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ABSTRACT. When modeling energy prices with the Ornstein-Uhlenbeck process, it was
shown in Barlow, Gusev, and Lai [2] and Zapranis and Alexandris [16] that there is a large
uncertainty attached to the estimation of the speed of mean-reversion and that it is not
constant but may vary considerably over time. In this paper we generalise the Ornstein-
Uhlenbeck process to allow for the speed of mean reversion to be stochastic. We suppose
that the mean-reversion is a Brwonian stationary process. We apply Malliavin calculus
in our computations and we show that this generalised Ornstein-Uhlenbeck process is
stationary in the weak sense. Moreover we compute the instantaneous rate of change in the
mean and in the squared fluctuations of the genaralised Ornstein-Uhlenbeck process given
its initial position. Finally, we derive the chaos expansion of this generalised Ornstein-
Uhlenbeck process.

1. INTRODUCTION

An Ornstein-Uhlenbeck (OU) process X is defined as the solution of the stochastic
differential equation

(1.1) dX(t) = —aX(t)dt + o dW(t),

where W is a Brownian motion and o and « are two positive constants. Such processes
have applications, for example in the areas of physics and finance. The process X has a
drift which will push it towards its long-term mean level at the origin, while the Brow-
nian component introduce random fluctuations. It is well-known that X has a Gaussian
stationary distribution.

The parameter « is sometimes referred to as the speed of mean-reversion. In practical
applications, it may be hard to identify precisely the speed of mean-reversion «. For
instance, in modelling energy prices based on OU processes, Barlow, Gusev, and Lai [2]
studied the problem of estimating parameters based on historical data. They found out
that there is a large uncertainty attached to the estimation of the speed of mean-reversion.
In their study of Paris daily temperature data, Zapranis and Alexandridis [16] showed
by means of wavelet analysis that the mean reversion rate is not constant but may vary
considerably over time.

In this paper we generalize the OU dynamics in (1.1) to allow for a speed of mean-
reversion «a being a stochastic process. We study the weak stationarity of this generalized
OU process. In other words, we analyze the stationarity properties of the mean, the
variance, and the covariance of the generalized OU process for simple specifications of
«. Specifically, in our analysis we suppose « is a Brownian stationary process. Brownian
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stationary processes are themselves an extension of OU-processes, and have been intensively
studied in the area of turbulence and finance (see Barndorff-Nielsen and Schmiegel [5], or
Barndorff-Nielsen et al. [4] for the case of energy markets). Despite the fact that o may
attain negative values, we are able to show the stationarity of the mean, the variance, and
the covariance of X when the average speed of mean-reversion is sufficiently larger than
its variance. Explicit conditions for these results to hold are derived. In our analysis, some
aspects of Malliavin Calculus are applied.

In order to describe the behavior of the first and second moment of increments of the
generalised Ornstein-Uhlenbeck process X, we derive the instantaneous rate of change in
the mean of X given the initial position of the process. We show that the latter is given
in terms of the mean of . Moreover we compute the instantaneous rate of change in the
squared fluctuations of X given its initial position and we show that this is given in terms
of the volatility o. Hence, locally our process behaves like a classical Ornstein-Uhlenbeck
process.

We further compute the chaos expansion of the generalized OU process. We show that
for a specific choice of the process «, the chaos of order 1 converges pointwise to a function
in L?(R). However, it does not converge in L?(R).

A generalized Ornstein-Uhlenbeck (OU) process is sometimes in the literature defined

by

t

(1.2) Vit) = / o159 U7 s),

where {L,U} is a bivariate Lévy process. See Carmona, Petit, and Yor [9] and Lindner
and Sato [13] for basic properties of such processes. These processes have been applied in
many areas, in particular in option pricing (see e.g. Yor [15]) or in insurance (see Dufresne
[10]). The explicit dynamics V' in (1.2) does not solve an OU-type stochastic differential
equation and L is not immediately interpretable as a speed of mean-reversion. Another
path of study is the so-called quasi Ornstein-Uhlenbeck processes, which are defined as
processes X solving a stochastic differential equation of the type (1.1), however, with W
being a general noise process with stationary increments (see Barndorff-Nielsen and Basse
O’Connor [3]).

The paper is organized as follows. In Section 2, we describe the generalized Ornstein-
Uhlenbeck process we consider in our analysis. In Section 3, we show that the mean
and variance of this model class is stationary under some mild conditions on the model
parameters. In Section 3 we compute the instantaneous rate of change of the first and the
second moment of increments of the generalised Ornstein-Uhlenbeck process X. In Section
4 we derive the chaos expansion of the model.

2. GENERALIZED ORNSTEIN-UHLENBECK PROCESSES

Let (Q, F, P) be a complete probability space equipped with a filtration F;, for t > 0.
We denote by W = {W(¢) }+>0 a standard Brownian motion. We write D, for the Malliavin
derivative at time ¢ > 0, defined on the subspace D2 of L?(P) := L*(Q, F, P). A stochastic
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process Y is said to be Skorohod integrable on [0, T, for some T' < oo, if

E UOT(DtZ)Y(t) dt} | < el 2,

for all Z € D'?, where c is a constant depending on Y and || - || is the L?*(P)-norm. We
denote the Skorohod integral of Y over [0, T] by

/TY(t) SW ().

If Y is Fi-adapted, the Skorohod integral of Y coincides with the It6 integral, that is

/TY(t) SW (t) = /TY(t) AW (t) .

For a thorough introduction to Malliavin Calculus, we refer the reader to Nualart [14].
Introduce the generalized Ornstein-Uhlenbeck process (GOU) X as the solution to the
stochastic differential equation

(2.1) dX(t) = —a(O)X (t)dt + o dW (t),

where o is a positive constant and « is an F;-adapted stochastic process. Notice that « is
not restricted to be positive, but may attain negative values as well. The intial condition
X(0) = X is assumed to be a constant. In the next Proposition we derive the explicit
solution to (2.1).

Proposition 2.1. Assume that « is integrable on [0,T] for a given T < oo and

B o <2/0Toz(u)du)} < 0.

Then, fort <T, the Fi-adapted process

X(1) = X exp (- /Otoz(u) du> + exp (— /Otoz(u) du) /Otaexp (/Osoz(u) du) A (s),

is a solution to (2.1).

Proof. We apply the It6 Formula to obtain

d (X(t) exp ( /0 ta(u) du)) — ()X () exp ( /0 ta(u) du) dt + exp ( /0 ta(u) du) dX (1)
— gexp (/Otoz(u) du) AW (t).

Integrating yields the representation of X. Note that the stochastic integral is well-defined
in It sense due to the F;-adaptedness of o and the integrability condition. O
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Let the explicit dynamics X in Prop. 2.1 be our GOU process. Notice that in the case
« is deterministic, it is usual to write

X(t) = Xpexp (— /Otoz(u) du) —I—/Otcrexp (- /:a(u) du) AW (s) .

That is, moving the exponential inside the Ito integral. In the general case, where «
is stochastic, this is no longer a valid representation as exp fo u) du) is anticipating.
However, the next Proposition shows that we can move the exponentlal inside the integral
when we interpret the stochastic integral in the sense of Skorohod. Moreover, we get an
additional drift term involving the Malliavin derivative of the exponential.

Proposition 2.2. Assume for every 0 <t < T, that exp(— fo e DY2 a(t) € DY,
exp (— fst a(u)du) is Skorohod integrable, and

(22) || e (-2f "a(u) i) ds| < oc.

Then, for every 0 <t <T we have a.s.

X(t) = Xoexp (— /Otoz(u) du) + /Otaexp (— /Stoz(u)) ST (s)
—/Ot/:d(Dsoz(v))eXp (— /Stoz(u) du) dv ds

Proof. Applying the integration by parts formula (1.49) in Nualart [14], we find from the
assumptions in the Proposition that

exp (- /O () du) /0 exp < /O " aw) du) AW (s)
_ /Ot exp <— /:a(u) du) 5W(s)+/0t (Ds exp (— /Otoz(u) du)> exp (/Osam) du) ds.

By the chain rule of the Malliavin derivative, we find

D, exp (— /0 () du) _ (DS /0 ") dv) exp <— /0 () du>
_ / " Dua(v) dvexp (— /0 () du) |

Since a(v) is F,-measurable, we find that Dsa(v) = 0 a.s. for s > v. Thus, a.s.,

/Da dv—/Da

This proves the Proposition. [l
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As the Skorohod integral has mean zero, we find from the Fubini-Tonelli theorem that
(2.3)

E[X(t)]:XoElexp(—/ot )} // l exp( /:a(u)duﬂ dvds .

The second moment can be expressed by using the ”isometry” for Skorohod integrals and
integration by parts. This is the purpose of the next Proposition.

Proposition 2.3. Assume that a € DY2? and that for every0 <t < T, D a( Yo~ Juawdu ¢
D2, o= Joelwdu ¢ L2 o= Jiadu s Skorohod integrable, and e~ Jo @Wdug= Ji elwdu ¢ L*(9, .7-“ P).
Then,

E [XQ(t)] _ XSIE [e—2fot a(u) du} + o2 /tE [e—2f; a(u) du] ds
0

t
+o // [/ (w) dwe™ Jia /Ds()g(w)dwe—f;a(u)du} dods
t v2
(/ / (DSQ(U))e_fs Ot(u)du dU ds)
_4X00// o= Joa —f:a(u)du:| o ds
22 / / / B [D. (Dulo))e o04) do dwe i) gs.
0 0 w

Proof. We have

t 2
X2(t) = XZe Hoawdu 1 (/ ge Js e du sy (s ) (/ / (Dsa(v o J o) du gy, ds>
0

t
+ 2Xge ™ Jo d“/ ge Js e du sy ()
0

+ R

t t
—2Xpe” Jo a(u) du/ / O'(DSO./(U))G_ Ji a(u) du dv ds
0 Js

t ot ¢
-2 / / o(Dsa(v))e™ Js W dv gy g / ge Js e du sy ()
0 Js 0

Now, the integration by parts in Eq. (1.48) of Nualart [14] and under the assumptions
mentioned in the Proposition, we get

t t
e—fga(u)du/ e—f;a(u)duéw(s):/ e—f a(u) du— fau)duaw()
0 0
t
+/ (Dse—fﬂta(u)du)e—f:a(u)du ds
0

t
:/ eff(fa(u)du*fsta(u)du5W(S)
0
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// (Dsa(v Jo o) du—f () du gy, g
Taking expectations, gives

E [e_fga(u)du/ e f a(u)duéw :| / / fo —f au)du] dv ds .
0

A similar argument shows that

t t t
E |:/ / (DwOé('U))ei fw a(u) du dv dw/ e~ fs a(u) du 5W(S):|
w 0
" t t t , )
= / / / E |:l)S <(Dwa(v))e* S a(w) du) dv dwe™ Ji a(u) du] ds .
0 0 w

Applying the covariance formula for Skorohod integrals in Eq. (1.48) of Nualart [14], it
holds that

t , 2
(/ o™ Js aluw)du (5W(3)> ]
0
t t
:/ ]E[efosa(u)du} ds
0

t t
+ / / E (Dve’ Js elwyduy(p o= Jy o) du)] dvds
0 Jo

t t
:/ ]E[e—Qfsa(u)du:| ds
0
t ot t ) t )
+/ / ]E[/ Dva(w)dwe_fsa(“)d“/ Dyo(w) dwe™Jo @l gy ds
0 JO s v

After collecting terms the statement is proved. g

E

In the next section we specify « to be a Brownian stationary process and analyse the
weak stationarity of X.

3. WEAK STATIONARITY
First, we recall the definition of weak stationarity (see for example Kloeden and Platen
[12]).

Definition 3.1. Let X be a stochastic process, u be a constant, and ¢ : R — R be a
function. Then X s called weakly stationary if its mean, its variance, and its covariance
satisfy

EX(@)] = p,  VarlX(1)] = ¢(0),  Cou[X(t), X(t = 0)] = (9),

for allt € 0,T] and § > 0.
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As we see from the definition, weak stationary processes are defined by the property
that their first and second moments are not affected by a shift of the time variable. The
purpose of this section is to prove the weak stationarity of the GOU process, when ¢ goes
to co. Let g : R, — R be a measurable function such that

(3.1) /0°° g*(u) du < .

For a constant o € R, define « to be the Brownian stationary (BS) process

(3.2) alt) =p+ / g(t —s)dW(s).

—0oQ
By the condition of g, we immediately see by the It0 isometry and properties of Wiener inte-
gration that o(t) is a Gaussian F;-adapted process with mean p and variance [ g*(u) du
independent of time ¢, thus being stationary. A typical example is to consider g(u) =
nexp(—pu), for positive constants n and 5. Thus « is the stationary solution of the OU
process solving the stochastic differential equation

(3.3) da(t) = Blu — a(t)) dt +ndW (t).

In this specific case, the speed of mean reversion « is itself an OU process. If W has a
positive increment, then so does «, and thus increasing the speed of mean reversion of X.
The process a will decrease exponentially fast back at a rate 3 towards its long-term mean
level i, being the average speed of mean reversion for X. A negative increment of W will
push o downwards, yielding a slower mean reversion of X. Thus, positive increments of W
implies faster mean-reversion, whereas negative increments means slower mean reversion.
We can turn this relationship around by supposing 7 to be negative, meaning that o
depends on W opposite to X. Note that a can become negative, as the Wiener integral in
(3.2) is normally distributed and therefore takes values on the whole real line. However, for
relatively large and positive values of p, the probability of negative speeds of mean reversion
will become small. As we shall see below, the mean, the variance, and the covariance of X
are stationary when a specific relationship in the size between p and g holds.

Observe that for any 0 < s < t < 0o, Tonelli’s Theorem and Cauchy-Schwarz’s inequality
along with the It6 isometry yield

E {/t /_Zog(u—v)dW(v) du} g/:IE [(/_Zog(u—v)dW(v))z]l/Z du

_ /OmgQ(u)dux(t—s)<oo.

Thus, «(u) is integrable on any interval [s,t], 0 < s < t < oco. Remark that the process a
is in general not a semimartingale. In fact, by a suitable choice of g (see e.g. Alos et al.
[1]) we can allow for « to be a fractional Brownian motion. It is possible to show that « is
a semimartingale when ¢(0) is well-defined and g is absolutely continuous and has a square
integrable derivative defined almost everywhere (see Basse and Pedersen [6] and Benth
and Ejyolfsson [8]). For example, the interesting case of continuous-time autoregressive
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moving average processes satisfy these properties (see Benth and Saltyté Benth [7] for an
application of these processes to weather modelling).
Introduce the function h(zx,y) for 0 <z <y by

y
(3.4 o) = [ gl
We have the following useful Lemma.

Lemma 3.2. Assume that fooo h2(u, z+u) du < oo for any x > 0. Then for every 0 < s <t

(3.5) / a(u)du = p(t —s) + /_S h(s —u,t —u) dW (u) + / h(0,t —u) dW (u) .

o0

Proof. First, observe that the condition on the function h ensures that the first Wiener
integral on the right-hand side of (3.5) is well-defined since,

/ h2(3—u,t—u)du:/ h*(u,u+t — s)du.
—00 0

After appealing to the Cauchy-Schwartz inequality we find,

t t—s o0 t—s
/ R*(0,t — u) du = / h?(0,u) du < / g*(u) du/ udu < oo,
s 0 0 0

and therefore the second Wiener integral is also well-defined.
By definition of «, we find

/Sta(“)du:“(t_s)+/:/_Zog(u—v)dW(v)du,

/u g(u—v)dW(v) = /_s g(u—v)dW(v) + /Sug(u —v)dW(v).

—0o0 o0

But

By the stochastic Fubini Theorem, we find

// u—wv)dW(v du—// u—v)dudW (v // u) dudW (v),

and hence,
/St /Sug(u —v)dW (v) du = /: h(0,t —v) dW (v) .

By the assumption on h, we again apply the stochastic Fubini theorem to find

// (u—v)dW(v du—/ / u—v)dudW (v / /Sv u) dudW (v) .

Hence, the Lemma follows after using the definition of A in the last integral. O
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We observe that f u) du is represented as a sum of two mdependent Wiener integrals.

This will enable us to compute exponential moments of f u) du easily. Remark that
from the Cauchy-Schwartz inequality
u+x
<o [ P,

2
and therefore a sufficient condition for fooo h?(u,u + ) du to be finite is

( / W) dv) - ( / ) dv)
(3.6) / / v)dvdu < oo.

As an example, consider « to be an OU process, with g(v) = exp(—fv), for a constant

£ > 0. Then

2

u+x 1 o ot
/u gQ(v)dv:%(l—ew)ew,

and hence (3.6) holds.
The Malliavin derivative of a(u) is simple to compute. It holds that
(3.7) Dsa(v) = g(v =),

for s < v. In the case s > v, Dsa(v) = 0. There is a potential problem at v = s since g
might not be defined there. However, as we are going to integrate expressions like Dga(v)
with respect to the Lebesgue measure, we leave the Malliavin derivative undefined for this
singular point. If g(0) is well-defined, there is no problem.

Using (3.7), we find

//Da d“dvds—// v —s)dve” Jia (W) du g
// v) dve™ I3 ) du ds

:/ h(0,t — s)e —Jiatwdu gg
0

We conclude from Prop. 2.2 that
t t
(38)  X(t) = Xge Joolwdn / g~ Js e du sy (g) — / oh(0,t — s)e™ Js e du gg
0 0

where f u) du is expressed in Lemma 3. 2 Note that the exponential integrability (2.2)

in Prop. 2. 2 Wthh is a condition on f u) du is satisfied as this is a normal random
variable which has finite exponential moments of all orders. The conditions of Malli-
avin differentiability and Skorohod integrability are also readily verified in thls explicit
case. Recalling (3.5), it follows from Theorem 2.2.1 in Nualart [14] that f u) du is

Malliavin differentiable. By the chain rule, so is exp(— fs a(u) du). We know from Propo-
sition 1.3.1 of Nualart [14] that the space of Malliavin differentiable random variables is

m KPMG Center of Excellence
in Risk Management



11

included in the domain of the Skorohod integral. This ensures the Skorohod integrability
of exp(— [! a(u) du).
In the next subsection we study the stationarity of the mean of the GOU process.

3.1. Stationarity of the mean. We compute the expectation of X and show that it has
a limit when ¢ goes to oc.

Proposition 3.3. The expected value of X is

1 [~ 1
E[X ()] = Xoexp (—ut + 3 / R (u, t +u) du + 5/ h*(0,u) du>
0 0

t 1 00 1 v
- / ah(0,v) exp (—,tw + 5/ R (u, v + u) du + 5/ h*(0,u) du) dv .
0 0 0

If,
- L R L,
(3.9) thm exp | —ut + 3 h*(u,t + u) du + 3 h*(0,u)du ) =0,
and
(3.10) o|h(0,v)|exp [ —pv + 3 h*(u, v+ u) du + 3 h2(0,u) du | dv < oo,
0 0 0

then E[X ()] has a limit when t — oo given by

lim E[X (t)] = — /OOO oh(0,v) exp (—/w + ! /000 R (u,v + u) du + % /v h*(0,u) du> dv .

t—00 2 0

Proof. As the expectation of the Skorohod integral is zero, we have by Fubini-Tonelli’s
theorem

t
E[X(t)] = X()E [e_ Jo ou) dui| . / O']’L(O,t o S)E [e— I a(w) dui| ds .
0
From Lemma 3.2, we find by independence of the Wiener integrals, that

E [e— ) dui| _ o HE [e’ IO h(—ut—u) dW(u)] E [e‘ JE h(0,t—u) dW(u)i|

1 [° 1 [
=e " exp (5/ h2(—u,t—u)du—l—§/ hQ(O,t—u)du)
—00 0
—pt [ R Lt
=e Mexp | = h*(u,t +u)du+ = | h*(0,u)du | .
2 Jo 2 Jo

Similarly, we find

t 1 o0 1 t—s
(3.11) E [e’ Js ) d“] = e =) exp (5/ h*(u,t — s +u) du + 5/ h*(0,u) du) :
0 0

Hence, the expression for E[X ()] follows. It is simple to see that the integrability conditions
imply the limit as claimed. O
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It is easily seen from the conditions in Prop. 3.3 that u > 0 is a necessary condition in
order to have a limiting expectation. Notice that the limiting expectation of X may become
negative. For example, if ¢ in the definition of the process « is positive, then trivially A (0, v)
is positive and we have a negative limiting expectation of X. This is in sharp contrast
to the classical OU process with a constant (and positive) speed of mean reversion «,
as this has zero expectation in stationarity. We attribute the negative expected limiting
value of X to the probability (however small) that « itself can be negative. However, as
1 is positive, the mean of o will be positive as well. A negative « gives a non-stationary
behavior, which will locally occur for X during times when « crosses zero from above

Let us consider the case where o is an OU process. In the following lemma we compute
the stationary mean of the GOU process for this specific choice of a.

Lemma 3.4. Let a be an OU process as in (3.3). If

2

(3.12) 1B > ;7_5 7
then
o (Yo e g (1o (e
tlim E[X(t)] = _/ (1 —ee 23 8 15 15 do
— 00 O

Proof. Let a be an OU process, with g(u) = nexp(—/u), for constants n and 3 with 5 > 0.
Then

y
h(z,y) = / ne P du = % (7P —e PY) .

Hence,
0o 2 00 2
R (u,t +u du:n—/ e v _ g Blut) 2du:n— 1—e P,
|t wan=2 [ ) du= gl (1)
Next,
t 2t 2 2 2
n — B2 L2 - 1 _
/OhZ(O,u)du:@/o (1—e ") du:@t—ﬁ(l—eﬁt)jtrﬁg(l—e2&).

Therefore, it holds that

1 [ 1 [
lim exp (—ut—l——/ h2(u,t+u)du—|——/ hZ(O,u)du) =0,
t=o0 2 Jo 2 Jo
if and only if (3.12) holds true. Moreover,

1 [~ 1 /[
—,uv—i——/ h2(u,v+u)du+—/ h*(0,u) du
2.Jo 2 Jo

2 2 2 2
= (ngp) O 0 g (e
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This implies,
oo 1 oo 1 v
/ h(0,v) exp | —pv + —/ R (u, v + u) du + —/ h*(0,u) du | dv
0 2 Jo 2 Jo
<c

/Ooo(l—e_ﬁ”)exp (_< _2”_;2) v) v

for some constant ¢ > 0. But under condition (3.12) the integral is finite and we prove the
statement. U

Note that by the definition of g, the stationary variance of « is n?/23. Hence for X to
have a stationary mean value, the stationary mean of a times its speed of mean reversion
must be larger than the stationary variance of a. In the case n > 0, this stationary
mean value becomes negative, whereas n < 0 gives a positive stationary mean since g and
therefore h(0,v) are negative. If n < 0 an increase in X due to a positive increment of W
occurs in parallel to a decrease in «. This would mean that X is pushed away from its

mean and reverts slower giving the rational for a positive stationary mean of the process
X.

3.2. Stationarity of the variance. In this subsection we analyze the second moment of
X and its limiting behavior. To reduce the number of terms, we suppose that Xy, = 0,
which gives

t t
X(t) = / oe fs a(u) du 5W(S) — / Uh((),t _ 3)67 fs a(u) du ds .
0 0

We find E[X?(t)] = I, — 25 + I3 where

t 2
(313) _[1 =K (/ ge_f:a(u)du 5W<S)) ] 7
0

- t t
(3.14) L=FE / ole” Js W du sy () /
0

0

h(0,t — s)e” 5 ex(u) du ds] :

t 2
(3.15) I;=E (/ oh(0,t — s)e~ Js alwdu ds) ] :
0

We want to compute the three expectations (3.13)-(3.15). The approach is based on the
same ideas as when we calculated the expectation of X.
A key element in our derivations of the variance is the expectation of terms like exp(— | ! a(u) du—

f; a(u) du) for s,v € [0,t]. This is the content of the next Lemma.

Lemma 3.5. It holds forv < s <t,
(3.16)

lnE{eXp (—/:a(u)du—/vta(u)du)] ot — ) — (s — ) + H(s —v,t —5),
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where
1 o0
H(!B,y)zg/ (A +uw +y +u) + h(u,z +y +u))* du
0
1 [* y
+§/ (h(u,y + u) + h(0,y + u))? du+2/ h*(0,u) du,,
0 0
for x,y > 0.
Proof. As
t s t
—/ a(u)du:—u(t—s)—/ h(s—u,t—u)dW(u)—/ h(0,t — u) dW (u),

we have for v < s

—/sta(u)du—/vta(u)du

—pu(t —s) — p(t —v)

_(/ h(s—u,t—u)dW(u)+/v h(v—u,t—u)dW(u))

— 50 —00

_ (/:h(o,t ) d () + [h(o,t _u) dW(u))

= —2u(t — s) — p(s —v)
_(/ h(s —u,t —u) + h(v —u, t —u) dW (u +/ h(s —u,t —u)dW (u ))

—00

_ (Q/Sth(o,t—u)dW(u)+/Ush(O F— ) dW (u )

— (i) — s — 0
—/U h(s —u,t —u) +h(v —u,t —u)dW(u)

—/Sh(s—u,t—u)—i—h(O,t—u)dW(u)—Q/th(O,t—u)dW(u).

The three Wiener integrals will be independent by the properties of Brownian motion.
Hence, the results follows after using the fact that the exponential of a Wiener integral is
lognormally distributed. U

We remark that the case v > s is covered by the above result by simply interchanging
the roles of v and s.

Let us now compute the three expectations (3.13)-(3.15). We start with the expectation
n (3.13), which is computed in the following Lemma.
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Lemma 3.6. [t holds that

t 2 t
(/ eff; a(u) du (5W(S)> :/ ef2uu+H(0,u) du
0 0
t t—v
+ / / h(0, v)h(u, u + v)e” 2w rutH@Y) gy gy
0 0

t v
+ / / h(u, v)h(0,v — u)e 2#v—w—putHuv=u) gy gy
0 Jo

Proof. By the formula for the variance of a Skorohod integral (Proposition 1.3.1 in Nualart
[14]), we have

t . 2
(/ e~ Js aw)du (5W(s)) ]
0
t . t t . .
—E [ / 2l alwdu ds} +E { / / (Do et (Do iatade) gy dw}
0 0 0
t
. ) |:/ 672f;a(u)du d5‘|
0
t t . . t t
_|_/ / E [e*fs afu)du— [ a(u)dU] (/ Dva(u) du) (/ Dwa(u) du) dvduw.
0 0 s v

Here we have applied the chain rule for Malliavin differentiation together with the Fubini
Theorem. Since D, (u) = g(u — v)1(u > v), it holds

/:Dvoz(u)du:/stg(u—v)l(u>v)du:/t g(u — v) du

E

E

max(v,s)
t—v
(3.17) = / g(w) dw = h(max(v,s) —v,t —v).
max(v,s)—v
Similarly,
t
/ Dya(u) du = h(max(v, w) —w,t — w) .
Therefore,

E

t . 2
</ o Jo olw) du 5W(s)) ]
0
t
- F [/ 2f;a(u)dud5‘|

/ / du— f a(u)du] h(maX(& U) — 37t — s)h(max<s7 U) — 0, t— U) dv ds

:/ —2u(t—s)+H(0,t— s)ds
0
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/ / 0,t — s)h(s — v, t — v)e 21t —nlsm0)+H{s=vt=9) gy,

+ / / h(v —s,t — 8)h(0,t — v)e 2= nlv=a)tH=st=v) gy, g
0 Js

where in the latter we applied Lemma 3.5. Hence, the statement of the Lemma follows
after a change of variables in the integrals. O

We derive the second expectation (3.14) in the next Lemma.

Lemma 3.7. It holds that
t ¢
E {/ —Ji e STV (s )/ h(0,t — s)e‘fs alwydu gg| —
0
/ / h(0,u 4 v)h(0, v)e 20— HuHIwY) gy dy
/ / ;v —u)h(u v)e_Q“(”_“)_““JFH(“’”_“) dudv .

Proof. Using integration by parts for Skorohod integrals together with the Fubini Theorem,

we find
t t
E {/ e Js et du sy (g) / h(0,t — s)e” Js alwdu ds]
0 0

t t
:/ h(0,t —v)E {e‘fv O‘(“)d“/ e Js alwdu 5W(5)] dv
0 0

t t
= / h(0,t —v)E [/ e~ Js aw) du=], au) du (5W(8)] dv
0 0

+/0th(0,t—v)E {/0 (De Jye d“)e Jie d“dS} dv.

The Skorohod integral has zero expectation. Hence,

t t
E {/ e Js alw)du 5W(3)/ h0,t — s)e™ Js alwdu ds]
0 0
t t . .
—/ / h(0,t — v)h(max(v,s) — s,t — s)E [e’ J adw) du=J; au) d“] dsdv,
0 Jo

after using the chain rule for the Malliavin derivative and the fact that Dsa(u) = g(u —
s)1(u > s). Invoking Lemma 3.5 proves the result. O

Finally, we derive the expectation in (3.15).
Lemma 3.8. [t holds

t . 2
(/ h(0,t — s)e Js alw du ds) ]
0

E

m KPMG Center of Excellence
in Risk Management



17
t t—v
= / / h(0,v)h(0, u 4 v)e2#v-rutHwY) gy gy
0o Jo

t v
+ / / h(0,v)h(0, v — u)e” 2wt Hwv=w) gy gy
0 Jo

¢ 2
</ h<07t - S)e_ fs a(u) du dS) ]
0
t ) . t
—F [/ h(0,t — s)e” J* a(u) dUds/ h(0,t —v)e” I a(u) du dv}
0 0

t gt
= / / h(0,t — s)h(0,t —v)E [e_ Js lw) du=, e w) d“] dvds.
0 Jo

Appealing to Lemma 3.5 and doing a change of variables prove the statement of the Lemma.

g

Proof. We find,

E

Collecting together the results for the expectations in (3.13)-(3.15) calculated in Lem-
mas 3.6-3.8, we get

Proposition 3.9. The second moment of X is
t
E [XQ(Zf)] _ 02/ e—2uu+H(0,u) du
0
t v
+ 02/ / e 2mumplomwHHE=w b () ) (h(v — u, v) + 3h(0,v)) du dv
0o Jo

t v
+ o? / / e 2nlvmw)mputHwv=w p () 4 — ) (3h(u, v) + h(0,v)) du dv .
0 Jo
If
/oo e—2uu+H(0,u) du < 00
0

/ / |h(0,u)||h(v — u,v) + 3h(0, v)|e 2ru-nlutv)THv=wu) gy gy < oo
o Jo

/ / |h(0,v — w)||3h(u, v) + h(0, v)|e” 2O W=rutHuY= gy dy < o0,
o Jo
then the second moment of X has a limit given by

1tlim E [XQ(t)} = 02/ o~ 2nutHOw) g,
— 00 0

+0° / / h(0,u)(h(v — u,v) 4 3Rh(0,v))e~ et tH©=uw) gy qy)
o Jo

+ o? / / h(0,v — u)(3h(u,v) + h(0,v))e” 2wt Hwv=u) gy, gy
o Jo
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Proof. The results of the Lemmas 3.6-3.8 give
¢
E[XQ(t)] _ 0_2/ e—2uu+H(O,u) du
0
t t—v
+0° / / h(0,v) (h(u, u + v) + 3h(0, u + v)) e~ 2#v-HutH D) gy gy

+0 / / v —u) (h(0,v) 4 3h(u,v)) e 2w put o) gy gy

Note from calculus that for sufficiently “nice” functions ¢(¢, v), it holds

t
(3.18) / q(t,v)dv:/ v,V dv+/ / (v,u) dudv.
0 o

Hence, letting
t—v
q(t,v) = / h(0,) (h(u, u + v) + 3h(0,u 4 v)) e~ 2 rut (W) gy
0

we have ¢(v,v) = 0 and

0
5§(t V) = h(0,v) (h(t — v, t) + 3h(0,t — v)) e 2 ni=0)HH(—vw)
Using (3.18), the Proposition follows. -

In the latter proposition we showed the stationarity of the second moment of the GOU
process. The stationarity of the variance follows immediately from Prop. 3.3, where besides
of the integrability conditions of Prop. 3.9, we have to assume that (3.9) and (3.10) hold.

In the next lemma we investigate the conditions of stationarity of the second moment of
X, where we restrict our attention to the OU specification.

Lemma 3.10. Let o be an OU process as in (3.3). If

7]2

(3.19) > @’
then
1mmﬁw:g/emwmmm
t—o00 0
—u) _ 4e_ﬁv + 3)(1 _ e—ﬁu)e—Quu—u(v—u)-i-H(v—u,u) du dv
> ! 02772 —0B(v—u —Bu —pv —2p(v—u)—pu+H(u,v—u
+/ /_62 (1 — e Py (3e™Pu — g 4 1)e 2ul0mw—putHuv=u) gy gy
0
where
Hiry) = (1= 2090 4 o8 4 Ty (1 gy 4 4o 20)(1 — o-29)
RARTCE 232" " 48
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2 2 2 2
U - ey, 21 4n - U -
(3.20) +@(1—2e A1 —e Hﬁ —ﬁ(l—e Puy @(1—9, 2By |
Proof. We consider we have an OU process. Thus g(u) = nexp(—pu), for n and  constants
and # > 0. As we have seen earlier,

h(z,y) = % (7P —e ) .
We use this to compute H(z,y). First, we find
2 e 2
W2(0,u) du = "y — S (1 — o) 4 JL (1 — o2
[ o a= Ty 20— e+ e
Next,
x 2 2
/0 (h(u,y + u) + h(0,y +u))? du = @x + Q_ﬁi’*(l —4e™PY 4 4o (1 — e207)
2> _ B
—i-ﬁ(l—Qe Ay (1 — e 7).

Finally,

o0 2
/ (h(x +u,z+y+u) + h(u,z+y+u)’ du= 27;3 (1—2e —Alaty) +e_6$)
0

Therefore, we find the expression (3.20) for H(x,y). Consider now the first term in the
second moment of X. We find

00 t 2
/ 672,uu+H(0,u) du < C/ exp (_2 (:LL — %) u> du < oo,
0 0

as long as u > n?/3%. Hence, the limit of the first term exists when ¢ — oo under this
restriction on the parameters. Next we consider the second term in the second moment of
X. It holds,

—Bv—u) _ 467,81) + 3||1 . efﬁu|672,uu7,u(v7u)+H(vfu,u) du dv

e
o P
T i3y v )
< c/ / e 267 2627 | du dv
0 0
2

2
0o o 20(h—z) _ fv(uf;’?)
< c/ ‘ dv < 00,

as long as pu > n?/(% Finally we consider the last term in the second moment of X. We

find
< c/ / —2o(n u( “+2ﬁ2 du dv

(vfu)HBefﬁu . 4efﬁv + 1‘ef2p(v7u)7uu+H(u,v7u) du dv
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o0 "72 9 "72
< c/ e vWmag) _ o2t gy, < 00,
0

as long as u > n?/3?. With this condition on the parameters, the third term in the
expression of the second moment of X has a limit as time goes to infinity. g

Therefore, the second moment of X has a stationary limit as long as uf is greater
than twice the stationary variance of a, which we recall as /2. This condition is more
restrictive than the one ensuring the stationarity of the mean. Thus, it obviously implies
the stationarity of the expectation of X. In conclusion, when we specify a to be the OU
process given by (3.3) then X has a stationary limit for the expectation and variance if

0’
pB > 3

Observe that for fixed 7, the stationary variance of « is decreasing with increasing speed of
mean reversion 3. On the other hand, for fixed pu, the expression uf3 is obviously increasing
with 8. Hence, the condition for stationarity is less restrictive for models with high speed
of mean reversion in the a than those of slow. Note that the slower the mean reversion
in a becomes, the closer o gets to a non-stationary drifted Brownian motion. Hence, to
obtain stationarity for small s, one must have sufficiently high mean levels p, and/or,
sufficiently small noise level 7 in the dynamics of «.

3.3. Stationarity of the covariance. In this subsection we compute the covariance of
X and prove its stationarity. Notice that we are going to present the proofs of all the
results of this subsection in an Appendix since they follow the same lines as the proofs of

the results presented in Subsection 3.2.
Suppose that Xy = 0. Then we have for 6 > 0, E[X ()X (t —0))] = [, — I, — I3 + 14,
where

ot t—5
(321) L —E / o= I gy () / o I o1y (5)]
-Jo 0
ot . 5 -
(3.22) I, =E / oe s O‘(“)du5W(s)/ oh(0,t — 8§ — s)e” s O‘(“)d“ds)] :
-Jo 0

- t t—4
(3.23) I;=E / oh(0,t — s)e™ ) a(“)d“ds/ e~ fs_éa(“)d“(SW(s)} ,
- Jo 0

ot t—5
(3.24) I =E / oh(0,t — s)e™ s a(“)d“ds/ oh(0,t — 6 —s)e” fsiéa(”)d“ds)] .
- Jo 0

We want to compute the expectations (3.21)-(3.24). The approach is based on the same
ideas as when we calculated the second moment of X. We first compute the expectation
of the term exp(— fnt a(u)du — [7 a(u)du), 0 < v <t <T. This is the content of the next

lemma.
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Lemma 3.11. It holds forv <t, w <n,n<w,

v

(3.25) lnE[eXp (—/nta(u)du—/w a(u)duﬂ = —p(t—n)—p(v—w)+H(n—w, t—n, v—n),

where

1 o
Hey2) = 5 [ A+ y )+ oz + o+ )P
0

1 x
+ 5/ {h(u,u+y) + h(0,u + 2)}?du
0

1 z 1 y—z
+§/ {h(O,y—u)+h(0,z—u)}2du+5/ h*(0,y — 2z — u)du,
0 0

for x,y,z > 0. Moreover, it holds forn < w < v <t,

v

(3.26) lnE[exp (—/nta(u)du—/w (x(u)du)] = —p(t—n)—p(v—w)+H (w—n, t—w, v—w) .

Notice that H(z,y,y) = H(z,y). Thus in case ¢ = v in (3.25) and (3.26), these two
equations are the same as Eq. (3.16) in Lemma 3.5.

Let us now compute the expectations (3.21)-(3.24). We start with the expectation in
(3.21) which we compute in the following lemma.

Lemma 3.12. [t holds for 6 > 0,

¢ =3
E[/ ool a(“)d“(FW(w)/ ge i a7 (W)
0 0
t ~
= 02/ exp(—pv — p(v —6) + H(0,v,v — §)) dv
5
t t—s .
+02/ / exp(—pus —p(s+v—29)+ H(v,s,s —6))h(v,s +v)h(0,s — ) dv ds
s Jo

t ps—6 _
+02// exp(—pus —pu(s —v—90)+ H(v,s —v,s —v —0))h(0,s —v)h(v,s — ) dvds.
s Jo

We derive the second expectation (3.22) in the next Lemma.

Lemma 3.13. It holds that for 6 > 0,

t . t—3 s
E[/ Jefwa(u)duaw(w)/ O'h(O,t -5 _w)effw a(u)dudw]
0 0
t t—s N
- ‘02/ / 10,5 +v = 0)h(0,5 — d) exp(—pu(s + v = 0) = ps + H(v, 5,5 = 0)) dv ds
6 JO

t 5—0
—02/ / h(0,s —v —0)h(v,s — ) exp(—p(s —v —9) — us
s Jo
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+H(v,s—v,s —v—0))dvds.

We derive the expectation (3.23) in the next Lemma.

Lemma 3.14. It holds for 6 > 0,
¢ =3
E[/ oh(0,t — w)e™ o dudw/ ae_fwiao‘(“)d“(SW(w)
0
=—0 / / (0, s + v)h(0, s) exp(—pu(s +v) — p(v — 8) + H(v, s, s — 8)) dv ds

—0// .5 — v)h(v, s)exp(—pu(s —v) — pu(s — ) + H(v,s —v,5 — v —8)) dvds.

We derive the expectation (3.24) in the next Lemma.
Lemma 3.15. It holds for § > 0,

E[ / t (0, — )e” g, / - oh(0,t — § — w)e Jo " atwdugy,)
=0 / / h0, s +v — 8) exp(—pus — (s +v — 8) + H(v,s,5 — 6)) dv ds
—l—a// B0, s — v — &) exp(—pis — ps — v — b)
—u,5—v—4))dvds
4 02( /O ’ 10,5 — 0)G(6 v)o ) ( /0 " h0.0)00) av).,

where G(x) = exp{ — px+ 5 [P (ux +u)du+ 5 [ hz((),u)du}, for z > 0.

Collecting together the expectations studied in Lemmas 3.11-3.15, we compute E[X (¢) X (t—
)], for 6 > 0 in the following proposition.

Proposition 3.16. It holds for 6 > 0,

E[X()X(t—9)] = 02/5 exp(—pv — p(v — 8) + H(0,v,0 — 8)) dv

+02/t/sexp(—,tw—,u(s—5)+ﬁ(s—v,v,v—6)){h(0,v—5)

(s —v,s)+ h(0,s = d)] + h(0,v)[h(0,s) + h(0, s—é)]}dvds

—1—0// exp(—ps — pu(s — v —0) + H(v, v,s—v—5)){h(0,s—v)
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h(v, s — 8) + h(v, s)] + (0,5 — v — 8)[h(v, s — &) + h(0, s)]} dv ds
+o?( /O 10,6 — 0)G(6 - o)) ( /0 "~ h0.0)C) av).
If
/600 exp(—pw — u(v — 8) + F(0,0,0 — 6)) dv < oo,
/Oo / exp(—pv — (s — 8) + H(s — v,v,v — 6))’h(0,v —§)
h(s — v, )+ h(0, s — 8)] + h(0,v)[1(0, s) + A0, s—5)]‘dvds< 0,
/ / exp(—pus — p(s —v —08) + H(v,s — v,5 — v — 0))
)h 0,5 — v)[h(v,s — 8) + h(v,s)] + h(0,5 — v — 6)[A(v, s — &) + h(0, s)]‘ dvds < oo,
/Om 1h(0, v)G(v)] dv < oo,

then
Jim ELX (1) (t =)

:02/Ooexp( = (v — 8) + FL(0, 0,0 — §)) dv
—i—a/ /eXp —w — pls — 8) + H(s —v.v.0— 6){ (0.0~ )
h(s —v,8) + h(0,s — 8)] + h(0,v)[A(0, s) + h(0, s—d)]}dvds
—l—a// exp(—pus — (s — v — 6) + H(v, v,s—v—é)){h(o,s—v)
h(v,s — 8) + h(v,s)] + h(0, s — v — 8)[(v, 3—5)+h(0,s)]}dvds

+ 02(/0(S h(0,8 — v)G(5 — v)dv) (/OOO h(0,0)G(v) dv) .

Considering the integrability conditions of the latter proposition together with the inte-
grability conditions of Prop. 3.9, we prove the stationarity of the covariance and thus the
weak stationarity of the GOU process.

Notice that when we consider 6 = 0 in Prop. 3.16, we recover the expression for the
second moment studied in Prop. 3.9. We chose to present the results for the second
moment in Subsection 3.2 to be more didactic.
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In the next lemma we investigate the conditions of stationarity of the covariance where
we restrict our attention to the case where o is an OU process.

Lemma 3.17. Let o be an OU process as in (3.3). If
2

>E,
then
thi?o E[X ()X (t — )]
ZUQ/OOeXp( v — (v —8) + H(0,v,v —8)) dv
+0/ /exp —pv — pu(s — 0) + H(s — 5)){h(0,v—5)
(s —v,s)+ h(0,s —0)] + h(0,v)[h(0,s) + (0, s—5)]}dvds
—i—a/ / exp(—pus — (s —v — 0) + H(v, U,s—v—é)){h(o,s—v)

[h(v,s — &) + h(v,s)] + h(0,s — v —0)[h(v, s—5)—|—h(0,s)]}dvd8

+ 02(/05 H(0.6 — 0)G(6 — v)in) (/Ooo h(0.0)G () dv)

where
H(z,y,z2) = 4_ﬁ3(1 _ platy) _ g Blatz) e—ﬁ:c) n @(1 Y (1 — e oy 4 umy
2
+ 4/)7?(1 _ 6—263}) <1 + e—?ﬁy _ 2e—[3y + 6—262 _ 2e—52‘ + 2e—ﬁ(y+z)>
20 ~262 ~28(5-2) 4 9 B—2)
—l—ﬁz—l—él—ﬁ?)(l—e J(1 4 e 2772 4 2e7PW72))
27 e ooy | 20 s n 3n? —2B(y—2)
+ﬂ3 y(l e )—FF(G _1)—’_2_62(1/_2)_4_@(1_6 Y )
and
2 2 2 2
- n —Bz\2 , N n —Bz n —28x
G(x)-exp( ,ux+463( —e )+262x—@(1—e )+4—63(1—e ))

As a conclusion, when we consider a to be an OU process, then the GOU process is
weakly stationary if pf3 is greater than twice the stationary variance of a. Thus, it is
weakly stationary if we impose the condition

n2

M6>E’
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on the parameters of the model.

4. LOCAL BEHAVIOR

In this section we study the instantaneous rate of change in the mean and in the squared
fluctuations of the process X given that X (s) = x, where x € R. We present the proofs of
the results studied in this section in the Appendix as they are similar to the arguments in
the previous section.

We compute in the next lemma the mean of the increment X (¢) — X(s), t > s, given
that X (s) = .

Lemma 4.1. We have for s <t,

E[X(t) — X(5)|X(s) = 2] = x(f(t —s) — 1) + f(t — 5),

where
1[5 R

(4.1) f(v) =exp { — v+ = h*(u,v +u)du+ = [ h (O,u)du}
2 Jo 2 Jo

and

flv)=— /O’U oh(0,u)f(u)du.

From this Lemma we can compute the instantaneous rate of change in the mean of the
process X, given that X (s) = x. This is the content of the next Proposition.

Proposition 4.2. Assume that for all t € [0,T],

(4.2) h?(u,t — s +u) < ((s,u)
and
(4.3) |9(t = s +u)| < (s, u),

where [~ (s, u)du < 0o and [;7 (s, u)du < co. Moreover assume

(A) /Ooo|h(0,u)f(u)\ < 00, /Ooohz((),u)<oo.

Then we have for s <'t,

As we can see, locally the drift of X is behaving like the drift of an Ornstein-Uhlenbeck
process. The speed of mean reversion becomes equal to the mean of o, namely pu.

In the next lemma we compute the squared fluctuations of X (¢) — X (s), t > s given that
X(s) =x.

m KPMG Center of Excellence
in Risk Management



26

Lemma 4.3. We have for s <t,
E[(X(t) — X(5))2|X(s) = 2] =T — 2Ly + Iy — 22Zy + 227T5 + 27T,

{ /: sexp (- /uta(v)dv)(SW(u)}Q] ,

T, = E[{ /stazexp(— /uta(v)dv)(SW(u)}{/sth(O,t—u) exp(— /uta(v)dv)du)}],
13:E:(/:ah(o,t—u)exp(—/:a(v)dv)du)z},

1, :E:/: o h(0,t — u) exp(— /utoz(v)dv)du{exp(— /Stoz(v)dv) -],

a :E:exp(— / ta(v)dv) / taexp(— / ta(v)dv)(svv(v)},

Ty —E|[(exp (- /Sta(v)dv) = 1)2} .

With this Lemma at hand, we can consider the instantaneous rate of change of the
squared fluctuations of the process X given that X (s) = x.

oy
I
=

Proposition 4.4. Assume that (4.2), (4.3), and (A) holds true. If moreover,
(B) / exp(—2pv + H(0,v))dv < oo,
0
/ / |1(0, w)|e W)=t Hv=wuw)|3p (4 — 4, v) + B(0, v)|dudv < oo,
o Jo

/ / |h(0,v — u)|e_2“(”_“)_“(")+H(“’”_“)|3h(0, v) + h(u, v)|dudv < oo.
o Jo
Moreover, if

(C) / |h(0,v)]e” 2OV gy < o0,
0

A

e 3}

/ ’h(O,v)—H(O, v))‘e_Q“”+H(O’”)dv < 00,
0 v

0o v 0 2
—2pu—p(v—u)+H(v—u,u) _
/O /0 n(0.w){e (5 H (v~ u.w)
o2

—I—wH(v—u,u)}dudv < 00.

h(0, u)%H(v —u, u)‘e’Z““’”(”’“HH(”’“’“)du dv < o0,
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Then we have for s <t
E[(X(t) — X(s))*|X(s) = 7]

20 _1: _ 2
b(m)—}tlir; P =o”.

The variance of the process X will locally behave as a constant, and therefore we may
view the process X as an Ornstein-Uhlenbeck process for small increments. Notice that for
the so-called diffusion processes (see for example Kloeden and Platen [12] for more about
such processes), the quantity a(z) is called the drift of the diffusion and b(z) its diffusion
coefficient at position . These two terms describe the behavior of the first and second
moment of increments of the process X over an infinitesimal time interval [s, s + ds].

Now we consider the case where « is the OU process given in (3.3). Under the assumption

2
Ui
Mﬁ>@7

the results of Propositions 4.2 and 4.4 hold true. In fact when « is an OU process then
assumptions (4.2), (4.3), (A), and (B) follow immediately from Lemmas 3.4 and 3.10. To

prove (C) we observe that 2 H (v — u,u) and %H (v — u,u) are bounded uniformly in u
and v and thus (C) becomes equivalent to (B).

5. CHAOS EXPANSION

In this Section we develop the chaos expansion of X. We denote by I,,(¢,,), for a natural
number n, the nth chaos with kernel function ¢, € L*(R™) being symmetric. That is,

L(¢n) = . Gty . wn)dAWE™ (uy, .. . uy)
=n! /OO /unl : --/u2 G (U, .oy Upn) AW (uq) -+ - dW (1) -

Note that in particular, Iy(¢o)) = ¢o is simply a constant and

() = /R () AW (1)

a Gaussian random variable with zero mean and variance being the L?(R)-norm of ¢.
Throughout this Section we assume that the integrability condition on A in Lemma 3.2
holds.

Our first result concerns the chaos expansion of — fst a(u) du.

Lemma 5.1. It holds that

- / a(u) du = —pu(t — 8) + I1(64)

(5.1) Gst(u) = —h(s —u,t —u)l(u <s)—h(0,t —u)l(s <u<t).
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Proof. From Lemma 3.2, we find

_/:a(u)du:_,u(t—s)—/s h(s—u,t—u)dW(U)—/sth(O,f—U)dW(U)

=—u(t—s)+ / Gst(u)dW (u).
R
Hence, the result follows. [l
Next, we state explicitly the chaos expansion of exp (— fst au) du).

Lemma 5.2. It holds

exp (— /:a(u) du) = ni;o]n <%f(t—s) ;"jf) :

where f is given by (4.1)
Proof. From the theory of chaos expansions, it holds (see Nualart [14])

[e.e]

1 1
€xXp (Il(¢s,t) - é‘d)s,t@) = Z m[n ( ??) ’

n=0

where | - |» denotes the L?(R)-norm. But,

|¢s,t|g = /R (h(s —u,t —u)l(u < s)+h(0,t —u)l(s <u< t))2 du

0o t—s
:/ h2(u,t—s—i—u)du—|—/ h*(0,u) du .
0 0

Hence, the result follows from Lemma 5.1. O
Using this, we can compute the chaos of the ”drift-term” of X.

Lemma 5.3. Assume that the function

v+ h(0,v)exp (—/w +/ h?(u,v + u) du +/ h*(0,u) du)
0 0

is integrable on [0,t]. Then the integral f(f h(0,t—s) exp(— f: a(u) du) ds is well-defined as
a Bochner integral in L*(Q, F, P). Moreover, it holds

t . oo 1 t
o -/ a(u) du _ - . . mn
/0 h0,t — s)e™ ds_Z%[n (n‘/o h0,t — 8)f(t — 5)¢%; ds) :

where f is defined in Lemma 5.2 and ¢s, in (5.1).
Proof. Recall that

exp (= [ o)) = exp (=ulo = )+ R
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and hence
1/2

B [ (=2 [ atwan)| = e (cute =) + 6.0
— exp (—,u(t—s)+/Oooh2(u,t—$+u)du+/0t_sh2(0,u)du) :

from the proof of Lemma 5.2. But then the condition implies that s — h(0,t—s) exp (— f; au) du>

is Bochner integrable on [0, ¢]. Invoking Prop. 8.1 and the following discussion on page 281
in Hida et al. [11], the chaos expansion of a Bochner integral is given by integrating the
chaos functions. Hence, the result follows. O

Finally, we compute the chaos expansion of the Skorohod integral in the next Lemma.

Lemma 5.4. Assume that e~ J: ©®d s Skorohod integrable. It holds that

£ = 1
/ e Joedu sy (o) = Z[n+1 (mwnt) 7
n=0 ’

0

where 1, ; € L*(R™1) is the symmetrization of the function

¢n,t(u17 <oy Un, un-l—l) - 1[0,t] (un—i—l)f(t - un—i—l) %:Jrl,t(ul’ cee 7un) .

Proof. This follows from Prop. 1.3.3 in Nualart [14]. O

Collecting together the results in the Lemmas above, we find the chaos expansion of
X(t) to be

X(t) = Xof(t) + /0 t oh(0, u) f(u) du
(5.2) + i I, (% (Xof(t) 2+ /Ot oh(0,t — s)f(t — )57 ds + am/)n_l,t)) :

Note that the integral in the chaos functions can be alternatively written as

[ 100815 - 65ids = [ 00, o,
0 0

after a change of variables.

We consider the case where « is the OU process given by (3.3). In this case, g(u) = ne=""
and exp(— fst a(u)du) is skorohod integrable as it was already discussed in Section 3. Since
we are working in the setting of L?(§2, F, P)-random variables, we suppose that u3 > 7%/,
which we recall from the previous Section that it is a sufficient condition for the second
moment of X (¢) to exist for all ¢ > 0. We compute a chaos expansion for a random variable
X in this particular case of specification of g and investigate the kernel functions in the
chaos expansion.
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Let us start with considering the zeroth order chaos, which is the mean of X. We recall
the expression of h(x,y) and f(z) in (3.4) and (4.1), resp. We know the limit of the zeroth
order chaos (the mean) from Prop. 3.3, giving

tlggoXOf(t) + /Ot h(0,u) f(u) du = /000 h(0,u) f(u)du.

Next, we focus on chaos 1, that is the case n = 1 for simplicity. In the following lemma
we compute the point wise limit of the kernel of chaos 1.

Lemma 5.5. Assume uf3 > n?/2(3. The limit of the zero order chaos is given by
t
(5.3) tl;m Xof (1)60(u) + / oh(0.1 — $)ua(u) ds = ko™ Luco).
o0 0

where k = — fo u) du + ﬂfo fo —B=5) s dv.
Proof. As we have from (5.1)
Gst(u) = —h(s —u,t —u)l(u < s) —h(0,t —u)l(s <u<t)

= — /t—u g(v)dvl(u < s) — /Ot_ug(v) dvl(s <wu <t)

S—u

= %eﬁu (e —eP)1(u<s)+ % (e Pl — ) 1(s<u<t).

for u € R. Let h(v) = 4h(0,v)f(v). Note that we have

h(0,u) f(u) = %(1—e )exp(—uu—i—%/o h%v,u—i—v)dv—i—%/() hZ(O,v)dv)
2 2 2
%(1—e )exp(—uu—2n—63+2n—536”+2n—62u)
Then
[ 00t =950 - oty as
0
:/tﬁ(t s)e (et — e )1 (u < s)ds—i—/tﬁ(t—s)(e_ﬁ(t_“)—1)1(s§u§t)ds
0 0
fo e_ﬁ e P%)ds, u<0,
= fh e Pt — e P ds+f0 (t—s)(e Pt —1)ds, wue€l0,1,

u>t.

Consider first u < 0. After a simple change of variables, it holds,

t__ t__ t__
/ h(t — s)e’(e™P" — e™P%) ds = e (—/ h(s)e %) ds 4 e_ﬁt/ h(s) ds) :
0 0 0
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Since under the assumed condition, lim; .., fgﬁ(s) ds =% [;7 h(0,5)f(s)ds, then

t~
tlim e_’gt/ h(s)ds =0.

From the "key formula” in (3.18), we find

/Otﬁ(s)e_ﬂ(t‘s) ds = /Otﬁ(s) ds+/0t /Ovﬁ(u)(_g)e—ﬁ(v—u) dus do
:/Otﬁ@ds—5/Ote_ﬁ“/0vﬁ(u)eﬂ“dudv,

Notice that the first term on the right-hand side has a limit as time goes to 1nﬁn1ty To have
a limit for the second term, we need that the function v — exp(—/v) fo u) exp(fu) du
is integrable on R, . But this is indeed the case, since

v v
e / h(w)e® du < ce=P / oBu—putnu/(28%) g,
0 0

2
Y —|
o—Bu _ o~ (Bgp2)Y
<c 2 ;

1= o5 —

which is integrable on R, by assumptions on the parameters. We can therefore conclude
that for every u < 0, there exists a limit as t — oo given by

. b . N <~ > —Bv " Bs Bu
(5.4) tlirglo Oh(t S)ps.i(u) ds < /0 h(u)du—l—ﬁ/o e /Oh(s)e dsdv)e :

Next, let us consider a fixed u € R,. Note that for ¢ > u,

h(t — ) < ce~ (b= (29)(t=s)

I

and hence for fixed u we will ﬁnd that fo (t —s)ds — 0, when t — oo. But this yields

that pointwise in u € R, fo (t —s)(e?t" —1)ds — 0, when t — co. Next, after a
change of variables and some straightforward manipulations,

t t—u ~
(5.5) / h(t — s)eP(e P — ™) ds = —/ e P h(v)(e® — 1) dv.
u 0
But for v <t — u, we have

|e3“e_ﬁt%(v)(eﬁ” 1)< cePte—Bt B o= (n—1%(26%))v
< cePre Pt eBt—u) o= (u—n?/(26%))v

Y

which is integrable in R,. Thus we can take the limit inside the integral in (5.5) and we
prove that the limit of f; h(t — s)eP(e Pt — e7P%) ds goes to 0 when t goes to infinity and
the statement is proved. O
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We note further that the pointwise limit in (5.3) is indeed a function in L?*(R). One
could hope that the kernel of chaos 1 converges not only pointwise to the L?(R)-function
exp(Bu)1(u < 0), but also in L?(R). We demonstrate that this is not the case. Indeed, we
have

]/t}i(t — $)yu(-) ds — ke¥1(- < 0)

L2(R)
‘/ (t —s) (e —e ) dse®1(- < 0) — ke 1(- < 0)
/ Bt — 5) (e — o) dseP1(0 < - < 1)

2

T / Tt - 5)(e ) ~1)ds1(0 < - < 1)

= %’/Otz(t —s)(e P —e ) ds — kr
+ /Ot </t%(t - S)(e—ﬂt _ e_ﬁS) dse 1 /Ouﬁ(t 9 ds(e_g(t_u) B 1))2 "

The first term goes to zero by definition of &k (using the arguments as above). We consider
the second term. We have

/Ot (/ut%(t—sxe—ﬂt—e—BS)dseﬁu/ouE(t—s) ds(e= Pt 1)>2du
:/Ot(/:%(t—sxe—ﬂt—e—ﬂS)dseBU)zdw/ot(/Ouh(t—s)ds< “)—1))2du

(5.6)
+2/0t (/:E(t—s)(eﬁt—eﬂS)dseﬁU)(/ou h(t — s) ds(e ) — 1)) du.

However, for s < t, we have

L2(R)

2

Rt —s) > (1 — e*ﬁ(t*@)e—t(u—%)es(u—g—ﬁ)

Y

where c is a strictly positive constant. Thus
u__ 2 2 2
( / Rt — s) ds(e~Ptw) _ 1)) > (1 — e Ptyle~2—35) (2uln=35) _ 1),
0

Integrating and taking the limit when ¢ goes to infinity we get
t

t U __ 2 2 2
lim (/ h(t — s)ds(e Pt — 1)> du> lim [ (1 — e P)te 20733 (240 =35) _ 1) gy
0o “Jo

t—o0 t—o0 0

: Bt —2u(u—T2)  26(u—T2)
> lim ¢(1 — e P")%e W28/ (W2 — 1 — )

t—o0

:c7
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where ¢ is a strictly positive constant. Since the first and third terms in (5.6) are positive
then we have

t t__ u__ 2
lim (/ h(t — s)(e P — eP%) dseP + / h(t — s)ds(e Pt — 1)) du > 0
0 u 0

t—o0

Therefore the kernel function of chaos 1 converges pointwise to a square-integrable function,
but not in L2.

6. APPENDIX

Proof of Lemma 3.11. We have for v <t, w <,
t v w
—/ a(u)du — / a(u)du = —p(t —n) — plv —w) — / h(n —u,t —u)dW (u)
n w —00
w n
- / h(w —u,v — w)dW (u) — / h(n —u,t —u)dW (u)

— 00

. /n h(0,¢ — w)dW (u) — /n h(0,v — u)dW (u)

_ /t h(0,t — u)dW (u) — /n R(0,v — w)dW (u)
—u(t —n) — p(v —w)
— /_ {h(n —u,t —u) + h(w — u,v — u) }dW (u)

- /v{h(o, F— ) + B0, — u)}dIV (u)
- /n{h(n —u,t —u)+ h(0,v —u) }dW (u) — / Rh(0,t —u)dW (u).

The result follows after using that the exponential of a Wiener integral is lognormally
distributed. In the same way we can prove the formula for n < w < v <t and the result
follows.

Proof of Lemma 3.12. By Prop. 1.3.1 in Nualart [14] we have
t—6

t
E[/ aefoﬁo‘(“)d“(SW(w)/ ae’fj_aa(“)d“(SW(w)}
0 0

:(IZE[/t&e_f a(wdug= [ a d“dw}
0

=8 pt—s . s
+02E[/ / (Dye ™t a(“)du)(Dne_fw O‘(“)du)dwdn]
0 0

t—4& —
_ O’QE[/ eff a(u)du ff dudw:|
0
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t—5 s,
+0/ / ~Jyelwydug= [ d“ /Da du / Dya( )du)dwdn.

Here above we have applied the chain rule for Malliavin differentiation and the Fubini
theorem. We get the result from (3.17), Lemma 3.11, and considering a measure change.

Proof of Lemma 3.13. Using the duality formula (Eq. (1.42) in Nulalart [14]) and the
Fubini Theorem, we get

t t—o
E[/ oe Jo O‘(“)d“(sw(w> / Uh(O,t —_§5—= w)ef fwféa(u)dudw]
0 0
9 t—0 t—0 —ft76 d _ft a(u)du
=0 E[/ DU(/ h(07 t— 5 - W)e « a(u) udw)e n dn:|
0 0

=5 pt—3 s =5 ,
= —0’E [/ / h0,t — 6§ — w)e Jo aldup </ a(u)du) e~ Jpatwdu g, dn}
0 0 w
t s s
= —02/ / h(0,t — 6 —w)h(max(n,w) —n,t —6 —n)E [e‘fw a(u)dug— [ ow) u] dw dn
0 Jo

and we get the result by applying Lemma 3.11 and considering a measure change.

Proof of Lemma 3.14. Using the duality formula (Eq. (1.42) in Nulalart [14]) and the
Fubini Theorem, we get

t t—6
]E|:/ Uh(O)t —wefwa(")dudw/ ge~ f duaW( ):|
0 0
t—6 t .
= O'QE[/ D (/O h(o t— ) -/ a(u)dudw> e fn O dn
t—9 t—9 ¢ .~
= —02JE / / h0,t —w)e Jo aW“Dn( / Oz(u)du)e’fn Pa(uydu g, dn]

=8 pt—6 .
= —0? / / h(0,t — w)h(max(n,w) —n,t —n)E [e_ Jo ewydug= 1y 6‘1(“)‘1“} dw dn
o Jo

and we get the result by applying Lemma 3.11 and considering a measure change.

Proof of Lemma 3.15. From (3.11), we have
-6

t . .
IE:|:/ O'h(o t—n) 7f au)dudn/ h(o t—5 — w)e_fw 6a(u)dudw]
t—§
=oE / / B0, = (0, — & — w)e~ i 2o I e g, g

t—5
+0’2E|:/ h(07t—n) _f au)dudn/ h(o,t—(s—w)_fwiéa(u)dudw}
t—9 0

m KPMG Center of Excellence
in Risk Management



35

=0’ hOt— Jh(0,t — 0 — w)E e~y otwdug= [ a(w)du dw dn
o Jo

t
+o / h e —p(t=n)+35 fo h2 (u,t— ’r]+u)du+ fo Th2(0,u) dud,'7
t—4

t—6
x/ h(O t—§ — w)e p(t—6—w)+1 [ h?(ut—6—wtu)duti [~ S=w p2( (Oudu g,
0
and the result follows by a change of variable and by appealing to Lemma 3.11.

Proof of Proposition 3.16. Collecting together the results for the expectations in
(3.21)-(3.24) in Lemmas 3.12-3.15 and using (3.18) we get the result for E[X (¢) X (t — 0)],
0 > 0. Then applying the dominated convergence theorem we get the limit when ¢ goes to
00 .

Proof of Lemma 3.17. We have
2

/0 (h(z +u,x+y+u) + h(z, 2+ 2 +u)’du = 27752{1 e Alety) _ g=Blatz) 4 o=hry2

/Ox{h(u, u+y) + h(0,u+ 2)}du

=T <1 — e_%”) <1 + e 2 _2e7PY 4 o727 _9e7F% 4 2e_ﬁ(y+z)>

233
21 — Bz —Bz - Ui
—l—F(l—e A1 —e P —e ﬁy)%—@x,
z 4 2 2
/ {h(0,y — u) + h(0, 2 — ) Y2du = B—Zz + 2”—53(1 — 722 (1 4 e 2W—2) | 9o A—2))
0
4n? 4n?
+ B—Zeﬁy(l — ) ¢ 6—773(6‘32 - 1),
y—z 2 2
_n 37] —2B(y—=
/0 R*(0,y — 2 — u)du = 52( z)—2—63(1—e (v=2)),

The expressions for H (x,y, z) and G(x) follow immediately. Thus the statement is proved.
Proof of Proposition 4.1. Recall the expression of X in (3.8). We have

X(t) — X(s) = X(s)(e Jeo@idv _ 1) 4 / e hu WS ()

¢
(6.1) —/ oh(0,t — u)e™ Juo®dv gy,
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Taking the conditional expectation, we get using (3.11)
t

E[X(t) — X(5)|X(s) = ] = aB[e~ a0 _ 1) / oh(0, £ — [~k a@d) gy

= (e Ht=s)+3 ST R (utmstuydut 3 570 R Ou)du _ )

t
— / ah(0,t — u)e‘“(t—U)e% J5® W2 (mt—utn)dn+3 [5" B2 (0m)dn g,

_ m(e—,u(t—s)—l-% I hQ(u,t—s—&—u)du—s—%fJ*S h2(0u)du 1)
t—s
- / oh(0, v)e otz JoT h o tudut g [ k2 (Ou)du gy,
0
and the result follows.

Proof of Proposition 4.2. We have from the definition of the function A that h(u,t—
s+u) = fJ_SJrug(v)dv. If [ ]g(v)|dv < oo then by dominated convergence theorem, we
deduce that h?(u,t — s + u) and [}~ " h?(0,u)du converge to 0 when ¢ goes to s. Hence
by (4.2) and applying again the dominated convergence theorem we deduce that f(t — s)
vanishes when ¢ goes to s. Thus to compute the limit in (4.4), we use the I'Hopital’s rule.
We compute

8f(tat—_s) :f(t_3)<_M+/Oooh(u,t—s+u)g(t—s—l—u)du—l—%hQ(O,t—s)>.
of(t —s)
E-va —oh(0,t—s)f(t—s).

Then from (4.3) and following the same arguments as before the result follows.

Proof of Lemma 4.3. The result follows immediately using the expression of X (t) —
X(s) (Eq. (6.1)).

Proof of Proposition 4.4. Following the same computations as in the proofs of Lemma
3.6, Lemma 3.7, and Lemma 3.8, it holds that

t
I, = / 0_2672p(t7u)+H(0,t7u)du
’ t u
+ / / o?h(0,t — u)h(u — v, t — v)e 2w mulumv)FHu=vE=0) gy gy,
S S

t ot
+ / / o?h(v —u,t —u)h(0,t — v)6_2“(t_”)_“(v_“)+H(”_“’t_”)dvdu,

t u
I, = — / / a?h(0,t — u)h(u — v, t — v)e 2w -pluHHu—vi=u) g, gy,
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/ / h(0,t —v)h(0,t — u)e’z“(t’”)’“(”’“)*H(”’“’t’”)dvdu,
and

I3 = / / 0,t — u)h(0,t — v)e 2#t-w—plu—v)+H{u=vt=u) gy, g,

/ / h(0,t — v)h(0,t — u)e_2“(t_“)_“(”_“)+H(”_“’t_”)dvdu.

Thus collecting Z;, Z,, and Z3 together, we get
t—s
I, — 2T, + 13 = / o? exp(—2uv + H(0,v))dv
0
t—s v
+ / / o2 h(0, u)e2#W—nlv—u)+H(v—uu) (3h(v —u,v) + h(0,v))dudv

/ / L0 — u)e T T =) (350, v) + h(u, v))dudv .

By (B) and applying dominated convergence theorem, the latter vanishes when ¢ goes to
s. Moreover we have

Ty — 2T, + Ts)

= 0% exp(—2u(t — s) + H(0,t — 5))

ot
t—s
+ / o2 h(0, u)e 2 —nlvm+Hv—ww) (31 (1) 4y ) + h(0,v))dudv
0
t—s
+ / o?h(0,v — u)e - WmrWHH =) (3] () 4) + h(u, v))dudv .
0
Thus using (C) and I'Hopital’s rule, we get lim,; % = ¢%. In other hand, using

Lemma 3.5, we get

I =0c /t h(0,t — u) (e~ 20— —nlu=s)+H(u=st—u)
_Oeu(t—u)+§ IS B2 (v t—utv)do+d [F7 h2(0,v)dv)du
Using integration by parts for Skorohod integral and Lemma 3.5, we get
Is=—0 /t h(0,t — u)e 2w —plus)+Hu=st=u) gy,
Hence collecting 7, and Zg together, we find

t—s
—227, + 2275 = —4x0/ h(0, v)e 2w rlt=v)+HE=v) gy 95 f(t — s)
0
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where f(v) is as defined in Prop. 4.2. Using the ”"Key formula” in (3.18), we have

t—s
—227y + 2275 = —4x0/ h(0,v)e 2 THO) gy — 925 f(t — s)
0

t—s v
- 4:60/ / h(0, u)e’Q““’“(”*“HH(”*“’“)( —p+ QH(U — u, u))du dv .
0 0 81)

Using (C) and dominated convergence theorem the latter vanishes when t goes to 0. We
compute using (3.18),

T = —4x0h(0,t — 5)e #E=ITHOL=S) _ 90p5h(0,t — 5)f(t — 5)

t—s
—4dxo / h(O, u)e—Q#U—#(t—s—u)—l-H(t—s—u,u)
0

0
(—,u—l- mH(t—s—u,u))du
= —4aoh(0,t — s)e 2HE=IHHOLS) _906h(0,1 — 5)f(t — 5)

t—s H(O) 8
. —2pv+H(0,v .
4xa/0 h(0,v)e ( w4 _(%H(O’ v)) dv

t—s v
. 41,0_/ / h(O, u){ef2uu7u(v7u)+H(v7u,u)
0 0
0

H ’ 82IL[
(—,u+% (v—u,u)) to3 (v—u,u)}dudv.

Applying the I'Hopital’s rule, (C), and the dominated convergence theorem, we get

—2xTy + 2275
lim —— = 0.
t—s t — S

Using the same computations as before, it is easy to show that if (4.2), (4.3), and (A) hold
true then lim,_, xztI_—Gs = 0 and the statement is proved.
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