of consecutive trimer levels assumes exactly its universal
value, En+1/En = exp(−2π/s0). For this reason the unitarity point is of particular interest.
Unfortunately, in the previous calculations [48, 200, 201, 202] the unitarity point was inacces-
sible and only the few lowest lying states were determined. As we have seen in the previous
Chapter, the Efimov spectrum for these lowest states is, however, not yet perfectly in the uni-
versal regime. The major advantage of the present RG approach is that it allows to investigate
analytically the complete spectrum and, in particular, to address directly the unitarity point
in order to extract the universal relations between the three- and four-body bound states.

While we solved the three-body problem in Chapter 2 exactly using the vertex expansion
of the effective average action Γk in Eq. (2.41), the four-body problem is so complicated that we
have to rely on an approximate, yet simple and physically intuitive model. This model is based
on a derivative expansion of the average action Γk and neglects the momentum dependence of
the three- and four-body vertices. As discussed in Chapter 2, the Efimov effect reveals itself as
a limit cycle RG flow of the three-body coupling. The three-body parameter sets the overall
‘phase’ of this flow which has a period given by s0/π when studied at the unitarity point.
Similarly, the presence of a four-body body parameter would naturally appear as an additional
feature in the RG flow of the four-body couplings with a new parameter needed to characterize
the structure of the four-body flow. In the following we will show, however, that the three-
body limit cycle enforces a more complicated limit cycle flow of the four-body sector which is
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strictly attached to the limit cycle of the three-body sector. In turn, this strict connection of
the three- and four-body sector leaves no room for any four-body parameter.

Furthermore the RG method allows for computations away from the unitarity point.
From a two-channel model we calculate the bound state energy spectrum and investigate how
the relations between tetramer and trimer states approach the universal limit as one comes
closer to the unitarity point. The Chapter is structured as follows. In Section 3.1 we set up
and explain the microscopic model. Sections 3.2 and 3.3 are devoted to the FRG analysis of
the two- and three-body sector. In Section 3.4 we discuss the four-body sector and present our
numerical results while in Section 3.5 we comment on a rebosonization technique used for the
numerical solution. Our findings are summarized in Section 3.6.

3.1 Definition of the model

In the following we will solve the four-body problem approximately by the use of the func-
tional renormalization group and follow the RG evolution of the average action Γk governed
by the exact RG equation (2.40). Instead of an exact solution using a vertex expansion of Γk
as in the previous Chapter, we employ here a derivative expansion of Γk where the vertex
functions Γ(n)

k
are expanded in terms of energy and momentum. While this makes the analyti-

cal derivation and solution of the flow equations possible, it leaves us only with approximate
results. The model shall again describe atoms close to a Feshbach resonance, but contrarily to
Chapter 2 we consider a zero-range approximation of Eq. (2.23) with σ → 0. The truncation
for the Euclidean flowing action is given by

Γk =

∫

x

{ψ∗(∂τ −∆− Eψ)ψ+φ
∗

Pφ,k
︷ ︸︸ ︷
�

Aφ,k(∂τ −
∆

2
)+m2

φ,k

�

φ

+
g

2
(φ∗ψψ+φψ∗ψ∗)+λ3,kφ

∗ψ∗φψ

+ λφ,k(φ
∗φ)2+βk(φ

∗φ∗φψψ+φφφ∗ψ∗ψ∗)+ γkφ
∗ψ∗ψ∗φψψ}, (3.1)

where∆ denotes the Laplace operator and we again use the natural, non-relativistic convention
2m = ħh = 1 with the atom mass m. ψ denotes the field of the elementary bosonic atom, while
the dimer, which equals the closed-channel molecule at k = Λ, is represented by the field
φ ∼ ψψ. The atom is supplemented with a non-relativistic propagator with gap Eψ. The
explicit dependence on Eψ will allow us to capture some of the energy dependence of the
higher order vertices as we will argue below. The dimer propagator is given by a derivative
expansion where Galilean symmetry enforces the expansion coefficient Aφ,k to be the same in
front of the frequency and momentum. Furthermore, the gap term m2

φ,k
equals the detuning

Emol in Eq. (2.23) for k = Λ. Although this approximation of Pφ,k is obviously not exact,
cf. Eq. (2.24), the dynamics of Pφ,k allows us to capture essential details of the momentum
dependence of the two-body interaction. For instance, the wave function renormalization
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factor Aφ allows us to correctly account for an anomalous dimension η of the dimer field φ.
This anomalous dimension is unity at unitarity as can be seen from Eq. (2.24) by evaluating the
square root structure of the dimer propagator and η = 1 is recovered correctly in our simple
model (3.1).

The only nonzero interaction, present at the microscopic UV scale k = Λ, is taken to
be the Yukawa-type term with the coupling g . As discussed in detail in Chapter 2, the two-
atom interaction is given by the tree-level exchange diagram shown in Fig. 2.9. From the
evaluation of this diagram we will show below that the Yukawa interaction g and the wave
function renormalization Aφ can be connected to the effective range re in an effective range
expansion. We furthermore assume that no three- or four-body forces are present, so that the
atom-dimer interaction λ3 as well as the various four-body interactions λφ, β, and γ vanish
at the UV scale and are built up only via quantum fluctuations during the RG flow. All
couplings present in Eq. (3.1) are allowed to flow during the RG evolution and are taken to be
momentum-independent in Fourier space.

In the general case of nonzero density and temperature one works in the Matsubara for-
malism and the integral in Eq. (3.1) sums over homogenous three-dimensional space and over
imaginary time

∫

x
=
∫

d 3 x
∫ 1/T

0 dτ. Although our method allows us to tackle the full, many-
body problem at finite temperature in this way, we are here interested solely in the few-body
physics, for which the density n and temperature T vanish. For T = 0,

∫

x
reduces to an in-

tegral over infinite space and time as it was also the case in Chapter 2. Our truncation (3.1)
is again based on the simple structure of the non-relativistic vacuum and, as discussed in Sec-
tion 2.4 numerous simplifications occur when solving the exact RG equation (2.40) compared
with the general, many-body case.

The flowing action (3.1) has a global U (1) symmetry which corresponds to particle num-
ber conservation. In the vacuum limit it is also invariant under spacetime Galilei transforma-
tions which restricts the form of the non-relativistic propagators to be functions of ∂τ−∆ for
the atoms and ∂τ−∆/2 for the dimers. Similar to the arguments given in the previous Chapter,
one can shown that the truncation (3.1) includes every possible interaction term which can be
built up due to quantum fluctuations. All other U(1) symmetric couplings belonging to the
N ≤ 4-body sectors like, for instance, ∼ (ψ∗ψ)2, ∼ (ψ∗ψ)4, or ∼φ∗φ∗ψ4 vanish identically as
no diagram can generate them. Thus the truncation (3.1) is complete within the leading order
derivative expansion. Due to the vacuum hierarchy, the different N -body sectors can be solved
in subsequent steps [177]. In this spirit we first solve the two-body sector, then investigate the
three-body sector in order to finally study the four-body problem.

The model (3.1) is equivalent to a zero-range, single channel model in the limit of open-
channel dominated Feshbach resonances, where g →∞. In this limit the momentum depen-
dence of Pφ,Λ can be neglected. Then, upon integrating out the molecular field, one obtains an
effective atom-atom coupling λψ(ψ

∗ψ)2 with λψ = g 2/m2
φ

which is a zero-range interaction.

In Eq. (3.1) the higher-order couplings carry no explicit momentum or energy dependence.
This makes the derivation of flow equations much simpler as we may project onto couplings
at zero external momentum and frequency. The use of the energy gap Eψ, however, allows to
‘recapture’ the energy dependence in an implicit way in the center-of-mass frame. The reason
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for this is an additional semi-local gauge symmetry of the action (3.1). This symmetry has been
discussed in detail in [105, 209, 210] and it leaves the real-time microscopic action S = Γk=Λ,
cf. Eq. (3.1), invariant under the time-dependent U(1) transformations [105]

ψ→ e−i E t ψ φ→ e−i2E t φ, (3.2)

when additionally the gap Eψ is shifted by

Eψ→ Eψ+ E . (3.3)

This symmetry corresponds to an overall energy shift in the (real frequency) atom propagator.
As a consequence, we may, instead of evaluating Pψ explicitly at a finite external frequency E

and Eψ = 0, that is Pψ(ω = E ,q; Eψ = 0), equally well evaluate it at zero external frequency
but at a finite gap Eψ = E , Pψ(ω = 0,q; Eψ = E ). As we will see below this argument carries
over to the dimer propagator and allows also to correctly capture the energy dependence of
λ3(q1,q2; E ), cf. (2.51), so that only the dependence on the momenta q1 and q2 is neglected.
What we gain is a very simple and efficient way to derive flow equations as only zero external
frequencies have to be considered while still keeping the energy-dependence of the vertices.
Note, for few-body physics the energy gap Eψ is always negative, Eψ < 0. In the case of
finite density, Eψ is replaced by the chemical potential µ which is adjusted to yield the correct
density n =−1/V ∂ Γ/∂ µ.

Beside the ansatz of Γk we must choose a suitable regulator function Rk in order to solve
Eq. (2.40). Based on our treatment of the closely related three-fermion problem [105, 137], we
choose the regulators,

Rψ = (k2− q2)θ(k2− q2),

Rφ =
Aφ

2
(k2− q2)θ(k2− q2), (3.4)

with q = |q|. These regulators are optimized in the sense of [172, 211] and allow the derivation
of analytical results.

3.2 Two-body sector

The solution of the two-body problem can be found analytically in our approximation1 (for
the analogous problem considering fermions, see [105, 212]). The only running couplings in
the two-body sector are the dimer gap m2

φ
and the wave function renormalization Aφ. As

there are no possible nonzero flow diagrams for the Yukawa coupling g , it does not flow in
the vacuum limit. The flow equations of the two-body sector are shown in terms of Feynman
diagrams in Fig. 3.1(a). The resulting expressions are given by

1The inverse atom propagator (one-body sector) is not renormalized in the non-relativistic vacuum.
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FIGURE 3.1: The flow equations in terms of Feynman diagrams for the (a) two-body, (b) three-
body, and (c) four-body sector. All internal lines denote full, regularized propagators. The

scale derivative ∂̃t on the right hand side of the flow equations acts only on the regulators.
Solid lines represent elementary bosons ψ, while dashed lines denote composite dimers φ. The
vertices are: Yukawa coupling g (small black dot), atom-dimer vertex λAD (open circle), dimer-
dimer coupling λφ (black circle), coupling β (two circles), and the atom-atom-dimer vertex γ
(black square). Due to the large number of diagrams for the latter two vertex functions, we
only show two exemplary diagrams.
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∂t m2
φ
=

g 2

12π2

k5

(k2− Eψ− iε)2
,

∂t Aφ = −
g 2

12π2

k5

(k2− Eψ− iε)3
, (3.5)

where t = ln k
Λ

. In contrast to the derivation of similar equations in [71, 105, 106, 137, 212,
213, 214, 215, 216] we keep here explicit the infinitesimal iε terms, which will be useful when
identifying our model parameters with the two-body scattering physics.

The flow equations (3.5) can be solved analytically by direct integration from k = 0 . . .Λ.
The UV cutoff Λ of the theory effectively corresponds to a finite inverse range of our model
which is of the order of Λ ∼ 1/lvdw. In the true zero-range limit we have to take Λ → ∞
which yields the scaling limit and correspondingly leads to the artificial Thomas collapse in
the three-body problem, cf. Section 2.1. Here we take Λ large but finite and Λ will serve as
the three-body parameter fixing the overall position of the Efimov spectrum. Also we will
measure length and energy scales in terms of Λ. We assume that the cutoff scale is much larger
than any other scale in the system, so that in particular |Eψ|/Λ2 ≪ 1. Under this condition
the solution of Eqn. (3.5) reads:

m2
φ
(k = 0) = mφ,Λ−

g 2

12π2
Λ+

g 2

16π

Æ

−Eψ− iε, (3.6)

Aφ(k = 0) = Aφ,Λ−
g 2

64π

1
Æ

−Eψ− iε
. (3.7)

When working at the unitarity point where Eψ = 0, it is useful to have the full RG scale
k-dependent solution of the flow equations. As easily seen from Eqn. (3.5) the resulting expres-
sions are

m2
φ
(k , Eψ = 0) = mφ,Λ−

g 2

12π2
(Λ− k), (3.8)

Aφ(k , Eψ = 0) = Aφ,Λ−
g 2

12π

� 1

k
−

1

Λ

�

. (3.9)

The next step is to fix the values of the parameters Aφ,Λ, m2
φ,Λ

, and g . Since the average

action at the UV scale has to equal the classical action, ΓΛ = S , and because we deal with a phys-
ical molecular state in the Hamiltonian, see also Eq. (2.23), we have Aφ,Λ = 1. Furthermore,
m2
φ,Λ

is given by

m2
φ,Λ =

g 2

12π2
Λ− 2Eψ+δm2

φ
, (3.10)

where the first term represents a counterterm taking care of the UV regularization of the
two-body sector. The second term −2Eψ is enforced by the semi-local gauge symmetry (3.2)
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and physically accounts for the fact that a dimer consists of two atoms. The additional term
δm2

φ
and the Yukawa coupling g are fixed by experimentally observable two-body scattering

physics and the procedure is similar to the steps described in Section 2.3.
The two-body scattering amplitude f (q) is obtained from the evaluation of the tree-level

process shown in Fig. 2.9 at the infrared scale k = 0. Using the shift symmetry (3.2) the
corresponding expression reads

f (q) =
1

16π

g 2

Pφ,k=0(ω = 0,0; Eψ = q2)
. (3.11)

Here, Pφ is not evaluated at finite frequency ω = 2q2 and Eψ ≡ 0 as done in the exact case,
cf. Eq. (2.25). Instead it is evaluated at ω = 0 and at Eψ ≡ q2 > 0, which is positive since we
deal with the scattering of two atoms of momenta ±q above the atom threshold at E = 0 and
each of these atoms carries a kinetic energy Eψ = q2. We then obtain

f (q) =
1

16π

g 2

δm2
φ
− 2q2+

g 2

16π

Æ

−q2− iε

=
1

16πδm2
φ

g 2 − 32π
g 2 q2− i q

=
1

−1/a+ 1
2 re q2− i q

. (3.12)

where in the last line we compare our result to the effective range expansion of f (q). This
then yields the identification δm2

φ
=−g 2/(16πa) and g is given by the effective range,

re =−
64π

g 2
=−2r ∗. (3.13)

Here r ∗ denotes the characteristic ‘range’ of the underlying Feshbach resonance as defined in
Eq. (2.22). We then obtain for the dimer gap:

m2
φ(k = 0, Eψ) =−2Eψ+

g 2

16π

�

−
1

a
+
Æ

−Eψ− iε
�

. (3.14)

In the following we derive the bound state energy spectrum of the four-body problem in the
(1/a, E ) plane by using Eψ to determine the energy of the various bound states. Thus we are
only interested in negative energies which is why Eψ < 0 and the iε terms in Eqn. (3.6), (3.7),
and (3.14) can safely be sent to zero.

The model (3.1) features a dimer bound state and in order to determine its binding energy
εD we calculate the pole of the dimer propagator, corresponding to the condition m2

φ
(k =
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0; Eψ)|Eψ=εD/2
= 0, which yields in the limit Eψ/Λ

2≪ 1

εD = 2Eψ = −2







g 2

64π
−

√
√
√
√

g 4

(64π)2
+

g 2a−1

32π







2

= −
2

r 2
e




1−

È

1−
2re

a






2

, (3.15)

where we used in the first equation that the dimer consists of two atoms of energy Eψ each. In
the limit g →∞, corresponding to r ∗ → 0 one recovers the well-known result εD = −2/a2.
The dimer bound state energy is shown as a function of the inverse scattering length in Fig. 3.3
(black solid line). The deviation from the universal ∼ 1/a2 scaling for large inverse scattering
lengths is due to the finite size of g which is taken to be g 2/Λ = 10. In the regime of small
scattering length a one finds a crossover of the dimer binding energy to the limiting behavior
εD =−4/(a r ∗).

3.3 Three-body sector

In the previous Chapter, we found that the bound state spectrum of the three-body sector is
much richer than its two-body counterpart. Let us summarize some of our findings: in his
seminal papers [44, 81, 86, 120] Efimov showed the existence of an infinite series of three-
body bound states for strong two-body interactions. These energy levels exhibit a universal
geometric scaling law as one approaches the unitarity point E = a−1 = 0. Remarkably, these
three-body bound trimer states exist even for negative scattering lengths a where no two-body
bound state is present; they become degenerate with the three-atom threshold for negative
scattering length and merge into the atom-dimer threshold for positive a. Within a zero-range
model one has to introduce an additional three-body parameter in order to determine the
actual positions of the degeneracies [100, 101]. The fitting of such a three-body parameter
becomes obsolete if one however starts from a truly physical model as done in Chapter 2.
In the present Section we want to shortly review how Efimov physics can be treated within
a derivative expansion. For a more detailed account on this matter and an application to
the three-component 6Li Fermi gas we refer to [96, 105, 137]. For a recent review on fRG
applications to Efimov physics, see [46].

In our truncation, the three-body sector contains a single, pointlike2 φ∗ψ∗φψ term with
a coupling λ3, which is assumed to vanish in the UV. It is build up by quantum fluctuations
during the RG flow and the corresponding Feynman diagrams of the flow equation for λ3 is
shown in Fig. 3.1(b). The derivation of the flow equation of λ3 follows essentially the same

2We denote a vertex as pointlike if it carries no explicit energy and momentum dependence.
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steps as outlined in Section 2.5. The starting point is the flow equation

∂kλ
(k)
3 (E ) =−∂̃k

∫

L

1

P R
ψ
(ω, l)P R

φ,k (−ω+ E ,−l)



λ(k)3 (E )+
g 2

P R
ψ
(−ω+ E ,−l)





2

, (3.16)

which can be derived from Eq. (2.50) and (2.52), respectively, with the difference that the
propagators are regulated additively, P R

ψ,φ
= Pψ,φ+Rψ,φ;k and a projection onto zero external

momenta has been performed λ3(E )≡ λ3(0,0; E ). Furthermore, note the relative minus sign
compared to Eq. (2.50) which is due to a different sign convention for λ3. The form factors χ
are absent as we are considering only the limit σ → 0 in this chapter. Since we are working in
the pointlike approximation we furthermore perform the projection onto zero external energy

E , λ3,k = λ
(k)
3 (E )|E=0.

At this point, note that the propagators in Eq. (3.16) are defined for vanishing atom gap
Eψ as also done in the Chapter 2. The shift symmetry (3.2) can now be used to retain the

energy dependence of λ(k)3 despite the projection onto zero energy. To see this, note that the
energy E is the total energy which the three atoms have which enter the atom-dimer collision,
cf. Fig. 2.16, and thus each atom carries an energy Eψ = E/3. Furthermore the dependence on

E in Eq. (3.16) and Eq. (2.54) appears in the last argument of λ(k)3 (q1, q2; E ). It is thus a pure
‘external’ parameter which is not influenced by the loop momenta3. We may now perform a
shift ω→ ω+ Eψ of the real loop frequency and use the identification E = 3Eψ to find that

the evaluation of ∂kλ
(k)
3 (E ) at Eψ = 0 is identical4 to the evaluation of the RHS of Eq. (3.16)

at vanishing E but for a finite Eψ = E/3. Due to this equivalence we can use the dependence
on Eψ of the pointlike coupling λ3 to recover the energy dependence of the atom-dimer vertex.
This dependence will be used below to determine the Efimov spectrum at finite energy. Note,
that the momentum dependence of λ(k)3 (q1, q2; E ) is not resolved in our approximation. This,
together with the approximation of the dimer propagator Pφ, leads to deviations in the Efimov
scaling and the corresponding number s0.

Three-body limit cycle

In this Chapter, we are mostly interested in the unitarity point where the scattering length di-
verges and where the energy E is at the atom-threshold and thus vanishes, E = 0. Remarkably,
it is possible to obtain an analytical solution for the flow equation of λ3 in this limit, while
away from unitarity we have to rely on a numerical solution. In our approximation the dimer

field φ develops a large anomalous dimension η = − ∂t Aφ
Aφ
= 1 at unitarity which is consistent

with the exact solution of the two-body sector [96, 177]. As the atom and dimer propagators

3This is different in the four-body sector. Here the coupling λ3 appears in a different momentum configuration
in the loop such that the loop momentum appears in the last argument of λ(k)3 . This can be seen from the last two
flow equations depicted for the flow of λ4 in Fig. 3.1(c).

4Due to the shift symmetry the exact dimer propagator obeys Pφ(ω+ 2E ′,p, Eψ = 0) = Pφ(ω,p, Eψ = E ′).
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have vanishing gaps in the IR the two-body sector respects a continuous scaling symmetry.
This reflects that at the unitarity point all intrinsic length scales drop out of the problem and
the system becomes classically scale invariant. Furthermore, the Yukawa coupling g is dimen-
sionless due to the anomalous dimension η= 1 and the only length scale present is the inverse
ultraviolet cutoff Λ−1, which defines the validity limit of our effective theory. When further-
more the limit Λ→∞ is taken all scales are gone and the system is perfectly scale invariant.
Contrary to the analogous fermionic system, for bosons this continuous scaling symmetry is
broken by the Efimov effect.

In order to find the solution of the three-body sector we switch to the rescaled, dimension-
less coupling λ̃3 ≡ k2

g 2λ3. With this choice the flow equation of λ̃3 becomes independent of the

RG scale k and Yukawa coupling g ,

∂t λ̃3 =
24

25

�

1−
η

15

�

︸ ︷︷ ︸

a

λ̃2
3−

14

25

�

1−
4η

35

�

︸ ︷︷ ︸

b

λ̃3+
26

25

�

1−
η

65

�

︸ ︷︷ ︸

c

. (3.17)

The terms proportional to η are due to the ∂̃k derivative acting on the wave function renormal-
ization Aφ in Rφ,k , cf. Eq. (3.4). In order to make the fixed point structure of the three-body
RG flow apparent it is useful to rewrite Eq. (3.17) as

∂t λ̃3 =
112

125
(λ̃3− c1)(λ̃3− c2) (3.18)

with c1/2 = (31± i5
p

535)/112. We see that the limit cycle character of the RG flow is signaled

by the fact that the fixed points are not real but complex numbers! Since the coupling λ̃3
is a real number its winding around the (in the complex plane symmetrically located) fixed
points c1/2 leads to periodic divergencies of the RG flow of λ3 ∈ R. To visualize the flow of

λ̃3 it is helpful to use the idea of complex extension, developed in [111]. Here, the flow of
λ̃3 ≡ λ̃1+ i λ̃2 is studied in the complex plane and it is depicted in Fig. 3.2(a). The terminology
of a limit cycle becomes even more apparent when the flow is stereographically projected onto
the Riemann sphere as shown in Fig. 3.2(b).

As was demonstrated in [96, 111, 217], the behavior of the solution of this type of flow
equation is determined by the sign of the discriminant D of the right hand side of Eq. (3.17)
which is negative, D = b 2− 4ac < 0. Eq. (3.17) can be solved analytically and one finds5

λ̃3(t ) =
−b +
p
−D tan

�p
−D
2 (t +δ)

�

2a
, (3.19)

where δ is connected to the three-body parameter and determines the initial condition. Re-
markably, the three-body sector exhibits a quantum anomaly: the RG flow of the renormal-
ized coupling λ̃3 exhibits a limit cycle, which, due to its periodicity, breaks the classically

5Here, a denotes the first coefficient in Eq. (3.17) and not the scattering length.



68 CHAPTER 3. RENORMALIZATION GROUP STUDY OF THE FOUR-BODY PROBLEM

(a) (b)

 xed points

FIGURE 3.2: Three-body RG limit cycle in the complex plane. (a) The phase portrait of the flow
equations Eq. (3.18). (b) RG flows in the complex plane and the corresponding map onto
the Riemann sphere. The pink dots represent the two complex fixed points. The solid lines
with arrows, pointing towards the UV, correspond to different RG trajectories. Additionally,
the black straight solid line from the north pole illustrates the stereographic projection of the
Riemann sphere S2 onto the complex plane C.

continuous scaling symmetry to the discrete subgroup Z . The Efimov parameter can be deter-
mined from the period of the limit cycle [96] and is given in our approximation by

s0 =

p
−D

2
=

È

107

125
≈ 0.925203. (3.20)

As we have seen and derived in Chapter 2, the exact result is given by s0 ≈ 1.00624 [66]. Con-
sidering the simplicity of our pointlike approximation, which, as discussed above, does not
resolve any momentum structure of the interaction vertex of the three-body sector, the agree-
ment is quite good and suggests that our model should provide a solid basis for an approximate
solution of the four-body problem.

Efimov spectrum

The presence of N-body bound states leads to divergencies in the corresponding N-body ver-
tices. The periodic divergencies in the analytical solution of λ̃3 in Eq. (3.19) correspond there-
fore to the presence of the infinitely many Efimov trimer states at the unitarity point. We can
use the divergencies in λ3 to calculate the bound state spectrum also away from the unitarity
point. In Chapter 2 we showed that the trimer energies can be extracted from the poles of λ3
as function of E . From the discussion before we know that the explicit energy dependence
of λ3(E ) can be extracted from the dependence of λ3 on Eψ. The trimer energy can then be

calculated by determining the atom energies Eψ for which λ̃3 exhibits divergencies in the IR
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as function of a−1. The trimer binding energies are then given by ET = 3Eψ. The resulting
three-body spectrum is shown in Fig. 3.3 (green lines). For calculational purposes we switch
to the static trimer approximation which is equivalent to our two-channel model in Eq. (3.1).
We describe this procedure in Section 3.5.

Similar to the exact result in Chapter 2 we find that as the unitarity point is approached
the trimer binding energies form a geometric spectrum and the ratio between adjacent levels
is given by

E
(n+1)
T

E
(n)

T

= e
− 2π

s0 . (3.21)

This can also be understood from the limit cycle flow of λ3. At each scale k = Λe t , where λ3
diverges, one hits a trimer state. The RG scale k can in turn be connected to the atom energy
Eψ [96, 105, 137] and as the divergencies appear periodically in t one easily obtains Eq. (3.21).

There is an additional universal relation obeyed by the trimer energy levels which we may
take as a measure of the quality of our approximation. It is given by the relation of the trimer
binding energies E (n)

T
at unitarity and the value of a for which the trimers become degener-

ate with the atom-dimer (a(n)∗ ) and three-atom threshold (a(n)− ), respectively. For comparison
with the literature, it is useful to define a wave number κ∗ given by ET = −ħh2κ∗2/M (in our
convention, ET =−2κ∗2). We then find

a(n)− κ
(n)
∗ ≈−1.68, a(n)∗ κ

(n)
∗ ≈ 0.08 (n→∞) (3.22)

which may be compared with the exact result a
(n)
− κ

(n)
∗ = −1.5076, a

(n)
∗ κ

(n)
∗ = 0.07076 from

the fully momentum-dependent calculation in [66, 100, 101] and as also recovered in our
calculation in Chapter 2. Again, the good agreement with our approximate solution suggests
that our model should provide a solid basis for the step to the four-body problem.

3.4 Four-body sector

Recently, the solution of the four-body problem in the low-energy limit has gained a lot of
interest. In quantum mechanical calculations the existence of two tetramer (four-body bound)
states was conjectured for each of the infinitely many Efimov trimers [200, 201]. By calculat-
ing the lowest few sets of bound state levels von Stecher et al. [48, 202] concluded that the
ratios of the binding energies of the two tetramers with respect to the energy of the trimer
state approach universal constants. However, with the quantum mechanical approach the cal-
culation directly at the unitarity point (a−1 = E = 0), marked by a star in Fig. 3.3, has so far
been impossible, although this point is of great interest when one wants to gather evidence for
universality of the four-body system. In fact, in the three-body sector the universal, infinite
RG limit cycle appears only exactly at the unitarity point and only here all non-universal cor-
rections vanish identically. It is one of the advantages of the fRG approach that, in contrast to
the quantum mechanical calculation, the unitarity regime can be directly accessed.
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FIGURE 3.3: The generalized Efimov plot for four identical bosons. We plot the energy levels of the
various bound states as a function of the inverse s-wave scattering length a as numerically cal-
culated in our approximative, effective theory. In order to improve the visibility of the energy
levels we rescale both the dimensionless energy E/Λ2 and the dimensionless inverse scattering
length a−1/Λ where Λ denotes the UV cutoff of our model. Also, we only show the first three
sets of Efimov levels. The solid black line denotes the atom-atom-dimer threshold, while the
dotted black line gives the dimer-dimer threshold. In the three-body sector one finds the well
known spectrum of infinitely many Efimov trimer states (green, dashed) which accumulate at
the unitarity point E = a−1 = 0, indicated by the orange star. In our pointlike approximation
the four-body sector features a single tetramer (solid, red) associated with each trimer state.

In order to investigate the four-body sector we include all possible, U(1) symmetric, mo-
mentum independent interaction vertices in the effective flowing action Γk . As discussed in
Section 3.1 one can show by the use of the vacuum hierarchy [96, 165, 177, 210] and under the
assumption that all three- and four-body couplings vanish in the microscopic action, S = ΓΛ,
that from all these possible vertices only the three couplings λφ,β, and γ are built up by quan-
tum fluctuations. These are thus included in our truncation, Eq. (3.1). Very recently Tanizaki
showed that the vacuum hierarchy may be violated in the RG evolution when the atoms and
composite dimers are integrated out simultaneously [164]. While our RG scheme in Chapter 2
respects fully the vacuum hierarchy, the regulator choice in this Chapter may mildly violate
the decoupling of n-body sectors. From [164] we, however, expect that the deviations due
to this violation are small compared to the corrections introduced by using the approximate
derivative expansion.
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Four-body limit cycle and universality

Let us first analyze the unitarity point. Here it is helpful to switch to rescaled, dimensionless
couplings

λ̃φ =
k3

π2 g 4
λφ, β̃=

k4

g 3
β, γ̃ =

π2k5

g 2
γ . (3.23)

The corresponding flow equations are obtained by inserting the effective flowing action Γk ,
Eq. (3.1), into the Wetterich equation (2.40). By the use of the rescaled couplings we find three
coupled ordinary differential equations, which are again coupled to the two- and three-body
sectors, but become independent of an explicit g and k. The diagrammatic representation of
the flow equations is shown in Fig. 3.1(c). Considering the O (102) Feynman diagrams which
have to be evaluated it is quite remarkable that the flow equations at the unitarity point take
the fairly simple, analytical form6

∂t λ̃3 =
128

125
−

62

125
λ̃3+

112

125
λ̃2

3, (3.24)

∂t λ̃φ =
1

16
+

1

3
β̃−

1

6
λ̃3+ 3λ̃φ+

128

15
λ̃2
φ

, (3.25)

∂t β̃ =
188

125
β̃+

1

6
γ̃ +

128

125
λ̃3

+
224

125
λ̃3β̃−

156

125
λ̃2

3+
4384

375
λ̃φ

+
128

15
β̃λ̃φ−

3968

375
λ̃3λ̃φ, (3.26)

∂t γ̃ =
4592

375
+

8768

375
β̃+

128

15
β̃2

+
1

125
γ̃ −

79072

1875
λ̃3−

7936

375
β̃λ̃3

+
448

125
γ̃ λ̃3+

74368

1875
λ̃2

3−
5376

625
λ̃3

3. (3.27)

We pointed out in the last section that the appearance of bound states is connected with
divergent vertex functions Γ(n)

k
and we exploit this behavior to determine the bound state

spectrum of the four-boson system. These infinities are complicated to handle in a numerical
solution of the theory. In particular, the numerical treatment of unbounded limit cycles is
problematic due to the periodic infinities during the RG flow. In order to circumvent this
difficulty we use the method of inverse couplings.

The basic idea is quite simple. In the beginning of the RG flow one follows the rescaled
couplings λ̃φ, β̃, and γ̃ according to Eqn. (3.24)-(3.27). When the couplings reach a critical

6For illustrative purpose we show the analytical form of the flow equations at the unitarity point only. Away
from this limit their explicit expressions become much more complex.
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FIGURE 3.4: Renormalization group limit cycle behavior of the three- and four-body sector at the

unitarity point E = a−1 = 0. The rescaled, dimensionless couplings λ̃3, 4λ̃φ, β̃/6, and γ̃ /1000

are plotted as functions of t = ln(k/Λ). Not only the three-body coupling λ̃3 (dashed, black)

exhibits a limit cycle behavior, but also the four-body sector couplings λ̃φ (red, solid), β̃ (blue,

dotted), and γ̃1 (green, dotdashed) obey a limit cycle attached to the three-body sector with the
same period.

numerical value in the close vicinity of a tetramer resonance at the (logarithmic) RG scale
t = t

(n)

T
, one switches to the flow of the inverse couplings λ̄3 = 1/λ̃3, λ̄φ = 1/λ̃φ, β̄ = 1/β̃,

and γ̄ = 1/γ̃ . In the corresponding flow equations at first sight potentially dangerous terms
such as the expression λ̄2

φ
/β̄ appearing in the flow ∂t λ̄φ approach in fact well-defined, finite

values as both λ̄φ and β̄ tend to zero at t = t (n)
T

. In order to handle the additional zero-

crossings of λ̄3 when the flow approaches a trimer resonance at t = t (n)
Tri

, a different approach
has to be taken. It turns out that in this case numerically stable results can be achieved by
studying the evolution of the rescaled couplings λ̂φ = λ̃φ/λ̃3, β̂= β̃/λ̃2

3, γ̂ = γ̃ /λ̃3
3.

The result of the numerical calculation of the four-body sector at unitarity is shown in
Fig. 3.4. Here, we display the RG flows of all nonzero three- and four-body sector couplings
as a function of the logarithmic RG scale t = ln(k/Λ). The three-body coupling λ̃3 (black
dashed line) exhibits the well-known limit cycle behavior, described in Section 2.5, with the
period being connected to the Efimov parameter s0. Remarkably, there is an additional limit
cycle in the flow of the four-body sector couplings with a periodic structure of exactly the
same frequency as the three-body sector. This four-body sector limit cycle exhibits resonances
which are shifted with respect to the ones belonging to the three-body system. The magnitude
of this shift is given by a new universal number, which is inherent to the four-body sector.

Our observation is that the four-body sector is intimately connected with the three-body
sector at the unitarity point. Its flow is permanently attached to the running of the three-body
sector from the first three-body resonance on. For k ≪ Λ the flow reaches its ‘final’ periodic
structure. Due to the tight bond between the three- and four-body sector, no room is left for
an additional four-body parameter.

We have explicitly checked the universal aspects of the flow by using, for instance, finite
initial values of the four-body couplings in the UV. The result is shown in Fig. 3.5. Note in
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FIGURE 3.5: Check of universality. Renormalization group limit cycle behavior of the three- and

four-body sector at the unitarity point E = a−1 = 0. The rescaled, dimensionless couplings λ̃3

(dashed, black), 4λ̃φ (red, solid), β̃/6 (blue, dotted), and γ̃ /1000 (green, dotdashed) are plotted as

functions of t = ln(k/Λ). In contrast to Fig. 3.4 nonzero UV values for the four-body couplings
have been used. Although different in the UV the flow approaches its universal infrared limit
cycle very quickly.

particular the shift of the first tetramer resonance. While the position of the first tetramer and
even its existence is highly non-universal, the higher tetramer states approach the universal,
infrared result very quickly and we find that arbitrary choices of initial values lead to the same
infrared behavior. Furthermore, the Yukawa coupling g , which is connected to the strength
of the Feshbach resonance by Eq. (3.13), completely disappeared in the flow equations at uni-
tarity: again an indicator of universality. Having done this calculation directly at the unitarity
point our conclusion is, that, within our simple approximation, the four-body sector behaves
truly universal and independent of any four-body parameter confirming the conjecture made
by Platter et al. [200, 201] and von Stecher et al. [48, 202]. We expect that universality will
also hold for an improved truncation and maybe even for N -body bound states with N > 4.

Origin of the degenerate tetramer resonance

Naively one expects that each resonance in the flow of the vertex functions is connected to
the presence of a bound state. As one observes there are also additional resonances in the four-
body sector being degenerate with the three-body sector resonances. At first sight one may
arrive at the conclusion that these resonances are pure artifacts of our approximation and that
they will disappear as one includes further momentum dependencies in the field theoretical
model. On the other hand one can also take a different perspective on these resonances by
taking into account that the RG scale k-dependence of vertices is related to their respective
energy dependence.7 For this reason the divergencies at t

(n)

Tri
may carry some deeper physical

insight. In fact, these divergencies may be due to non-analyticities of the energy dependence
7By a simple argument, one can see that there is such a relation between the RG scale k -dependence of a cou-

pling and its ‘true’ energy dependence: Let us consider the energy dependence of the full, inverse dimer propagator
Pφ which is a solution of the fully energy dependent flow equation (2.45) in Chapter 2 which we have to continue
to real energies E . In a standard ladder summation in Eq. (2.45) no k2 regulator term were present. The energy
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of the four-body vertices which are not connected to bound state poles. Indeed, as the energy
of a tetramer becomes larger than the energy of the lowest trimer state, the tetramer can decay
into a trimer and a free atom, which is in this case the energetically favorable configuration.
The trimer energy in this respect marks the atom-trimer scattering threshold. It is well-known
that such continuum thresholds are connected to branch cuts in the respective vertex function,
with a branch point exactly where the continuum emerges. Although in our pointlike approx-
imation such non-analyticities cannot be resolved by the vertex λ3 itself, they can show up as
spurious divergencies in the RG scale k-dependent λ3 = λ3(k). At first sight one may guess
that these divergencies cannot be distinguished from divergencies belonging to true bound
state poles within a derivative expansion. This is, however, not quite true.

In order to show this, we use the method of complex extension developed in [96]. The
idea is to extend the domain of the running couplings to the complex plane

λ3→ λ3,1+ iλ3,2 λφ→ λφ,1+ iλφ,2

β→β1+ iβ2 γ → γ1+ iγ2. (3.28)

This effectively doubles the number of real flow equations and additional initial conditions
must to provided. We choose a small value λ3,2/Λ

2 = ε = 10−5 in our numerical calculation
and take all other imaginary parts to be zero in the UV. In physical terms, by the complex
extension we convert the stable bound states into metastable resonances. One may compare
this with the procedure of Braaten and Hammer [126, 139, 218] who introduce a parameter
η∗ in order to model the decay of the trimers to deeply bound states which have not been
explicitly included in the effective model.8 In this line we view our complex extension as
a way to, on the one hand, include these deeply bound states in the fRG calculation. On
the other hand, this allows us to study the evolution of the imaginary part of the four-body
vertices as the trimer resonance, which represents energetically the atom-trimer threshold, is
crossed. Specifically, we find that for ε≪ 1 the decay width of the nth Efimov trimer Γ(n)

Tri
is

given by Γ(n)
Tri
= 4εE (n)

Tri
at unitarity. This is in agreement with the result in [66]

Γ
(n)

Tri
≈

4η∗

s0
E (n)

Tri
(3.29)

which holds for small η∗. Thus, for ε ≪ 1, the relation to the parameter η∗ introduced by
Braaten and Hammer is given by

ε=
η∗

s0
. (3.30)

E itself however serves as an effective infrared cutoff. In a pointlike RG approximation we project this equation
onto zero external energy. Instead we, however, have the regulator k2 in the denominator of Eq. (2.45). One can
now directly see that we may trade the energy E in the full energy dependent ladder expression with the term 2k2

in Eq. (2.45). In the resulting k -dependent solution Pφ,k the k -dependence is equivalent to the dependence on the
energy E in the limit of g →∞.

8The parameter η∗ has for instance been measured in a system of 7Li atoms where one finds η∗ ≈ 0.2 [134].
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FIGURE 3.6: Renormalization group limit cycle behavior of the dimensionless, complex coupling

λ̃3: real part (red, dashed), imaginary part (blue, solid).
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FIGURE 3.7: Renormalization group flow of the imaginary part of dimensionless coupling λ̃φ.

In Fig. 3.6 we show the flow of the real and imaginary part of the three-body coupling λ̃3
as function of the logarithmic RG scale t . This plot corresponds directly to what was shown
in Fig. 3.2 before. In the three-body sector the trimers are only unstable due to the decay
to the deeply bound states not explicitly included in our model. We observe that there is a
resonant enhancement of λ̃3,2, with a shape of a typical bound state resonance everytime a
trimer resonance is passed. These resonances have a constant width obeying Eq. (3.29).

The situation is different for the four-body couplings. In Fig. 3.7 we show the flow of the
imaginary part of the coupling λ̃φ. As the coupling encounters the first tetramer state, the flow
shows a peak in the imaginary part much like in the case of λ3 and its width can be interpreted
as due to the decay to the deeply bound states; other decay channels are not present for this
state. Having crossed this resonance the imaginary part goes back to its small value. As the
k2 dependence of the flow of couplings resembles to some extent the energy dependence of
the full vertices, the behavior of λφ corresponds just to what one would expect from a bound
state pole.9 The flow changes its characteristics, however, dramatically when it crosses the
first trimer state at t = t

(0)
Tri

. Here the imaginary part experiences a large enhancement which

9The bound state peak in Imλ̃φ has the wrong sign when using the adhoc replacement (3.28). Strictly speak-
ing, one should take the iε prescription for the propagators involved in the theory and carry them through the
calculation for a finite ε. We then expect this resonance to have the correct signature. Since we are only interested
in an heuristic argument we carry on with the more simple prescription (3.28).
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FIGURE 3.8: (a) Imaginary part of the full two-atom scattering vertex λψ (T-matrix) as function

of energy for a = 1. (b) RG flow of the purely real coupling λψ(k) given by Eq. (3.32) evaluated

for a positive energy Eψ above the atom threshold. (c) RG flow of the imaginary part of λψ =
λψ,1+ iλψ,2 as function of the logarithmic RG scale t = ln(k/Λ) for Eψ > 0.

does not go back to small values after the resonance. The k-dependence of this enhancement
reminds of the typical energy dependence of the threshold behavior of a scattering vertex.

A similar threshold behavior can, for instance, be seen when evaluating the energy depen-
dence of the full two-atom scattering vertex λψ(E ) which, taking the single-channel limit of
Eq. (2.47), has the form

λψ(E )
−1 ∝−

1

a
+
Æ

−E/2− iε. (3.31)

The resulting imaginary part is shown in Fig. 3.8(a) for a scattering length a = 1.
We can use the two-body problem as an analogy in order to support our expectation that

the divergencies in the four-body couplings at the position of the trimer states are indeed due
to a atom-trimer scattering threshold behavior. To do so we calculate the RG flow of the two-
atom vertex λψ in a leading order derivative expansion, i.e. in the pointlike limit. The flow
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can be derived from Eq. (3.5) using λψ =−g 2/m2
φ

with the resulting expression

∂tλψ =−
λ2
ψ

12π2

k5

(k2− Eψ)
2
. (3.32)

This flow equation can be solved numerically for such an initial value λψ(k = Λ) such that
a weakly bound state exists, i.e. a > 0, and for energies Eψ above the atom threshold. One
then encounters divergencies during the flow which can be handled similarly as for the case
of the four-body coupling using the inverse coupling 1/λψ. The result is shown in Fig. 3.8(b).
Two divergencies appear, and the first belongs to a bound state resonance. At first sight the
second resonance, which reminds of the degenerate resonances we encounter in the four-body
couplings, could be mistaken as a bound state resonance. When the flow equation is, however,
evaluated in the complex coupling plane (λψ = λψ,1+ iλψ,2), and using the strict iε prescrip-
tion for the propagators, the true nature of the resonance becomes clear, see Fig. 3.8(c) where
we show the RG flow imaginary part λψ,2. The first resonance features a large enhancement of
λψ,2 which has the characteristics of a bound state resonance. In the vicinity of the second en-
hancement of λψ from Fig. 3.8(b), λψ,2 behaves differently and very similar to what we found
in the case of the four-body coupling: the coupling λψ,2 shows an enhancement which does
not vanish after crossing the resonance. In this case we, however, know that this resonance is
indeed connected to the non-analyticity of the full solution λψ(E ) which corresponds to the
atom-atom scattering threshold. Having this analogy in mind, it is reasonable to assume that
the additional resonances of the four-body couplings λφ, β, and γ at the trimer resonances
are indeed due to non-analyticities in the full energy dependent couplings, which are not con-
nected to bound states, but merely to the onset of the atom-trimer scattering continuum.

Missing tetramer state

We can already infer from the calculation at unitarity that within our approximation we are
only able to resolve a single tetramer state attached to each trimer. In contrast, the ‘exact’
quantum mechanical calculations in [48, 200, 201, 202] predict the existence of two tetramer
states which have been observed in 2009 by Ferlaino et al. [203]. As one includes further
momentum dependencies, it is well possible that new, genuine resonances associated with the
‘missing’ tetramer state will appear. Such an effect occurs for example in the three-body prob-
lem. There, it is essential to include the momentum dependent two-atom vertex. Only under
this condition one arrives at the quadratic equation (3.17) which gives rise to the Efimov ef-
fect. This can easily be seen by inspection of the flow equation of λ3 depicted as Feynman
diagrams in Fig. 3.1(b). The assumption of a momentum independent two-atom interaction
corresponds to a momentum (and frequency) independent dimer propagator. In this approxi-
mation the first term on the RHS of Fig. 3.1(b) vanishes because all poles of the loop frequency
integration lie in the same complex frequency half-plane. This directly leads to the loss of the
Efimov effect in this crude level of approximation.
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There is, however, also a much simpler explanation for why there is only a single tetramer
state in our approximation. In order to understand the reasoning let us consider solely the flow
λ̃φ, Eq. (3.25). The coefficients in this equation are sensitive to the approximation chosen as
well as to the regulators employed. In order to keep the argument simple, we neglect the inter-
four-body sector coupling given by the term ∼ β̃. When solving the resulting flow equation
one does find a single tetramer state in the spectrum. However, as argued above, the coeffi-
cients in Eq. (3.25) will change as the approximation is altered. It turns out that by changing
the coefficient in front of λ̃3 it is possible to produce an arbitrary number of tetramer states
attached to each trimer. For instance, in Fig. 3.9 we show the solution of the equation

∂t λ̃φ =
1

16
− c λ̃3+ 3λ̃φ+

128

15
λ̃2
φ (3.33)

up to the first trimer resonance with c = 10 [Fig. 3.9(a)], and c = 2 [Fig. 3.9(b)]. In the latter

- 1.4 - 1.2 - 1.0 - 0.8 - 0.6 - 0.4 - 0.2

- 40

- 20

20

40

- 1.4 - 1.2 - 1.0 - 0.8 - 0.6 - 0.4 - 0.2

- 40

- 20

20

40(a) (b)

FIGURE 3.9: (a) RG flow of the coupling λφ given by Eq. (3.33) up to the first trimer resonance.

The number of tetramer resonances is sensitive to the value of the coefficient c , here c = 10. (b)
Same as in (a) but with c = 2.

case we find exactly two tetramer states attached to the trimer. From this simple result we are
led to the conclusion that it is likely that for a more elaborate truncation the coefficients in the
flow equations change in such a way that exactly two tetramers appear in the spectrum. We
thus also expect that more generally, for instance, for changing mass ratios it is well possible
that a different number of tetramers might appear in the spectrum.

Spectrum away from the unitarity point

Similar to our solution of the three-body problem, cf. Section 3.3, we can also use our model
to investigate the bound state energy spectrum of the four-body problem away from the uni-
tarity point by solving the flow equations for arbitrary values of the scattering length a. The
energy levels of the various bound states are determined by varying the energy of the funda-
mental atoms Eψ such that one finds a resonant four-body coupling in the IR. The result of
this calculation is shown in Fig. 3.3, where we plot the energy levels of the various bound
states versus the inverse scattering length. We find one tetramer state attached to each of the
Efimov trimer states. These tetramer states become degenerate with the four-atom threshold
for negative scattering length and merge into the dimer-dimer threshold for positive a. In the
experiment this leads to the measured resonance peaks in the four-body loss coefficient [203].
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In order not to overload the plot we show only the first three sets of levels, although the fRG
method allows to calculate an arbitrary number of them. One also observes that the shape of
the tetramer levels follows the shape of the trimer levels. In analogy to the three-body sector
one can calculate a universal formula relating the tetramer binding energies E (n)∗

Tet
=−2(κ(n)∗

Tet
)2

at a→∞with the corresponding scattering length at which the tetramers becomes degenerate
with the four-atom threshold a

(n)

Tet,-
and the dimer-dimer threshold a

(n)

Tet,+
, respectively. We find

a
(n)

Tet,-
κ(n)∗

Tet
≈−1.75, a

(n)

Tet,+
κ(n)∗

Tet
≈ 0.20 (n≫ 1). (3.34)

In their quantum mechanical calculation von Stecher et al. were able to calculate the lowest
few sets of bound state energy levels [48]. From their behavior it was inferred that the ratio
between the tetramer and trimer binding energies approaches a universal number within these
first few sets of levels. It is therefore expected that the universal regime in the energy plot in
Fig. 3.3 is reached very fast as one goes to smaller a−1 and Eψ.

In order to investigate this observation made by von Stecher et al., we calculate the behav-
ior of two ratios as a function of the number n denoting the set of level for which they are
determined. The first ratio relates the negative scattering lengths a

(n)

Tet,-
and a

(n)

Tri,-
for which the

nth tetramer and trimer become degenerate with the four-atom threshold. The second is the
ratio between the binding energies of the nth tetramer E

(n)∗
Tet

and the nth trimer E
(n)∗
Tri

at reso-
nance, a→∞. The resulting plots are shown in Fig. 3.10. We calculate the ratios for different
values of the microscopic couplings in order to test the degree of universality of the various
sets of energy levels. To test the dependence on the resonance strength sres ∝ g 2 we show the
results for various values of the Yukawa coupling g . As one sees, only the first of the ratios
depend on the microscopic details. Already from the second set of levels on the microscopic
details are washed out and the ratios become independent of the choice of initial conditions:
The regime of universality is reached extremely fast and as a−1 and Eψ are lowered one will
ultimately find the four-body limit cycle described above.

For the asymptotic ratios we find (n≫ 1)

a
(n)

Tet,-
≈ 0.518 a

(n)

Tri,-
, (3.35)

E
(n)∗
Tet
≈ 4.017 E

(n)∗
Tri

. (3.36)

Von Stecher et al. obtain a
(n)

Tet,-
/a
(n)

Tri,-
≈ 0.43 for the deeper bound tetramer and E

(n)∗
Tet

/E
(n)∗
Tri
≈

4.58, respectively. Considering the simplicity of our model the agreement is quite good. With
an ultracold bosonic gas of Cesium atoms Ferlaino et al. measured a

(n)

Tet,-
/a
(n)

Tri,-
≈ 0.47. In this

experiment only the lowest set of tetramer states in the energy spectrum had been accessible
due to the particular scattering length profile. Considering our observation that the deepest
set of levels is still strongly dependent on the microscopical details, in accordance with our
findings in Chapter 2, one cannot expect to find the universal numbers in this particular set-
ting. Therefore more experiments for bosons interacting via larger scattering lengths would
be desirable.
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FIGURE 3.10: Calculation of universal ratios for the lowest five set of levels. The calculation is
done for different values of the Yukawa coupling g 2/Λ which determines the effective range in
our model (in the figure: h ≡ g ). The dotted lines are only guide for the eye. (a) Ratios between

the values of scattering lengths a
(n)

Tet,-
and a

(n)

Tri,-
for which the tetramer and corresponding trimer

become degenerate with the four-atom threshold. (b) Ratios between the values of binding

energies E (n)∗
Tet

and E (n)∗
Tri

at resonance a→∞.

3.5 The trimer approximation and rebosonization

In this section we will apply the rebosonization method developed in [219] to our model (3.1).
By a Hubbard-Stratonovich transformation in the atom-dimer scattering channel, we intro-
duce an additional trimer field χ ∼ φψ, representing the bound state of three bosons, which
mediates the atom-dimer interaction, see Eq. (3.37) below. A similar procedure had already
been used a long time ago by Fonseca and Shanley [192] in the context of nuclear physics and
was recently employed by us in [105, 137] for the treatment of the three-component Fermi gas.
There are several reasons for employing this procedure. First, it is useful to reduce the number
of resonances one has to integrate through in the RG flow. Instead of calculating the divergent
coupling λ3 one only has to calculate zero-crossings of the trimer energy gap which is numer-
ically much easier to handle. Secondly, by the introduction of a dynamical trimer field one is
able to mimic some of the complicated momentum structure of the atom-dimer interaction
in a simple way which could be sufficient to find the missing tetramer state in our calculation.
A third reason is that the four-body problem allows to study the method of rebosonization
in a context where the resulting field dependencies are more involved as compared to typical
applications put forward so far [105, 214, 220].

But most importantly, the rebosonization scheme allows to describe the many-body prob-
lem based on the action (3.1) in a physically intuitive way and in particular in the symmetry
broken phases of the system. In order to explain this point in more detail, note that the anal-
ysis of the three- and four-body problem considered in the previous sections works equally
well when considering a three-component SU(3) Fermi gas, with the exception that there exist
no tetramer states due to the Pauli principle.10 Employing continuity arguments, the phase

10One may also consider the bosonic case. Here the gas becomes unfortunately unstable for negative scattering
length at homogeneous finite density. This is the reason why we analyze the fermionic case here.
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diagram of this system has been discussed in [105]. In the few-body system (cf. Fig. 2.2), for
small, negative scattering length |a| ≪ lvdw, the ground state is given by unbound fermions.
Increasing the density to finite values one expects that the ground state is given by attractively
interacting fermions which build an extended ‘color’ superfluid phase. At a critical coupling
a ≈ a− the ground state changes character and becomes a gas of fermionic trimers, which can
be expected to be an almost ideal Fermi gas deep in the unitary regime where the trimers fea-
ture a large energy gap.11 Similarly, for a = a∗, in the few-body problem, the trimers merge
into the atom-dimer channel and the dimer is now the ground state. This will be reflected
also by the many-body problem and one expects that for a ≈ a∗ a new color superfluid phase
of repulsive molecules appears. Since the symmetry of the trimer phase is different from the
color superfluid phases, there have to be quantum phase transitions, with possible associated
quantum critical regions in between.

The proper description of these quantum critical regimes is a complicated task and up to
now no attempts for solving this problem have been made in the case of a continuum system.
For the similar problem of SU(3) fermions on the lattice we refer to [221, 222, 223]. The
main difficulty is the competition of various degrees of freedom which are in this case com-
posite particles with varying particle content. In order then to describe the phase transitions
properly, quantum fluctuations of all relevant degrees of freedom have to be included. For
instance, at the quantum phase transition at a ≈ a− fluctuations of the superfluid order param-
eter field ∼ φ, unbound atoms ∼ ψ and trimers ∼ χ will be important. We already see from
this argument that an intuitive way to describe this situation is the use of the relevant effective
degrees of freedom. From this perspective the introduction of a trimer field is quite natural.
Note, that in principle the system can be described in terms of the atoms ψ only. This would,
however, necessitate the evaluation of the fully frequency and momentum dependent vertices
of the three- and four-body sector which seems to be an impossible task.

Even having introduced the trimer field, the calculation remains difficult close to the phase
transitions. For instance, close to a ≈ a− collisions between trimers and atoms ∼ χ ∗ψ∗χψ or
collisions converting a trimer and an atom into two Cooper pairs ∼ χ ∗ψ∗φφ will be impor-
tant. As these couplings belong to the four-body sector our previous discussion of four-body
physics becomes of relevance even for the many-body problem. In order to describe the sys-
tem properly all couplings belonging to the four-body sector will be important in the effective
average action Γk . One may then hope12 that the introduction of the trimer field together
with the inclusion of all these interaction vertices in the effective average action Γk allows a
rather accurate description of the system.

Technically, the trimer field is introduced by a Hubbard-Stratonovich transformation at
the UV scale, λ3 ∼ h2/m2

χ , which replaces the atom-dimer scattering in the UV by a trimer

exchange. The main problem of a standard application of a Hubbard-Stratonovich transfor-
mation is that the regeneration of the replaced coupling by quantum fluctuations on lower

11Unless they feature a small effective attraction, for instance in the p-wave channel [105].
12Since one deals with a strong coupling problem, also all higher order couplings might potentially become

relevant.
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momentum scales is typically not taken into account. For instance the critical temperature
of conventional superconductors given by BCS theory can be derived from a model in which
the atom-atom attraction is replaced by a pair exchange (for a detailed discussion see [214]
and Appendix D). In BCS theory the regeneration of the vertex (ψ∗ψ)2 is neglected. Taking
into account this vertex yields a correction to Tc as large as a factor of almost two, which is
the famous Gorkov correction to BCS theory. The method of rebosonization allows to ac-
count for these contributions in a systematic way. In the Efimov problem it is even solely for
these contributions that the Efimov effect appears [105]. Having a future application of the
results of the previous sections to many-body physics in mind, it is thus the first step to study
the rebosonization for the trimer field. In contrast to our previous work [105], we will here
also include the four-body couplings which, as discussed above, will be important in a proper
description of the atom-trimer-molecule quantum phase transitions.

In the three-body sector the atom-dimer coupling λ3 exhibits divergencies when the energy
gap of the fundamental atoms Eψ is tuned such that one hits a trimer bound state in the IR.
In the static trimer approximation,13 the coupling λ3 is mediated by the exchange of a trimer
field χ with the non-dynamical, inverse propagator Pχ = m2

χ , which can be depicted as

The trimer field χ ∼ φψ is introduced on the microscopic scale by a Hubbard-Stratonovich
transformation and our ansatz for the effective average action, motivated by the resulting clas-
sical action, reads

Γk =

∫

x

{ψ∗(∂τ −∆+ Eψ)ψ

+φ∗
�

Aφ(∂τ −
∆

2
)+m2

φ

�

φ+χ ∗m2
χχ

+
g

2
(φ∗ψψ+φψ∗ψ∗)+λ3φ

∗ψ∗φψ

+h(χ ∗φψ+χφ∗ψ∗)

+λφ(φ
∗φ)2+β(φ∗φ∗φψψ+φφφ∗ψ∗ψ∗)

+γφ∗ψ∗ψ∗φψψ+δ1χ
∗ψ∗χψ

+δ2(χ
∗ψ∗φφ+χψφ∗φ∗)

+δ3(χ
∗ψ∗φψψ+χψφ∗ψ∗ψ∗)}. (3.37)

The Yukawa interaction h couples the trimer field to the dimer and atom field. The δi are the
additional U(1) symmetric four-body couplings which are generated by quantum fluctuations.

13In the case of many-body physics this can be extended to account for a dynamical trimer field, e.g., with a
derivative expansion for the inverse trimer propagator.
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By virtue of the vacuum hierarchy, all other possible couplings can be shown to stay zero dur-
ing the RG evolution provided they vanish at the UV scale. The coupling λ3 is regenerated
through a box diagram in the RG flow. However, it is possible to absorb all emerging cou-
plings δi and λ3 by the use of the rebosonization procedure. For this matter we promote the
trimer field χ to be explicitly scale dependent, χ → χk , χ ∗→ χ ∗

k
and the Wetterich equation

generalizes to14

∂kΓk[Φk] =
1

2
Tr
�

Γ
(2)
k
[Φk]+Rk

�−1
∂k Rk

+

�
δ

δΦk

Γk[Φk]

�

∂kΦk , (3.38)

where Φk now includes all fields including the trimer fields (χk ,χ ∗
k
). The additional term in

the generalized flow equation (3.38) allows for the absorption of the reemerging couplings
since one has the freedom to conveniently choose the scale dependence of the trimer fields as a
function of fields. In order to continuously eliminate the couplings λ3 and δi during the flow,
we choose

∂kχk = φψζa,k +ψ
∗χkψζb ,k

+ψ∗φφζc ,k +ψ
∗φψψζd ,k ,

∂kχ
∗
k
= φ∗ψ∗ζa,k +ψχ

∗
k
ψ∗ζb ,k

+ψφ∗φ∗ζc ,k +ψφ
∗ψ∗ψ∗ζd ,k . (3.39)

Upon inserting Eq. (3.39) into the generalized Wetterich equation (3.38) the condition that the
flows of λ3 and δi vanish leads to

ζa = −
∂kλ3

2h
, ζb =−

∂kδ1

2m2
χ

ζc = −
∂kδ2

m2
χ

, ζd =−
∂kδ3+ hζb

m2
χ

. (3.40)

When one calculates now the flow equations of the remaining flowing couplings by projecting
Eq. (3.38) onto them, one obtains new contributions due to the presence of additional terms
arising from Eq. (3.39). Note that in particular the term ζa takes care of the reemerging atom-
dimer vertex.

In our static trimer approximation the trimer field has no dynamical propagator and the
model given by Eq. (3.37) is equivalent to the two-channel model in Eq. (3.1). Furthermore,
no regulator has to be specified for the trimer field since in our approximation the original
atom-dimer coupling λ3 is solely replaced by h2/m2

χ . At this point it becomes clear why the

14There is a correction to this result when the trimer is a dynamical degree of freedom and the flow equation is
then modified [172, 220].
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modified flow equations will be easier to handle numerically: instead of calculating a divergent
λ3 in the three-body sector one has only to deal with zero crossings of m2

χ at the values of k

where originally λ3 had divergencies. The modified flow equations are given by

∂t h = ∂t h |Φk
+m2

χ ζa ,

∂tβ = ∂tβ|Φk
+ hζc ,

∂tγ = ∂tγ |Φk
+ 2hζd , (3.41)

where the first terms in the flows are the original flow equations with the trimer field taken
to be scale independent. In fact, by expressing all flow equations in terms of the coupling
H ≡ h2 one can also get rid off the problematic h in the denominator of ζa in Eq. (3.40),
cf. [46, 105]. We point out that the static trimer approximation allows to calculate easily the
three-body sector and, remarkably, it allows for an analytical solution of the flow of λ3 in
the complex coupling plane [111]. In the four-body sector the original divergencies of λ3 still
appear since trimers χ appear in the corresponding flow diagrams and therefore one has to
deal with terms ∼ 1/m2

χ . These difficulties can, however, be resolved in a similar fashion as

described in Section 3.4. Finally, the bound state spectrum of the trimers can be computed
by calculating the poles of the trimer propagator, m2

χ (k = 0, Eψ) = 0, in a straightforward
manner.

3.6 Conclusion

In this chapter, we investigated the four-body problem with the help of the functional renor-
malization group. Employing a simple two-channel model with pointlike three- and four-body
interactions we were able to study universal properties at the unitarity point a→∞, E = 0 as
well as to perform computations away from it.

In the RG language the Efimov physics of the three-body problem manifests itself as an
infinite RG limit cycle behavior of the three-body coupling constant at unitarity. We found
that also the four-body sector is governed by such a limit cycle which is solely induced by the
RG running of the three-body sector, signaling the absence of a four-body parameter.

We computed the energy spectrum away from unitarity and were able to obtain the uni-
versal relations between four- and three-body observables in our approximation. Our calcula-
tion provides an explanation for the findings of von Stecher et al. [48], who found that these
ratios approach universal constants very quickly for higher excited states. We also found a
dependence of the ratios for the lowest level on microscopic details such as the strength of
the underlying Feshbach resonance. This is of relevance for the experimental observations by
Ferlaino and coworkers [203]. In this experiment only the lowest tetramer states have been
observed and hence one cannot expect to find the exact universal relations between them.

Considering the simplicity of our model, we find good agreement with the previous studies
in [48, 200, 201]. There had been disagreement in literature about universality and the absence
or existence of a four-body parameter, see e.g. [206, 224, 225]. Our renormalization group



3.6. CONCLUSION 85

results support the conclusion that the four-body system is universal and independent of any
four-body parameter.

An important shortcoming of the pointlike approximation is the absence of the shallower
of the two tetramer states. We presented ways how this shortcoming might be overcome,
either by the use of a truncation with an improved momentum and energy dependence of the
vertices or by a different choice of regulators. From the energy spectrum in Fig. 3.3 it becomes
also evident that the excited tetramer states can decay into an energetically lower lying trimer
plus an atom. The higher excited states in the four-body system are therefore expected to have
an intrinsic finite decay width [201]. Whether this width has a universal character, however,
still remains an open question. Using the method of complex extension of RG flows [111]
we presented a method for how to infer this width from a functional renormalization group
analysis even in a simple, lowest order derivative expansion.

The inclusion of the full momentum dependencies in the three- and four-body sector seems
to be a rather complicated task. In the effective field theory study of the three-boson system
the introduction of a dynamical dimer field, often called the di-atom trick [66], has been a
decisive step towards the exact solution of the three-body problem. From this perspective
we suggest that the inclusion of a dynamical trimer field in the effective action might help to
simplify the momentum dependent calculation. Furthermore, we indicated how this approx-
imation gives a good starting point for a many-body calculation addressing possible quantum
phase transitions in the system and we showed how the method of rebosonization may be
used to simplify the calculations.





Chapter Four

Full spectral functions and excitation spectra near
the polaron-to-molecule transition from the fRG

AS we have seen in the previous Chapters, in three spatial dimensions the ground state of
two interacting fermions of different species changes its character at the critical unitary

interaction strength 1/a = 0. While for 1/a < 0 it is given by two unbound, free atoms, it
becomes a weakly bound molecular state with universal binding energy εb = −ħh2/(ma2) for
1/a > 0. How this situation changes when one of these species, say the ↑-atoms, has a finite
density n↑ = k3

F
/(6π2) characterized by the Fermi wave vector kF , is one of the main questions

we will address in this Chapter.
In this case, one deals with a polaron problem where an impurity, the ↓-atom, is immersed

in an environment, the ↑-Fermi sea. In general, a polaron is an impurity immersed into some
environment which changes the single particle properties of the impurity due to the interac-
tions with the bath [226]. Impurity problems are ubiquitous in physics with many prominent
examples ranging from lattice polarons [227] to Kondo physics [228, 229, 230]. In the present
polaron problem, the single ↓-spin atom constitutes a mobile impurity in the environment of ↑-
fermions and below a critical dimensionless interaction strength ϑ = 1/(kF a)<ϑc the ground
state is given by the so-called Fermi polaron, a single particle excitation with well-defined
quasiparticle properties [3]. For increasing microscopic attraction, ϑ > ϑc , the ground state
changes its character, and the impurity forms a molecular state with an atom of the ↑-Fermi
sea. This qualitative change of the ground state marks the so-called polaron-to-molecule transi-
tion and has been predicted by Prokof’ev and Svistunov [59, 60]. It has not only been studied
extensively theoretically [59, 60, 72, 231, 232, 233, 234, 235, 236, 237, 238, 239], but also has
been verified experimentally [240].

As it turns out, not only the ground state features interesting physics but also the excita-
tion spectrum across the transition exhibits a rich structure. On the one hand, as shown from
a microscopic calculation in this chapter (see also [62]) and in a phenomenological two-loop
calculation by Bruun et al. [241], the polaron (molecule) remains a well-defined excited quasi-
particle of finite lifetime for ϑ >ϑc (ϑ < ϑc ) with a power-law decay of its lifetime confirming
the first-order nature of the polaron-to-molecule transition [59, 60]. On the other hand, a new
quasiparticle appears for large microscopic attraction (1/a > 0) at positive energies: the repul-
sive polaron.

In order to access these excited states it is necessary to calculate the full energy and momen-
tum dependent self-energies of the impurity and the molecular state. So far, there had been a
lack of theoretical work which studies all the features in the polaron-to-molecule transition in
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a unified approach. In this Chapter we present a new, numerical functional renormalization
group method [62] which allows such a unified description.

The polaron-to-molecule transition is of great relevance for many-body physics as it consti-
tutes a two-component Fermi gas in the limit of extreme spin imbalance. While the repulsive
polaron sheds light on the question if the attractive Fermi gas prepared on the so-called re-
pulsive branch [49] is stable enough to reach the phase transition to (Stoner) ferromagnetism
[49, 50, 52, 53, 54, 55, 56, 242, 243, 244] the ground state of the polaron-to-molecule tran-
sition provides information about the phase diagram of the imbalanced BEC/BCS crossover
[16, 245].

Motivated by this many-body perspective, we will first briefly review the phase diagram of
the imbalanced Fermi gas in Section 4.1, after which we introduce the Fermi polaron physics
in more detail (Section 4.2). In Section 4.3 we derive the RG flow equations and analyze the
ground state properties using a simple derivative expansion. The discussion of the advantages
and disadvantages of such an approximation then leads to the question of how to calculate
the RG flow of full spectral functions in Section 4.4. After we analyze the spectral properties
in Section 4.5, we use the full Green’s functions to predict the radio-frequency response in a
mixture of 6Li atoms using linear response theory in Section 4.6. We summarize our results
in Section 4.7.

4.1 Aspects of the phase diagram of an imbalanced Fermi gas

A spin-balanced, two-component Fermi gas with attractive interactions becomes superfluid –
and superconducting if the fermions carry charge – at low temperatures, as first observed by
Onnes in 1911 [246] and sucessfully explained many years later, in 1957, by Bardeen, Cooper,
and Schrieffer [247]. As shown by Cooper [248], the combination of arbitrary weak attractive
interactions and the presence of a Fermi surface leads to the formation of so-called Cooper
pairs, which, as bosonic degrees of freedom, condense and build the superfluid BCS-state. In
fact, the attraction can even be so weak that in the corresponding two-body problem no bound
state exists.

The transition temperature for BCS-suprafluidity is exponentially suppressed,

Tc/TF =
8eγ

πe2
e
− π2

1
kF |a| , (4.1)

with γ the Euler constant, TF the Fermi temperature, kF the Fermi wave vector, and a the
scattering length. This result, as derived by Bardeen et al. [247], is, however, not exact but
receives a correction by a factor of 1/(4e)1/3 due to particle-hole fluctuations known as the
Gorkov-Melik-Barkhudarov correction to BCS theory [249]. For a derivation of both results
from the functional renormalization group we refer to Appendix D. Low temperatures as
in Eq. (4.1) in the weak coupling regime kF |a| ≪ 1, where BCS theory becomes valid, can
presently not be achieved with ultracold atoms. However, the use of Feshbach resonances al-
lows to enhance the attraction so much that the strong coupling regime kF |a| ≫ 1 is accessible
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where Tc ∼ O (TF ) which is well in reach of cold atom experiments. This finally allowed the
observation of fermionic superfluidity in ultracold gases by the MIT group [15, 29].1 In fact,
at unitarity, the critical temperature has been measured to be Tc/TF = 0.167(13) [34] which
is in excellent agreement with various theoretical predictions ranging from a self-consistent
Ward-Luttinger approach that gives Tc/TF = 0.16 [37] to Monte Carlo calculations which
give Tc/TF = 0.152(7) [79] and 0.171(5) [80].

The tunability of the interactions allows to realize the so-called BCS-BEC crossover (for a
collection of related articles we refer to [16]): while for negative and small kF a the formation
of highly non-local Cooper pairs takes place, for positive scattering lengths a the fermions
form molecules which become tightly bound in the BEC-limit kFa → 0+. In this limit the
tightly bound molecules with the universal binding energy εB = ħh/(ma2) form a weakly inter-
acting, repulsive and thus stable BEC of bosonic molecules with the standard BEC transition
temperature [1]2

Tc ,BEC/TF ≈ 0.218. (4.2)

Within standard BCS theory for a spin-balanced Fermi gas, the superfluid state is protected
by an energy gap ∆ which vanishes at the transition temperature in a second order phase
transition. But what happens when a spin imbalance is introduced? Such an imbalance can
be enforced in cold atoms by choosing an actual imbalance in the densities n↑ 6= n↓ of ↑- and
↓-atoms which, in a grand canonical description, implies a finite difference in the chemical
potentials h = (µ↑−µ↓)/2 6= 0. This is similar to an electron gas in an external magnetic field
B which likewise leads to an imbalance in the chemical potentials h = (µ↑ −µ↓)/2 = γB/2
with γ the gyromagnetic ratio.

Contrarily, a finite value of h does, however, not necessarily imply a imbalance in the
fermion densities. In fact, due to the protecting energy gap ∆, a finite effective magnetic
field h can be applied before the superfluid state breaks down at a critical value hc due to the
large mismatch of the Fermi surfaces. While the superfluid phase for h < hc has a vanishing
polarization P = (n↑−n↓)/(n↑+n↓), the phase for h > hc is characterized by P 6= 0. The finite
jump in the polarization (and density) implies a first order phase transition at hc . Note, that
the existence of such a jump has been indicated by the experiment at MIT [29] but it is yet not
theoretically proven.

In Fig. 4.1 a tentative phase diagram at zero temperature is shown where the axis are given
by the dimensionless effective magnetic field h/εF and coupling constant 1/(kF a).3 Two lines
are of particular importance: the Clogston field hc and the so-called saturation field hS . As
discussed above, hc marks the phase transition from a balanced superfluid (SF0) to a nor-
mal, partially polarized Fermi gas (Npp). In weak coupling, it equals the so-called Clogston-
Chandrasekhar limit of the breakdown of superfluidity [250, 251]which, in mean-field theory,

1A historical side remark: Remarkably, one of the two first, Nobel prize rewarded, BECs in 1995 [12] as well
as the superfluid fermionic system [15, 29] were created at the MIT with the same machine.

2That the interaction between the molecules becomes indeed weak in the deep BEC limit was shown in a
four-body calculation by Petrov et al. [196].

3In this Section we use the definitions n = n↓ + n↑ = k3
F
/(3π2) and εF = k2

F
in natural units ħh = 2m = 1,

whereas in the following Sections as well as in Fig. 4.1 we use the different convention n = n↑ = k3
F
/(6π2).
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FIGURE 4.1: Schematic plot of the zero temperature phase diagram of the spin-imbalanced Fermi
gas. The axis are given by the dimensionless interaction strength 1/(kF a) and the difference
in chemical potentials h = (µ↑ − µ↓)/2 in units of εF . In this figure the convention n↑ =
k3

F
/(6π2) is used. The figure is taken from Punk et al. [236] with courtesy of W. Zwerger.

is given by

hc =
∆
p

2
(Clogston-Chandrasekhar limit). (4.3)

If the magnetic field h is above the saturation field hs the system undergoes a second order
phase transition to a fully polarized, single component Fermi gas of majority ↑-atoms. At
low temperatures, interactions are frozen out due to the Pauli principle and the phase h > hs
corresponds to an ideal ↑-Fermi gas.

Due to the first order phase transition for k f a → 0− from a superfluid state SF0 with
zero polarization P1 to the normal, spin-polarized state Np p with high polarization P2 for
h > hc , there is a jump in the densities of ↑- and ↓-atoms at hc as predicted by Bedaque et
al. [252] and experimentally verified by Shin et al. [253]. This implies that there is a regime
of polarizations P ∗ with P1 < P ∗ < P2 which are not allowed in the system. This regime is
sometimes termed the forbidden region or the phase separated state. The latter terminology is
easily understood considering a cold atomic system, where particular particle densities n↑ and
n↓ can be prepared which correspond to a ‘forbidden’ P ∗. Given such a P ∗, it is energetically
favorable for the system to form two types of domains of finite size in space: one type consists
of a balanced superfluid while the other consists of a normal Fermi gas of finite polarization.
Adding now more minority ↓-atoms, the superfluid domains will grow, while the other do-
mains shrink. This is similar to bubble nucleation in the liquid gas transition [170]. This first
order phase transition is shown as thick line in Fig. 4.1. It terminates at the so-called splitting
point S where the transition along hc turns second order. As discussed by Son [254] using
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effective field theory, the point S marks a sharp transition at T = 0 but becomes a crossover
at finite temperature and it is related to a characteristic change in the dispersion relation of the
fermions in a balanced superfluid [76, 255]. While the fermionic excitation spectrum E (k) in
the balanced situation has a minimum at momentum k = 0 for ϑ > ϑS , it has its minimum at
a finite momentum for ϑ <ϑS .

In the weak coupling regime, where the fermions are barely renormalized, the saturation
field hs is obtained in lowest order by setting µ↓ = 0 which yields hs = µ↑/2 = εF /2. The
first order correction due to interactions is in mean field theory given by µ↓ = g n which
results in hs = εF (1/2+ 2/(3π|ϑ|) + . . .) [256]. As shown in Fig. 4.1, hs increases towards
the BEC side. The point M marks the endpoint of this second order phase transition from a
non-interacting ↑-Fermi gas with P = 1 to a normal, partially polarized Fermi gas with P 6= 1.
For couplings ϑ beyond the point M, hs determines the transition from an ideal ↑-Fermi gas
to a polarized superfluid (SFp), where superfluid molecules are immersed in excess majority
↑-atoms. In [257] Pilati and Giorgini argue, based on a fixed-node Monte Carlo (FN-QMC)
calculation, that for couplings ϑ > ϑM the line hs marks a first-order phase transitions to the
phase SFp due to the large atom-dimer repulsion in the regime close to the point M. Further
in the BEC regime, for ϑ > ϑT > ϑM , it this first order transition turns second order, with
ϑT marking a tricritical point. Due to the phase separation between atoms and dimers for
ϑ ¦ ϑM the point M might be difficult to observe in experiments. For decreasing values of h
within the SFp phase, a second phase transition takes place to a balanced superfluid which is
a continuous Lifschitz transition with a vanishing Fermi surface of ↑-atoms [256]. Similarly,
for ϑ < ϑM and at T = 0, there is also a Lifschitz transition along the line hs , since here the
Fermi surface of ↓-atoms vanishes; for finite T > 0 this transition becomes a crossover, while
the SF0-SFp transition remains second order at T > 0 [256].

Along the line of the saturation field hs the system is just on the verge of having a finite
occupation of ↓-atoms and thus it gives the energy of a single down impurity in a ↑-Fermi
gas. The point M then represents the position of the polaron-to-molecule transition. Since the
point M plays such a prominent role in the phase diagram of a spin-imbalanced Fermi gas, its
quantitative determination is of great importance. As we will show in the following sections,
we determine the point M to be localized at the interaction strength ϑM = 0.904(5) which is
in excellent agreement with the result from diagrammatic Monte Carlo, ϑM = 0.90(2). From
this perspective our fRG approach builds a good starting point to explore the more involved
dynamical aspects of the polaron-to-molecule transition.

4.2 The Fermi polaron problem

The remainder of this Chapter is devoted to the Fermi polaron problem, that is, as described
in the introduction, a single ↓-atom4 immersed in an ↑-Fermi sea. This situation is realized
along the saturation field hs in Fig. 4.1. Some of the questions to be addressed in this Chapter

4As long as there is only a single impurity, the statistics of the impurity plays no role and consequently the
↓-atom can also be a boson. We will, however, refer to the ↓-atom as a fermion of the same mass as the ↑-atoms
since we are interested in the relevance for the phase diagram of an imbalanced Fermi gas.
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FIGURE 4.2: Sketch of the basic features of the excitation spectrum of the Fermi polaron prob-
lem. (a) For very weak attraction the impurity is barely renormalized. (b-c) As the microscopic
attraction increases the impurity becomes dressed with ↑-fermions and is a renormalized quasi-
particle, the attractive polaron. (d) Beyond a critical interaction strength ϑc = (kF ac )

−1 the
molecule becomes the ground state of the system. (e-f ) The attractive polaron and the molecule
exist as excited states above their respective ground state also across the polaron-to-molecule
transition. (g-h) A new quasiparticle excitation, not present in the microscopic action – the
repulsive polaron – appears at positive energies. Also shown are the energies of the attractive
polaron (green), molecule (purple), and repulsive polaron (blue).

are: what is the ground state of the system? At which energy and interaction strength does the
polaron-to-molecule transition occur? What is the nature of this phase transition? What is the
quasiparticle excitation spectrum and what are the corresponding quasiparticle properties?

In Fig. 4.2 we schematically show some of the main features of the excitation spectrum of
the Fermi polaron problem as function of the dimensionless interaction strength ϑ = 1/(kF a).
On the left side of the figure, Fig. 4.2(a), the impurity is interacting only very weakly with the
↑-Fermi sea; the ↓-atom can propagate almost freely through the medium and is barely renor-
malized. As the microscopic attraction is increased, ϑ → 0, the ↓-atom becomes a strongly
renormalized quasiparticle, c.f. Fig. 4.2(b-c), with corresponding Landau quasiparticle param-
eters such as an effective mass m∗ and wave function renormalization Z . Furthermore the
interaction between the ↑- and ↓-atoms is effectively screened by the medium. In the following
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we will call this quasiparticle the attractive polaron. Due to the attraction, interaction energy is
gained when the impurity is added to the ↑-Fermi sea as indicated by the green line in Fig. 4.2.

At a critical interaction strength ϑc > 0 the ground state changes character and it becomes
energetically favorable to form a molecular bound state composed of the ↓- and an ↑-fermions,
cf. Fig. 4.2(d). This bosonic molecule is an impurity itself in the surrounding ↑-Fermi sea. It
is a renormalized quasiparticle as well, but, contrarily to the attractive polaron, it interacts via
effective repulsive interactions with the Fermi sea. The energy gained by forming the molecule
is indicated by the purple line in Fig. 4.2. The crossing of the energy levels of the molecule and
the attractive polaron marks the polaron-to-molecule transition. It corresponds to the point
M discussed in the previous Section. Note that the attractive polaron and the molecule exist
as well-defined quasiparticle excitations even across the transition, cf. Fig. 4.2(e-f ). As excited
states they can decay into their respective ground state, but as we will see, this decay is a very
slow process. The corresponding decay rates are calculated in Section 4.5 and indicate a true
level crossing of the polaronic and molecular state, which confirms the first order nature of
the polaron-to-molecule transition [59, 60].

As we will see in the following Sections, there is, however, a further excitation in the
system at positive energies: the repulsive polaron [cf. Fig. 4.2(g-h)]. The repulsive polaron
is a quasiparticle excitation which is highly unstable for 1/(kF a) → 0, but which becomes
a stable excitation in the limit kF a → 0. In this limit it is in fact the quasiparticle in the
system with unity weight Z → 1. This finding justifies perturbative methods for ultracold
atoms in the ‘weak coupling limit’ kF a→ 0+.5 The repulsive polaron has been studied by Cui
and Zhai [243] as well as by Massignan and Bruun [258] using a non-selfconsistent T-matrix
approximation. We will discuss the properties of the repulsive polaron and its relevance in
detail in Section 4.5 using fRG methods which go far beyond previous studies. In a sense the
polaron-to-molecule transition can be regarded as a modification of the two-body problem
due to medium effects [62], see Fig. 4.3. In this picture, one may regard the emergence of
the attractive and repulsive poloron branch as an effective level repulsion and splitting of the
original free atom threshold due to many-body effects.

The ground state of the polaron-to-molecule transition, cf. Fig. 4.2(a)-(d), has been exten-
sively studied theoretically [59, 60, 72, 231, 232, 233, 234, 235, 236, 237, 238, 239]. A quantity
of interest is for instance the energy E↓ of the polaron. In particular at unitarity, where the
scattering length a diverges and perturbation theory breaks down, the polaron problem pro-
vides an ideal benchmark for many-body methods. The polaron energy at unitarity has been
calculated in a state-of-the-art diagMC calculation and it is found to be E↓ =−0.615εF [59, 60]
whereas a standard MC approach yields E↓ =−0.59εF [232]. Furthermore the polaron energy
can be calculated from a simple variational wave function with a single particle-hole excita-
tion [231, 233]. The result E↓ =−0.607εF is in remarkable, and at first sight rather surprising,
agreement with the diagMC result. It can be shown, that this approach is equivalent to a
next-to-leading order 1/N expansion [107], non-selfconsistent T-matrix [233], and Nozierés-

5From an RG perspective the microscopic problem is strongly coupled in this limit as the microscopic attrac-
tion is largest here. The effective, infrared degrees of freedom, namely the molecule in the ground state and the
repulsive polaron in the excited state are, however, weakly coupled with the environment.
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continuum

b
ound state

FIGURE 4.3: The polaron problem may be regarded as the emergence of an effective two-level
system. Due to many-body physics the degenerate atom threshold at zero energy undergoes an
energy splitting and the interacting levels repel each other, as typical for a two-state system.
In this picture the molecule can be regarded as rather an additional spectator mediating the
interactions.

Schmitt-Rink [259] calculation. Combescot et al. systematically studied the influence of mul-
tiple particle-hole fluctuations and the result converges to the value E↓ = −0.616εF [234].
Experimentally, the group of Zwierlein at MIT measured the polaron energy at unitarity us-
ing radio-frequency spectroscopy and find E↓ = −0.59εF [240]. Similar, excellent agreement
has been found for various other ground state properties so that by now the ground state of
the polaron problem can be considered to be well understood.

4.3 RG flow equation and analysis in a simple derivative
expansion

Model and most general truncation

In the following Sections we closely follow our results as presented in [62]. We study a two-
component Fermi gas at T = 0 in the limit of extreme population imbalance. The system is
described by the microscopic, euclidean action

S =

∫

x,τ

n ∑

σ=↑,↓
ψ∗σ[∂τ −∆−µσ]ψσ + gψ∗↑ψ

∗
↓ψ↓ψ↑

o

, (4.4)

with imaginary time τ. The Grassmann-valued, fermionic fields ψ↑ and ψ↓ denote the ↑- and
↓-spin fermions, which have equal mass m. The associated chemical potentials µσ are adjusted
such that the ↑-fermions have a finite density n↑ = k3

F
/(6π2) while there is only a single im-

purity ↓-atom. The atoms interact via a contact interaction with coupling constant g which
is related to the s -wave scattering length a. The scattering T-matrix acquires a complicated
frequency and momentum dependence in the strong-coupling limit and the pairing is due to
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a pole in the particle-particle scattering channel. It is then convenient to perform a Hubbard-
Stratonovich transformation of the action (4.4) introducing a bosonic molecule (pairing) field
φ∼ψ↓ψ↑ which mediates the two-particle interaction ∼ gψ∗↑ψ

∗
↓ψ↓ψ↑. The resulting action is

given by

S =

∫

x,τ

n ∑

σ=↑,↓
ψ∗σ[∂τ −∆−µσ]ψσ +φ

∗G−1
φ,Λ
φ+ h(ψ∗↑ψ

∗
↓φ+ h .c .)

o

(4.5)

with a real Yukawa coupling h for the conversion of two fermions into a molecule. In Eqn. (4.4)
and (4.5) we suppress the dependence of the fields on the coordinate x and imaginary time τ.
Integrating out the bosonic field φ in the standard path integral shows that Eq. (4.5) is equiv-
alent to the single-channel model (4.4) provided that −h2Gφ,Λ = g . Within the two-channel
model, Gφ,Λ may include a momentum dependent, closed-channel contribution as discussed
in Chapters 2 and 3. In this case the model becomes equivalent to a single-channel model only
in the limit h→∞ [72, 260]. As we have seen in Chapter 2, the characteristic range r ∗ of the
Feshbach resonance is inversely proportional to the Yukawa coupling h2 ∼ 1/r ∗ such that this
limit corresponds to open-channel dominated Feshbach resonances [6, 62, 178].

Physical properties such as quasiparticle weights or energies can be accessed via Green’s
functions which are derivable from generating functionals. The one-particle irreducible vertex
functions Γ(n) are obtained from the effective quantum action Γ, which can, for instance, be
computed approximately in a loop expansion within perturbation theory. As we are interested
in the intrinsically non-perturbative regime of fermions close to a Feshbach resonance where
the scattering length a diverges we again employ the functional renormalization group where
the evolution of the effective average action Γk is given by the exact renormalization group
equation

∂kΓk =
1

2
STr






1

Γ
(2)
k
+Rk

∂k Rk




=

1

2
∂̃kSTrln[Γ(2)

k
+Rk], (4.6)

as introduced in Appendix C. Since we are working now with fermions the standard trace is
replaced by the supertrace STr which includes an additional minus sign when the sum is per-
formed over fermionic degrees of freedom. Γ(2)

k
is the full, field dependent inverse two-point

Green’s function at scale k, and Rk is a regulator taking care of the successive inclusion of mo-
mentum scales. Γk is in general a functional of the fields and contains all possible operators of
the fields allowed by the symmetries. For this reason its exact calculation is usually impossible
and one has to rely on approximations for Γk . Here let us first perform a vertex expansion of
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Γk of the form

Γk =

∫

p,ω

n

ψ∗↑[−iω+ p2−µ↑]ψ↑+ψ∗↓G
−1
↓,k (ω,p)ψ↓+φ

∗G−1
φ,k
(ω,p)φ

o

+

∫

P1,P2

hk(P1, P2)[ψ↑(P1)
∗ψ↓(P2)

∗φ(P1+ P2)+ h .c .]

+

∫

P1,P2,P3

λψ,k(P1, P2, P3)[ψ↑(P1)
∗ψ↓(P2)

∗ψ↓(P3)ψ↑(P1+ P2− P3)]

+
∑

σ=↑,↓

∫

P1,P2,P3

λφσ ,k(P1, P2, P3)[ψσ (P1)
∗φ(P2)

∗ψσ (P3)φ(P1+ P2− P3)]

+

∫

P1,...,P6

λ6,k(P1, . . . P5)δ(P1+ P2+ P3− P4− P5− P6)

×[ψ↑(P1)
∗ψ↑(P2)

∗ψ↓(P3)
∗ψ↓(P4)ψ↑(P5)ψ↑(P6)] (4.7)

with Matsubara frequency ω, and where we made explicit the dependence of the interaction
vertices on the various four-momenta Pi = (ωi ,pi ) of the in- and outgoing particles. In the
low-energy limit this truncation is complete, that is, all terms contributing to the exact so-
lution of the polaron problem have been included.6 This can be seen from the following
arguments: as there is only a single ↓-atom in the system there cannot be the formation of a
macroscopic BEC of molecules. Due to the absence of the corresponding finite occupation of
a macroscopic mode with finite expectation value ρ =

p

φ∗φ, there is no functional depen-
dence of the vertices Γ(n) on ρ. For the same reason, there are no anomaleous terms for the
fermionic propagators∼ψ↓ψ↑. Furthermore, the majority ↑-atoms are renormalized only by
the single impurity ↓-atom to order 1/N↑. Hence one can neglect the renormalization of the
↑-atoms in the thermodynamic limit, and the chemical potential µ↑ = εF = k2

F
/(2m) is that of

a free Fermi gas [59, 60].7 Because there is only a single ↓-atom, all terms contributing to the
polaron problem can only have at most a single ↓-atom involved, either directly or as a com-
ponent inside the composite field φ. For example, although terms ∼ (φ∗φ)n are generated
during the flow, they do not couple back to the operators containing only a single ↓-atom. Ac-
cordingly the only interaction terms which have to be kept are given by the third-sixth line in
Eq. (4.7). The four-fermion coupling λψ, the atom-dimer scattering term∼ λφσ describing the
scattering of a fermion of spin σ with a molecule, and the six-fermion scattering vertex ∼ λ6
vanish in the UV and are generated solely by quantum fluctuation. Note that in particular
the term ∼ λφ↓ can be ignored as it includes two ↓-fermions and thus does not belong to the
polaron problem.

In a sense, these arguments reflect, that the polaron problem may be viewed as in between
a few- and many-body problem, since similar arguments like in the Chapters on few-body

6We exclude the scale dependent pressure pk in this argument as it does not couple back to the other flow
equations.

7We work in units where the Fermi momentum kF = 1 so that εF = 1.
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physics can be applied. Furthermore, the most general momentum dependencies respecting
translational symmetry have been kept in Eq. (4.7) and assuming low-energy scattering, only
spin-antisymmetric terms in the four-fermion scattering have been included. Note that already
the problem of two polarons is much more involved as then a possible p-wave pairing between
the two minority atoms is possible [261, 262]. This effect would be reflected by a term ∼
(ψ∗↑ψ↑)

2, and many others, not present in Eq. (4.7).

Derivation of the flow equations

Since the vertices in Eq. (4.7) are momentum dependent, the couplings G↓, Gφ, h , λψ, and λφ↓
represent formally an infinite number of couplings. In order to derive their flow equations
Γ(2) has to be calculated,

Γ(2)[χ ](P,Q) =
δ2Γ[χ ]

δχ (Q)δχ (P )
, (4.8)

where χ denotes the ‘superfield’ χ = (ψ↑,ψ↓,ψ
∗
↑,ψ
∗
↓,φ,φ∗). The expression Γ(2)[χ ]+Rk may

then be separated into a field dependent partF and a field independent partP according to

Γ(2)[χ ]+Rk =P +F [χ ] =P (1+P −1F [χ ]). (4.9)

The logarithm or denominator in Eq. (4.6), respectively, can be expanded in terms ofP −1F [χ ].
Then the desired flow equations for Γ(n)

k
are derived by taking the suitable field derivatives.

For complicated expressions including their intricate momentum dependence this derivation
is done using a computer algorithm developed in [106].

In terms of diagrams, each field derivative corresponds to pulling out one external leg of
the full field-dependent propagator loop in Eq. (4.6). The resulting flow equations can be
diagramatically expressed as displayed in Fig. 4.4. Here, only a few representative diagrams
are shown and only those which contribute in the polaron problem. For example, a tadpole
diagram contributing to the molecule self-energy due to scattering off a virtual molecule is
zero as it is proportional to the boson occupation number nB which is zero in the polaron
problem. This holds as long as T = 0. For finite temperatures one obtains finite molecule and
↓-atoms occupations nB and n↓ due to the finite temperature.

The solution of the complete set of flow equation, depicted in Fig. 4.4, with fully mo-
mentum and frequency dependent vertices gives the exact solution of the polaron problem.
Finding the solution is, however, computationally impossible and we have to use a suitable
truncation of the effective average action Γk in Eq. (4.7).

Besides keeping the most relevant terms, which, since we are working in the strong cou-
pling regime, will be partially based on at least some physical intuition, one should obviously
also include the vertices corresponding to the observables one is interested in. In our case this
is the excitation spectrum of the polaron-to-molecule transition. It is determined by the ana-
lytical structure of the Green’s function of the impurity G↓ and molecule Gφ. Additionally,
the dominant contribution to the interaction between the ↑- and ↓-fermions comes from the
exchange of the molecule field φ. Based on this argument, we devise a truncation which takes
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...

...

...

FIGURE 4.4: Full set of Feynman diagrams contributing to the RG flow of the polaron problem.
Their calculation yields the exact solution of the polaron problem. The flow equation generating
the coupling λ6 is not shown.

into account the renormalization of G↓ and molecule Gφ while neglecting the couplings λψ,
λφ↑ and λ6. The effective average action then reads

Γk =

∫

p,ω

n

ψ∗↑[−iω+ p2−µ↑]ψ↑+ψ∗↓G
−1
↓,k (ω,p)ψ↓+φ

∗G−1
φ,k
(ω,p)φ

o

+

∫

x,τ
h(ψ∗↑ψ

∗
↓φ+ h .c .), (4.10)

where we keep the full frequency and momentum dependence of the Green’s functions G↓
and Gφ. Within the truncation (4.10) the Yukawa coupling h is not renormalized which
can be seen as follows: in Eq. (4.10) we neglect the term ψ∗↑ψ

∗
↓ψ↓ψ↑. This term, although

replaced at the UV scale with the boson exchange would be regenerated during the flow by
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particle-hole fluctuations, cf. Fig. 4.4 [214, 263].8 This does not imply, however, that our
truncation only includes particle-hole fluctuations in lowest order as in a Chevy- or in the T-
matrix approximation, see below. Contrarily, in our approach an infinite number of particle-
hole fluctuations is taken into account. Similarly to the term ∼ λψ, the term ∼ ψ∗↑φ

∗ψ↑φ for

the atom-dimer interaction has been omitted. Both terms, ∼ λψ and ∼ λφσ would lead to a
renormalization of h as can be seen by inspection of the flow equations shown in Fig. 4.4. Due
to their omission, however, there is no diagram generating a flow of h which is why

∂k h ≡ 0 (4.11)

and h remains independent of frequency and momentum.
In consequence, the only running couplings are the Green’s functions G↓ and Gφ which

are themselves functions of both frequency ω and momentum p. Their flow equations are
derived by standard means, taking the appropriate functional derivatives of Eq. (4.6) with
respect to the fields upon insertion of Eq. (4.10) into (4.6). One obtains

∂k P↓,k(P ) = h2∂̃k

∫

Q

Gc
φ,k(Q)G

c
↑,k(P +Q)

∂k Pφ,k(P ) =−h2∂̃k

∫

Q

Gc
↓,k(Q)G

c
↑,k(P −Q) (4.12)

with multi-indices P = (ω,p) and Q = (ν ,q). The functions Pk ≡G−1
k

on the left-hand side are
the flowing inverse propagators without the regulator from Eq. (4.10), while the propagators
Gc

k
on the right-hand side are regulated:

Gk ≡ 1/Pk Gc
k
≡ 1/(Pk +Rk). (4.13)

As usual, the tilde on ∂̃k indicates that the derivative with respect to the RG scale k acts only on
the regulator term Rk in the cutoff propagators Gc

k
: specifically, the single-scale propagators

read ∂̃kGc
k
= −(Gc

k
)2∂k Rk . This set of flow equations is depicted in Fig. 4.5 and it will be

investigated in the remainder of the chapter.
Previous diagrammatic approaches to the polaron problem used mainly a non-self-con-

sistent T-matrix approximation [233, 258]which is equivalent to the solution via a variational
wave function proposed by Chevy [231, 232, 236, 237, 239]. In such an approach the molecule
propagator (second diagram in Fig. 4.5) is renormalized only by the bare fermion propagators.
The resulting full T-matrix given by Gφ is then used to calculate the ↓-atom self-energy. Our
approach is fundamentally different and goes beyond the non-selfconsistent T-matrix approxi-
mation: the flow equations (4.12) have a one-loop structure but contain the full propagators at
scale k. By integrating the flow, diagrams of arbitrarily high loop-order are generated and con-
stantly fed back into each other. For this reason in the fRG approach also the full propagator of

8This type of particle-hole fluctuations are the ones responsible for the Gorkov-Melik-Barkhudarov correction
to BCS theory as described below Eq. (4.1).
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FIGURE 4.5: Diagrammatic representation of the fRG flow equations (4.12) for the impurity and
molecule propagators.

the ↓-atom (at scale k) appears in the renormalization of the molecule Green’s function unlike
in the non-selfconsistent T-matrix approximation [231, 232, 233, 237, 239, 258]. In this way
our approach is diagrammatically similar to a Ward-Luttinger approach [37, 58, 264, 255, 265]
where the diagrammatic series in Fig. 4.5 is solved self-consistently. While in this approach
all momentum and energy modes are integrated out in a single step, in the RG approach the
integration is performed stepwise

Derivative expansion

In order to get some insight in the ground state properties of the polaron-to-molecule tran-
sition – answering for instance the question whether and for which interaction strength this
transition takes place – we first devise a very simple, further truncation of Eq. (4.10), which
allows the derivation of the flow equations (4.12) in analytical form. In particular, we are in-
terested in the calculation of the ground state energy and quasiparticle weights. In order to
address these, it is sufficient to keep only a limited momentum and frequency dependence of
the Green’s functions G↓ and Gφ, namely those at low energies close to the ground state pole.
We may thus perform a derivative – also called gradient – expansion of Γk and expand the
propagators G−1

↓ (ω,p) and G−1
φ
(ω,p) in powers of momentum and frequency,

G−1
↓ (ω,p) = S↓[−iω+p2]+m2

↓ ,

G−1
φ
(ω,p) = Sφ[−iω+p2/2]+m2

φ, (4.14)

where the gap terms m2
↓ and m2

φ
are related to the flowing static self-energiesΣ↓,φ(0,0), e.g. m2

↓ =

−µ↓−Σ↓(0,0).
Note that we allow only for a common prefactor S↓,φ in front of frequency and momen-

tum. In the few-body problem this is valid as a consequence of Galilean symmetry [209]. This
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constraint does not hold, however, for finite density, e.g. an effective mass corresponds to a
different prefactor in front of p2. Note, that this does not imply a breaking of Galilean invari-
ance which still holds at finite density and it is guaranteed by a relation of the effective mass
to the four-fermion vertex (see, for instance, Eq. (19.2) in [2]). Being interested only in the
ground state energy and quasiparticle weight, and for the sake of simplicity we use the simpler
approximation (4.14). In Section 4.4 this constraint will be completely relaxed.

The quasiparticle weights Z↓,φ are given by

Z↓,φ = 1/[∂ω P↓,φ(ω,p= 0)]
�
�
�
ω=ω∗

= 1/S↓,φ (4.15)

where the frequency derivative is evaluated at the respective ground state poleω∗. Note again,
that the majority fermions are not renormalized, S↑ = 1 and µ↑ = ǫF .

So far we did not specify the regulator terms R↓ and Rφ in Eq. (4.13). We choose sharp
cutoff functions Rk which allow to write the regulated Green’s functions Gc

k
in the particularly

simple, multiplicative form (for unoccupied ↓-atoms)

Gc
↓,k(ω,p) =

θ(|p | − k)

P↓,k (ω,p)
,

Gc
φ,k(ω,p) =

θ(|p | − k)

Pφ,k(ω,p)
,

Gc
↑,k(ω,p) =

θ(|p2−µ↑| − k2)

P↑,k(ω,p)
. (4.16)

This corresponds to a (additive) regulator of the form

R↓,k(p) = P↓,k(ω,p)

�

1−
1

θ(|p | − k)

�

(4.17)

Rφ,k(p) = Pφ,k(ω,p)

�

1−
1

θ(|p | − k)

�

(4.18)

R↑,k(p) = P↑,k(ω,p)




1−

1

θ(|p2−µ↑| − k2)




 . (4.19)

A few comments are in order: the regulators (4.17)-(4.19) are solely momentum and not fre-
quency dependent. This implies directly that they break Galilean invariance as boosts in mo-
mentum are intimately connected to shifts in energy. At first sight this seems to be a severe
violation because symmetries should not be destroyed by the choice of regulator.9 In the
present case, however, the few-body problem, where Galilean invariance holds exactly, can be

9This problem of breaking of Galilean symmetry appear also, although subtly hidden, in other theoretical
approaches to the cold atoms [266, 267].
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solved exactly as demonstrated in Chapter 2. Being the exact solution, the IR result of the RG
flow becomes necessarily regulator independent and thus Galilean symmetry, although arti-
ficially broken during the flow, finally gets restored at the end of the renormalization group
flow. Since Galilean invariance of the propagators would be broken anyway by the finite den-
sity on the quantum level (k = 0), we assume that the contribution to the symmetry breaking
induced by the regulator, keeping in mind the exactness of the few-body flow, is subleading.

Furthermore, were we to take a Galilean invariant regulator with a momentum and fre-
quency dependence10 we would face a new problem. The resulting frequency dependence
could give new, artificial poles in the complex frequency plane of the regulated Green’s func-
tions Gc . This in turn would entail a severe breaking of the vacuum hierarchy. As the vacuum
hierarchy lies at the heart of the solution of the few-body problem, such a violation is not ac-
ceptable. There is, however, a quite simple choice of regulator which keeps Galilei invariance:
the mass-like k2-regulator. We solved the polaron problem also for this regulator and we find
that the artificial breaking of Galilean symmetry does indeed not have an important impact
on the results.

For the ↓- atoms and molecules the sharp regulators (4.17)-(4.19) strictly exclude low mo-
mentum modes with |p| < k which implements the Wilsonian RG idea of shell-wise integra-
tion of momentum modes. The majority fermions have a finite density and thus their pole is
not at zero momentum but at momenta p on the Fermi surface. These low energy modes have
to be integrated out at the end of the flow which is why the ↑-atom regulator has the modified
form (4.19). Note, that the correct pole structure is automatically kept due to the propagator
P↑ appearing in the prefactor of R↑. For example, if one uses a masslike, additive k2 regulator
one has to carefully implement the correct pole structure by using the sign function inside the
regulator of the ↑-fermions, R↑,k = sign(p2−µ↑)k2.

Having specified the regulators the flow equation for the running couplings S↓,φ, m2
↓,φ can

be obtained in a straightforward manner. The frequency as well as momentum integration can
be performed analytically and one obtains

∂k S↓ =−
2h2k

π2Sφ
θ(µ↑− 2k2)

h

q

µ↑− k2

(k2+µ↑+ 2m2
φ
/Sφ)

2
+

k

(−k2+ 2µ↑+ 2m2
φ
/Sφ)

2

i

, (4.20)

∂k m2
↓ =

h2k

π2Sφ
θ(µ↑− 2k2)

h

q

µ↑− k2

k2+µ↑+ 2m2
φ
/Sφ
+

k

−k2+ 2µ↑+ 2m2
φ
/Sφ

i

, (4.21)

10It is desirable to have a momentum dependent regulator in order to keep the flow maximally local in theory
(momentum) space [172].
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∂k Sφ = −
h2k

2π2S↓

q

µ↑+ k2

(2k2+µ↑+m2
↓/S↓)

2
, (4.22)

∂k m2
φ
=

h2k

2π2S↓

q

µ↑+ k2

(2k2+µ↑+m2
↓/S↓)

. (4.23)

In the derivation the step functions appear due to the pole structure in the zero-temperature
frequency integration.

The RG flow equation (4.6) is a (functional) differential equation and the resulting system
of coupled differential equations (4.20)-(4.23) has to be supplemented with appropriate initial
conditions at the ultraviolet scale k = Λ. In the UV, physics does not resolve large distances.
To be more precise, if we choose Λ to be on the order of a few thousand Fermi wave vectors
Λ∼ O (103kF ) then the system is completely insensitive to the scale set by the density. For this
reason the initial condition is dictated by few-body physics.11

As already discussed in Chapter 2, the s -wave vacuum scattering amplitude for the inter-
action of an ↑- and ↓-fermion with momenta q, −q in the center-of-mass frame is given by
(q = |q|)

f (q) =
1

−1/a− i q
. (4.24)

f (q) is related to the full, retarded molecule propagator Gvac
φ,R

evaluated at the infrared RG

scale k = 0,

f (q) =
h2

8π
Gvac
φ,R(ω = 2q2,p= 0), (4.25)

where ω = 2q2 is the total kinetic energy of the interacting atoms. The subscript R indicates
that the analytical continuation to the retarded function of real frequencies (iω → ω + i0)
has been performed. As calculated from the fRG in Chapter 2 the exact vacuum molecule
propagator Gvac

φ,R
in the limit of microscopic contact interactions has the form

[Gvac
φ,R(ω,p)]−1 =

h2

8π




−a−1+

s

−
ω

2
+

p2

4
− i0




 . (4.26)

This expression for Gvac
φ,R

reproduces the correct scattering amplitude (4.24) when inserted into

Eq. (4.25), and dictates the form of the UV propagator G−1
φ,Λ

for a given choice of regulator.

In particular, the square root appearing in Eq. (4.26) is responsible for the term i q in the
scattering amplitude (4.24). As we do not account for the square root structure of the molecule
propagator using the simple derivative expansion (4.14), this term cannot be recovered in this
approximation. We therefore focus on the correct calculation of the scattering length a at zero

11In fact, as we will see below, the RG flow will only deviate from its few-body trajectory in theory space when
k becomes of the order of kF . Only at this scale the particles ‘become aware’ of the many-body environment.
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momentum. In order to do so, we have to solve the flow equation ∂k m2
φ

in the vacuum limit,

where neither the ↑- nor the ↓-atoms are renormalized and µ↓ =µ↑ = 0. Then the flow of the
molecule gap can be integrated analytically and we obtain

(mvac
φ,k=0)

2 = m2
φ,Λ−

h2Λ

4π2
. (4.27)

In order to reproduce the correct (infrared) scattering length a the molecule gap has to ful-
fill the infrared condition (mvac

φ,k=0
)2 = −h2/(8πa). This leads to the UV condition for the

molecule gap,

m2
φ,Λ =

h2

8π
(2Λ/π− a−1), (4.28)

which incorporates the correct regularization of the UV divergence ∼ Λ in Eq. (4.27). At the
UV scale the momentum and frequency dependence of Pφ,Λ can be neglected due to the large
bosonic gap m2

φ,Λ
, and we set Sφ,Λ = 1.

For finite density the initial condition for the fermions is given by their form in the mi-
croscopic action (4.5), G−1

σ ,k=Λ
(ω,p) = −iω + p2−µσ . This corresponds to initial values

m2
σ ,Λ = −µσ and Sσ ,Λ = 1. After having specified the initial conditions we can solve the

system of differential equations (4.20) numerically.
But how to extract the ground state energy and how to determine where the polaron-to-

molecule transition takes place? In order to answer this, we note that the chemical potential
µ↓ is the energy required to add one ↓-atom to the system [3],

µ↓ = E (N↓)− E (N↓− 1). (4.29)

The chemical potential µ↓, as a Legendre parameter, is independent of the cutoff scale k and
the interaction effects on the ↓-fermion, which are successively included during the flow, are
captured by the k-dependent wave function renormalization S↓ and static selfenergy Σ↓(0,0).
In the polaron problem we are interested in a two-component Fermi gas in the limit of extreme
population imbalance where one considers only a single ↓-atom, N↓ = 1, and the relation (4.29)
can be used to determine the ground-state energy of the system. On the other hand µ↓ adjusts
the density of ↓-atoms and thus its value marks the phase transition from a degenerate, fully
polarized ↑-Fermi gas to a phase of finite ↓-fermion density [236], which is just the critical line
given by hs discussed in Section 4.1. Accordingly, for all choices of µ′↓ ≤ µ↓ there has to be

a vanishing occupation of both ↓-fermions and molecules at every RG scale k, which leads to
the condition

P↓,k(0,0,µ′↓)≥ 0, Pφ,k(0,0,µ′↓)≥ 0 ∀µ′↓ ≤µ↓. (4.30)

In order to have only a single ↓-atom or molecule, µ↓ has to be determined self-consistently
such that either the ↓-atom or the molecule φ is gapless in the infrared, P↓/φ,k=0(0,0) = 0
(ground state), see also Table 4.1.
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coupling (kF a)−1 < (kF ac )
−1 (kF a)−1 > (kF ac )

−1

ground state polaron molecule
↓ gap P↓(0,0) = m2

↓ = 0 P↓(0,0) = m2
↓ > 0

φ gap Pφ(0,0) = m2
φ
> 0 Pφ(0,0) = m2

φ
= 0

TABLE 4.1: Conditions for the polaron and molecule ground states. The polaron-to-molecule
transition occurs at the critical interaction strength (kF ac )

−1 at which m2
φ
= m2
↓ = 0.

We indeed find that depending on the value of the dimensionless coupling (kF a)−1, either
the polaron or the molecule becomes the ground state. The polaron-to-molecule transition
occurs at the critical interaction strength (kF ac )

−1 at which m2
φ
= m2
↓ = 0.
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FIGURE 4.6: (a) Ground state energy spectrum of the Fermi polaron problem from a derivative
expansion. The attractive polaron (solid) is the ground state for ϑ < ϑc . In this regime the
molecule (dot-dashed) is an excited state. For ϑ > ϑc the molecule (dashed) becomes the ground
state while the polaron exists as an excited state (dotted). (b) Same as (a) with the universal
dimer binding energy substracted.

In Fig. 4.6(a) we show the ground state energy spectrum for a broad Feshbach resonance
of width r ∗kF = 0.005 as function of ϑ within the derivative expansion (4.14), using the sharp
regulators (4.17)-(4.19). Indeed, the ground state switches from being an attractive polaron to
a molecule at a critical interaction strength ϑc = 0.972. In order to make this transition more
visible it is convenient to substract the two-body binding energy εB = −2/a2, cf. Fig. 4.6(b).
Only a single εB has to be subtracted since at most only a single molecule can be formed
in the system. The value ϑc = 0.972 compares quantitatively well with the diagMC result
ϑc = 0.90(2) [59, 60]. Comparing energies of different variational wave functions for the
molecule and the polaron one obtains ϑc = 0.84 [236, 237]. Considering the simplicity of our
approximation the agreement is quite remarkable.
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A further benchmark is the energy of the polaron at unitarity, a → ∞. Here, we find
µ↓/εF = −0.534 which has to be compared with µ↓/εF = −0.615 (diagMC [59, 60]), −0.59
(MC [232]),−0.607 (Chevy’s variational ansatz [231], T-matrix [233, 268]),−0.6158 (multiple
particle/hole excitations [234]), and −0.59 from experiment [240].
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FIGURE 4.7: (a) Spectral weight of the polaron as function of the dimensionless interaction strength
ϑ. The non-analyticity at the transition is an artifact of the truncation. (b) Spectral weight of
the molecule across the polaron-to-molecule transition. The molecule’s small weight is due to
its high degree of compositeness as discussed in Section 4.5.

We also calculated the quasiparticle weights of the attractive polaron and the molecule as
shown in Fig. 4.7. The attractive polaron has a weight Z↓ close to unity for small attraction
and looses weight as the interaction is increased towards the transition. Already at this point
we may rise the question: where is the spectral weight lost to? This question is often simply
ignored in studies in the context of critical phenomena where one is solely interested in the
low-energy degrees of freedom. However, it is an important physical question, as we know
that the spectral function of a particleA , given by

A↓/φ(ω,p) = 2ImG↓/φ,R(ω,p) (4.31)

has to obey the sum rule
∫

dω

2π
A (ω,p) = 1, (4.32)

no matter the interactions involved. Obviously, this sum rule is broken in the derivative
approximation where the spectral function for the impurity reads

A↓(ω,p) = 2πZ↓δ(ω−p2+
µ↓+Σ↓

S↓
). (4.33)

The question of loss of spectral weight is also closely related to a further drawback of the
simple derivative expansion which concerns the excited states in the system. We will see in the
following that indeed a new well-defined quasiparticle appears in the spectrum which corre-
sponds to a polaron excitation interacting repulsively with the majority atoms. This state will



4.3. RG FLOW EQUATION AND ANALYSIS IN A SIMPLE DERIVATIVE EXPANSION 107

be the one absorbing most of the spectral weight lost in Eq. (4.33). Furthermore we will also
see that the attractive polaron as well as the molecule exist as excited states above their respec-
tive ground state across the transition at ϑc . This is indicated by the dotted (dashed-dotted)
lines for the polaron (molecule) in Fig. 4.6. These lines have, however, to be considered with
care, because it is not straightforward to extract these energies within a derivative expansion.

To understand this difficulty, we recall that a quasiparticle excitation is given by the poles
of the retarded Green’s function GR(ω,p). Near each quasiparticle pole the retarded propaga-
tor can be approximated by a pole expansion of the form

GR(ω,p)≈
Z

ωqp−ω− i0
=

Z

Eqp(p)−ω− iΓqp
(4.34)

where Z is the quasiparticle weight, Γq p its decay width, and Eqp(p) its dispersion so thatωqp

is a complex number. Let us concentrate on the excited polaron state.12 The Green’s function
of the polaron is given by Eq. (4.14) which is easily continued to real frequencies and yields the
spectral function in Eq. (4.33). In this expression, we have no freedom to adjust the chemical
potential µ↓. As described above, it has to be chosen such that there is no finite occupation of
polarons. For ϑ < ϑc , where the polaron is the ground state the condition m2

↓ = 0 gives the

spectral functionA↓(ω,p) = 2πZ↓δ(ω− p2) while for ϑ > ϑc , the gap m2
↓ is finite and the

spectral function reads
A↓(ω,p) = 2πZ↓δ(ω−p2−m2

↓/S↓), (4.35)

since the quasiparticle pole is located at the real finite frequency ωqp = m2
↓ . Here we see an-

other drawback of the derivative expansion: it does not account for the finite lifetime expected
for an excited state. In order to extract the energies shown in Fig. 4.6 we used the identification
ωqp = m2

↓/S↓. But this is obviously not the correct value. Within the derivative expansion we

assume, up to the wave function renormalization Z , a frequency independent self-energy Σ↓.
It is extracted from the flow by the projection onto the gap m2

↓ ,

∂t m2
↓ = ∂t P↓(ω,p)

�
�
�
ω=0,p=0

, (4.36)

evaluated at zero frequency. In general the self-energy Σ is, however, frequency dependent and
to extract the correct quasiparticle energy ωqp we need the self-energy to be evaluated not at
zero frequency but at the quasiparticle pole, after continuation to real frequencies. This leads
to a complicated implicit equation which is impossible to solve in a straightforward manner.
In other words, for excited states we expand around the wrong expansion point of the Taylor
expansion in frequency and only for the ground state we perform the correct projection to
extract the quasiparticle energy because here the correct expansion point is indeedω = 0. For
this reason the data in Fig. 4.6 has to be at most understood as a qualitative estimate of the exact
quasiparticle energies. The same reasoning applies to the quasiparticle weights of the excited

12The reasoning is analogous for the molecule.
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states shown in Fig. 4.7. The quasiparticle weight is evaluated from Eq. (4.35) which is again
obtained from a projection at ω = 0 and not at the true quasiparticle pole. This is the reason
for the non-analyticity in Z↓ visible at ϑc which is an artifact of the derivative expansion.

In conclusion, we see that a derivative expansion is a very simple approximation which
yields reasonable results when ground state properties are concerned. For non-universal quan-
tities and dynamical properties it is, however, not sufficient. In the following we derive a new
numerical fRG method which copes correctly with the various drawbacks indicated above and
which allows us to extract the full quasiparticle spectrum of the polaron problem.

4.4 RG for full spectral functions

The main goal of this Chapter is to solve the system of flow equations (4.12) without imposing
any constraints on the frequency and momentum dependence of the polaron and molecule
propagators G↓/φ,k(ω,p). This formally corresponds to the evaluation of the flow of infinitely
many coupling constants which is impossible analytically and one has to resort to a numerical
solution. In order to do so, the inverse, flowing Green’s functions P↓/φ,k(ω,p) are evaluated
on a discrete grid in frequency and momentum space,

P↓,k(ω,p)→ P↓,k(ωi , p j ) = P
i j

↓,k

Pφ,k(ω,p)→ Pφ,k(ωi , p j ) = P
i j

φ,k
. (4.37)

The propagator of the majority atoms is not renormalized and it is kept in its analytical form.
For P↓/φ,k(ω,p) we choose a logarithmically spaced, finite grid with ωi ∈ (0, . . . ,ωmax) and
p j ∈ (0, . . . , pmax). As a result of rotational invariance the propagators depend only on the
magnitude of spatial momentum p = |p |, and due to the condition P ∗(ω) = P (−ω) for
Euclidean (Matsubara) propagators it is sufficient to consider positive frequencies only [2].
Later we will perform the analytical continuation to real frequencies. Therefore it is necessary
to resolve the structure of the propagators well for small frequencies and momenta where most
of the interesting physics takes place. For this reason we choose to sample the propagators in
two regions separately with different grid resolutions. In Fig. 4.8(a) we show a typical grid on
a logarithmic scale as well as on a linear scale in Fig. 4.8(b). In both, the small (ω, p) (green
area) and the high (ω, p) regions (blue area) we choose to sample the same number of nodes.
In the polaron case, we find that this sampling is the best compromise between efficiency and
accuracy.

During the RG flow we keep then only track of the finite number of couplings P
i j

↓/φ,k

which are complex numbers. From these the full (ω, p) dependence of the inverse propagators
is reconstructed by cubic spline interpolation,

P↓/φ,k (ω, p) = Spline({P i j

↓/φ,k
})

=
3∑

ξ ,ϑ=0

c
i j ,ξ ϑ
↓/φ,k

(ω−ωi )
ξ (p − p j )

ϑ , (4.38)
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(a) (b)

FIGURE 4.8: Illustration of the frequency and momentum grid (red dots) chosen for the numer-
ical representation of the inverse propagators P↓,φ on a logarithmic scale (a) and linear scale

(b). Two different regions are employed with a higher resolution in the low frequency and mo-
mentum regime (green area). The additional outer points are used for the fit of the asymptotic
behavior of the Green’s functions.

with ω ∈ (ωi ,ωi+1), p ∈ (p j , p j+1) and c
i j ,ξ ϑ
↓/φ,k

the corresponding spline coefficients. The

grid only extends up to frequencies ωmax and momenta pmax. For the asymptotics of the
propagators for high frequency and momentum modes we rely on the property that these
modes are practically not renormalized. Their form can then be approximated by simple fit
models forω>ωmax and/or p > pmax, and we choose

P>↓,k(ω,p) =−iω+ p2−µ↓ (4.39)

P>
φ,k
(ω,p) =

h2

8π




−a−1+

s

−
iω

2
+

p2

4
+ fφ,k




 ,

with fφ,k determined by a continuity condition from the numerical value of Pφ,k for the largest
momenta |p |= pmax. We find that this procedure yields the desired numerical accuracy which
is higher than the accuracy of the numerical differential equation solver employed later on.

In the grids shown in Fig. 4.8, we chose ωmax = 100εF and pmax = 100kF . Note that there
are additional grid points visible at even higher frequency and momenta which are situated
in rather close vicinity of ωmax and pmax. We also track these additional points which are
necessary for two reasons. First, they are used to determine the coefficients in our fit models
for high frequency and momenta. More important is, however, that they guarantee a higher
numerical stability of the spline interpolation. This can be seen by considering the inverse, in-
frared dimer propagator in vacuum, shown in Fig. 4.9. At high frequencies the propagator has
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(a) (b)

FIGURE 4.9: Infrared solution of the flow of the inverse dimer propagator Pφ(ω,p) in vacuum.

(a) Real part of Pφ(ω,p). (b) Imaginary part of Pφ(ω,p).

a fairly simple structure and the two narrowly spaced, high frequency grid points prevent the
cubic spline algorithm to overshoot between the quite distant sampling points at intermediate
scales. At each RG step the flow equations have to be evaluated with the interpolated Green’s
functions (4.38) as input.

In order to keep the numerical cost of computing the flow equations (4.12) low it is advan-
tageous to employ the sharp momentum regulator functions R↓,k , R↑,k , and Rφ,k defined by
Eq. (4.16). This reduces the number of loop integrations by one. The flow equations evaluated
by our algorithm are then given by

∂k P↓,k(ω,p) =−
h2

(2π)3

∫ 1

−1
d x

∫ ∞

−∞
dν
∫ ∞

0
q2 d q

×
χ+

k
(p , q , x)

Pφ,k (ν ,q)P↑,k (ω+ ν ,p+q)

∂k Pφ,k(ω,p) =
h2

(2π)3

∫ 1

−1
d x

∫ ∞

−∞
dν
∫ ∞

0
q2 d q

×
χ−

k
(p , q , x)

P↓,k (ν ,q)P↑,k (ω− ν ,p−q)
(4.40)

where we have defined the characteristic functions

χ±
k
(p , q , x) = δ(q − k)θ(|(p±q)2−µ↑| − k2)

+ 2k θ(q − k)δ(|(p±q)2−µ↑| − k2) (4.41)

and x = cosθ expresses the angle θ between the momentum vectors p and q such that |p±q|2 =
p2+ q2± 2 pq x .

The q integration can be performed analytically and results in the evaluation of the δ-
distributions and thus a replacement of q in Eq. (4.40). Note, that the stepfunctions θ depend
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on the angular variable x and evaluate to zero depending on the value of x . It is advantageous
to evaluate their argument in analytical form to keep the numerical cost of the following x -
integration as low as possible. Finally one ends up with expressions for the flow equations of
the schematic form

∂k P↓/φ,k(ωi , p j ) =
∑

α

∫ 1

−1
d x

∫ ∞

−∞
dν

×
fα(ωi , p j , x , ν , k , h ,µ↑)

P↓/φ,k(ν , q (α)↓/φ(p j , x))P↑,k (ω± ν , q (α)↑ (p j , x))
(4.42)

where the sum over the index α comprises the various contributions from the evaluation of
the δ-distributions in Eq. (4.40). The function fα(ωi , p j , x , ν , k , h ,µ↑) contains the checks of
the step functions as mentioned above and the q↓/φ/↑ denote the magnitude of momenta for
which the propagators appearing in the loop have to be evaluated.

In the numerical algorithm a number of aboutO (103−104) couplings is necessary to reach
the desired numerical accuracy. We find that the numerical cost of a direct computation of the
frequency integration is much too large so that we need a different approach to cope with
this. As a way out, we find that the computational speed can be greatly enhanced by mapping
the numerical integration onto an analytical integration using the spline polynomials in the
interval (−ωmax,ωmax). In order to do this we are forced to perform the frequency integration
before the angular x -integration. As mentioned above, ωmax is chosen such that the error in
the ω integration of the outer regime ω > ωmax introduced due to the approximation (4.39)
is smaller than the accuracy of the numerical solution of the system of differential equations
(4.12). Since the analytical form of P↑ is known the frequency ν -integration can be greatly
simplified. It requires then only the evaluation of a sum of terms of the form

∼
∫ ωi+1

ωi

dω
1

a+ bω+ cω2+ dω3

1

e + f ω
(4.43)

which can be done analytically. The computation involves the finding of roots ωn of cubic
polynomials which is not only numerically stable but also fast. For the final angular inte-
gration in x = cosθ on the right-hand side of the flow equation (4.42) we use a numerical
integration with adaptive nodes in order to cope with discontinuities of the integrand.

At this stage, let us summarize the algorithm which is executed at each RG step at scale k:

• Input: P i j

φ,↓ at scale k.

For each externalωi , p j , do

1. Evaluate the q -integration in Eq. (4.40) by appropriate replacements of q

2. Perform numerical angular x integration with adaptive stepsize by evaluating

a) Compute the complex coefficients a− f in Eq. (4.43) for eachωi -interval
b) Perform the (inner) ω-frequency integration from−ωmax toωmax
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c) Perform the (outer) frequency integrations (−∞,−ωmax) and (ωmax,∞)
3. Check precision of x -integration.

• Output: ∂k P i j

φ,↓ at scale k.

The system of ordinary differential equations for P
i j

φ,↓ is straightforwardly solved using a

Runge-Kutta algorithm, which we have implemented in a version with adaptive stepsize in
RG time t = ln(k/Λ). An adaptive stepsize is essential in order to detect the kinks in the RG
flow of the ↓-propagator due to the sharp Fermi surface of the ↑-fermions at zero temperature.
The values k where these kinks appear are dependent on the external momenta p j . They
appear due to the sharp regulator as well as the pole structure of the integrand of ∂k P↓ in the
complex frequency plane. For example for zero external momentum, the flow of ∂k P↓ remains

identically zero down to the scale k/kF = 1/
p

2. If fact, until the scale k = kF is reached only
the molecule flows and thus Pφ,k at this scale is equivalent to the result of a leading order 1/N

expansion in presence of a sharp infrared regulator for modes p > k. Finally, we observe that
about 104 adaptive RG steps are necessary to obtain an error smaller than ε∼ 10−5.

The algorithm is started at the UV scale k = Λ, where the initial condition is specified.
It is determined by the few-body calculation (4.26). As we employ no approximation for the
momentum and frequency dependence of the molecule propagator we are able to incorporate
the exact two-body scattering amplitude (4.24). This is in contrast to the calculation in the
previous Section using the derivative expansion where this is not possible. The vacuum prob-
lem can be solved exactly using the sharp regulators (4.16), which leads to the UV molecule
propagator

Pφ,Λ(ω,p) = −
h2

8πa
+

h2Λ

4π2
−

h2

2

∫

q






θ(|q− p
2 | −Λ)θ(|q+

p
2 | −Λ)

q2+
�− iω

2 +
p2

4 −µvac
�
−
θ(q −Λ)

q2




 , (4.44)

which is evaluated numerically at the beginning of the RG flow.
In Figs. 4.10 and 4.11 we show an exemplary flow of the molecular, inverse propagator

from the UV scale to the IR scale at k = 0. One observes that the inverse euclidean propaga-
tors are perfectly smooth in frequency and momentum which is essential for the applicability
of our spline algorithm. The drawback of working in the imaginary frequency domain is,
however, that we have to perform the numerical continuation to real frequencies at the end of
the flow.

The flow of the dimer in Fig. 4.10 nicely illustrates some basic properties of the RG flow.
At the UV scale one starts with the classical action (the bare Hamiltonian) where we deal
with a short-range interaction. As we see from Fig. 4.10(a), the dimer propagator is flat in
momentum space which reflects that one deals with a contact interaction. Indeed, were we
to integrate out the dimer field φ in Eq. (4.5) we would find that the resulting term (Ψ†Ψ)2

is proportional to h2/Pφ,Λ which becomes momentum independent as Λ→∞ (and thus the
effective range goes to zero). Note, within a derivative expansion one only follows the flow of
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(a)

(f)

(e)

(d)

(c)

(b)

FIGURE 4.10: Renormalization group flow of the real part of the euclidean, inverse molecule
propagator Pφ(ω,p) with RG scale k (blue surface) for unitary interactions. The red dots are

the actual data computed with our new renormalization group algorithm. In green the exact
infrared vacuum solution is shown. Note the different scale in the z-axis for the various figures.
In red the result of the derivative expansion in the infrared is shown.
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(a)

(f)

(e)

(d)

(c)

(b)

FIGURE 4.11: Renormalization group flow of the imaginary part of the euclidean, inverse
molecule propagator Pφ(ω,p) with RG scale k (blue surface) for unitary interactions. The red

dots are the actual data computed with our new renormalization group algorithm. In green
the exact infrared vacuum solution is shown. In red the result of the derivative expansion in
the infrared is shown.
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(a)

(f)

(e)

(d)

(c)

(b)

FIGURE 4.12: Renormalization group flow of the real part of the self-energy Σ↓(ω,p) of the

euclidean, inverse impurity propagator P↓(ω,p) with RG scale k (blue surface) for unitary

interactions. The red dots are the actual data computed with our new renormalization group
algorithm.
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(a)

(f)

(e)

(d)

(c)

(b)

FIGURE 4.13: Renormalization group flow of the imaginary part of the self-energy Σ↓(ω,p) of

the euclidean, inverse impurity propagator P↓(ω,p) with RG scale k (blue surface) for unitary

interactions. The red dots are the actual data computed with our new renormalization group
algorithm.
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FIGURE 4.14: Renormalization group flow of the spectral function of the impurity A↓(ω,p) with

RG scale k from the UV (upper left) to the IR (down left) for unitary interactions. When the
flow ‘hits’ the scale kF spectral weight is transferred from the lower, attractive polaron branch to
the upper, repulsive polaron branch. High momentum modes are renormalized first. In order
to make the δ -function peak for the ground state visible we introduced an artificial width of
the quasiparticles of 0.03εF .
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two couplings instead of the O (103) couplings employed here. Going to this complexity allows
us to resolve the square root structure in Eq. (4.26), which is impossible within a derivative
expansion. In Fig. 4.10(f) we also show the molecule propagator resulting from the derivative
expansion where we subtracted an overall constant to allow for direct comparison. While it fits
well in the low-energy region – as it should – it becomes completely wrong for high frequencies.
In fact, at high frequencies one finds again the consequence of the anomaleous dimension of
unity found in Chapter 2: the square root will always prevail at scales |ω|,p2≫ kF .

In Figs. 4.12 and 4.13 we show the flow of the impurity self-energy. Note that it does not
flow until the RG scale k/kF = 1 is reached. Finally, when the flow reaches the infrared, k = 0,
we end up with the full Matsubara Green’s functions G↓,k=0(ω, p) and Gφ,k=0(ω, p). The
initial value of µ↓ for a given kF a is adjusted such that a vanishing macroscopic occupation of
↓-atoms and molecules is obtained at the end of the flow, as discussed in Section 4.3. In order to
access the spectral functions we perform the analytical continuation to real frequencies using
a Padé approximation.

4.5 Full spectral functions

We now present the numerical results for the spectral functions of the polaron and molecule
across the whole transition region. To clarify our notation we also recall the conventions of
the definition of spectral properties which we will use in the following.

At the end of the RG flow, the Matsubara Green’s functions G↓/φ,k=0(ω,p), are contin-
ued analytically to retarded Green’s functions G↓/φ,R(ω,p) of real frequency, using the Padé
approximation. The spectral functions are defined as

A↓/φ(ω,p) = 2 ImG↓/φ,R(ω,p). (4.45)

As an example the spectral function A↓(ω,p) of the impurity at unitary is shown in Fig. 4.15.
The coherent single-particle excitations at zero momentum are determined by the solu-

tions ωqp of the equation

G−1
↓/φ,R

(ω,p= 0)
�
�
�
ω=ωqp

= 0 (4.46)

for ω in the complex lower half-plane and we show the zero-momentum spectral functions
A↓/φ(ω,p = 0) as functions of frequency and coupling (kF a)−1 in Fig. 4.16. Near each quasi-
particle pole the retarded propagator can be approximated by the form

G↓/φ,R(ω,p= 0)≈
Z↓/φ

ωqp−ω− i0
(4.47)

where the real part ofωqp determines the quasiparticle energy

Eqp =µ↓+Re[ωqp]. (4.48)
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FIGURE 4.15: Full momentum and frequency dependence of the polaron spectral function A↓(ω,p)
at unitarity (kF a)−1 = 0. In order to make the δ -function peak for the ground state visible we
introduced an artificial width of the quasiparticles of 0.007εF .

We have shifted the ground-state energy, which is zero in our calculation (vanishing gap), to
the conventional value µ↓ from Eq. (4.29). The imaginary part of the poleωqp determines the
decay width

Γqp =−Im[ωqp]. (4.49)

A Fourier transform in time relates the decay width to the quasiparticle lifetime

τqp = ħh/Γqp. (4.50)

The quasiparticle weight Z↓/φ is obtained from the frequency slope at the complex pole posi-
tion,

Z−1
↓/φ =−

∂

∂ ω
G−1
↓/φ,R

(ω,p= 0)
�
�
�
ω=ωqp

. (4.51)

Note that an alternative definition of the decay width, often used in literature, see e.g. [258],
has to be treated with care. It is defined in terms of the self-energy evaluated not at the complex
pole position but on the real frequency axis,

Γalt = ImΣ↓/φ,R(ω,p= 0)
�
�
�
ω=Re[ωqp]

, (4.52)

and agrees with our definition for Γqp only for a single quasiparticle pole (4.47) with Z = 1.
This is however not the generic case as demonstrated in the polaron problem where further
excited states are present and Z < 1. Hence, only Γqp from Eq. (4.49) can be interpreted as the
half-width of the peaks in the spectral function and as the inverse lifetime.
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(a)
(b)

(c)

(d)

FIGURE 4.16: Spectral functions at zero momentum in dependence on 1/(kF a). (a), (b): Polaron
spectral function A↓(ω,p = 0). (c), (d): Molecule spectral functions Aφ(ω,p = 0). In order to

make the δ -function peak for the ground state visible we introduced an artificial width of the
quasiparticles of 0.007εF .

We will now in turn discuss the features seen in the spectral functions: the peak position
(Eqp), width (Γqp) and weight (Z), first for the polaron (upper row of Fig. 4.16) and then for
the molecule (lower row of Fig. 4.16).
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FIGURE 4.17: (a) Energy spectrum of the single-particle excitations of the polaron-to-molecule
transition. (b) fRG result for the ground-state energy (with the universal dimer binding energy
Eb =−ħh2/(ma2) subtracted) in comparison to the results obtained with diagMC by Prokof’ev
and Svistunov [59, 60] (symbols).

Attractive and repulsive polaron

Energy spectrum. First, we analyze the energy spectrum of the quasiparticle excitations de-
picted in Fig. 4.17 in dependence on the coupling strength (kF a)−1. From our data we find
two coherent quasiparticle states for the ↓-atom, the attractive and the repulsive polaron, and
one bound state for the molecule. The attractive polaron (red solid line) is the ground state
for (kF a)−1 < (kF ac )

−1 (polaronic side) but becomes an excited state for (kF a)−1 > (kF ac )
−1

(molecular side). Conversely, the molecule is the ground state on the molecular side (blue
dashed line) and an excited state on the polaronic side, in accordance with the results us-
ing the derivative expansion in Section 4.3. For the critical coupling strength we obtain
(kF ac )

−1 = 0.904(5), which agrees very well with the value (kF ac )
−1 = 0.90(2) obtained us-

ing diagrammatic Monte Carlo (diagMC) by Prokof’ev and Svistunov [59, 60]. At this point
we already see, how the inclusion of the full frequency and momentum dependence signif-
icantly improves our results. This does not come as a surprise when considering the large
discrepancy between the approximated propagators and the full result visible in Fig. 4.10(f)
and 4.11(f). Also note that we expect the critical value kF ac not to be a universal number. The
value of 1/kF ac = 0.904 is the result for a contact interaction and we expect it to be dependent
on microscopic detail such as the width of the Feshbach resonance. Moreover, kF ac changes
with the mass ratio, cf. Appendix B.

As shown in Fig. 4.17(b), also the values for the energies agree well with diagMC (sym-
bols). At unitarity, (kF a)−1 = 0, we obtain the ground-state energy µ↓ = −0.57εF while di-
agMC gives the value µ↓ = −0.615εF . Note that any non-analyticity in the energy spectrum
across the transition has disappeared in contrast to the results from the derivative expansion,
cf. Fig. 4.6. Having treated the full frequency and momentum dependence of the propaga-
tors in the truncation (4.10), we can attribute the major part of the residual deviation in the
ground state energy to the omission of the terms ψ∗↑ψ

∗
↓ψ↓ψ↑ and φ∗ψ∗σφψσ . The latter term
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describes the atom-dimer interaction and is expected to further reduce the ground-state energy
in the transition regime in accordance with the results from the variational wave function ap-
proach [236, 237]. The term ψ∗↑ψ

∗
↓ψ↓ψ↑, generated by particle-hole fluctuations, is expected

to give the main correction in the unitarity regime [234]. Both terms can be included in the
fRG flow as additional flowing couplings, or implicitly by using the Katanin scheme [269] or
rebosonization [219].

Until recently [49]most experiments with ultracold Fermi gases have focused on the lower,
attractive branch on the BEC side (kF a)−1 > 0. There exists, however, also the repulsive
polaron branch (solid green line) which corresponds to a higher excited state of the ↓-atom
interacting repulsively with the ↑-Fermi sea. Our results for the energy of the repulsive branch
agree with the weak-coupling results [270] for (kF a)−1 ¦ 1. In the strong-coupling regime
our energies lie between the result from the non-selfconsistent T-matrix approach [258] and
results for square well potentials numerically computed by Monte Carlo methods [242]. In
the polaron spectral function, cf. Fig. 4.16(b), one can clearly discern the attractive polaron
branch as a very sharp peak at low frequencies, and the much broader repulsive polaron branch
at higher frequencies. In a recent experiment by the Innsbruck group using a mass-imbalanced
mixture of 6Li and 40K fermions, the repulsive polaron in three dimensions has been measured
for the first time [64]. The radio-frequency (rf) spectroscopy used in this experiments has
been essential identical to the one proposed in our earlier theoretical work [62] which we
discuss in Section 4.6. In Appendix B we will briefly comment on our results which predict
the rf spectrum for the case of a mass-imbalanced mixture using a simple, leading order 1/N
expansion.

Decay widths. The repulsive polaron has a large decay width Γrep, as calculated from Eq.
(4.49) and depicted in Fig. 4.18(a), and correspondingly a short lifetime. The leading-order de-
cay channel for the repulsive polaron is the process shown as tree-level diagram in Fig. 4.18(b,
left) where the repulsive polaron, which is an excited state, decays to the attractive, and en-
ergetically lower lying, polaron due to the interaction with an ↑-atom. This diagram can be
translated via the optical theorem into a contribution to the imaginary part of the ↓-atom self-
energy, as depicted in Fig. 4.18(b, right). This self-energy diagram is already included in the
non-selfconsistent T-matrix propagator Pnsc

↓ , and has been studied recently using this approxi-

mation [258]. Of course, this diagram is also included in our fRG approach. Note, that in the
fRG approach also higher-order decay processes are included due to the constant feedback of
the impurity self-energy into the flow of the molecular propagator.

In the weak-coupling limit (kF a)−1→∞ the excitation becomes sharp, Γrep→ 0, and the
repulsive polaron is a well-defined quasiparticle. Towards unitarity, Γrep grows but remains a
well-defined, finite quantity even at unitarity. We find that indeed Γrep, and not the approx-

imation Γalt
rep from Eq. (4.52), is the correct half-width at half-height of the respective peak

in the polaron spectral function in Fig. 4.16(b). For (kF a)−1 < 0.6 the energy Erep of the
repulsive branch exceeds the bath Fermi energy, Erep > εF . At this point it is energetically
favorable to spin-flip or ‘phase separate’ the impurity atom, which can be interpreted as the
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condition for the onset of saturated ferromagnetism [55, 243]. At the same time the decay
width Γrep > 0.2εF is large, which destabilizes the transition to a ferromagnetic phase [50].
Note, that here we discuss a Nagaoka type problem [271] as discussed by Barth and Zwerger
[55], while [50] deals with the balanced gas within a random phase approximation extended
beyond the putative Stoner instability.

On the polaronic side (kF a)−1 < (kF ac )
−1 the attractive polaron is the stable ground state

with decay width Γatt = 0, while on the molecular side it is an excited state with finite lifetime
and decay width Γatt > 0, cf. Fig. 4.19(a). This decay is much weaker and also qualitatively
different from the repulsive channel. The attractive polaron can decay by a three-body recom-
bination process as shown in Fig. 4.19(b, left). Via the optical theorem this process can be
translated into a contribution to the ↓-atom self-energy as depicted in Fig. 4.19(b, right), plus
an additional contribution with crossed lines. This decay channel has recently been studied
using a phenomenological three-loop calculation [241]. The resulting finite lifetime cannot be
seen in the non-selfconsistent T-matrix approximation, where the self-energy corrections of
the ↓-atom – indicated by the inner white box P↓ – are not fed back into the T-matrix ∼ P−1

φ

[233, 258]. In contrast to the non-selfconsistent T-matrix calculation, our fRG includes the
full feedback of both the ↓ and φ self-energies, denoted by bold internal lines in the flow equa-
tions in Fig. 4.5. Therefore, the contributions from the decay diagram in Fig. 4.19(b), and
many more, are automatically included in our approach.

Quasiparticle weights. Fig. 4.20 depicts the quasiparticle weights of the attractive and re-
pulsive polaron computed using Eq. (4.51). On the polaronic side the attractive polaron state
contains most of the weight, but as one moves towards the molecular side the spectral weight
gradually shifts to the repulsive branch, and the corresponding peak in the polaron spectral
function in Fig. 4.16(b) becomes larger. This can also nicely be seen from the flow of the
impurity spectral function depicted in Fig. 4.14, where quasiparticle weight is transfered to
the repulsive branch when the RG scale hits the scale given by the density, k = kF . We find
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FIGURE 4.18: (a) Decay width Γrep of the repulsive polaron as a function of the coupling (kF a)−1.

We also show the width according to the approximate formula Eq. (4.52) (dotted line). (b)
Decay channel for the repulsive polaron. (left) Two-body process which leads to the decay of the
repulsive polaron. (right) Corresponding contribution to the ↓-atom self-energy via the optical
theorem.
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FIGURE 4.19: (a) Decay width Γatt of the attractive polaron as a function of the coupling (kF a)−1.
(b) Decay channel for the attractive polaron. (left) Three-body recombination process which
leads to the decay of the attractive polaron. (right) Corresponding contribution to the ↓-atom
self-energy via the optical theorem (there is also a contribution with crossed lines).
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FIGURE 4.20: Quasiparticle weight Z↓ of the attractive (solid line) and repulsive (dashed line)

polaron. The weights of the two quasiparticle peaks in the ↓-spectral function make up almost
completely the total spectral weight, and the contribution from the incoherent background is
very small.

that the attractive and repulsive branches almost completely make up the total spectral weight,
hence the contribution from the incoherent background is very small. This is also apparent
in the polaron spectral function in Fig. 4.16(b). Note that the contribution of the incoher-
ent background is enhanced when considering a closed-channel dominated resonance (see also
Appendix B).

Our results for the quasiparticle weights agree well with those from the non-selfconsistent
T-matrix and variational wave-function approaches. At unitarity we obtain for the attractive
polaron Z↓,att = 0.796 compared to the variational value Z↓,att = 0.78 [231, 256]. For the
repulsive polaron at (kF a)−1 = 1 we find Z↓,rep = 0.71, in agreement with the recent non-
selfconsistent T-matrix calculation [258].
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Note that there is an alternative definition of the quasiparticle weight [256]

Zalt
↓ = lim

t→∞

�
�G↓(t ,p= 0)

�
�. (4.53)

This definition has to be treated with care: on the molecular side of the transition the polaron
acquires a finite decay width Γ↓ > 0 but nonetheless continues to be a well-defined quasiparti-
cle with finite spectral weight, as can be seen from Fig. 4.16. However, definition (4.53) yields
zero as soon as Γ↓ > 0 and in this case cannot be interpreted as a measure of spectral weight
anymore. In contrast, the definition (4.51) remains correct for a finite decay width and accord-
ingly our data for Z↓ shows no discontinuity at the transition. In the experiment the finite
lifetime of the attractive polaron on the molecular side complicates the direct measurement
of Z↓ by radio-frequency spectroscopy because the molecular state and not the attractive po-
laron becomes occupied as the initial state (cf. Section 4.6). Finally, note that all problems of
extracting the quasiparticle properties have disappeared in our new approach compared to the
derivative expansion.

Molecule

Energy spectrum. The molecule spectral function in Fig. 4.16(d) displays a sharp quasipar-
ticle peak of the bound state at low frequencies, followed by an incoherent background at
higher frequencies which actually carries most of the spectral weight. This background is nei-
ther taken into account in the simple derivative expansion discussed in the previous section
nor in the Wilsonian RG approach [235] as for example popularized by Shankar [272]. On
the molecular side (kF a)−1 > (kF ac )

−1 the molecule is the ground state and is clearly separated
from the incoherent continuum. On the polaronic side of the transition the molecule be-
comes an unstable, excited state and develops a clearly visible finite decay width in the spectral
function.

Decay widths. The leading decay channel of the excited molecule state is via the three-body
recombination process shown in Fig. 4.21(a, left). Via the optical theorem this process can
be translated into a contribution to the molecule self-energy as depicted in Fig. 4.21(a, right).
Similarly to the attractive polaron, in the non-selfconsistent T-matrix approximation the ↓-
atom self-energy corrections in P↓ are not fed back into the T-matrix ∼ P−1

φ
, and the molecule

does not decay in the vicinity of the polaron-to-molecule transition. In contrast, the diagram
Fig. 4.19(b, right) is included in the fRG, which leads to the visible broadening in the spectral
function.

Ref. [241] shows, by an analytical calculation of the phase space for three-loop diagrams
of the type in Fig. 4.21(a), that the decay width of the molecule scales as

Γφ ∝∆ω9/2 ∆ω = Eφ− E↓,att (4.54)

where∆ω is the difference between the energy levels of the excited molecule and the attractive
polaron ground state. In Fig. 4.21(b) we show Γφ as a function of∆ω in a double logarithmic
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FIGURE 4.21: (a) Leading decay channel for the excited molecular state. (left) Three-body re-
combination process which leads to the decay of the molecular state. (right) Corresponding
contribution to the molecule self-energy via the optical theorem (there is also a contribution
with crossed lines). (b) The decay width Γφ of the excited molecular state as a function of the en-

ergy difference ∆ω = Eφ− E↓,att between the excited molecule and attractive polaron ground

state. The solid line indicates the power-law scaling Γφ ∝∆ω9/2.

plot. The large fluctuations of our numerical data are due to the accuracy of the Runge-Kutta
integration as well as due to the restriction to a finite number of Matsubara frequencies. We
have estimated the corresponding error by comparing the results for different grids with vary-
ing number and position of (Matsubara) frequencies. The solid line in Fig. 4.21(b) indicates
the power law ∆ω9/2. The triangles in Fig. 4.21(b) correspond to a calculation with a higher
number of frequency grid points and we find convergence to the solid curve for decay widths
larger than our numerical integration accuracy ε = 10−5. This indicates that the error for
larger Γφ can be attributed to the Padé approximation, while for Γφ < ε the accuracy of our
results becomes limited by the absolute error of our numerical integration. Specifically, we
find

Γφ

εF

≈ 0.021

�
∆ω

εF

�9/2

. (4.55)

With our fRG calculation we are thus able to verify the prediction by Bruun and Massignan
[241] now from a microscopic calculation. The correctness of the power law attests to the
strength of our method to describe many features of the polaron-to-molecule transition in one
unified approach.

Quasiparticle weight and compositeness. The quasiparticle weight Zφ of the molecular
bound state in the spectral function in Fig. 4.16(d) is very small, Zφ ≈ 0.002 at unitarity, and
increases slowly towards the molecular limit, see Fig. 4.22(inset). For open-channel dominated
resonances, h2 ∼ ∆B → ∞, the two-channel model (4.5) is equivalent to the single-channel,
zero-range model (4.4) and Zφ ≡ 0 [260]. Specifically, we obtain for the weight of the bound
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state in vacuum

Zφ =
32π

h2a
(vacuum, Λ→∞). (4.56)

This is consistent with the interpretation of Zφ as the closed-channel admixture (cf. Eq. (29) in
[6]). In our calculation we set the physical UV cutoff scale to Λ= 103kF , which is of the order
of the inverse Bohr radius, and choose h2 <∞. We observe Zφ ∝ 1/kF a on the BEC side and
a deviation from the vacuum scaling close to unitarity, which may be due to a combination of
finite density corrections and the admixture of closed-channel molecules in the microscopic
action by choosing finite values of h and Λ. Starting from the two-channel model (2.23) in
Chapter 2 we find that Zφ→ 1 for a→ 0+.
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FIGURE 4.22: Compositeness (1−Zφ) of the molecular bound state. A value of 100% would indi-

cate that the molecule has no overlap with elementary closed-channel bosons. Inset: Molecular
residue Zφ.

The quasiparticle weight Z can be interpreted as the overlap between the ‘true’ particles
and the ‘elementary’, or bare, particles in the microscopic action (4.5). The attractive Fermi
polaron becomes elementary, Z↓,att → 1, in the BCS limit (kF a → 0−), while in the opposite
limit of kF a→ 0+ the repulsive Fermi polaron becomes elementary, Z↓,rep→ 1. Near unitar-
ity, both excitations have a sizable weight. In contrast, the molecular bound state is almost
exclusively a composite particle in the whole transition region. Indeed, the deviation of the
quasiparticle weight from unity, 1−Zφ, is a well-established measure of compositeness in nu-
clear physics [273], and in Fig. 4.22 we show that for our choice of the Yukawa coupling h the
compositeness of the molecule is very large (> 98%). This is consistent with the measurement
of a small molecular weight Zφ for a balanced 6Li Fermi gas close to a open-channel dominated
Feshbach resonance by Partridge et al. [274]. In experiments with a closed-channel dominated
Feshbach resonance the compositeness will decrease in particular away from resonance and a
single-channel description becomes invalid. This has recently been verified by the Innsbruck
experiment using a mass-imbalanced Fermi gas [64].

In the vacuum there exists no molecular state for negative scattering length a as can easily
be seen from Eq. (4.26), which then has no bound-state pole. In the presence of a medium of



128 CHAPTER 4. FUNCTIONAL RG FOR SPECTRAL FUNCTIONS

rf photon
(a)

600 650 700 750 800 850
- 2

- 1

0

1

2

a12

a13

a23

(b)

FIGURE 4.23: (a) Radio frequency spectroscopy. Using rf photons atoms in a hyperfine state |i >
are driven to a final state | f >, while the second species in the initial mixture, | ↑>, is unef-
fected. (b) Scattering length profile of 6Li atoms in the three lowest hyperfine states as calculated
by P. S. Julienne based on the model described in [275]. The stars indicate the magnetic field
values for which we determine the rf-response of the imbalanced Fermi gas in Fig. 4.24.

↑-fermions, however, the molecule propagator develops an excited bound-state pole also for
negative scattering length a. This bound state will become the superfluid ground state when
the impurity density exceeds a critical threshold [256].

4.6 Rf-response of the 6Li Fermi gas

As a final application we connect our results for the polaronic spectral function to experimen-
tally observable radio-frequency (rf) spectra. The attractive branch of the polaron-to-molecule
transition has been studied experimentally by Schirotzek et al. [240] using a population imbal-
anced, two-component mixture of 6Li atoms. In the experiment the rf-response of the system
has been used to infer information about the low-frequency behavior of the fermionic spectral
functions. For instance, the ground-state energy and the residue Z↓ of the ↓-fermions were
measured and confirmed the theoretical predictions.

In order to measure the rf-response, an rf-pulse is applied to the system which drives the
transition of the atoms to a third, initially empty state, cf. Fig. 4.23(a). In Fig. 4.23(b) we
show the scattering length profile of 6Li versus the magnetic field. In the experiment [240] a
mixture of fermions initially in the hyperfine states |1〉 and |3〉 had been prepared in a range of
the external magnetic field B = 630 . . .690G (shaded area). In this regime the scattering length
a13 in the initial state is large and positive, while the final state scattering lengths a12, a23 are
rather small.

Information about the spectral function can be accessed from rf-spectroscopy, for example
by populating the particle under investigation up to the energies one is interested in. Then one
drives the transition to a weakly interacting final state for which the spectral function is well-
known. This route had been taken for the study of the attractive polaron. For the repulsive
polaron branch, on the other hand the protocol has to be different. The main complication
is that the repulsive polaron has a very short lifetime in the strong-coupling regime of interest
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[cf. Fig. 4.18(a)]. Hence, its macroscopic population is inhibited on longer time scales, and
even after a fast ramp to the desired magnetic field most minority atoms may have decayed
into the respective ground state. A similar situation arises in the detection of Efimov trimers
in a three-component mixture of 6Li atoms [141, 142]. The decay of the repulsive branch is
also of relevance for the balanced system and the competition between ferromagnetic order
and molecule formation [49, 50].

In this section we propose an experimental procedure to circumvent these difficulties and
directly analyze the spectral function of the repulsive polaron. This protocol has by now been
implemented successfully by the Innsbruck group for a mixture of 6Li and 40K atoms [64].
It led to the first observation of the repulsive polaron in three dimensions. Here, we focus
on a prescription for the detection of the repulsive polaron in a strongly imbalanced two-
component 6Li Fermi gas, which we have put forward [62] prior to the observation [64]. The
6Li Fermi gas is prepared in hyperfine states |1〉 and |3〉 for magnetic fields B > 690G across
the (1,3) Feshbach resonance. In this regime the initial scattering length is negative, a13 < 0.
One then drives an rf-transition to the final state |2〉 which is characterized by large, positive
scattering lengths a12 and a23 and thus strong interactions. Because the attractive polaron
spectral function of the initial state, with its negative scattering length a13, is well understood
both experimentally and theoretically, the final-state spectral function can then be analyzed in
a controlled fashion.

Within linear response theory the induced transition rate from the initial state |i〉 to the
final state | f 〉 is given by [256, 255, 268]

I (ωL) = 2Ω2ImχR(µ f −µi −ωL) (4.57)

where the Rabi frequency Ω is given by the coupling strength of the rf-photon to the atomic
transition, µi (µ f ) the initial (final) state chemical potential, and ωL denotes the rf-frequency
offset with respect to the free rf-transition frequency. Neglecting the momentum of the rf-
photon, the retarded rf-susceptibility χR is given by the analytical continuation to real fre-
quencies of the correlation function in imaginary time τ (Matsubara frequencyω)

χ (ω) =−
∫

r

∫

r′

∫

τ
e iωτ〈Tτψ†

f
(r,τ)ψi (r,τ)ψ†

i
(r′, 0)ψ f (r

′, 0)〉, (4.58)

where Tτ is the imaginary time-ordering operator. Eq. (4.58) leads to various diagrammatic
contributions which are in general difficult to handle if the final-state interactions are not neg-
ligible [263]. Here we will evaluate Eq. (4.58) in a simple approximation with full Green’s
functions but without vertex corrections. In this approximation Eq. (4.58) yields the suscepti-
bility in Matsubara frequency

χ (ω) =
∫

k,ν
Gi (k, ν)G f (k, ν +ω). (4.59)

The rf-response in real frequency is then given by

I (ωL) = Ω
2
∫

k

∫ µi−µ f +ωL

0

dν

2π
Af (k, ν)Ai (k, ν +µ f −µi −ωL) (4.60)
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B field [G] (kF a13)
−1 (kF a23)

−1 (kF a12)
−1

(a) 810.3 -1.88 0.0 0.39
(b) 800.8 -1.80 0.2 0.58
(c) 788.2 -1.70 0.5 0.86
(d) 780.6 -1.62 0.7 1.04

TABLE 4.2: Interaction parameters at the four transitions indicated in Fig. 4.23(b), using kF ↑ =

0.00015 a−1
0 .

where µi −µ f +ωL > 0.
In Eq. (4.60) the initial-state spectral function Ai is probed for negative frequencies only.

Hence, there is no rf-response for the pure polaron problem at vanishing density and chemical
potential µ(0)↓ . In the experiment one has, however, a small but finite concentration x = n↓/n↑
of ↓-fermions which leads to an observable rf-response. In order to describe the experimental
situation we therefore need a calculation for a finite minority (↓) density characterized by a
chemical potential µi = µ↓ > µ(0)↓ . Within the fRG framework such a calculation requires

the regulator R↓ in Eq. (4.16) to be adjusted in order to cope with the finite Fermi surface of
↓-fermions which complicates the computation. Fortunately, our calculation for the polaron
problem shows that for negative scattering length, where the polaron is the ground state and
decay processes do not matter, the fRG results are in excellent agreement with the results from
a non-selfconsistent T-matrix approach. We may therefore use the T-matrix approach instead
of a full-feedback fRG for the calculation of the imbalanced Fermi gas of finite densities n↑ and
n↓ in order to determine the initial-state spectral function. The non-selfconsistent calculation
was also done by Punk and Zwerger [268] and is obtained in our fRG formulation by simply
switching off the feedback of the ↓-atom self-energy into the molecule flow.

Because the occupation of ↓-atoms is small, only the low-momentum modes are relevant.
The ↓-atoms form a degenerate Fermi gas of polaronic quasiparticles and the spectral function
can be approximated by [232]

Ai (ω,p) = 2πZi δ
�

ω−
p2

2m∗↓
+∆

�

, (4.61)

where Zi is the residue, m∗↓ the effective mass of the impurity atoms, and ∆ determines the
impurity concentration x .

We have calculated the parameters m∗↓ , Zi , and ∆ as functions of (kF a)−1 via the non-

feedback (non-selfconsistent T-matrix) calculation. µi is determined self-consistently to ensure
the correct impurity density. Inserting the spectral function Eq. (4.61) into the susceptibility
(4.60) we obtain for the rf-response

I (ωL) =
Ω2Zi

2π2

∫
q

2m∗↓∆

0
d kk2 Af

�

k,µi −µ f +ωL−∆+
k2

2m∗↓

�

. (4.62)
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FIGURE 4.24: Rf-spectra I (ωL) for minority species |1〉 (solid blue lines) and minority species
|3〉 (dashed red lines). The interaction parameters correspond to the four magnetic field values
marked in Fig. 4.23(b), and listed in Table 4.2: (a) top—(d) bottom.

For the final state | f 〉 we use the spectral function obtained in Section 4.5 from the full fRG
calculation. In Fig. 4.15 we show an example of the full final-state spectral function in de-
pendence of frequency and momentum which enters the momentum sum in Eq. (4.62). One
can clearly discern the broadening of the attractive polaron branch at larger momenta, as well
as the broad repulsive branch at higher frequencies. A similar feature appears in the spectral
function for the balanced Fermi gas above Tc as calculated by Haussmann et al. [255]. In this
work the fermionic spectral function and rf-spectra were determined using a state-of-the-art
self-consistent T-matrix (2PI) calculation and forms the basis for a full linear response calcula-
tion of transport coefficients like the spin diffusion [276] and shear viscosity including vertex
corrections [110].

Initially, the gas is prepared in a |1〉 and |3〉 mixture, and both states can serve as minority
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or majority species, for example, |↑〉 = |3〉 and |↓〉 = |1〉 such that |i〉 = |1〉 and | f 〉 = |2〉. The
initial occupation of the minority |↓〉 states is small and for our numerical calculation we use
x = n↓/n↑ = 0.01. The energy scale is set by the Fermi momentum of the majority species
kF ↑ = 0.00015 a−1

0 as appropriate for the MIT experiment [240]. We calculate the rf-spectra at
four values of the magnetic field indicated as stars in Fig. 4.23(b), and listed in Table 4.2. The
resulting spectra are shown in Fig. 4.24: the solid blue lines indicate the response for minority
species |1〉, while the dashed red lines correspond to minority species |3〉. In the latter case the
sign of the frequency offsetωL is changed because the state |3〉 is energetically above the final
state.

The position of the sharp attractive polaron peak at negative frequency offset ωL shifts
with the interaction parameter (kF a f )

−1 in accordance with the energy spectrum in Fig. 4.17.
One observes that the attractive polaron looses quasiparticle weight on the molecular side,
cf. Fig. 4.20. In contrast, the repulsive polaron branch gains quasiparticle weight towards the
molecular side, and the respective peak in the rf-spectra becomes both larger and narrower,
and one can read off the increasing lifetime.

The spectra in Fig. 4.24 are convolved with a sinc function sinc2(ωT /2) which gives the
response to an rf-pulse with a rectangular profile of length T = 20ms [255]. While our curves
are computed for zero temperature, a finite temperature ∼ 0.01 TF would lead only to a slight
broadening of the experimental rf-peaks. The broadening of the attractive polaron due to the
finite lifetime on the molecular side (kF a f )

−1 > (kF ac )
−1, however, is too small to be resolved.

Note that we have included both final-state and initial-state interaction in our calculation: the
knowledge of the spectral function for the initial state allows for a detailed study of the final-
state spectral function.

4.7 Conclusion

We have presented a new computational method to solve the non-perturbative, exact renor-
malization group equation (4.6) and have demonstrated its efficiency for the Fermi polaron
problem as a specific example. The inclusion of the full frequency and momentum depen-
dence of the propagators opens up new perspectives to apply the functional renormalization
group to problems where the detailed dynamics of the relevant degrees of freedom becomes
important [277]. In particular, the method draws its strength from the possibility to succes-
sively bosonize further channels of the interaction via additional auxiliary fields (Hubbard-
Stratonovich transformation) [179, 180, 181, 182]. In this way one can partially capture the
complicated analytical structure of higher-order vertex functions Γ(n), including possible quasi-
particle poles and branch cuts, as we have explicitely shown for the s -wave scattering channel
in the polaron problem. In combination with the recently developed flowing rebosonization
technique [219] our numerical method can be extended to also incorporate re-emerging ver-
tices. Our approach complements a related proposal for bosons [278] and it is a first example
where a ‘full’ solution of the fRG equations has been demonstrated for a problem involving
fermions with the inclusion of their self-energy.

For the Fermi polaron problem we achieve a unified description of many dynamical ef-
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fects beyond thermodynamics. We verify the non-trivial power-law scaling of decay rates
[241] and determine the properties of the repulsive polaron with a method beyond the non-
selfconsistent T-matrix approximation [243, 258]. This is of value in the ongoing debate about
the possible occurrence of ferromagnetism in ultracold Fermi gases with short-range interac-
tions [49, 50, 52, 55, 242, 243, 258]. The polaron problem sheds light on this question in the
limit of strong population imbalance. For the repulsive polaron we find the critical interac-
tions strength kF a = 1.57 from our numerical data (Fig. 4.17). This is just the value when
the energy of the repulsive polaron is above the Fermi energy εF , but due to the fast decay
with Γrep/εF ≈ O (1) there is no real critical behavior here [55]. Going to a finite density
of ↓-fermions is straightforward within the fRG and involves only a slight modification of
the regulator of the ↓-fermions (4.16) as long as no spontaneous symmetry breaking occurs.
By continuity we can infer that the repulsive branch will remain to exist for small but finite
↓-population and will exceed the critical energy εF for the presumed onset of saturated ferro-
magnetism. It is an open question whether for larger impurity concentrations the repulsive
branch is so strongly renormalized that saturated ferromagnetism can be ruled out [55], or
whether competition with molecule formation may preclude the observation of ferromagnetic
domains [50]. Answering these questions will require a full non-equilibrium calculation.

There has been much theoretical progress on the repulsive Fermi gas with short-range
interactions, but relatively few experiments have been completed. While the repulsive 3He
Fermi gas has been studied extensively in experiment, it is not dilute and has a large repulsive
hard-core potential [279]. In contrast, ultracold Fermi gases offer the realization of a proper
contact interaction of tunable strength. We predict rf-transition rates for the repulsive branch
and propose a possible route to measure these excited states in a 6Li Fermi gas. This is a
challenging problem because the final repulsive polaron state is highly unstable. Following
our work these obstacles have recently been overcome by Kohstall et al. using a mixture
of 6Li and 40K atoms [64]. In this experiment the repulsive polaron energy as well as its
quasiparticle weight have been measured and fit remarkably well the theoretical predictions
(see Appendix B).

The repulsive polaron in two spatial dimensions had not been studied so far. We analyze
this problem in Appendix A using a simple non-selfconsistent T-matrix approach and find
that the physics is rather similar the three-dimensional case. Using a calculation of the rf
spectrum including the specific trap specifications of a recent experiment [61], we show that
this experiment can be interpreted in terms of polaron physics. Following our work [63], the
repulsive polaron in two dimensions has very recently been directly observed experimentally
by Koschorreck et al. [65].





Chapter Five

Conclusions and outlook

IN this thesis we theoretically studied the physics of ultracold quantum gases ranging from
few- to many-body problems. Of particular interest was the application of the functional

renormalization group (fRG) which allows the description of the few- and many-body physics
in a unified field theoretical framework. In Chapter 2 we solved the quantum mechanical three-
body problem of bosons interacting with short-range interactions for an extended two-channel
model which accounts for the finite physical range σ of the pairwise interaction potential. Us-
ing renormalization group equations we derived a modified STM equation and calculated the
bound state spectrum of the system. While universality, governed by the strong coupling
unitary fixed point for infinite scattering length a→∞ and scattering energy at the threshold
E = 0, is approached quickly for the highly excited Efimov states, the experimentally accessible
low lying trimer states show deviations from universal scaling. We predicted, from two-body
physics alone, the scattering lengths a

(n)
− where the n-th Efimov states reach the atom thresh-

old as function of r ∗/σ where r ∗ characterizes the width of the Feshbach resonance. In the
limit of open-channel dominated resonances r ∗/σ → 0 our results explain the experimentally
observed ‘universality’ of the so-called three-body parameter a− = a(0)− ≈ −9.45lvdw [47] in
terms of the ‘standard model’ of cold atoms and we predict a crossover to a scaling a− ∼ r ∗ for
closed-channel dominated resonances. Since the zero-range version of our model is a typical
starting point for many-body theory of cold atoms our results attest to the validity of this
model but also show its limitations. We analyzed in detail the universality of our results by
using various forms of the atom-to-molecule conversion coupling and studied the influence of
a microscopic three-body force. We found that they – in the open-channel dominated limit
– generically lead to deviations from the ‘universal’ result a− = a

(0)
− ≈ −9.45lvdw on the ten

percent level. Finally, we showed that in the closed-channel dominated limit a new class of uni-
versality arises where even the deviations from the scaling limit for the lowest Efimov states
become universal themselves.

In Chapter 3 we extended the study of few-body physics to the four-body problem using
a derivative expansion of the effective flowing action Γk . We solved the flow equations at the
unitarity point and found that a four-body RG limit cycle is attached to the three-body limit
cycle. This shows that no additional four-body parameter is needed for the renormalization
of the four-body problem. In order to solve the RG equations we relied on an extension of
the flow to the complex plane developed in [111]. The quantum mechanical calculation by
Stecher et al. [48, 184] for the lowest four-body bound states away from the unitarity point
predicts the existence of two tetramer states attached to each trimer. In our approximation
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we are only able to resolve a single of these states but we showed ways of how our calculation
can be extended to account also for the second tetramer. Furthermore we studied how the
intrinsic lifetime and threshold behavior of the excited tetramer states can be inferred from
the flow of pointlike couplings in the complex plane. In order to connect our results to many-
body physics we studied how the method of rebosonization [137, 172, 219] can be used for the
introduction of a trimer field which accounts for these trimers as new effective and physically
propagating degrees of freedom. Finally we discussed the relevance of this approach when
studying e.g. the quantum phase transitions in an SU(3) Fermi gas or the strongly coupled
Bose gas.

The second part of this thesis dealt with aspects of the many-body physics of cold atoms.
In particular we focussed on the Fermi polaron problem where a single, mobile impurity
is immersed in a Fermi sea of majority atoms. Compared to many other methods the RG
has the advantage that it can describe intrinsically non-perturbative situations and in this re-
spect the Fermi polaron is a case in point. Typically, however, in standard RG approaches for
fermions [272] one follows only a few relevant coupling constants so that one retains only a
very poor spectral resolution of Green’s functions. In Chapter 4 we developed a new numeri-
cal functional RG technique, which removes this disadvantage and which allows the study of
the flow of fully momentum and frequency dependent vertex functions. This gave us access
to the RG flow of the full spectral function of the impurity which we in turn used to predict
the excitation spectrum of the system across the polaron-to-molecule transition. Besides find-
ing accurate results for the ground state properties which compete with recent state-of-the-art
diagMC results [59, 60] we were also able to access the excited states in the spectrum. We
found that the attractive polaron and the molecule remain to exist as well-defined quasipar-
ticles across the polaron-to-molecule transition with a lifetime τ which increases quickly as
the transition is approached according to τ ∼∆E−9/2, where ∆E is the energy difference be-
tween the excited and the ground state. The finding of this power law, which is not possible to
obtain for instance in a leading order 1/N expansion, attests to the strength of the fRG. The
scaling∼∆E−9/2 had been conjectured on a basis of a phenomenological two-loop calculation
in [241], and in Chapter 4 we derived it directly from microscopic physics. Furthermore we
found that spectral weight is transferred from the attractive polaron to a new, emerging quasi-
particle in the spectrum at positive energies: the repulsive polaron. We calculated the energy,
lifetime, and quasiparticle weight of the repulsive polaron and found that it becomes a stable
excitation of unit weight in the BEC limit. It interacts repulsively with the surrounding Fermi
sea and its energy exceeds the Fermi energy for a critical interaction strength. At this point
it becomes energetically favorable to add an additional majority atom to the system instead
of a minority impurity which can be interpreted as an instability of the system towards ferro-
magnetism. However, at this presumed transition the repulsive polaron is a very short-lived
quasiparticle which shows that molecule formation may be the true, leading instability. This
prohibits cold atoms as a quantum simulator of a strongly repulsive Fermi gas. Finally we
proposed a radio-frequency spectroscopy experiment to measure the impurity spectral func-
tion which has been implemented by the Innsbruck group [64]. In Appendix B we presented
our calculation of the rf spectrum expected for this specific experimental setup which studies
a mass-imbalanced Fermi gas of 6Li and 40K atoms. Our results are in remarkable agreement
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with the experimental data.
In two spatial dimensions the excitation spectrum of the polaron problem had not been

studied so far and in Appendix A we presented the calculation of the spectrum using a Nozieres-
Schmitt-Rink approach. We found that the spectral properties are rather similar to the three-
dimensional case. We compared our results to the experimental situation by approximately
taking into account the quasi two-dimensional character of the optical lattice employed in
experiments and performed a trap averaged calculation of the rf signal of the system within
linear response theory. We showed that a experiment by Fröhlich et al. [61] can find a reinter-
pretation in terms of polaron physics. Recently, our results have been experimentally tested
by Koschorreck et al. [65] and the data agrees well with our prediction.

In the context of the physics studied in this thesis, many open questions remain. Concern-
ing few-body physics, one such question is the fate of N -body bound states. In his recent work
[184] von Stecher found evidence for the existence of series of N -body bound states attached
to each trimer. The ratio of scattering lengths a(n)

N ,−/a(n)
Tri,-

and energies E∗(n)
Tri

/E∗(n)
N

seem to be
universal numbers for large n, with the ratios increasing as the particle number N grows. Ex-
perimentally, the lowest states are the ones which are most easily accessible. Combining our
knowledge gained in the Chapters 2 and 3 together with the finding that the ratios a(n)

N ,−/a(n)
Tri,-

grow with N indicates that there might be a maximum number Nmax as soon as a true finite
range of the interaction potential is considered. Whether the number Nmax is universal in cold
atomic systems, similarly to what we found for a−, or if the influence of N -body forces be-
comes particularly important for these lowest N -body bound states poses questions far from
being answered.

An important shortcoming of the pointlike approximation used in our study of the quan-
tum four-body problem is the absence of the shallower of the two tetramer states. In fact, it
would be interesting to use the principle of minimal sensitivity used in the context of RG flow
optimization [172, 211] within the present simple, pointlike truncation. One could use, for
instance, the existing universal ratios such as a(n)

Tet,-
/a(n)

Tri,-
as an optimization criterion. Then,

parameters of regulators could be tuned to yield extremal results (principle of minimal sen-
sitivity). As a result, it is well possible that the relevant coefficients in the flow equations
of the four-body couplings are modified in such a way as to yield the expected two tetramer
states. Similarly the extension of our truncation to account for a dynamical trimer field may
be sufficient to find the missing tetramer state.

The Efimov effect is an example of a quantum anomaly in non-relativistic physics which
breaks the scale invariance of the system and can be understood in terms of an effective three-
body, inverse square potential [66]. This mechanism becomes of particular interest as sym-
metry arguments suggest that the conformal field theory emergent in recent studies [280] of
non-Fermi liquids using the AdS/CFT correspondence [281] might be conformal quantum
mechanics with an inverse square potential. We studied this problem in the context of this
thesis and developed a method to extend RG flows to the complex plane [111]. By compar-
ing our results to the low-energy behavior of the real and imaginary parts of the retarded
Green’s functions computed numerically by McGreevy and coworkers within the AdS/CFT
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framework [282], we found further evidence for this correspondence. This suggests that the
complex extension of RG flows might become useful for a better understanding of non-Fermi
liquids from the AdS/CFT correspondence. The extend of this analogy is, however, still far
from being understood.

Concerning the polaron problem it is still an open question what the fate of two impurities
strongly coupled to a bath of majority fermions is in two or three spatial dimensions. This
question is of great relevance for the phase diagram of the imbalanced Fermi gas as well as the
stability of ferromagnetism in the case of repulsive interactions and it combines the many- and
few-body aspect of cold atoms: for example in the case of two bosonic impurities the Efimov
effect in presence of a Fermi sea will become important while for fermionic impurities the
mediating force of the bath might lead to the formation of a p-wave molecule [261].

Finally our numerical fRG technique can be extended to study the question of how com-
peting orders change physics in a possibly associated quantum critical regime [283]. Conven-
tional ordering is signaled by singularities in higher point correlation functions Γ(n). Using
an expansion of Γ(n) in the singular momentum and spin structure, the RG algorithm pro-
vides a means to study the competition of potentially critical channels including their interre-
lated backreaction which is very difficult using other diagrammatic methods such as diagram-
matic Monte Carlo [284]. Similar to the scheme used by Giering, Husemann, Metzner, and
Salmhofer for the study of the Fermi-Hubbard model at van Hove fillling [179, 180, 181, 182]
in our approach the full self-energies are taken into account and can be used to compute non-
trivial linear response properties, such as radio-frequency signals or transport coefficients. Us-
ing these observables, our numerical fRG method could then be benchmarked against experi-
ments with ultracold atoms. This in turn could provide insight into the question how compet-
ing orders influence critical transport properties as well as which signatures they have in the
resulting quasiparticle spectrum. An example for a system of interest in this regard is the mi-
croscopically repulsive Fermi gas in two and three dimensions. Similar to the Hubbard model,
where d-wave superconductivity competes with antiferromagnetism, in the itinerant, repul-
sive Fermi gas, ferromagnetism may compete with the onset of p-wave superfluidity [285].
Whether such a scenario, partially reminiscent of the physics of 3He [279], prevents the sys-
tem from turning ferromagnetic is yet unresolved, and an fRG study including the competing
channels as well as full self-energies might shed new light on this. Furthermore, taking the
full momentum dependence of vertices into account, the fRG allows to start with arbitrary
microscopic interactions which can be used to study the phase transition to ferromagnetism
also in the case of dipolar gases trapped in lower-dimensional geometries.



Appendix A

The two-dimensional polaron and its observation

IN this Appendix we theoretically analyze radiofrequency (rf) spectroscopy experiments in
two-component Fermi gases and follow closely our work [63]. Similar to Chapter 4, we

consider a small number of impurity atoms interacting strongly with a bath of majority atoms.
While in Chapter 4 we studied impurities in three spatial dimensions, we consider here two-
dimensional geometries and find that the main features of the rf spectrum correspond again to
an attractive polaron and a metastable repulsive polaron. Our results suggest that the attractive
polaron has been observed in a recent experiment [61] and new experimental results now
directly support our predictions [65, 286].

The behavior of a mobile impurity (polaron) interacting strongly with a bath of particles is
one of the basic many-body problems studied in condensed matter physics [287, 288, 289, 290].
With the advent of ultracold atomic gases [6], the Fermi polaron problem in which a single
spin-↓ atom interacts strongly with a Fermi sea of spin-↑ atoms, has become a subject of in-
tensive research [245]. In three dimensions we found that the polaron state splits into two
branches, a low-energy state interacting attractively with the bath of fermions, and the repul-
sive polaron, which is an excited, metastable state, cf. [62, 243, 258]. In this way the polaron
exemplifies a more general paradigm of a many-body system driven into a nonequilibrium
state where a small number of high energy excitations interact strongly with the surrounding
degrees of freedom [291, 292]. The polaron is the limiting case of a Fermi gas with strong spin
imbalance, and the repulsive polaron provides insight into the question whether a quenched,
repulsive Fermi gas may undergo a transition to a ferromagnetic state even though it is highly
excited [49, 50, 62, 243, 258]. Similarly, the ground state of the polaron problem has important
implications for the phase diagram of a strongly interacting Fermi gas [240, 256, 293].

It is a key question how many-body properties are affected by reduced dimensionality, and
the polaron is a case in point. The combination of optical lattices and Feshbach resonances
[6] provides a unique setting to experimentally study strongly interacting low dimensional
systems using ultracold atoms [61, 294]. Recent advances in radiofrequency (rf) spectroscopy
afford to measure energy spectra [240] and give access to excited states as well as full spec-
tral functions using momentum resolved rf [295, 296]. So far, only the ground state of the
two-dimensional polaron problem has been investigated theoretically [297, 298, 299]with the
focus on a possible polaron-to-molecule transition. This is similar to the three-dimensional
situation, considered in Chapter 4, where for strong interactions it becomes energetically fa-
vorable for the impurity to form a molecular bound state [59, 60]. The structure of high
energy excitations and the experimental polaron signatures in rf spectroscopy have remained
open questions which we address in this Appendix.
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We introduce the microscopic Hamiltonian and discuss the few-body scattering in quasi
two-dimensional geometries in Section A.1. The few-body T-matrix is modified by the medium
and we use the Nozieres–Schmitt-Rink approach, which is equivalent to the leading order in
a 1/N expansion [110], to calculate the corresponding corrections in Section A.2. Further-
more the properties of the dressed molecular state are discussed. In Section A.3 we derive the
impurity spectral function and find that the impurity state splits into the attractive and the
repulsive branch. We compute rf spectra for homogeneous 2D systems as well as for the exper-
imentally relevant quasi-2D geometries in Section A.4. Finally, we argue that our calculation
provides an alternative explanation of the recent experiment by Fröhlich et al. [61] in terms
of the polaron picture.

A.1 Model and physics of quasi two-dimensional scattering

We consider a two-component 2D Fermi gas in the limit of extreme spin imbalance, described
by the grand canonical Hamiltonian

H =
∑

kσ

(ǫkσ −µσ )c†
kσ

ckσ +
g

A

∑

kk′q

c†
k↑c

†
k′↓ck′−q↓ck+q↑,

with single-particle energies ǫkσ = k2/2mσ for species σ (ħh = 1), chemical potentials µσ and
system area A. Having in mind the experiment of Ref. [61], we focus on the case of equal
masses m↑ = m↓ = m. Generalizations to mass imbalanced situations are straightforward
[297, 298]. In the low-energy limit the attractive s -wave contact interaction g can act only
between different species due to the Pauli principle. The majority atoms are not renormalized
by the presence of a single impurity with finite mass such that µ↑ = ǫF = k2

F
/2m at zero

temperature. The chemical potential µ↓ of the impurity atom is determined such that the
impurity state |↓〉 has vanishing density. Furthermore, µ↓ is negative due to the attractive
interaction between ↑- and ↓-atoms.

Quasi two-dimensional scattering

The two-body scattering of a spin-↑ atom and a spin-↓ atom in two spatial dimensions is de-
scribed by the exact two-body T -matrix [300]

T0(E ) =
4π/m

ln(ǫB/E )+ iπ
. (A.1)

The pole of the T -matrix at E = −ǫB corresponds to a molecular bound state, and the asso-
ciated vacuum scattering amplitude for two particles with relative momenta k and −k in the
center-of-mass frame is f (k = |k|) = mT0(2ǫk) = 4π/[ln(1/k2a2

2D
) + iπ] [6]. In the latter

expression, the scattering amplitude is parametrized in terms of the so-called 2D scattering
length a2D .
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Experimentally it is not possible to realize a perfect two-dimensional geometry. Instead
a quasi-2D geometry can be designed using an optical lattice in one direction with associated
trapping frequency ωz . The atoms are then trapped in separate sheets of laser light, where
the sheets have a finite transversal extent. In the case of such a confinement, a confinement
induced two-body bound state exists for an arbitrarily weak microscopic attractive interaction
[18, 300, 301] with binding energy ǫB > 0. The spatial extent of the bound state is related to
the 2D scattering length given by a2D = ħh/

p
mǫB > 0.

The bound state energy allows to relate our results to harmonically confined Fermi gases.
In order to do so, we have to connect the strict 2D calculation to the quasi-2D geometry
relevant to experiments [6, 301]. Well below the confinement energy ħhωz where only the
lowest transverse mode is occupied, this can be done by replacing ǫB with the exact quasi-2D
two-body binding energy. In harmonic confinement ǫB is given by ([301], cf. Eq. (82) in [6])

ℓz

a3D

=

∫ ∞

0

d u
p

4πu3

 

1−
e−Ωu

p

(1− exp (−2u))/(2u)

!

, (A.2)

whereΩ= ǫB/(ħhωz ). In consequence, ǫB becomes a function of both the 3D scattering length
a3D and the confinement length ℓz =

p

ħh/mωz . Using the parametrization ǫB = ħh/(ma2
2D
),

the 2D scattering length a2D can then be expressed in terms of its three-dimensional coun-
terpart a3D and ℓz . One finds that in the weak coupling BCS regime of small 3D scattering
length a3D < 0 the dimers are large and weakly bound (ǫB ≪ ħhωz ) [6], while in the BEC limit
of small a3D > 0 the weakly interacting molecules are too tightly bound to feel the confine-
ment (ǫB ∼ ħh2/(ma2

3D
)≫ ħhωz ). Around the Feshbach resonance (a−1

3D
= 0) there is a strong

coupling regime where the binding energy attains the universal value ǫB = 0.244 ħhωz [6, 301].

A.2 Nozieres-Schmitt-Rink approach and the many-body T-matrix

At finite density the majority atoms form a Fermi gas with Fermi energy ǫF and the two-
body scattering is replaced by many-body scattering which gives rise to important qualitative
differences, most notably the emergence of two polaron branches. In the presence of a Fermi
sea of spin-↑ atoms, the molecular state itself is dressed by fluctuations and it is described by the
many-body T -matrix. This can be calculated in the Nozieres–Schmitt-Rink approach [259],
as done in the 2D case by Engelbrecht and Randeria [302, 303]. We generalize these results to
the case of spin imbalance and compute the many-body T-matrix in the ladder approximation
which is represented diagrammatically in Fig. A.1d. This yields

T −1(q,ω) = T −1
0 (ω + i0+ µ↑ + µ↓ − ǫq/2) +

∫
d 2k

(2π)2
nF (ǫk−µ↑)+ nF (ǫk+q−µ↓)
ω+ i0+µ↑+µ↓− ǫk− ǫk+q

,

(A.3)

with the Fermi function nF (ǫ). At zero temperature where µ↑ = ǫF and µ↓ < 0, we obtain a
very compact analytical expression for the many-body T -matrix

T (q,ω) = T0

�
1
2 z± 1

2

q

(z − ǫq)
2− 4ǫF ǫq

�

(A.4)
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| ↑〉
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FIGURE A.1: Diagrammatic representation of (a) the rf photon self-energy, (b) the self-energy of
spin-↓ atoms, (c) the Dyson equation for the dressed Green’s function G↓, and (d) the many-body

T-matrix between states |↑〉 and |↓〉.

with z =ω+ i0−ǫF +µ↓ and ±= sgn Re(z−ǫq). Remarkably, within the simple Nozieres–
Schmitt-Rink approach the many-body T -matrix can be expressed as the two-body T -matrix,
cf. Eq. (A.1), with shifted argument. The spectral functionAmol(q,ω) =−2ImT (q,ω) of the
molecule is shown in Fig. A.2 for several values of the interaction strength parametrized by
the two-body binding energy ǫB . One observes a bound state peak at low energies and the
particle-particle continuum at higher energies.

The continuum of dissociated molecules arises mathematically from the branch cut of
the square root (A.4) in the region ω−(q) < ω < ω+(q), ω± = ǫF (1± q/kF )

2 −µ↓ (dash-
dotted/solid lines), as well as from the branch cut of the logarithm (A.1) for ω > ω+(q) and
forω0 = ǫq/2− ǫF −µ↓ <ω <ω−(q) if q > 2kF (dashed lines).

The bound state arising from the pole of the many-body T-matrix has the dispersion rela-
tion [297]

ωb (q) =
ǫq/2(ǫq/2− ǫF )+ ǫB(ǫF − ǫB )

ǫq/2+ ǫB

−µ↓ (A.5)

which changes qualitatively with the two-body binding energy ǫB . For large binding ǫB >
2ǫF (Fig. A.2d), the bound state has minimum energy ωb = ǫF − ǫB − µ↓ at q = 0 and
we find an effective mass m∗/m|q=0 = 2/(1− 2ǫF /ǫB ) > 2.1 For smaller binding ǫB < 2ǫF

1Note that the T -matrix does not yield the correct binding energy in the BEC limit [298]. However, in this
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FIGURE A.2: Molecular spectral functionAmol(q,ω) for different values of the two-body binding
energy ǫB/ǫF : (a) 0.1, (b) 0.5, (c) 1.0, (d) 2.5. The dashed lines mark the log continuum ω0,
dash-dotted and solid the root continuumω±.

(Fig. A.2b-c), the effective mass at q = 0 becomes negative and a new minimum appears at finite

wave vector qc = 2
Æ

kF a2D− 1/a2D [297] and with positive effective mass m∗/m|q=qc
= [2−

2/(kF a2D)]
−1 > 0. For decreasing binding energy ǫB the bound state eventually touches the

continuum at momenta q±/kF = 1±
p

1− 2ǫB/ǫF (dotted line in Fig. A.2a). For q− < q < q+
the bound state has negative residue (m∗ < m) and it ceases to exist.

A.3 Polaron and quasiparticle properties

The impurity atom is dressed with virtual molecule-hole excitations and becomes a renormal-
ized quasiparticle. Its self-energy is given by scattering an ↑-hole off a molecule as depicted in

limit the repulsive polaron is the relevant excitation and its energy is correctly reproduced in our approximation.
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Fig. A.1b. Explicitly, the self-energy reads

ΣR
↓ (q,ω) =

∫
d 2k

(2π)2
d z

π

�

nB (z)G
A
↑ (k− q, z −ω)ImT (k, z)

− nF (z)ImGR
↑ (k, z)T (k+ q, z +ω)

�

(A.6)

where GA,R
↑ refers to advanced/retarded ↑-Green’s functions. The first contribution comes

from the pole and branch cuts of the T -matrix. In the polaron problem neither the ↓-state nor
the molecular state are macroscopically occupied at zero temperature, hence the molecular
spectral function ∝ ImT has weight only at positive frequencies z > 0 where nB (z) vanishes,
cf. Fig. A.2. The second contribution of (A.6) with the bare ↑-spectral function ImGR

↑ (k, z) =

−iπδ(z − ǫk+µ↑) directly yields [268, 303]

Σ↓(q,ω) =
∫

k<kF

d 2k

(2π)2
T (k+ q,ǫk−µ↑+ω) , (A.7)

which, in three spatial dimensions, leads to the same ground state energy as a variational ansatz
[233]. The ↓-self-energy yields the ↓-Green’s function via the Dyson equation (A.8) depicted
in terms of Feynman diagrams in Fig. A.1c. We perform the integral in (A.7) numerically and
obtain the spectral function of impurity atoms

A↓(q,ω) =−2Im[ω+ i0+µ↓− ǫq−Σ↓(q,ω)]−1. (A.8)

The frequency and momentum dependence of the spectral function is shown in Fig. A.3 (left
panel) for three values of the interaction strength. In Fig. A.4 we display the spectral function
A↓(q = 0, E − µ↓) at zero momentum versus the interaction parameter η = ln(kF a2D) =

− ln(ǫB/2ǫF )/2. In both figures we set the reference energy to the free atom threshold by
subtracting the chemical potential µ↓.

At weak binding ǫB ≪ ǫF (Fig. A.3a) the attractive polaron is a well-defined quasiparticle
at small momenta but for q ¦ kF it scatters off virtual molecules and acquires a large decay
width. Similarly to the three-dimensional case, for intermediate binding (Fig. A.3b) a new
repulsive polaron state appears at positive energies. It is a metastable state with broad decay
width, and it is shifted to higher energy due to the repulsive interaction with the Fermi sea
of spin-↑ atoms. The dispersion of the repulsive polaron has a minimum at finite momentum
q ∼ kF reflecting a similar feature in the molecular spectral function (Fig. A.2c); for larger
momenta it approaches the free particle dispersion. Finally, for strong binding (Fig. A.3c)
both polaron branches are well separated and the repulsive polaron becomes an increasingly
long-lived and stable quasiparticle. Between the attractive and the repulsive polaron branches
appears the molecule-hole continuum (see also Fig. A.4). Its spectral weight is small in the case
of a broad Feshbach resonance studied here, but it is enhanced for narrow resonances by an
admixture of closed-channel molecules [62].

It is instructive to see how the quasiparticle properties of the polaron change as the interac-
tion parameter η is varied. The right inset of Fig. A.4 shows a continuous crossover where the
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FIGURE A.3: Left panels: spectral functionA↓(q , E−µ↓) for impurity atoms interacting with a

2D Fermi sea. Red lines indicate the free particle dispersion and white (black) dashed lines mark
the dispersion of the attractive (repulsive) polaron. Right panels: corresponding rf spectra
illustrating how weight is shifted from the attractive polaron state (peak at negative frequencies)
to the new repulsive polaron state at positive frequencies. The two-body bound state energy is
(a) ǫB/ǫF = 0.1, (b) ǫB/ǫF = 1, (c) ǫB/ǫF = 5.

quasiparticle weight shifts from the attractive and to the repulsive polaron branch: for small
binding (η > 0), the attractive polaron is the dominant excitation and the weight is gradually
transferred toward the repulsive branch for increasing binding (η < 0). This crossover is also
reflected in the effective mass m∗/m (Fig. A.4 left inset). Our strong coupling calculation re-
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FIGURE A.4: Polaron spectral function A↓(q = 0, E −µ↓) versus the interaction parameter η.

The dashed lines indicate the perturbation theory of Ref. [304]. Left inset: effective mass
m∗/m of the attractive and repulsive polaron as well as the molecule. Right inset: crossover
of the quasiparticle weight Z from the repulsive to the attractive polaron.

produces the perturbative results [304] for the attractive and repulsive polaron energies in the
weak and strong binding limits (dashed lines in Fig. A.4). Therefore, we expect our results to
be reliable also in the intermediate regime of strong coupling (η → 0±) where perturbation
theory in 1/η breaks down and the confinement induced resonance appears [6, 305].

A.4 Radiofrequency spectroscopy and comparison to experiment

The spectral properties of the imbalanced Fermi gas can be accessed experimentally using rf
spectroscopy. We assume that an rf pulse is used to drive atoms from an initial state |i〉 to
an initially empty final state | f 〉. We choose the final state to be strongly interacting with a
bath of a third species |↑〉 such that | f 〉 is the impurity state, | f 〉 = |↓〉. This inverse rf proce-
dure interchanges the roles of |i〉 and | f 〉 with respect to Ref. [240]; it has been proposed in
Refs. [62, 258] and it is described in detail in Chapter 4. It has been realized in the experiment
using two-dimensional Fermi gases by Fröhlich et al. [61].
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Within linear response theory, the rf transition rate is given by [255]

Irf(ωrf) = 2Ω2
rf

Imχ R(−ωrf−µi +µ f ) (A.9)

where Ωrf is the Rabi frequency, ωrf the detuning of the rf photon from the bare transi-
tion frequency and µi ( f ) the initial (final) state chemical potential. The retarded correla-
tion function χ R can be computed from the corresponding time-ordered correlation function
−iθ(t − t ′)〈[ψ†

f
(r, t )ψi (r, t ),ψ†

i
(r′, t ′)ψ f (r

′, t ′)]〉 [153, 268]. In general vertex corrections are

crucial [110, 263], but we find that they vanish in the case of negligible initial state interactions
as appropriate for the experiment [61]. At T = 0, we obtain

Irf(ωrf) = Ω
2
rf

∫

ǫq<µi

d 2q

(2π)2
A↓(q,ωrf + ǫq−µ↓) . (A.10)

Eq. (A.10) is calculated numerically and the resulting rf spectra are shown in Fig. A.3 (right
panel). The rf probes the final |↓〉 state spectral function along the free-particle dispersion up
to the initial state chemical potential µi . As in the experiment [61], we assume a balanced
initial state mixture with µi = µ↑. We find a peak in the rf spectrum once the detuning ωrf

reaches the final state chemical potential µ↓ (µ↓ is negative in the polaron problem). Similar
to the situation in three spatial dimensions, cf. Fig. 4.24, the transfer of spectral weight from
the attractive to the repulsive polaron can be directly observed in Fig. A.3.

Comparison to experiments

Recently a quasi-2D geometry has been realized experimentally with a Fermi gas of 40K atoms
[61]. Following the inverse rf procedure described above, an initially non-interacting balanced
mixture is driven into a strongly interacting final state. As long as its occupation remains small
the final state is a Fermi polaron, and our calculation predicts the experimental rf response.

In Fig. A.5 we show our trap averaged rf spectra versus magnetic field. We use the exper-
imental parameters of Ref. [61] with ωz = 2π× 80 kHz, ω⊥ = 2π× 125 Hz, and express
a3D in terms of the magnetic field as described in Section A.1, cf. [6, 306]. We incorporate the
radial trapping in the 2D plane using the local density approximation. In the experiment [61]
not only a single (central) 2D layer is populated but also additional pancakes along the axial
direction. For each of these layers we calculate the rf response

I
(ν)
trap(ω) =

∫

d 2 r ρ(ν)
LDA
(r) I (ν)

rf
(ω, r). (A.11)

The various pancakes are indicated by the index ν andρ(ν)
LDA
(r) = mǫ(ν)

F
(r )/2πħh2 is the Thomas-

Fermi distribution of the density of non-interacting fermions within a single layer. I (ν)
rf
(ω, r)

is the rf response Eq. (A.10) computed for a homogeneous system with local Fermi energy
ǫ(ν)

F
(r ) and interaction parameter η(r ) =− ln(ǫB/2ǫ

(ν)
F
(r ))/2. In the experiment [61] 30 layers

have been populated. To obtain the complete rf response of the trapped system we thus finally
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sum over 30 contributions I (ν)trap where we assume that the peak density of each layer, ε(ν)
F
(0),

varies according to a Thomas-Fermi profile in axial direction with confinement frequencyω⊥.
The local Fermi energy is ǫF (r ) = ǫF −mω2

⊥ r 2/2 with peak Fermi energy ǫF = 9 kHz.

FIGURE A.5: Trap averaged rf spectra of a quasi-2D Fermi gas: rf detuning versus magnetic field B.
The experimental data points (blue and red diamonds) are taken from Ref. [61]. Also shown
are the energy of the repulsive (dashed) and attractive (dash-dotted) polaron as well as the two-
body binding energy (solid, white) in a homogeneous system.

We observe that the lower branch of the experimental spectra (circles) agrees well with the
attractive polaron picture (Fig. A.5) and our calculation provides an alternative interpretation
to the two-body bound state (solid line) put forward in Ref. [61]. We note that also the
measured frequency shift in 3D as shown in [61] fits the polaron picture [62]. Our results
show a second rf peak at positive detunings corresponding to the repulsive polaron. The
dashed line in Fig. A.5 indicates its quasiparticle energy in the bulk (cf. Fig. A.4). As similar
for the attractive polaron energy (dash-dotted line) the trap average leads to a significant shift of
the rf peaks to lower energies. The experimental data (diamonds) in this magnetic field range
agrees qualitatively with our calculation. One possible reason for the remaining discrepancy
is the large final state occupation in the experiment.

Influence of shape and length of the rf pulse. The line shape of the rf spectra has a strong
dependence on the rf pulse shape. The rf pulse used in Ref. [61] is approximately rectangular
with duration T = 100µs. We compute the experimental rf signal as the convolution of
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FIGURE A.6: RF spectrum of a trapped quasi-2D Fermi gas for (a) B = 227 G, (b) B = 225 G,
(c) B = 224.5 G, and (d) B = 224 G. The attractive polaron gives rise to the peak at negative
frequencies and the repulsive polaron corresponds to the peak at positive frequencies. The dashed
line depicts the trap averaged signal Itrap while the solid line shows the expected experimental

signal Iexp which takes into account a rectangular rf pulse of duration T = 100µs (not to scale)
[61].

Itrap(ω) with the Fourier spectrum of the rf field [255]

Iexp(ω) =
T

2π

∫

dω′ Itrap(ω−ω′) sinc 2(ω′T /2). (A.12)

In Fig. A.6 we show the resulting rf spectra for different values of the external magnetic field.
Note that the broadening may shift the apparent peak position, see e.g. Fig. A.7b.

A.5 Conclusion

In conclusion, we studied Fermi polarons in two dimensions which exhibit an attractive and
repulsive branch and computed their rf spectra. Additional work is needed to understand
discrepancies between theory and experiment for repulsive polarons. As an example, pump
and probe experiments in the form of a sequence of two short pulses may shed further light on
this issue. Recently the attractive and repulsive polaron has been measured in experiments [65,
286]. The observation agrees well with the results from the simple NSR approach presented
in this Appendix. We expect, however, that corrections to this result will become of relevance
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FIGURE A.7: Same as Fig. A.6 but for different rf pulse duration (from top to bottom) T = 50µs,
T = 100µs, and T = 200µs (not to scale).

in future experiments with quasi-two dimensional Fermi gases, in particular at finite density
of both species, so that a more involved analysis using, for instance, methods such as those
presented in Chapter 4 will be necessary.



Appendix B

Polaron in a mass-imbalanced Fermi gas

IN this Appendix we present and summarize theoretical results which we obtained in collab-
oration with the group of Grimm in Innsbruck and which was related to the interpretation

of an at the time ongoing experiment aiming at the measurement of the excitation spectrum
of the polaron problem across the polaron-to-molecule transition.1 In this experiment a spin-
imbalanced, two-component mixture of 6Li and 40K atoms was prepared with the lighter 6Li
atoms being the majority species. In the initial state the two species were in a non-interacting
state. Then an rf pulse was applied, driving a transition between hyperfine states of the minor-
ity 40K atoms to a strongly interacting final state. In this way the proposal for an inverse rf
procedure to measure the excitation spectrum of an impurity across the polaron-to-molecule
transition, put forward by us in [62] and by Massignan and Bruun in [258] and as discussed
in detail in Chapter 4, was experimentally realized.

The two major differences to the protocol discussed in Chapter 4 are the mass imbalanced
situation and the fact that one deals with a Feshbach resonance of a relatively ‘narrow’ char-
acter. Here, the term ‘narrow’ has to be understand in the sense that the dimensionless quan-
tity kF r ∗ is of order one or larger. The experiment focussed in particular on the measure-
ment of the impurity’s energy spectrum and its quasiparticle weight. As we have seen in
Chapter 4, these properties can be described relatively well in a simple, non-self-consistent T-
matrix approach [259].2 We employed such a non-self-consistent T-Matrix approach already
in Appendix A for the description of the polaron in two spatial dimensions and we apply this
formalism here to the impurity problem in a mass-imbalanced situation (For similar, recent
treatments we refer to [64, 307, 308]).

The microscopic action describing the system of fermions of masses m↑ and m↓ with a
mass ratio m↑/m↓ = c close to a Feshbach resonance of finite width r ∗ is given by3

S =

∫

x,τ

n

ψ∗↑[∂τ −∆−µ↑]ψ↑+ψ
∗
↓[∂τ − c∆−µ↓]ψ↓

+φ∗
�

∂τ −
c

1+ c
∆+ Emol(B)

�

φ+ g (ψ∗↑ψ
∗
↓φ+ h .c .)

o

, (B.1)

1The experimental results have by now been published [64].
2Note, if one is, however, interested in a detailed quantitative description of these observables or, for instance,

the lifetime of the excited molecule and attractive polaron branch, more involved methods such as the fRG ap-
proach presented in Chapter 4 are indispensable.

3We neglect a possible background scattering potential which for the 6Li -40K mixture, where background
scattering length takes the small value abg = 63a0, is a good approximation.
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where we introduced the units 2m↑ = ħh = 1. In this convention, m↓ = 1/(2c) and the reduced

mass becomes mr =
1
2

1
1+c

. The bare detuning of the molecule φ in the closed channel is given
by Emol =µ(B −Bres) with µ the molecule’s magnetic moment.

B.1 Two-body problem

First we solve the two-body problem as it lays the basis of the renormalization of the model
and allows to connect the model parameters Bres and g to physical two-body observables.
Evaluating the standard particle-particle ladder yields the inverse, retarded dimer propagator

P R
vac ,φ(ω,q) = −ω+

c

1+ c
q2+ Emol(B)− i0+

−
g 2

4π




2Λ

(1+ c)
−

1

1+ c

s

−ω
1+ c

+
c

(1+ c)2
q2− i0+



 . (B.2)

The theory is renormalized by a redefinition of the bare detuning Emol which cures the UV
divergency. It can be inferred from the scattering amplitude which in the mass-imbalanced
case is given by

f (k) =
ħh2mr

2π

g 2

P R
vac ,φ

(ω = (1+ c)k2,0)
=

1

4π(1+ c)

g 2

P R
vac ,φ

(ω = (1+ c)k2,0)
=

1

−1/a− i k
.

(B.3)
Furthermore, the scattering length in dependence of the magnetic field close to the Feshbach
resonance is given by

a(B) =−
ħh2

2mrµr ∗(B −B0)
=−

1+ c

µr ∗(B −B0)
. (B.4)

From (see Eq. (B.3))

P R
vac ,φ(0,0) =−

g 2

4π(1+ c)a
(B.5)

then instantly follows the identification

g 2 =
4π(1+ c)

r ∗
(B.6)

for the Yukawa coupling g , and for the resonance shift∆B =µ(B0−Bres) we find

µ(B0−Bres) =
2(1+ c)

r ∗
Λ. (B.7)
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For contact interactions, Λ goes to infinity and the resonance shift becomes infinite. Using
Eqn. (B.6) and (B.7) we obtain the inverse, molecule propagator in vacuum

P R
vac ,φ(ω,q) = −ω+

c

1+ c
q2− i0++

− 1+c
r∗a

︷ ︸︸ ︷

µ(B −B0)

+
g 2

4π(1+ c)
︸ ︷︷ ︸

(1+c)/r ∗

s

−ω
1+ c

+
c

(1+ c)2
q2− i0+. (B.8)

It is instructive to analyze the spectrum of this propagator in some detail and compare it to the
spectrum obtained from the molecule propagator of the two-channel model which features a
finite, physical range σ and which we studied in Chapter 2, cf. Eq. (2.24). In view of our
discussion of compositeness in Section 4.5, we focus in particular on the quasiparticle weight
Zφ of the molecule across the Feshbach resonance.

Spectrum of the resonance model (σ = 0). In Fig. B.1(a) we show the spectral function Aφ
as defined in Eq. (4.45) with GR

φ
= 1/P R

vac ,φ
from Eq. (B.8) at zero momentum as function of

the inverse, dimensionless scattering length r ∗/a. One clearly discerns the bound state peak at
negative frequencies and positive scattering length a with energy given by the generalization
of Eq. (2.36) to mass-imbalance,

(a)
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FIGURE B.1: (a) Spectral function Aφ(ω,0) of the molecule in vacuum at zero momentum in

units of r ∗. (b) Quasiparticle weight Zφ of the molecule. Inset: Spectral weight Zφ close to

resonance. For both figures we choose the mass-balanced situation, c = 1.
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ED =−
1+ c

4r ∗2




1−

È

1−
4r ∗

a






2

. (B.9)

For positive a far away from resonance the molecule is an elementary particle – it has com-
plete overlap with its bare counterpart – and its quasiparticle weight approaches unity, see
Fig. B.1(b). For the resonance model (B.1) is possible to derive an analytical expression for Zφ
which is given by

Zφ = 1/

 

1+
1

1−
p

1+ 4r ∗/a

!

, (B.10)

and which is independent of the mass ratio c . As the Feshbach resonance is approached the
molecular bound state looses its quasiparticle weight, which is transferred into the continuum
of states of unbound atoms at positive frequencies. This continuum of states then carries most
of the spectral weight. Note that Aφ(ω,q) fulfills the sum rule Eq. (4.32) for arbitrary values
of a. At the resonance a → ∞, Zφ goes to zero and the molecule dissolves completely, see
Fig. B.1(b,inset). For negative scattering length a < 0 the quasiparticle pole ceases to exist
and the molecule is a purely composite particle with C = 1 − Zφ = 1. Remarkably, the
molecule remains purely composite for arbitrary values of a < 0. This is due to the infinite
resonance shift given by Eq. (B.7) which prohibits the interacting molecule to approach the
bare molecular state even far from resonance although the interactions are weak in this regime.
This is fundamentally different in the more realistic two-channel model of finite range σ as
discussed below and in Chapter 2.

Spectrum of a realistic finite range model (σ > 0). Let us now analyze the spectrum of
the molecule propagator for the more realistic two-channel model (2.23) in Chapter 2. In this
model Pvac ,φ is given by Eq. (2.24). First note that the spectral function again fulfills the sum
rule (4.32) for an arbitrary value of a.

In Fig. B.2(a) we show the spectral function Aφ(ω,0) as function of σ/a for a closed-
channel dominated resonance of width r ∗/σ = 3, whereas in Fig. B.2(b) the spectrum for an
open-channel dominated resonance characterized by r ∗/σ = 0.05 is shown. Note that in the,
compared to the resonance model (where σ = 0), more realistic finite range model (2.23) σ sets
the scale of the two-body problem. Only this allows the definition of open- and closed-channel
dominated resonances by comparing the actual short-distance scale σ to r ∗. Contrarily, in the
resonance model such a comparison is not possible as σ → 0, and only a notion of narrow or
broad resonances in the sense of kF r ∗ being large or small, respectively, is possible. From this
perspective the finite range model with σ > 0 allows for a much more detailed study of physics
at a Feshbach resonance. Nonetheless, for the many-body problem considered below we will
focus on the simpler resonance model because it allows already a quite accurate description of
the physics at low energies and close to resonance.

In Fig. B.3(a) we show the quasiparticle weight of the molecule for the open-channel dom-
inated resonance of width r ∗/σ = 0.05, cf. Fig. B.2(b). As the resonance is approached the
bound-state molecule (green line) becomes a composite particle. In fact, the universal dimer
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(a) (b)

FIGURE B.2: Spectral function Aφ(ω,0) of the molecule in vacuum at zero momentum in depen-

dence of the dimensionless inverse scattering length σ/a for the finite range two-channel model
(2.23). (a) Closed-channel dominated resonance of width σ/r ∗ = 1/3; inset: same spectrum
close to the resonance. (b) Open-channel dominated resonance of width σ/r ∗ = 20.
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FIGURE B.3: (a) Quasiparticle weight Zφ of the molecule in vacuum as function of the dimension-

less inverse scattering length σ/a for an open-channel dominated resonance. The bound state at
negative energy (green line) looses weight which is mostly transferred to the renormalized closed-
channel bound state at positive energies (blue line). Only a fraction of the weight is found in the
scattering continuum; inset: weight of the bound state close to resonance. (b) Decay width Γφ
according to the approximate formula (4.52) of the renormalized closed-channel molecule at
positive energy compared to its energy Eφ. Although carrying a substantial fraction of spectral

weight the closed-channel molecule is highly unstable close to the resonance due to the decay into
unbound atoms in the scattering continuum. It becomes, however, a well-defined quasiparticle
away from resonance reflected by Zφ→ 1 and Γφ/Eφ→ 0.
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has again a quasiparticle weight which vanishes linearly in 1/a close to the resonance (black
dashed line). Contrarily to the resonance model, however, most of the lost spectral weight is
transferred to the closed-channel molecular state at positive energy, visible as a rather broad
peak in Fig. B.2(b), and which carries most of the weight (blue line Fig. B.3(a)). This is differ-
ent from the resonance model where the weight lost in the bound state at negative energy is
transferred solely into the scattering continuum at positive energies. From our analysis here,
the reason for this difference becomes apparent: in the resonance model, the resonance shift
is infinite so that there is just no bare state at finite, positive energies into which the weight
could be transferred.

The molecular state in the finite range model at positive energies can decay into unbound
atoms in the scattering continuum due to the coupling between the open and closed channel.
For this reason the molecular state is relatively short-lived close to the resonance. We show the
width Γφ/Eφ (using the approximate formula (4.52)) of the molecular state at its quasiparticle
energy Eφ > 0 in Fig. B.3(b). We find that the molecule is indeed not a well defined particle
close to resonance. For a → 0− it becomes, however, again a stable quasiparticle excitation
with almost no composite character, Cφ = 1−Zφ→ 0.

B.2 In-medium molecule propagator

After having analyzed the two-body problem in some detail, let us come back to the many-
body polaron problem. Within the non-self-consistent T-matrix approximation we have to
first derive the many-body T-matrix which is, within our bosonic-fermionic model Eq. (B.1)
equivalent to the molecule propagatorGφ in the medium of the ↑-Fermi sea. It is given by the
resummed ladder diagram and separates into two parts:

G−1
φ
(ν ,q) =

A
︷ ︸︸ ︷

PΛφ −
g 2

(2π)2

∫ Λ

0
d p p2

∫ 1

−1
d x

1

−iν + c(p+ q)2+p2−µ↓−µ↑

+
g 2

(2π)2
θ(µ↑)

∫ pµ↑
0

d p p2
∫ 1

−1
d x

1

−iν + c(p+ q)2+p2−µ↓−µ↑
︸ ︷︷ ︸

B

. (B.11)

While the terms denoted by A are given by the solution of the two-body problem when in-
cluding the additional chemical potentials into Eq. (B.8), the term B represents the effect of the
medium. It can be calculated in an analytical form which facilitates a fast numerical calculation
of the polaron selfenergy in Eq. (B.13) below.

In the calculation the minority chemical potential µ↓ is fixed to yield the desired density
of ↓-atoms. In Fig. B.4 we show the in-medium spectral function of the field φ at unitarity
for two different mass ratios and for a finite density of both the ↑- and ↓-atoms in the case
of an open-channel dominated Feshbach resonance: in Fig. B.4(a) for the mass-balanced case
c = 1 and in Fig. B.4(b) for c = 6/40 as appropriate for a mixture of 6Li and 40K atoms.
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(a) (b)

FIGURE B.4: In-medium spectral function Aφ at unitarity for the two mass ratios c = 1 [(a)]

c = 6/40 [(b)]. The minority chemical potential is chosen to take the value of the critical
‘magnetic field’ hφ = (µ↑ − µ↓)/2 at which the molecule starts to have spectral weight at

negative frequencies implying a finite occupation of dimers.

In both cases the chemical µ↓ is chosen to be at the critical value hφ = (µ↑ − µ↓)/2 where
the spectral function Aφ(ω,p) begins to have weight at negative frequencies, so that a finite
occupation of dimers emerges. Since the calculation was performed at zero temperature, these
dimers condense and the system becomes superfluid. Remarkably, in the mass-balanced case
the minimum of the dimer spectral function is at a finite momentum which may be interpreted
as the onset of the transition to a superfluid of the FFLO type [309, 310]. Note, whether
at finite density FFLO is really the ground state is an open problem. For mass imbalance
c > 1 this effect is even more pronounced. It is, however, likely that this effect will disappear
when the feedback of the fermion selfenergy into the T-matrix loop is properly included. For
a mass imbalance c = 6/40 [Fig. B.4(b)] the minimum of Aφ remains at zero momentum
(corresponding to a positive effective mass of the dimer) and the non-selfconsistent T-matrix
approach thus predicts a transition to a ‘standard’ superfluid of the BCS type. Also note that
the spectral function of the dimer Aφ bears much resemblance with the two-dimensional case,
see f.e. Fig. A.2 in Appendix A.

B.3 Polaron spectral function

Let us now analyze the polaron problem of the mass-imbalanced Fermi gas with mass ratio
c = 6/40. The calculation is analogous to the case of two spatial dimensions and the polaron
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(a) (b) (c)

FIGURE B.5: Polaron spectral function A↓(ω,q = 0) versus dimensionless, inverse scattering

length for various widths of the Feshbach resonance and mass ratio c = 6/40. (a) kF r ∗ = 10−4

(b) kF r ∗ = 0.5 (c) kF r ∗ = 5.

spectral function

A↓(ω,q) = 2Im[−ω− i0−µ↓+ ǫq+Σ↓(q,ω)]−1 (B.12)

is derived from the calculation of the polaron selfenergy which is given by

Σ↓(q,ω) = g 2
∫

k<kF

d 3k

(2π)3
Gφ(k+ q,ǫk−µ↑+ω), (B.13)

with the dimer propagator from Eq. (B.11). As discussed in detail in Chapter 4, in the polaron
problem the chemical potential µ↓ is fixed such that neither the dimer nor the impurity has a
finite occupation.

In Fig. B.5 we show the polaron spectral function A↓(ω,q = 0) at zero momentum as
function of the dimensionless interaction strength 1/(kF a) for a mass-imbalanced Fermi gas
with mass ratio c = 6/40. In Fig. B.5(a) and (b) the results for a broad and a resonance of
intermediate width kF r ∗ = 10−4 and kF r ∗ = 0.5, respectively, are shown and they are similar
to the result for the mass-balanced case. The spectrum, however, changes dramatically when
a narrow resonance is considered as shown e.g. in Fig. B.5(c) for kF r ∗ = 5. On the one hand,
the attractive polaron branch appears only for very weak attraction kF a → 0− and spectral
weight is transferred to a more pronounced molecule-hole continuum close to resonance and
in between the two polaron branches (note, the plot-range of A↓ is the same for all plots in
Fig. B.5). On the other hand, the repulsive polaron shows an enhanced lifetime. This indi-
cates that narrow resonances help to stabilize the repulsive Fermi gas of cold atoms. Note,
however, that the energy of the repulsive polaron is shifted to lower energies. In fact, the
energy of the repulsive polaron remains below the Fermi energy of the majority for arbitrary
interaction strength. Therefore it is always preferable to inject an impurity into the ↑-Fermi
sea instead of increasing the density of majority atoms. This shows that the increase of the
lifetime of the repulsive branch comes at a prize as it becomes at the same time impossible
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FIGURE B.6: As discussed in Chapter 4, for small occupation of the minority species in the initial
state, the rf response is accurately described by A↓(ω,q = 0) and can be compared to the exper-

imental rf response. (a) Polaron spectral function A↓(ω,q = 0) versus dimensionless, inverse

scattering length for a Feshbach resonance of width kF r ∗ = 0.95. Both panels show the same
spectral function. In the lower panel the plot range is chosen so that the molecule-hole contin-
uum is saturated at unitary in order to mimic the high power rf pulse used in the experiment
[64]. (b) Experimental rf response of an resonance of the same width kF r ∗ = 0.95. (upper
panel) Low power rf spectrum. (lower panel) High power rf spectrum which allows to access
the final state spectral function in regions of small weight. The experimental figures in (b) are
taken from [64] with the courtesy of Grimm et al..

to cross the threshold to the onset of saturated ferromagnetism: again, the Stoner transition
defies a quantum simulation with cold atoms.

Finally, we compare our results to experimental data. The polaron problem has been stud-
ied experimentally in [64]. In the following we calculate the polaron spectral function for
parameters as appropriate for this experiment [64], where a mixture of 6Li and 40K atoms
had been prepared with a Fermi energy of the majority 6Li atoms of εF = h × 44kHz. This
corresponds to a Fermi wave vector kF = 1/2850a0. Furthermore, the width of the resonance
is r ∗ = 2700a0 so that kF r ∗ ≈ 0.95. In the experiment [64] the mixture in the initial state
was strongly spin-imbalanced. In this case, the rf pulse addresses only the low momentum
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part of the final state spectral function so that A↓(ω,q = 0) is expected to accurately reflect
the expected rf response of the system, cf. Eq. (4.60) in Chapter 4. In Fig. B.6(b) we show the
experimentally measured rf response from [64]. While the upper panel shows the low power
rf response, the lower panel corresponds to the response when the rf is driven at high power
saturating the final state spectral function. In Fig. B.6(a) we show our theoretical result for the
spectral function A↓(ω,q = 0) at zero momentum as function of the inverse, dimensionless in-
teraction strength 1/(kF a)which is expected to reflect rather accurately the rf response. There
is no fit parameter involved in the calculation and we use the experimental values of kF and r ∗

as input. We find that our result indeed compares remarkably well to the experimental data.



Appendix C

The functional renormalization group

IN this Appendix we briefly introduce the functional renormalization group which is a mod-
ern realization of Wilson’s renormalization group concept [97]. It is used in quantum and

statistical field theory, especially when dealing with strongly interacting systems (for reviews
see [166, 167, 168, 169, 170, 171, 172, 173, 174, 175], for a review which focuses on the applica-
tion of the functional renormalization group to the few-body problem, and on which we base
this appendix, we refer to [46]). The method combines functional methods of quantum field
theory with the physically intuitive renormalization group idea. The main motivation for its
development was the observation that it is often more useful and transparent to perform the
integration of quantum fluctuations in continuous steps rather than doing this at once. The
renormalization technique allows to interpolate smoothly between the known microscopic
laws and the complicated macroscopic phenomena. In this sense, it bridges the transition
from simplicity of microphysics to complexity of macrophysics.

In quantum field theory (QFT) quantum fields are associated with particles [311, 312].
For example, in the Euclidean, grand canonical action

S =

∫

dτ
∫

d 3 x
¦

ψ∗
�

∂τ − ∆
2m
−µ

�

ψ+ gΛ(ψ
∗ψ)2

©

, (C.1)

which corresponds to the Hamiltonian in Eq. (1.3), the complex scalar field ψ represents a
non-relativistic bosonic particle. In QFT, the effective action Γ is a quantum analogue of the
classical action functional S . It depends on the fields of a given theory and includes all quan-
tum fluctuations. Variation of Γ with respect to fields yields exact quantum field equations.
Mathematically, Γ is the generating functional of one-particle irreducible vertices. Interesting
physics, like propagators (two-point Green functions) and scattering amplitudes (higher-point
amputated, connected Green functions), can be extracted from Γ in a straightforward way. In a
generic interacting field theory the effective action Γ is, however, difficult to obtain. The func-
tional renormalization group provides a practical tool to calculate Γ based on renormalization
group ideas.

The central idea of functional renormalization is the introduction of a scale-dependent
effective action functional Γk often called average action or flowing action. The average ac-
tion Γk interpolates smoothly between the known microscopic action S and the full quantum
effective action Γ where k is the RG sliding scale. The dependence on the sliding scale k is in-
troduced by adding an infrared regulator term to the microscopic action. This regulator term
has the purpose to suppress fluctuations below the scale k and it is introduced by defining (for
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a bosonic field ψ̃) the k-dependent Schwinger functional Wk[J ]

eWk[J ] =

∫

Dψ̃ e−S[ψ̃]−∆Sk[ψ̃]+
∫

x
J ψ̃. (C.2)

The difference to the standard QFT Schwinger functional W [J ] is the additional term∆Sk[ψ̃]

in the exponential in Eq. (C.2). ∆Sk[ψ̃] is quadratic in the fields. In momentum space it reads

∆Sk[ψ̃] =
∫

Q

ψ̃∗(Q)Rk (Q)ψ̃(Q). (C.3)

where we use the abbreviations Q = (q0,q) and
∫

Q =
∫

q0

∫

q
with

∫

q0
= 1

2π

∫∞
−∞ d q0 (at T = 0)

and
∫

q
= 1
(2π)3

∫

d 3q . The infrared regulator function Rk(Q) is not fixed in the unique way, but

must satisfy three important conditions. First Rk(Q) should suppress infrared modes below
the scale k, i.e.,

Rk(Q)> 0, (C.4)

for Q2≪ k2. This adds effectively an additional masslike term to the particle suppressing its
propagation if its momentum Q is below the RG scale k. Second, the regulator must vanish
in the infrared

lim
k→0

Rk(Q) = 0. (C.5)

With this condition it is guaranteed that Wk equals the standard, exact Schwinger functional
W in the infrared, W =Wk=0. Finally, we should recover the classical action in the ultraviolet
and thus we demand

lim
k→∞

Rk (Q) =∞. (C.6)

Apart from these requirements, the regulator can be chosen arbitrarily. Nevertheless, it is rec-
ommended to pick the regulator carefully depending on a concrete physical problem. More-
over, one should better choose a regulator that respects as many symmetries of the studied
problem as possible. For our purpose it is convenient to choose Rk(Q) = Rk(q) independent
of the frequency argument q0. Often, Rk(q) is chosen to decay for large q2 ≫ k2. As can be
seen from Eq. (C.2) the regulator Rk suppresses fluctuation modes with momenta q2 ® k2 by
giving them a large “mass” or “gap”, while high momentum modes are not (or only mildly)
affected. Thus, Wk includes all fluctuations with momenta q2 ¦ k2.

The flowing action Γk is now obtained by subtracting from the Legendre transform of the
Schwinger functional,

Γ̃k[ψ] =
∫

Jψ−Wk[J ] (C.7)

with ψ= δWk[J ]/δJ , the cutoff term

Γk[ψ] = Γ̃k[ψ]−∆Sk[ψ]. (C.8)
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The reason why the flowing action Γk[ψ] is the central object to study is that it obeys the
elegant and exact functional flow equation

∂kΓk[ψ] =
1

2
STr∂k Rk (Γ

(2)
k
[ψ]+Rk)

−1, (C.9)

derived by Wetterich [176]. In Eq. (C.9) ∂k denotes a derivative with respect to the sliding
scale k at fixed values of the fields. The functional differential equation for Γk[ψ] must be
supplemented with the initial condition Γk→Λ = S , where the “classical action” S[ψ] describes
the physics at the microscopic ultraviolet scale k =Λ. Importantly, in the infrared limit k→ 0
the full quantum effective action Γ[ψ] = Γk→0[ψ] is obtained. In the Wetterich equation STr
denotes a supertrace operation which sums over momenta, frequencies, internal indices, and
different fields (taking bosons with a plus and fermions with a minus sign).

It is important to note that the exact flow equation for Γk[ψ] has a one-loop structure.
This is a significant simplification compared for example to perturbation theory where all
multi-loop Feynman diagrams must be computed to obtain exact results. Remarkably, the
flow equation (C.9) implicitly takes care of this. Note however, that Eq. (C.9) is a nonlinear
functional differential equation. Indeed, on the right-hand side in the denominator appears
the second functional derivative Γ(2)

k
[ψ] which is a functional of the fields. For this reason it

is usually not possible to find closed solutions to Eq. (C.9) and one has to rely on a truncation
of Γk .

To make the implications of (C.9) more transparent we write the flowing action as an
expansion in some complete set of operators

Γk[ψ] =
∞∑

n=0

cn O [ψ]. (C.10)

The renormalization group evolution of Γk traces a trajectory in the theory space, which is
the infinite-dimensional space of all possible couplings {cn} allowed by the symmetries of the
problem. At the microscopic ultraviolet scale k = Λ one starts with the initial condition
Γk=Λ = S . As the sliding scale k is lowered, the flowing action Γk evolves in theory space
according to the functional flow equation (C.9). Accordingly, different couplings cn become
running or flowing under the renormalization group evolution. The choice of the regulator
Rk is not unique, which introduces some scheme dependence into the renormalization group
flow. For this reason, different choices of the regulator Rk correspond to the different paths
in theory space. At the infrared scale k = 0, however, the full effective action Γk=0 = Γ is
recovered for every choice of the cutoff Rk , and all trajectories meet at the same point in the
theory space. When an approximation of Γk is employed, however, a regulator dependence of
Γ is introduced.





Appendix D

BCS transition temperature and Gorkov correction
from functional renormalization

IN this Appendix we show how the critical temperature Tc for superfluid pairing in a spin-
balanced Fermi gas can be computed from the functional renormalization group. If one

only includes pairing fluctuations in the particle/particle (p/p) channel one arrives at the stan-
dard BCS result [247] (for a derivation using the fRG, see e.g. also [213])

Tc/TF =
8eγ

πe2
e
− π2

1
kF |a| . (D.1)

This result, however, neglects the effect of particle-hole (p/h) fluctuations which lower the
critical temperature by a factor of (4e)1/3 ≈ 2.2 as shown by Gorkov and Melik-Barkhudarov
[249]. A physical interpretation of this suppression in terms of the exchange of spin fluctu-
ations is given in [313]. The inclusion of p/h fluctuations in the fRG framework had been
studied approximately in previous work [214]. In this Appendix we calculate the correction
exactly from fRG flow equations.

D.1 Microscopic action and pairing instability

We consider a Fermi gas described by the purely fermionic, classical action [cf. (4.4)]

S =

∫

x,τ

n ∑

σ=↑,↓
ψ∗σ[∂τ −∆−µσ]ψσ + gΛψ

∗
↑ψ
∗
↓ψ↓ψ↑

o

. (D.2)

which is equivalent to the mixed bosonic-fermionic action [cf. (4.5)]

S =

∫

x,τ

n ∑

σ=↑,↓
ψ∗σ[∂τ −∆−µσ]ψσ +φ

∗m2
φ,Λφ+ h(ψ∗↑ψ

∗
↓φ+ h .c .)

o

, (D.3)

obtained by a Hubbard-Stratonovich transformation in the pairing channel with the pairing
field φ ∼ ψψ. Integrating out the pairing field φ by, for instance, the insertion of its classical
equation of motion

φ∗ =−
h

m2
φ

ψ∗↑ψ
∗
↓ (D.4)
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into Eq. (D.3) yields the identification gΛ =−h2/m2
φ,Λ

. Thus an attractive contact interaction

gΛ < 0 directly implies a positive ‘mass’ gap m2
φ,Λ

> 0.

We are interested in the regime where kF |a| ≪ 1. Then the fermionic propagators are
assumed not to be renormalized and according to power-counting the momentum dependence
of the fermionic vertex (or the dimer propagator, respectively) can be neglected. Based on
this argument we devise a truncation of the effective flowing action Γk in a leading order
vertex and derivative expansion which amounts in only promoting the couplings g and m2

φ
,

respectively, to be RG scale dependent, g → gk , and m2
φ
→ m2

φ,k
. Specifically, the purely

fermionic truncation reads

Γk =

∫

x,τ

n ∑

σ=↑,↓
ψ∗σ[∂τ −∆−µσ]ψσ + gkψ

∗
↑ψ
∗
↓ψ↓ψ↑

o

. (D.5)

The corresponding mixed, bosonic-fermionic truncation is given by

Γk =

∫

x,τ

n ∑

σ=↑,↓
ψ∗σ[∂τ −∆−µσ]ψσ +φ

∗m2
φ,kφ+ h(ψ∗↑ψ

∗
↓φ+ h .c .)

o

. (D.6)

When considering only the flow in the p/p channel, at this level of truncation the identifica-
tion of g with m2

φ
holds on every RG scale,

gk =−
h2

m2
φ,k

. (D.7)

Note that when the Gorkov correction due to p/h fluctuations are considered the fermionic
truncation (D.5) will be more convenient because staying within the truncation (D.6) then
necessitates the use of a rebosonization procedure [214].

The specific values of gk and m2
φ,k

, respectively, depend, besides the scattering length a,

on the temperature T and density n = k3
F
/(3π2) set by the chemical potential µ. The onset of

(local) superfluidity and the breakdown of Fermi liquid theory is indicated by a divergence in
the coupling gk during the RG flow which is equivalent to the emergence of a negative mass
gap m2

φ,k
< 0 and a corresponding symmetry breaking in the effective potential U (φ∗φ).

The (pseudo-)critical temperature Tc can be determined by tuning the temperature in such
a way that the divergence in gk occurs exactly in the infrared. The condition for the onset of
superfluidity then reads

gI R

�
�
�
Tc

=∞. (D.8)

This condition corresponds to the Thouless criterion and gives strictly speaking only an upper
bound on Tc : for T < Tc the flow enters the symmetry broken regime where Goldstone
bosons associated with the Mexican hat structure of the effective potential U (φ∗φ) in the
pairing field φ lead to a further suppression of Tc . Indeed, in two spatial dimensions it is for
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the Goldstone bosons that symmetry is restored in the flow for any finite temperature so that
no condensate appears unless T ≡ 0 [314, 315, 316]. In fact, if one wants to study the flow
also in the symmetry broken phase, it is more convenient to consider the bosonic truncation
(D.6) since here the full functional dependence of the effective potential can be studied. In
the following we are interested, however, only in the derivation of the critical temperature
according to (D.8) and hence we will only consider the purely fermionic truncation (D.5)
where the only running coupling is given by gk .

In order to derive the RG flow equation of gk we have to find the correct projection of the
full RG equation

∂kΓk =
1

2
∂̃kSTr ln[Γ(2)

k
+Rk], (D.9)

onto gk . In order to find this projection it is helpful to take a step back and to realize that
in general during the RG flow the scale dependent vertex function Γ(4)

k
corresponding to the

interaction term

∼
∫

Pi

Γ
(4)
k
(P1, P2, P ′1)ψ

∗
σ (P1)ψ

∗
σ ′
(P2)ψσ ′(P

′
1)ψσ (P1+ P2− P ′1) (D.10)

acquires a complicated momentum and energy dependence, where the Pi denote four-momenta
Pi = (ωi ,pi ) as illustrated in Fig. D.1(a). Since we are only interested in the regime where

(a) (b)

FIGURE D.1: (a) The four-fermion vertex Γ(4) acquires a complicated dependence on the three
independent four-momenta P1, P ′1, and P2. (b) Reduced momentum dependence. In the weak
coupling limit scattering takes place close to the Fermi surface. Considering only the pairing
instability, the parametrization of Γ(4) in terms of the center-of-mass momentum of the pair q

is convenient. For zero-momentum pairs, q = 0, and the vertex is only dependent on the angle
between p1 and p′1.

kF |a| ≪ 1 and T ≪ TF this dependence can be simplified considerably. First, in this regime
the scattering of fermions takes place close to the Fermi surface. For this reason the energy
of the incoming atoms is zero according to the perturbative dispersion relation E = p2 −µ
which vanishes for |p| = kF . This dispersion relation is valid since the fermions are assumed
not to be renormalized. Furthermore, we consider the instability towards superfluid pairing.
Therefore we may consider the momentum configuration shown in Fig. D.1(b). When study-
ing the full q dependence of the vertex one finds that the leading instability takes place for
zero-momentum pairs so that q = 0, which implies that no phase of the Fulde-Ferrell-Larkin-
Ovchinnikov (FFLO) type appears [309, 310]. This finally implies that the vertex is only a
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FIGURE D.2: Diagrammatical representation of the flow equation of the point-like coupling gk
(black solid circle). The operator Ps denotes the s-wave projection according to Eq. (D.11) and
the prescription described below Eq. (D.10).

function of p1 − p′1, i.e. Γ(4)
k
= Γ

(4)
k
(p1 − p′1), and because both momenta are on the Fermi

surface, |p1| = |p′1| = kF , only the dependence on the angle θ = ∠(p1,p′1) remains. As the
pairing takes place in the s-wave channel our final projection onto the coupling gk reads

gk =
1

2

∫ +1

−1
d cosθ Γ(4)

k
(cosθ). (D.11)

The flow equation of the vertex gk is shown in terms of diagrams in Fig. D.2 where we also
indicate the underlying momentum dependence of the vertex. The flow equation reads

∂k gk = −g 2
k
∂̃k

∫

Q

Gc (Q)Gc (−Q)

−g 2
k
∂̃k

1

2

∫ 1

−1
d cosθ

∫

Q

Gc (l+ (p′1−p1),ωn)G
c (l,ωn) (D.12)

where
∫

Q
= T

∑

ωn

∫ d 3 l
(2π)3

, Q = (l,ωn), θ = ∠(p1,p′1), |p1| = |p′1| =
p
µ, and in the first

term we used that the integrand does not depend on θ so that the angular integration over θ is
trivial. Now me may invert this flow equation by division by−g 2

k
. If we kept the momentum

dependence of Γ(4)(P1, P2, P ′1), this inversion could not be done as Γ(4) then appeared inside

the integral. Furthermore, ∂̃k commutes with gk because the derivative ∂̃k acts only on the
regulators inside the cutoff Green’s functions Gc as described in Chapter 4. After the inversion
the flow equation for g−1

k
reads

∂k g−1
k

= ∂̃k

∫

Q

Gc (Q)Gc (−Q)

+∂̃k

1

2

∫ 1

−1
d cosθ

∫

Q

Gc (l+ (p′1−p1),ωn)G
c (l,ωn). (D.13)
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Note, we could equally well derive all results in terms of a flow equation for gk , which would
then, however, necessitate a numerical solution.

There are two contributions in Eq. (D.13). The first is a p/p contribution. It is responsible
for the pairing instability and will lead to the BCS transition temperature. The second p/h
diagram takes into account spin and exchange fluctuations which lead to a suppression of the
pairing instability.

D.2 BCS transition temperature from functional renormalization

It is instructive to concentrate on BCS theory first which ignores the second term in Eq. (D.13)
altogether. Before calculating Tc in BCS theory we show from the RG flow equation (D.14)
below that for arbitrarily weak attraction, gΛ < 0, the Fermi liquid is unstable with respect to
superfluid pairing at zero temperature.

Superfluid pairing at T = 0 for arbitrarily weak attraction

We have to evaluate the flow equation

∂k g−1
k
= ∂̃k

∫

Q

Gc (Q)Gc (−Q). (D.14)

In this Appendix we employ sharp regulators in momentum space such that

Gc (q,ωn ) =G(q,ωn )θ(|q2−µ| − k2). (D.15)

At zero temperature Eq. (D.14) can straightforwardly be evaluated. One obtains

∂k g−1
k

= −
∫

dω

2π

∫
d 3q

(2π)3
2kδ(|q2−µ| − k2)

(−iω+ ξq)(iω+ ξ−q)

= −
k

2π2





∫ ∞

p
µ

d qq2δ(q
2−µ− k2)

q2−µ
−
∫ pµ

0
d qq2δ(µ− q2− k2)

q2−µ



 . (D.16)

where in the first step we acted with ∂̃k on the step function and where we define ξq ≡ q2−µ.
In the second step we performed the frequency integration. Here, the two terms arise due to
the pole structure of the integrand and the second term appears only for positive chemical po-
tential µ> 0. This becomes in particular important when studying the BEC-BCS crossover in
a simple (e.g. Nozieres-Schmitt–Rink like) truncation, where the fermions are not renormal-
ized. Then on the BEC side of the resonance, where µ < 0 this term does not contribute. In
Chapter 4 we have seen that in a more elaborate truncation where the fermions are renormal-
ized1 the second term would even contribute on the far BEC side due to the large self-energy

1Note, in a self-consistent Ward-Luttinger approach, which goes far beyond a simple Nozieres-Schmitt–Rink
calculation and which was employed by Haussmann et al. to study the BEC-BCS crossover [37, 58, 264, 255, 265],
this effect is included as well.
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of the fermions. Evaluating the δ-distributions in Eq. (D.14) then finally yields

∂k g−1
k
=−

1

4π2k

�Æ

µ+ k2+
Æ

µ− k2θ(µ− k2)
�

. (D.17)

At this point let us set the initial condition for gΛ which is determined by two-body scat-
tering physics and the UV regularization of the contact interaction. In order to obtain gΛ we
have to evaluate Eq. (D.17) at vanishing density, µ= 0, which yields

∂k g−1
k
=−

1

4π2
→

1

gΛ
=

1

gI R

−
Λ

4π2
(D.18)

so that we obtain
1

gΛ
=

1

8πa
−
Λ

4π2
. (D.19)

The analysis of this simple relation allows for a brief side remark: in Chapter 2 we learned that
1/Λ can be viewed upon as representing the range of the microscopic interaction potential. In
consequence Eq. (D.19) tells us that for microscopic repulsive interactions the scattering length
a is bounded from above by [209]

a <
π

2Λ
(for gΛ > 0). (D.20)

For contact interactions, Λ→∞, and thus a→ 0, which can be viewed as a reincarnation of
the triviality of non-relativistic φ4 theory.

We are, however, interested in attractive, microscopic interactions, gΛ < 0, for which no
such bound applies. Indeed depending on the choice of gΛ any scattering length a can be
achieved as can easily be seen by inversion of Eq. (D.19),

a =
1

8π
gΛ
+ 2
πΛ

. (D.21)

Hence a ‘shape resonance’ condition, cf. Section 2.1 in Chapter 2 is fulfilled for gΛ =−4π2/Λ.
After having discussed the few-body physics, let us come back to the question of an instabil-

ity of a Fermi gas towards superfluidity at T = 0 for arbitrarily weak attraction, parametrized
by a small, negative scattering length a.2 Eq. (D.17) straightforwardly answers this question:
first note that ∂k g−1

k
is negative for all k, which implies that 1/gk increases towards the in-

frared. In the case of finite density, when µ > 0 we observe that ∂k g−1
k

diverges for k → 0.
This in turn means that for any interaction strength gΛ < 0, 1/gk will cross zero at some
finite RG scale k. Since gk = ∞ implies the onset of symmetry breaking, this shows that
the spin-balanced Fermi gas with arbitrarily weak, attractive interactions in unstable towards
superfluid pairing at T = 0.

2From Eq. (D.19) it is then apparent that this implies an arbitrarily weak gΛ < 0.
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Transition temperature

In order to determine the critical temperature Tc of BCS theory we have to solve Eq. (D.14) at
finite temperature and density n. Tc is then given by the criterion for the onset of superfluidity
Eq. (D.8). This calculation is a nice and simple example to show the connection between the
present fRG approach and resummed perturbation theory. To see this connection we solve
the RG flow equation in two different ways which lead to the same result. First we explicitly
derive the flow equation for gk in an analytical form and then integrate the flow from the UV
to the IR. Second, we use a more direct, simpler approach which relies on the perturbative
assumption of non-renormalization of the fermionic Green’s function to instantly integrate
the flow without ever calculating the flow equation explicitly.

Let us start with the first approach. The BCS flow equation is given by Eq. (D.14). We
act with the derivative ∂̃k and perform the Matsubara summation over (fermionic) Matsubara
frequencies using

T
∑

ωn

1

−iωn + ξ
= −nF (ξ )

T
∑

ωn

1

iωn + ξ
= nF (−ξ ) = 1− nF (ξ )

nF (ξ ) =
1

eβξ + 1
, 1− 2nF (ξ ) = tanh [βξ /2] . (D.22)

One obtains

∂k g−1
k

= −
k

2π2

∫ ∞

0
d qq2

tanh
�

βξq/2
�

ξq

δ(|ξq| − k2)

= −
k

4π2





∫ ∞

−µ
dξ

p

ξ +µ tanh[βξ /2]

ξ
δ(−ξ − k2)

+

∫ ∞

0
dξ

p

ξ +µ tanh[βξ /2]

ξ
δ(ξ − k2)



, (D.23)

which yields the flow equation in its final form

∂k g−1
k
=−

tanh
�
βk2/2

�

4π2k

�

θ(µ− k2)
Æ

µ− k2+
Æ

µ+ k2
�

. (D.24)

The inspection of Eq. (D.24) nicely shows that the divergency encountered in the flow of gk at
T = 0 is cured by the tanh term. This flow equation can now be integrated analytically from
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FIGURE D.3: Dimensionless transition temperature Tc/ǫF towards superfluid pairing taking into
account only particle-particle correlations. Analytical, approximate result Eq. (D.29) (dashed,
red) versus numerical solution of Eq. (D.26) (solid, green).

the UV (k =Λ) to the IR (k = 0)

1

gUV
−

1

gIR
= −

1

4π2





∫ pµ

0
d k

tanh
�
βk2/2

�

k

�Æ

µ+ k2+
Æ

µ− k2
�

+

∫ Λ

p
µ

d k
tanh

�

βk2/2
�

k

Æ

µ+ k2



, (D.25)

which, after inserting Eq. (D.19), gives

1

gIR
=

1

8πa
−

1

4π2



Λ−
∫ pµ

0
d k

tanh
�

βk2/2
�

k

�Æ

µ+ k2+
Æ

µ− k2
�

−
∫ Λ

p
µ

d k
tanh

�
βk2/2

�

k

Æ

µ+ k2



. (D.26)

One can arrive at Eq. (D.26) in more direct way by realizing that in the original flow equa-
tion (D.14) the only RG scale k-dependence arises due to the regulators appearing explicitly in
the cutoff propagators Gc . Therefore we can safely replace the derivative ∂̃k by ∂k . Note, this
would neither work if we took into account self-energy corrections of the fermions nor if any
k-dependent coupling appeared on the right-hand-side of the flow equation. The replacement
∂̃k → ∂k becomes possible here only due to the ability to invert the flow equation gk → 1/gk

so that gk does not appear on the RHS of the flow equation. In particular, this would not have
worked if we kept any explicit momentum dependence of gk .

After the replacement ∂̃k→ ∂k in Eq. (D.14) we can directly integrate the RG flow,

1

gIR
=

1

gΛ
−
∫

Q

Gc (Q)Gc (−Q)

�
�
�
�
�

Rk=Λ

Rk=0

. (D.27)
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After performing the Matsubara summation using Eqn. (D.22) we find

1

gIR
=

1

gΛ
+

∫
d 3q

(2π)3
1− 2nF (ξq)

2ξq

θ(Λ2− |ξq|)

=
1

gΛ
+

∫ ∞

−µ

dξ

8π2

p

ξ +µ

ξ
tanh[βξ /2]θ(Λ2− |ξ |). (D.28)

The careful evaluation of the momentum integral shows that the result is again given by
Eq. (D.26).

In order to determine Tc , Eq. (D.26) is solved so that the condition (D.8) is fulfilled. In
Fig. D.3 we show Tc/εF as function of the dimensionless interaction strength 1/(kF a). In the
weak coupling limit, kF a→ 0−, we recover (for a review of how to solve Eq. (D.26) analytically
in the weak coupling limit we refer to [313])

Tc =
8eγ

πe2
e
− π2
�
�
�
�

1
kF a

�
�
�
�, (D.29)

where γ ≈ 0.577 is the Euler’s constant. Deviations from this analytical formula become
relevant for larger |kF a|.

D.3 The Gorkov–Melik-Barkhudarov effect

In this Section we include the effect of p/h fluctuations given by the second term in Eq. (D.13),
cf. Fig. D.2, which we omitted so far in our discussion. In order to keep the calculation brief,
we will use the second approach taken in the previous Section and integrate the flow (D.13)
instantly from the UV to the IR after realizing that also in the p/h contribution any RG scale
k-dependence is due to the regulators appearing in the cutoff propagators Gc . Then we may
again replace ∂̃k→ ∂k and arrive directly at

1

gUV
−

1

gIR
=

δ IBCS

∫

Q

Gc (Q)Gc (−Q)

�
�
�
�
�

Rk=Λ

Rk=0

+
1

2

∫ 1

−1
d cosθ

∫

Q

Gc (l+ (p′1−p1),ωn)G
c (l,ωn)

�
�
�
�
�

Rk=Λ

Rk=0

δ IGMB

. (D.30)

δIBCS was calculated in the previous Section. Here we concentrate on the correction to the
superfluid pairing interaction due to p/h fluctuations given by the term δIGMB. Employing
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the sharp momentum regulator, cf. Eq. (D.15), it is given by

δIGMB =
1

2

∫ 1

−1
dcosθT

∑

ωn

∫
d 3 l

(2π)3
1

[−iωn + ξl][−iωn + ξl+(p′1−p1)
]

×
h

θ(|ξl| −Λ2)θ(|ξl+(p′1−p1)
| −Λ2)− 1

i

, (D.31)

where |p1|= |p′1|=
p
µ, ξq = q2−µ, and θ=∠(p1,p′1). In the limit Λ→∞ the term propor-

tional to the step functions vanishes. Performing the Matsubara summation using Eqn. (D.22)
and the definition q = p′1−p1 one obtains

δIGMB = −
1

2

∫ 1

−1
dcosθ

∫
d 3 l

(2π)3
nF (ξl+q)− nF (ξl)

ξl+q− ξl

=

∫ 1

−1
dcosθ

∫
d 3 l

(2π)3
nF (ξl)

ξl+q− ξl

, (D.32)

where we shifted the momentum integration variable in the second step and used ξl = ξ−l.

To progress further it is convenient to switch to dimensionless momenta l̃ = |l|/pµ and
q̃ = |q|/(2pµ). Eq. (D.32) can then be brought into the form

δIGMB =

∫ 1

−1
dcosθ

µ1/2θ(µ)

16π2q̃

∫ ∞

0
d l̃ l̃ nF ( l̃

p
µ)
∫ 1

−1
d y

1

q̃/ l̃ + y
, (D.33)

where y = cosη, and η=∠(q, l). This yields [317]

δIGMB =

∫ 1

−1
dcosθ

µ1/2θ(µ)

16π2q̃

∫ ∞

0
d l̃ l̃ nF ( l̃

p
µ) ln

�
�
�
�
�
�

q̃/ l̃ + 1

q̃/ l̃ − 1

�
�
�
�
�
�

. (D.34)

Let us evaluate Eq. (D.34) first at zero temperature, T = 0. The momentum integral can then
be performed analytically,

δI
(T=0)
GMB

=

∫ 1

−1
dcosθ

µ1/2θ(µ)

16π2q̃



q̃ +
1

2
(1− q̃2) ln

�
�
�
�
�

q̃ + 1

q̃ − 1

�
�
�
�
�



 . (D.35)

The last step is the s-wave projection represented by the remaining angular integral. Remark-
ably, also this can be performed analytically. Here we use q2 = 2µ(1 − cosθ), dcosθ =
−q/µd q and find

δI (T=0)
GMB

=

p
µθ(µ)

12π2
(1+ ln4) =

p
µθ(µ)

4π2
ln (4e)

1
3 (D.36)

At this point we note that the few-body problem, which is characterized by µ = 0, is not
changed by the p/h contribution δI

(T=0)
GMB

which is identically zero in this limit. Thus the ini-
tial value for gΛ given by Eq. (D.19) is not affected by the p/h term and the Gorkov correction
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simply appears as an additional term in Eq. (D.26). In the weak coupling regime, where the
transition temperature to the superfluid state is very low, cf. Eq. (D.29), we may use Eq. (D.36)
to derive the change in Tc due to p/h fluctuations. The term δI

(T=0)
GMB

gives then a correction to
the p/p contribution solely taken into account in Eq. (D.26). In fact the additional correction
to Eq. (D.26) can be absorbed in a redefinition of the scattering length

1

a′
=

1

a
+

2

π
ln(4e)1/3. (D.37)

This redefined scattering length then appears in the expression for Tc in Eq. (D.29) and leads
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FIGURE D.4: Dimensionless transition temperature Tc/ǫF towards superfluid pairing taking into
account particle-particle as well as particle-hole correlations (lower solid line). Analytical, ap-
proximate result Eq. (D.38) (dashed, black) versus numerical solution of Eq. (D.26) and (D.34)
(solid, blue). The result from BCS theory is also shown (upper lines), cf. Fig. D.3.

to a shift of Tc according to

T GMB
c

=
8eγ

πe2
e
π
2

1
kF a′ =

1

(4e)1/3

8eγ

πe2
e
π
2

1
kF a , (D.38)

which is the famous shift by a factor of (4e)1/3 ≈ 2.2 we aimed to derive.
When the interaction characterized by kF a is not arbitrarily weak Eqn. (D.26) and (D.34)

have to be evaluated numerically. The resulting critical temperature Tc/ǫF versus the dimen-
sionless interaction strength 1/(kF a) is shown in Fig. D.4.

Finally we comment on the significance of p/h fluctuations in the BEC-BCS crossover,
in particular for the unitary Fermi gas where kF a is infinite. Remarkably, it was found that
theories, such as the self-consistent T-matrix approach used in [37, 58, 264, 255, 265], which
take into account only the p/p channel, but not the Gorkov correction due to the p/h chan-
nel, give very accurate results e.g. for Tc , compared to experiments [34] and state-of-the-art
diagrammatic Monte-Carlo calculations [35]. At first this is surprising when considering the
large correction by a factor of about 2.2 in Tc due to p/h fluctuations in the weak coupling
limit. However, from the inspection of Eq. (D.36) we find that the correctionδIGMB decreases
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for a decreasing value of the chemical potential µ. In the BEC-BCS crossover the chemical po-
tential decreases as the interaction is tuned from the BCS to the BEC regime andµ crosses zero
for a specific value of 1/(kF a). Hence within at least a non-self-consistent T-matrix approach,
which does not take into account the renormalization of the fermions, the p/h contribution
will yield no significant contribution to Tc around unitarity. In a self-consistent T-matrix ap-
proach the renormalization of the fermions is taken into account so that this simple argument
does not apply. From an RG perspective, and taking into account our findings in the context of
the polaron-to-molecule transition in Chapter 4, it seems, however, likely that the flow of the
fermionic self-energy is such that the effective ‘flowing’ chemical potential µ+Σ(0, 0) remains
negative or small until shortly before the IR so that the correction due to p/h fluctuations
remains suppressed. This technical argument might give some insight why T-matrix approx-
imations work so well for the unitary Fermi gas in the context of the BEC-BCS crossover as
well as for the polaron problem.



Appendix E

Angular average in the derivation of the modified
STM equation

The goal is to take the angular average, Eq. (2.53), of Eq. (2.52). The resulting expression is a
sum of terms of the form

I = c

∫ 1

−1
dcos∠(q1,q2)

∫ ∞

0
d l l 2h(l )

∫ 1

−1
dcos∠(l,q1) f (q1, l , cos∠(l,q1))g (q2, l , cos∠(l,q2)),

(E.1)
where c is a numerical constant, l = |l|, qi = |qi | and the function h(l ) does not depend on
any angle. Now first the angular average

∫

dcos∠(q1,q2) is performed where the vectors q1
and l are chosen to be fixed. The angular integration amounts then in an integration over all
q2 on a sphere of constant radius |q2| and the integrals can be interchanged:

I = c

∫ ∞

0
d l l 2h(l )

∫ 1

−1
dcos∠(l,q1) f (q1, l , cos∠(l,q1))

∫ 1

−1
dcos∠(q1,q2)g (q2, l , cos∠(l,q2))

︸ ︷︷ ︸

(∗)

,

(E.2)
Since both q1 and l are fixed for the integration marked by (∗), one can integrate equally over
all angles ∠(q1, l) instead of ∠(q1,q2). The resulting expression is then

I = c

∫ ∞

0
d l l 2h(l )

∫ 1

−1
dcos∠(l,q1) f (q1, l , cos∠(l,q1))

︸ ︷︷ ︸

fs (q1,l )

∫ 1

−1
dcos∠(q2, l)g (q2, l , cos∠(l,q2))

︸ ︷︷ ︸

gs (q2,l )

.

(E.3)
One obtains a product of two separate s-wave projections and there is no mixing of partial
waves involved which is due to the separation into the two separate functions f and g in
Eq. (E.1). Applying Eq. (E.3) to each term in Eq. (2.52) then finally yields, after having per-
formed the l -integration, the expression Eq. (2.54).
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