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Abstract. We consider a backward stochastic differential equation with jumps (BSDEJ)
which is driven by a Brownian motion and a Poisson random measure. We present two
candidate-approximations to this BSDEJ and we prove that the solution of each candidate-
approximation converges to the solution of the original BSDEJ in a space which we specify.
We use this result to investigate in further detail the consequences of the choice of the
model to (partial) hedging in incomplete markets in finance. As an application, we consider
models in which the small variations in the price dynamics are modeled with a Poisson
random measure with infinite activity and models in which these small variations are
modeled with a Brownian motion. Using the convergence results on BSDEJs, we show
that quadratic hedging strategies are robust towards the choice of the model and we derive
an estimation of the model risk.

Since Bismut [6] introduced the theory of backward stochastic differential equations
(BSDEs), there has been a wide range of literature about this topic. Researchers have kept
on developing results on these equations and recently, many papers have studied BSDEs
driven by Lévy processes (see, e.g., El Otmani [19], Carbone et al. [9], and Øksendal and
Zhang [34]).

In this paper we consider a BSDE which is driven by a Brownian motion and a Poisson
random measure (BSDEJ). We present two candidate-approximations to this BSDEJ and
we prove that the solution of each candidate-approximation converges to the solution of the
BSDEJ in a space which we specify. Our aim from considering such approximations is to
investigate the effect of the small jumps of the Lévy process in quadratic hedging strategies
in incomplete markets in finance (see, e.g., Föllmer and Schweizer [20] and Vandaele and
Vanmaele [33] for more about quadratic hedging strategies in incomplete markets). These
strategies are related to the study of the Föllmer-Schweizer decomposition (FS) or/and the
Galtchouk-Kunita-Watanabe (GKW) decomposition which are both backward stochastic
differential equations (see Choulli et al. [12] for more about these decompositions).

The two most popular types of quadratic hedging strategies are the locally risk-minimizing
strategies and the mean-variance hedging strategies. To explain, let us consider a market
in which the risky asset is modelled by a jump-diffusion process S(t)t≥0. Let ξ be a contin-
gent claim. A locally risk-minimizing strategy is a non self-financing strategy that allows
a small cost process C(t)t≥0 and insists on the fact that the terminal condition of the value
of the portfolio is equal to the contingent claim (see Schweizer [31]). In other words the
existence of the local risk-minimizing strategy for ξ is related to the Föllmer-Schweizer
(FS) decomposition, i.e.,

(0.1) ξ = ξ(0) +

∫ T

0

χFS(s)dS(s) + φFS(T ),

2
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where χFS(t)t≥0 is a process such that the integral in (0.1) exists and φFS(t)t≥0 is a mar-
tingale which has to satisfy certain conditions that we will show in the next sections of the
paper. The financial importance of the FS decomposition lies in the fact that it directly
provides the locally risk-minimizing strategy for ξ. In fact at each time t the number of
risky assets is given by χFS(t) and the cost C(t) is given by φFS(t) + ξ(0). The mean-
variance hedging strategy is a self-financing strategy which minimizes the hedging error in
mean square sense (see Föllmer and Sondermann [21] ).

In this paper we study the robustness of these two latter hedging strategies towards
the approximation of the market prices. Hereto we assume that the process S(t)t≥0 is
a jump-diffusion with stochastic factors and driven by a pure jump term with infinite
activity and a Brownian motion W (t)t≥0. We consider three approximations to S(t)t≥0. In
the first approximation S0,ε(t)t≥0 , we truncate the small jumps and rescale the Brownian
motion W (t)t≥0 to justify the variance of the small jumps. In the second approximation
S1,ε(t)t≥0 , we truncate the small jumps and replace them by a Brownian motion B(t)t≥0

independent of W (t)t≥0 and scaled with the standard deviation of the small jumps. In the
third approximation S2,ε(t)t≥0 , we truncate the small jumps.

This idea of shifting from a model with small jumps to another where those variations are
represented by some appropriately scaled continuous component goes back to Asmussen
and Rosinsky [1] who proved that the second model approximates the first one. This
explains our choice of the two models S0,ε(t)t≥0 and S1,ε(t)t≥0 . This kind of approximation
results is here considered for the purpose of a study of robustness of the model. Hence it
is interesting from the modeling point of view. In addition, it is also interesting from a
simulation point of view. In fact no easy algorithms are available for simulating general
Lévy processes. In the present paper the approximating processes we obtain contain a
compound Poisson process and a Brownian motion which are both easy to simulate (see
Cont and Tankov [13]). For numerical solutions to BSDEs driven by a Brownian motion
and a compound Poisson process, we refer to the paper by Bouchard and Elie [7]. This
latter paper is in fact an extension of the work by Bouchard and Touzi [8] written for
Brownian noise where time discretisation is studied to solve BSDEs with an Euler type
scheme. In a forthcoming paper by Khedher et al. [24], BSDEs driven by Brownian motion
and jumps with infinite activity are considered. There the combined effect of approximation
and time-discretisation is studied together with a numerical scheme to solve such BSDEs.
This then will be used to prove the robustness of the locally risk-minimizing strategies to
model risk and numerical discretisation.

We do not discuss in this paper any preferences for the choice of the model. We leave this
to further studies. For instance Daveloose et al. [14] have this type of discussion about the
model choice, in the case the dynamics are given by an exponential Lévy process. Benth et
al. [4, 5] investigated the consequences of this approximation to option pricing in finance.
They consider option prices written in exponential Lévy processes and they proved the
robustness of the option prices after a change of measure where the measure depends on
the model choice. For this purpose the authors used Fourier transform techniques.

In this paper we focus mostly on the locally risk-minimizing strategies and we show
that under some conditions on the parameters of the stock price process, the value of the
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portfolio, the amount of wealth, and the cost process in a locally risk-minimizing strategy
are robust to the choice of the model. Moreover, we prove the robustness of the value
of the portfolio and the amount of wealth in a mean-variance hedging strategy, where we
assume that the parameters of the jump-diffusion are deterministic. To prove these results
we use the convergence results on BSDEJs and we exploit the relation between BSDEJs
and quadratic hedging strategies. In this context, we refer to a paper by Jeanblanc et al.
[23] in which the authors exploit the relation between BSDEJs and mean variance hedging
strategies in a general semimartingale setting.

This robustness study is a continuation and a generalization of the results by Benth et
al. [5]. In fact we consider more general dynamics and we prove that indeed the locally risk-
minimizing strategy and the mean-variance hedging strategy are robust to the risk of model
choice. For the special choice of dynamics for the price process, namely an exponential
Lévy process, Daveloose et al. [14] study robustness of quadratic hedging strategies using
a Fourier approach.

The paper is organised as follows: in Section 2 we introduce the notations and we make a
short introduction to BSDEJs. In Section 3 we present the two candidate-approximations
to the original BSDEJ and we prove the robustness. In Section 4 we prove the robustness
of quadratic hedging strategies towards the choice of the model. In Section 5 we conclude.

1. Some mathematical preliminaries

Let (Ω,F ,P) be a complete probability space. We fix T > 0. Let W = W (t) and

B = B(t), t ∈ [0, T ], be two independent standard Wiener processes and Ñ = Ñ(dt, dz),

t, z ∈ [0, T ]× R0 (R0 := R \ {0}) be a centered Poisson random measure, i.e. Ñ(dt, dz) =
N(dt, dz)− `(dz)dt, where `(dz) is the jump measure and N(dt, dz) is the Poisson random
measure independent of the Brownian motions W and B and such that E[N(dt, dz)] =
`(dz)dt. Define B(R0) as the σ-algebra generated by the Borel sets Ū ⊂ R0. We assume
that the jump measure has a finite second moment. Namely

∫
R0
z2`(dz) <∞. We introduce

the P-augmented filtrations F = (Ft)0≤t≤T , G = (Gt)0≤t≤T , respectively by

Ft = σ
{
W (s),

∫ s

0

∫
A

Ñ(du, dz), s ≤ t, A ∈ B(R0)
}
∨N ,

Gt = σ
{
W (s), B(s),

∫ s

0

∫
A

Ñ(du, dz), s ≤ t, A ∈ B(R0)
}
∨N ,

where N represents the set of P-null events in F . We introduce the notation H =
(Ht)0≤t≤T , such that Ht will be given either by the σ-algebra Ft or Gt depending on our
analysis later.
Define the following spaces;

• L2
T : the space of all HT -measurable random variables X : Ω→ R such that

‖X‖2 = E[X2] <∞.
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• H2
T : the space of all H-predictable processes φ : Ω× [0, T ]→ R, such that

‖φ‖2
H2

T
= E

[ ∫ T

0

|φ(t)|2dt
]
<∞.

• H̃2
T : the space of all H-adapted, càdlàg processes ψ : Ω× [0, T ]→ R such that

‖ψ‖2eH2
T

= E
[ ∫ T

0

|ψ(t)|2dt
]
<∞.

• Ĥ2
T : the space of all H-predictable mappings θ : Ω× [0, T ]× R0 → R, such that

‖θ‖2bH2
T

= E
[ ∫ T

0

∫
R0

|θ(t, z)|2`(dz)dt
]
<∞.

• S2
T : the space of all H-adapted, càdlàg processes γ : Ω× [0, T ]→ R such that

‖γ‖2
S2

T
= E[ sup

0≤t≤T
|γ2(t)|] <∞.

• ν = S2
T ×H2

T × Ĥ2
T .

• ν̃ = S2
T ×H2

T × Ĥ2
T ×H2

T .

• L̂2
T (R0,B(R0), `): the space of all B(R0)-measurable mappings ψ : R0 → R such

that

‖ψ‖2bL2
T (R0,B(R0),`)

=

∫
R0

|ψ(z)|2`(dz) <∞.

The following result is crucial in the study of the existence and uniqueness of the back-
ward stochastic differential equations we are interested in. Indeed it is an application of
the decomposition of a random variable ξ ∈ L2

T with respect to orthogonal martingale ran-
dom fields as integrators. See Kunita and Watanabe [26], Cairoli and Walsh [10], and Di
Nunno and Eide [17] for the essential ideas. In Di Nunno [15, 16], and Di Nunno and Eide
[17], explicit representations of the integrands are given in terms of the non-anticipating
derivative.

Theorem 1.1. Let H = G. Every GT -measurable random variable ξ ∈ L2
T has a unique

representation of the form

ξ = ξ(0) +
3∑

k=1

∫ T

0

∫
R
ϕk(t, z)µk(dt, dz),(1.1)

where the stochastic integrators

µ1(dt, dz) = W (dt)× δ0(dz), µ2(dt, dz) = B(dt)× δ0(dz),

µ3(dt, dz) = Ñ(dt, dz)1[0,T ]×R0(t, z),

are orthogonal martingale random fields on [0, T ] × R0 and the stochastic integrands are

ϕ1, ϕ2 ∈ H2
T and ϕ3 ∈ Ĥ2

T . Moreover ξ(0) = E[ξ].
Let H = F. Then for every FT -measurable random variable ξ ∈ L2

T , (1.1) holds with
µ2(dt, dz) = 0.
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As we shall see the above result plays a central role in the analysis that follows. Let us
now consider a pair (ξ, f), where ξ is called the terminal condition and f the driver such
that

Assumptions 1.
(A) ξ ∈ L2

T is HT -measurable
(B) f : Ω× [0, T ]× R× R× R→ R such that

• f(·, x, y, z) is H-progressively measurable for all x, y, z,
• f(·, 0, 0, 0) ∈ H2

T ,
• f(·, x, y, z) satisfies a uniform Lipschitz condition in (x, y, z), i.e. there exists a

constant C such that for all (xi, yi, zi) ∈ R×R× L̂2
T (R0,B(R0), `), i = 1, 2 we have

|f(t, x1, y1, z1)− f(t, x2, y2, z2)|

≤ C
(
|x1 − x2|+ |y1 − y2|+ ‖z1 − z2‖

)
, for all t.

We consider the following backward stochastic differential equation with jumps (in short
BSDEJ)

(1.2)

 −dX(t) = f(t,X(t), Y (t), Z(t, ·))dt− Y (t)dW (t)−
∫

R0

Z(t, z)Ñ(dt, dz),

X(T ) = ξ.

Definition 1.2. A solution to the BSDEJ (1.2) is a triplet of H-adapted or predictable
processes (X, Y, Z) ∈ ν satisfying

X(t) = ξ +

∫ T

t

f(s,X(s), Y (s), Z(s, ·))ds−
∫ T

t

Y (s)dW (s)

−
∫ T

t

∫
R0

Z(s, z)Ñ(ds, dz), 0 ≤ t ≤ T.

The existence and uniqueness result for the solution of the BSDEJ (1.2) is guaranteed
by the following result proved in Tang and Li [32].

Theorem 1.3. Given a pair (ξ, f) satisfying Assumptions 1(A) and (B), there exists a
unique solution (X, Y, Z) ∈ ν to the BSDEJ (1.2).

2. Two candidate-approximating BSDEJs and robustness

2.1. Two candidate-approximating BSDEJs. In this subsection we present two candidate-
approximations of the BSDEJ (1.2). Let H = F and f 0

ε be a function satisfying Assump-
tions 1(B), for all ε ∈ [0, 1]. In the first candidate-approximation, we approximate the
terminal condition ξ of the BSDEJ (1.2) by a sequence of random variables ξ0

ε ∈ L2
T ,

FT -measurable such that

lim
ε→0

ξ0
ε = ξ, in L2

T .
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We obtain the following approximation

(2.1)

 −dXε(t) = f 0
ε (t,Xε(t), Yε(t), Zε(t, ·))dt− Yε(t)dW (t)−

∫
R0

Zε(t, z)Ñ(dt, dz),

Xε(T ) = ξ0
ε .

We present the following condition on f 0
ε , which we need to impose when we study the

robustness results in the next section. For all (xi, yi, zi) ∈ R×R×L̂2
T (R0,B(R0), `), i = 1, 2,

and for all t ∈ [0, T ], it holds that

|f(t, x1, y1, z1)− f 0
ε (t, x2, y2, z2)|

≤ C
(
|x1 − x2|+ |y1 − y2|+ ‖z1 − z2‖+ G̃(ε)|y2|+ G̃(ε)‖z2‖

)
,(2.2)

for C and G̃(ε) positive constants and G̃(ε) vanishing when ε goes to 0.
In the next theorem we state the existence and uniqueness of the solution (Xε, Yε, Zε) ∈ ν

of the BSDEJ (2.1). This result on existence and uniqueness of the solution to (2.1) is
along the same lines as the proof of Theorem 1.3, see also Tang and Li [32].

Theorem 2.1. Let H = F. Given a pair (ξ0
ε , f

0
ε ) such that ξ0

ε ∈ L2
T is FT -measurable and

f 0
ε satisfies Assumptions 1(B), then there exists a unique solution (Xε, Yε, Zε) ∈ ν to the

BSDEJ (2.1).

Let H = G. We present the second candidate-approximation to (1.2). Hereto we intro-
duce a sequence of random variables GT -measurable ξ1

ε ∈ L2
T such that

lim
ε→0

ξ1
ε = ξ

and a function f 1
ε satisfying

Assumptions 2. f 1
ε : Ω× [0, T ]× R× R× R× R→ R is such that for all ε ∈ [0, 1],

• f 1
ε (·, x, y, z, ζ) is G-progressively measurable for all x, y, z, ζ,

• f 1
ε (·, 0, 0, 0, 0) ∈ H2

T ,
• f 1

ε (·, x, y, z, ζ) satisfies a uniform Lipschitz condition in (x, y, z, ζ).

Besides Assumptions 2 which we impose on f 1
ε , we need moreover to assume the fol-

lowing condition in the robustness analysis later on. For all (xi, yi, zi, ζ) ∈ R × R ×
L̂2
T (R0,B(R0), `)× R, i = 1, 2, and for all t ∈ [0, T ], it holds that

|f(t, x1, y1, z1)− f 1
ε (t, x2, y2, z2, ζ)|

≤ C
(
|x1 − x2|+ |y1 − y2|+ ‖z1 − z2‖+ |ζ|+ G̃(ε)‖z1‖|

)
,(2.3)
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for C and G̃(ε) positive constants and G̃(ε) vanishing when ε goes to 0.
We introduce the second candidate BSDEJ approximation to (1.2) which reads as follows
(2.4)

−dXε(t) = f 1
ε (t,Xε(t), Yε(t), Zε(t, ·), ζε(t))dt− Yε(t)dW (t)−

∫
R0

Zε(t, z)Ñ(dt, dz)

−ζε(t)dB(t),
Xε(T ) = ξ1

ε ,

where we use the same notations as in (2.1). B is a Brownian motion independent of
W . Because of the presence of the additional noise B the solution processes are expected
to be G-adapted (or predictable). Notice that the solution of such equation is given by
(Xε, Yε, Zε, ζε) ∈ ν̃. In the next theorem we state the existence and uniqueness of the
solution of the equation (2.4). The proof is very similar to the proof of Theorem 2.1.
However we work under the σ-algebra Gt.

Theorem 2.2. Let H = G. Given a pair (ξ1
ε , f

1
ε ) such that ξ1

ε ∈ L2
T is GT -measurable and

f 1
ε satisfies Assumptions 2, then there exists a unique solution (Xε, Yε, Zε, ζε) ∈ ν̃ to the

BSDEJ (2.1).

It is expected that when (2.3) holds, the process ζε vanishes when ε goes to 0. This will
be shown in the next subsection in which we also prove the robustness of the BSDEJs.

2.2. Robustness of the BSDEJs. Before we show the convergence of the two equations
(2.1) and (2.4) to the BSDEJ (1.2) when ε goes to 0, we present the following lemma in
which we prove the boundedness of the solution of (1.2) and of that of (2.1). We need this
lemma in Theorem 2.4 and for our analysis in the next section.

Lemma 2.3. Let (X, Y, Z), (Xε, Yε, Zε) be the solution of (1.2) and (2.1), respectively.
Then we have for all t ∈ [0, T ],

E
[ ∫ T

t

X2(s)ds
]

+ E
[ ∫ T

t

Y 2(s)ds
]

+ E
[ ∫ T

t

∫
R0

Z2(s, z)`(dz)ds
]

≤ C
(
E[ξ2] + E

[ ∫ T

t

|f(s, 0, 0, 0)|2ds
])
,

respectively,

E
[ ∫ T

t

X2
ε (s)ds

]
+ E

[ ∫ T

t

Y 2
ε (s)ds

]
+ E

[ ∫ T

t

∫
R0

Z2
ε (s, z)`(dz)ds

]
≤ C

(
E[|ξ0

ε |2] + E
[ ∫ T

t

|f 0
ε (s, 0, 0, 0)|2ds

])
,

where C is a positive constant.
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Proof. Recall the expression of X given by (1.2). Applying the Itô formula to eβtX2(t) and
taking the expectation, we get

E[eβtX2(t)] = E[eβTX2(T )]− βE
[ ∫ T

t

eβsX2(s)ds
]
− E

[ ∫ T

t

eβsY 2(s)ds
]

+ 2E
[ ∫ T

t

eβsX(s)
(
f(s,X(s), Y (s), Z(s, .))− f(s, 0, 0, 0)

)
ds
]

+ 2E
[ ∫ T

t

eβsX(s)f(s, 0, 0, 0)ds
]
− E

[ ∫ T

t

∫
R0

eβsZ2(s, z)`(dz)ds
]
.

Thus by the Lipschitz property of f we find

E[eβtX2(t)] + E
[ ∫ T

t

eβsY 2(s)ds
]

+ E
[ ∫ T

t

∫
R0

eβsZ2(s, z)`(dz)ds
]

≤ E[eβTX2(T )]− βE
[ ∫ T

t

eβsX2(s)ds
]

+ 2CE
[ ∫ T

t

eβsX(s)
(
|X(s)|+ |Y (s)|+ |

∫
R0

Z2(s, z)`(dz)|
1
2

)
ds
]

+ 2E
[ ∫ T

t

eβsX(s)f(s, 0, 0, 0)ds
]
.

Using the fact that for every k > 0 and a, b ∈ R we have that 2ab ≤ ka2 + b2

k
and

(a + b + c)2 ≤ 3(a2 + b2 + c2), choosing β = 6C2 + 2, and noticing that β > 0, the result
follows for (X, Y, Z). The same computations lead to the result for the approximation
(Xε, Yε, Zε). �

From now on we use a unified notation for both BSDEJs (2.1) and (2.4) in the BSDEJ

(2.5)

 −dXρ
ε (t) = fρε (t)dt− Y ρ

ε (t)dW (t)−
∫

R0

Zρ
ε (t, z)Ñ(dt, dz)− ζρε (t)dB(t),

Xρ
ε (T ) = ξρε , for ρ = 0 and ρ = 1,

where

fρε (t) =

{
f 0
ε (t,X0

ε (t), Y 0
ε (t), Z0

ε (t)), ρ = 0,
f 1
ε (t,X1

ε (t), Y 1
ε (t), Z1

ε (t), ζ1
ε (t)), ρ = 1

and

ζρε (t) =

{
0, ρ = 0,
ζ1
ε (t), ρ = 1.

Notice that the BSDEJ (2.5) has the same solution as (2.1) and (2.4) respectively for ρ = 0
and ρ = 1. We state the following theorem in which we prove the convergence of both
BSDEJs (2.1) and (2.4) to the BSDEJ (1.2).
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Theorem 2.4. Assume that f 0
ε and f 1

ε satisfy (2.2) and (2.3) respectively. Let (X, Y, Z)
be the solution of (1.2) and (Xρ

ε , Y
ρ
ε , Z

ρ
ε , ζ

ρ
ε ) be the solution of (2.5). Then we have for

t ∈ [0, T ], ρ = 0 and ρ = 1

E
[ ∫ T

t

|X(s)−Xρ
ε (s)|2ds

]
+ E

[ ∫ T

t

|Y (s)− Y ρ
ε (s)|2ds

]
+ E

[ ∫ T

t

∫
R0

|Z(s, z)− Zρ
ε (s, z)|2`(dz)ds

]
+ E

[ ∫ T

t

|ζρε (s)|2ds
]

≤ KE[|ξ − ξρε |2] + K̃G̃2(ε)(1− ρ)
(
E[|ξ0

ε |2] + E[

∫ T

t

|f 0
ε (s, 0, 0, 0)|2ds]

)
+ K̂G̃2(ε)ρ

(
E[|ξ|2] + E[

∫ T

t

|f(s, 0, 0, 0)|2ds]
)
,

where K, K̃, K̂ and G̃(ε) are positive constants and with G̃(ε) vanishing when ε goes to 0.

Proof. Let

X̄ρ
ε (t) = X(t)−Xρ

ε (t), Ȳ ρ
ε (t) = Y (t)− Y ρ

ε (t), Z̄ρ
ε (t, z) = Z(t, z)− Zρ

ε (t, z),

f̄ρε (t) = f(t,X(t), Y (t), Z(t, .))− fρε (t).(2.6)

Applying the Itô formula to eβt|X̄ρ
ε (t)|2, we get

E[eβt|X̄ρ
ε (t)|2] + E

[ ∫ T

t

eβs|Ȳ ρ
ε (s)|2ds

]
+ E

[ ∫ T

t

∫
R0

eβs|Z̄ρ
ε (s, z)|2`(dz)ds

]
+ E

[ ∫ T

t

eβs|ζρε (s)|2ds
]

= E[eβT |X̄ρ
ε (T )|2]− βE

[ ∫ T

t

eβs|X̄ρ
ε (s)|2ds

]
+ 2E

[ ∫ T

t

eβs|X̄ρ
ε (s)||f̄ρε (s)|ds

]
.

(2.7)

Using conditions (2.2) and (2.3), we get

E[eβt|X̄ρ
ε (t)|2] + E[

∫ T

t

eβs|Ȳ ρ
ε (s)|2ds] + E

[ ∫ T

t

∫
R0

eβs|Z̄ρ
ε (s, z)|2`(dz)ds

]
+ E

[ ∫ T

t

eβs|ζρε (s)|2ds
]

≤ E[eβT |X̄ρ
ε (T )|2]− βE

[ ∫ T

t

eβs|X̄ρ
ε (s)|2ds

]
+ 2CE

[ ∫ T

t

eβs|X̄ρ
ε (s)|

(
|X̄ρ

ε (s)|+ |Ȳ ρ
ε (s)|+ |ζρε (s)|+ (1− ρ)G̃(ε)|Y 0

ε (s)|

+ ρG̃(ε)(

∫
R0

|Z(s, z)|2`(dz))
1
2 + (1− ρ)G̃(ε)(

∫
R0

|Z0
ε (s, z)|2`(dz))

1
2
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+ (

∫
R0

|Z̄ρ
ε (s, z)|2`(dz))

1
2

)
ds
]
.

Using the fact that for every k > 0 and a, b ∈ R we have that 2ab ≤ ka2 + b2

k
and(∑7

i=1 ai
)2 ≤ 7

∑7
i=1 a

2
i , we obtain

E[eβt|X̄ρ
ε (t)|2] + E[

∫ T

t

eβs|Ȳ ρ
ε (s)|2ds] + E

[ ∫ T

t

∫
R0

eβs|Z̄ρ
ε (s, z)|2`(dz)ds

]
+ E

[ ∫ T

t

eβs|ζρε (s)|2ds
]

≤ E[eβT |X̄ρ
ε (T )|2]− βE

[ ∫ T

t

eβs|X̄ρ
ε (s)|2ds

]
+ 14C2E

[ ∫ T

t

eβs|X̄ρ
ε (s)|2ds

]
+

1

2
E
[ ∫ T

t

eβs|X̄ρ
ε (s)|2ds

]
+

1

2
E
[ ∫ T

t

eβs|ζρε (s)|2ds
]

+
1

2
E
[ ∫ T

t

eβs|Ȳ ρ
ε (s)|2ds

]
+

1

2
E
[ ∫ T

t

∫
R0

eβs|Z̄ρ
ε (s, z)|2`(dz)ds

]
+

1

2
(1− ρ)G̃2(ε)E

[ ∫ T

t

eβs|Y 0
ε (s)|2ds

]
+

1

2
ρG̃2(ε)E

[ ∫ T

t

∫
R0

eβs|Z(s, z)|2`(dz)ds
]

+
1

2
(1− ρ)G̃2(ε)E

[ ∫ T

t

∫
R0

eβs|Z0
ε (s, z)|2`(dz)ds

]
.

Choosing β = 14C2 + 1 and since E[eβt|X̄ρ
ε (t)|2] > 0, we get

E
[ ∫ T

t

eβs|X̄ρ
ε (s)|2ds

]
+ E

[ ∫ T

t

eβs|Ȳ ρ
ε (s)|2ds

]
+ E

[ ∫ T

t

∫
R0

eβs|Z̄ρ
ε (s, z)|2`(dz)ds

]
+ E

[ ∫ T

t

eβs|ζρε (s)|2ds
]

≤ KE[eβT |X̄ρ
ε (T )|2] +

1

2
(1− ρ)G̃2(ε)

(
E
[ ∫ T

t

eβs|Y 0
ε (s)|2ds

]
+ E

[ ∫ T

t

∫
R0

eβs|Z0
ε (s, z)|2`(dz)ds

])
+

1

2
ρG̃2(ε)E

[ ∫ T

t

∫
R0

eβs|Z(s, z)|2`(dz)ds
]
,

where K is a positive constant and the result follows using Lemma 2.3 and the fact that
β > 0. �

Remark 2.5. Since Ft ⊂ Gt for all t ∈ [0, T ], the solution of (1.2) is also G-adapted. This
fact allowed us to compare the solution of (1.2) with the solution of (2.4).

Notice that in the case ρ = 0, the condition (2.2) implies that for (x, y, z) ∈ R × R ×
L̂2
T (R0,B(R0), `)

lim
ε→0

f 0
ε (t, x, y, z) = f(t, x, y, z), P-a.s.,∀t ∈ [0, T ].
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Thus the convergence of the solution of (2.1) to the solution of (1.2) in the space H̃2
T ×

H2
T × Ĥ2

T , follows directly from Proposition 2.1 in El Karoui, Peng, and Quenez [18]. We
presented the proof for the sake of completeness. In the latter theorem, we proved the
convergence of the solution of (2.1) respectively (2.4) to the solution of (1.2) in the space

H̃2
T × H2

T × Ĥ2
T, respectively H̃2

T × H2
T × Ĥ2

T × H2
T . In the next theorem we prove the

convergence in ν, respectively ν̃.

Theorem 2.6. Assume that (2.2) and (2.3) hold. Let X, Xρ
ε be the solution of (1.2),

(2.5), respectively. Then we have for ρ = 0 and ρ = 1

E
[

sup
0≤t≤T

|X(t)−Xρ
ε (t)|2

]
≤ CE[|ξ − ξρε |2] + K̂G̃2(ε)ρ

(
E[|ξ|2] + E[

∫ T

t

|f(s, 0, 0, 0)|2ds]
)

+ K̃G̃2(ε)(1− ρ)
(
E[|ξ0

ε |2] + E[

∫ T

t

|f 0
ε (s, 0, 0, 0)|2ds]

)
,

where C, K̃, and K̂ are positive constants.

Proof. Let X̄ρ
ε , Ȳ ρ

ε , Z̄ρ
ε , and f̄ρε be as in (2.6). Then applying Hölder’s inequality, we have

for K > 0

E
[

sup
0≤t≤T

|X̄ρ
ε (t)|2

]
≤ K

(
E
[
|X̄ρ

ε (T )|2
]

+ E
[ ∫ T

0

|f̄ρε (s)|2ds
]

+ E
[

sup
0≤t≤T

|
∫ T

t

Ȳ ρ
ε (s)dW (s)|2

]
+ E

[
sup

0≤t≤T
|
∫ T

t

∫
R0

Z̄ρ
ε (s, z)Ñ(ds, dz)|2

]
+ E

[
sup

0≤t≤T
|
∫ T

t

ζρε (s)dB(s)|2
])
.

However from Burkholder’s inequality we can prove that for C > 0, we have (for more
details see Tang and Li [32])

E
[

sup
0≤t≤T

|
∫ T

t

∫
R0

Z̄ρ
ε (s, z)Ñ(ds, dz)|2

]
≤ CE

[ ∫ T

0

∫
R0

|Z̄ρ
ε (s, z)|2`(dz)ds

]
,

E
[

sup
0≤t≤T

|
∫ T

t

Ȳ ρ
ε (s)dW (s)|2

]
≤ CE

[ ∫ T

0

|Ȳ ρ
ε (s)|2ds

]
,

E
[

sup
0≤t≤T

|
∫ T

t

ζρε (s)dB(s)|2
]
≤ CE

[ ∫ T

0

|ζρε (s)|2ds
]
.

Thus from the estimates on f 0 and f 1
ε in equations (2.2) and (2.3), Lemma 2.3 and Theorem

2.4 we get the result. �

Notice that we proved the convergence of the two candidate approximating BSDEJs
(2.1), (2.4) to the BSDEJ (1.2) in the space ν, ν̃ respectively. This type of convergence is
stronger than the L2-convergence.
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3. Robustness of quadratic hedging strategies

We assume we have two assets. One of them is a riskless asset with price S(0) given by

dS(0)(t) = S(0)(t)r(t)dt,

where the short rate r(t) = r(t, ω) ∈ R is F-adapted. The dynamics of the risky asset are
given by  dS(1)(t) = S(1)(t)

{
a(t)dt+ b(t)dW (t) +

∫
R0

γ(t, z)Ñ(dt, dz)
}
,

S(1)(0) = x ∈ R+ ,

where a(t) = a(t, ω) ∈ R, b(t) = b(t, ω) ∈ R, and γ(t, z) = γ(t, z, ω) ∈ R for t ≥ 0, z ∈ R0

are F-adapted processes. We assume that γ(t, z, ω) = g(z)γ̃(t, ω), such that

(3.1) G2(ε) :=

∫
|z|≤ε

g2(z)`(dz) <∞.

The dynamics of the discounted price process S̃ = S(1)

S(0) are given by

dS̃(t) = S̃(t)
[
(a(t)− r(t))dt+ b(t)dW (t) +

∫
R0

γ(t, z)Ñ(dt, dz)
]
.(3.2)

For S̃ to be positive, we assume γ(t, z) > −1, a.e. in (t, z, ω). We further assume that the

semimartingale S̃ is locally square integrable (in the sense of Definition 2.27 in Jacod and

Shiryaev [22]). We can decompose S̃ into a locally square integrable local martingale M
starting at zero in zero and a predictable finite variation process A, with A(0) = 0, where
M and A have the following expressions

M(t) =

∫ t

0

b(s)S̃(s)dW (s) +

∫ t

0

∫
R0

γ(s, z)S̃(s)Ñ(ds, dz),(3.3)

A(t) =

∫ t

0

(a(s)− r(s))S̃(s)ds.

We denote the predictable compensator associated to M (see Protter [28]) by

〈M〉(t) =

∫ t

0

b2(s)S̃2(s)ds+

∫ t

0

∫
R0

S̃2(s)γ2(s, z)`(dz)ds

and we can represent the process A as follows

A(t) =

∫ t

0

α(s)d〈M〉(s) ,(3.4)

where

α(t) :=
a(t)− r(t)

S̃(t)
(
b2(t) +

∫
R0
γ2(t, z)`(dz)

) , 0 ≤ t ≤ T.(3.5)
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We define a process K by means of α as follows

K(t) =

∫ t

0

α2(s)d〈M〉(s) =

∫ t

0

(a(s)− r(s))2

b2(s) +
∫

R0
γ2(s, z)`(dz)

ds.(3.6)

The process K is called the mean-variance tradeoff (MVT) process.
Since the stock price fluctuations are modeled by jump-diffusion, the market is incom-

plete and not every contingent claim can be replicated by a self-financing strategy and
there is no perfect hedge. However, one can adopt a partial hedging strategy according to
some optimality criteria minimizing the risk. Föllmer and Schweizer [20] introduced the
so-called quadratic hedging strategies. The study of such strategies heavily depends on
the Föllmer-Schweizer (FS) decomposition. This decomposition was first introduced by
Föllmer and Schweizer [20] for the continuous case and extended to the discontinuous case
by Ansel and Stricker [2].

In order to formulate our robustness study for the quadratic hedging strategies, we
present in the sequel the relation between BSDEs and the FS decomposition. We denote

by L(S̃), the S̃-integrable processes, that is the class of predictable processes for which we

can determine the stochastic integral with respect to S̃. We define the space Θ by

(3.7) Θ :=
{
θ ∈ L(S̃) |E

[ ∫ T

0

θ2(s)d〈M〉(s) +
( ∫ T

0

|θ(s)dA(s)|
)2
]
<∞

}
.

Consider a process χFS ∈ Θ. Let ξ be a square integrable contingent claim and ξ̃ =

ξ/S(0)(T ) its discounted value. Define the process Ṽ as follows

Ṽ (t) := E
[
ξ̃ −

∫ T

t

χFS(s)dA(s)|Ft
]
, 0 ≤ t ≤ T.

Then applying the Galtchouk-Kunita-Watanabe decomposition (see, e.g., Ansel and Stricker [3])

to the random variable U(T ) := ξ̃ −
∫ T

0
χFS(s)dA(s), we get

U(T ) = E
[
ξ̃ −

∫ T

0

χFS(s)dA(s)

]
+

∫ T

0

χ̃(s)dM(s) + φFS(T ) ,(3.8)

where χ̃ ∈ Θ and φFS is a square integrable martingale such that [φFS,M ] is a local
martingale. Taking conditional expectations in (3.8), we obtain

E [U(T )|Ft] = E
[
ξ̃ −

∫ T

0

χFS(s)dA(s)

]
+

∫ t

0

χ̃(s)dM(s) + φFS(t) , 0 ≤ t ≤ T ,

which implies

Ṽ (t) = Ṽ (0) +

∫ t

0

χ̃(s)dM(s) +

∫ t

0

χFS(s)dA(s) + φFS(t) .

In Proposition 14 in Schweizer [29], it is shown that χ̃ = χFS in L2(M) under the condition

|a(t)− r(t)|√
κ(t)

≤ C, P-a.s., ∀ 0 ≤ t ≤ T ,(3.9)
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where κ(t) = b2(t) +
∫

R0
γ2(t, z)`(dz) and C is a positive constant. Thus we obtain the

following decomposition for the process Ṽ

Ṽ (t) = Ṽ (0) +

∫ t

0

χFS(s)dS̃(s) + φFS(t) , 0 ≤ t ≤ T .(3.10)

The latter decomposition is called the FS decomposition of the value process Ṽ and in

particular of ξ̃ for t = T . This explains the superscript FS in χFS and φFS. Notice that
(3.9) is a sufficient condition for the existence of decomposition (3.10). The most general
result concerning the existence and uniqueness of the FS decomposition is given by Choulli
et al. [11].

The financial importance of such decomposition lies in the fact that it directly provides

the locally risk-minimizing strategy in our setting. In fact, Ṽ (t) is the value of the portfolio
in a locally risk-minimizing strategy at time t, the component χFS(t) is the number of

risky assets to invest in the stock at time t, and φFS + Ṽ (0) is the cost process in a locally
risk-minimizing strategy (see Proposition 3.4 in Schweizer [31]). These components will
be identified solving some BSDEJs of the type presented in Section 2. We refer also to
Jeanblanc et al. [23] for a discussion about the relation between BSDEJs and quadratic
hedging strategies in the context of general semimartingales.

Now substituting the dynamics (3.2) of S̃ in (3.10) we get

(3.11)


dṼ (t) = π̃(t)(a(t)− r(t))dt+ π̃(t)b(t)dW (t)

+

∫
R0

π̃(t)γ(t, z)Ñ(dt, dz) + dφFS(t),

Ṽ (T ) = ξ̃,

where π̃ = χFSS̃. The process π̃ is interpreted as the amount of wealth Ṽ (t) to invest in
the stock at time t in a locally risk-minimizing strategy.

Since φFS(T ) is a FT -measurable square integrable random variable, applying Theorem
1.1 with H = F and the P-martingale property of φFS we know that there exist stochastic
integrands Y FS, ZFS, such that

φFS(t) = E[φFS(T )] +

∫ t

0

Y FS(s)dW (s) +

∫ t

0

∫
R0

ZFS(s, z)Ñ(ds, dz).

Since φFS is a martingale, we have E[φFS(T )] = E[φFS(0)]. However from (3.10) we deduce
that φFS(0) = 0. Therefore

φFS(t) =

∫ t

0

Y FS(s)dW (s) +

∫ t

0

∫
R0

ZFS(s, z)Ñ(ds, dz).(3.12)

In view of the orthogonality of φFS and M , we get

Y FS(t)b(t) +

∫
R0

ZFS(t, z)γ(t, z)`(dz) = 0.(3.13)
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In that case, the set of equations (3.11) are equivalent to

(3.14)


dṼ (t) = π̃(t)(a(t)− r(t))dt+

(
π̃(t)b(t) + Y FS(t)

)
dW (t)

+

∫
R0

(
π̃(t)γ(t, z) + ZFS(t, z)

)
Ñ(dt, dz),

Ṽ (T ) = ξ̃.

3.1. First candidate-approximation to S. Now we consider an approximation to the
price of the risky asset. In this model we approximate the small jumps by a Brownian
motion B which is independent of W and which we scale with the standard deviation of
the small jumps. That is dS

(1)
1,ε (t) = S

(1)
1,ε (t)

{
a(t)dt+ b(t)dW (t) +

∫
|z|>ε

γ(t, z)Ñ(dt, dz) +G(ε)γ̃(t)dB(t)
}
,

S
(1)
1,ε (0) = S(1)(0) = x .

The discounted price process is given by

dS̃1,ε(t) = S̃1,ε(t)
{

(a(t)− r(t))dt+ b(t)dW (t) +

∫
|z|>ε

γ(t, z)Ñ(dt, dz) +G(ε)γ̃(t)dB(t)
}
.

It was proven in Benth et al. [4], that the process S̃1,ε converges to S̃ in L2 when ε goes to
0 with rate of convergence G2(ε) defined in (3.1).

In the following we study the robustness of the quadratic hedging strategies towards

approximations where the price processes are modeled by S̃ and S̃1,ε. We will first show

that considering the approximation S̃1,ε, the value of the portfolio in a quadratic hedging
strategy will be written as a solution of a BSDEJ of type (2.5) with ρ = 1. That is what

explains our choice of the index 1 in S̃1,ε. Here we choose to start with the approximation

S̃1,ε because it involves another Brownian motion B besides the Brownian motion W . The
approximations in which we truncate the small jumps in the underlying price process and
the one in which we truncate the small jumps and replace them by scaling the Brownian
motion W are studied in the next two subsections.

The locally square integrable local martingale M1,ε in the semimartingale decomposition

of S̃1,ε is given by

M1,ε(t) =

∫ t

0

b(s)S̃1,ε(s)dW (s) +

∫ t

0

∫
|z|>ε

γ(s, z)S̃1,ε(s)Ñ(ds, dz)

+G(ε)

∫ t

0

γ̃(s)S̃1,ε(s)dB(s)(3.15)

and the predictable finite variation process A1,ε is given by

A1,ε(t) =

∫ t

0

α1,ε(s)d〈M1,ε〉(s) ,(3.16)
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where

α1,ε(t) :=
a(t)− r(t)

S̃1,ε(t)
(
b2(t) +G2(ε)γ̃2(t) +

∫
|z|>ε γ

2(t, z)`(dz)
) , 0 ≤ t ≤ T.(3.17)

Thus the mean-variance tradeoff process K1,ε is given by

K1,ε(t) =

∫ t

0

α2
1,ε(s)d〈M1,ε〉(s) =

∫ t

0

(a(s)− r(s))2

b2(s) +G2(ε)γ̃2(s) +
∫
|z|>ε γ

2(s, z)`(dz)
ds

= K(t),(3.18)

in view of the definition of G(ε), equation (3.1). Hence the assumption (3.9) ensures

the existence of the FS decomposition with respect to S̃1,ε for any square integrable GT -
measurable random variable.

Let ξ1
ε be a square integrable contingent claim as a financial derivative with underlying

S
(1)
1,ε and maturity T . We denote its discounted payoff by ξ̃1

ε = ξ1
ε/S

(0)(T ). Consider

χFS1,ε ∈ Θ and define

Ṽ1,ε := E
[
ξ̃1
ε −

∫ T

t

χFS1,ε (s)dA1,ε(s) |Gt
]
, 0 ≤ t ≤ T .

Then following the same steps as before and imposing the condition (3.9), we prove the

FS decomposition for the value process Ṽ1,ε written under the world measure P to be as
follows

Ṽ1,ε(t) = Ṽ1,ε(0) +

∫ t

0

χFS1,ε (s)dS̃1,ε(s) + φFS1,ε (t),(3.19)

where φFS1,ε is a P-martingale such that [φFS1,ε ,M1,ε] is a local martingale. Replacing S̃1,ε by
its expression in (3.19), we get

dṼ1,ε(t) = π̃1,ε(t)(a(t)− r(t))dt+ π̃1,ε(t)b(t)dW (t) + π̃1,ε(t)G(ε)γ̃(t)dB(t)

+

∫
|z|>ε

π̃1,ε(t)γ(t, z)Ñ(dt, dz) + dφFS1,ε (t),

Ṽ1,ε(T ) = ξ̃1
ε ,

where π̃1,ε = χFS1,ε S̃1,ε. Notice that φFS1,ε (T ) is a GT -measurable square integrable random
variable. Thus applying Theorem 1.1 with H = G and using the P-martingale property of
φFS1,ε we know that there exist stochastic integrands Y FS

1,ε , Y FS
2,ε , and ZFS

ε , such that

φFS1,ε (t) = E[φFS1,ε (T )] +

∫ t

0

Y FS
1,ε (s)dW (s) +

∫ t

0

Y FS
2,ε (s)dB(s)

+

∫ t

0

∫
R0

ZFS
ε (s, z)Ñ(ds, dz).
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Using the martingale property of φFS1,ε and equation (3.19), we get E[φFS1,ε (T )] = E[φFS1,ε (0)] =
0. Therefore we deduce

φFS1,ε (t) =

∫ t

0

Y FS
1,ε (s)dW (s) +

∫ t

0

Y FS
2,ε (s)dB(s) +

∫ t

0

∫
R0

ZFS
ε (s, z)Ñ(ds, dz).(3.20)

In view of the orthogonality of φFS1,ε with respect to M1,ε, we have

0 = Y FS
1,ε (t)b(t) + Y FS

2,ε (t)G(ε)γ̃(t) +

∫
R0

ZFS
ε (t, z)γ(t, z)1{|z|>ε}`(dz).(3.21)

The equation we obtain for the approximating problem is thus given by

(3.22)


dṼ1,ε(t) = π̃1,ε(t)(a(t)− r(t))dt+ (π̃1,ε(t)b(t) + Y FS

1,ε (t))dW (t)
+(π̃1,ε(t)G(ε)γ̃(t) + Y FS

2,ε (t))dB(t)

+

∫
R0

(
π̃1,ε(t)γ(t, z)1{|z|>ε}(z) + ZFS

ε (t, z)
)
Ñ(dt, dz),

Ṽ1,ε(T ) = ξ̃1
ε .

In order to apply the robustness results studied in Section 2, we have to prove that Ṽ

and Ṽ1,ε are respectively equations of type (1.2) and (2.4). This is the purpose of the next

lemma. Notice that the processes Ṽ1,ε, π̃1,ε, and φFS1,ε are all G-adapted.

Lemma 3.1. Assume (3.9) holds. Let Ṽ , Ṽ1,ε be given by (3.14), (3.22), respectively. Then

Ṽ satisfies a BSDEJ of type (1.2) and Ṽ1,ε satisfies a BSDEJ of type (2.4).

Proof. From the expression of Ṽ , we deduce dṼ (t) = −f(t, Ṽ (t), Ỹ (t), Z̃(t, .))dt+ Ỹ (t)dW (t) +

∫
R0

Z̃(t, z)Ñ(dt, dz),

Ṽ (T ) = ξ̃,

where

Ỹ (t) = π̃(t)b(t) + Y FS(t), Z̃(t, z) = π̃(t)γ(t, z) + ZFS(t, z),
(3.23)

f(t, Ṽ (t), Ỹ (t), Z̃(t, .)) = −π̃(t)(a(t)− r(t)).

We have to show that f satisfies Assumptions 1(B). We first express π̃ in terms of Ṽ , Ỹ ,

and Z̃. Inspired by (3.13), we combine Ỹ and Z̃ to get

Ỹ (t)b(t) +

∫
R0

Z̃(t, z)γ(t, z)`(dz) = π̃(t)
(
b2(t) +

∫
R0

γ2(t, z)`(dz)
)

+ Y FS(t)b(t)

+

∫
R0

ZFS(t, z)γ(t, z)`(dz).

From (3.13), we deduce that

π̃(t) =
1

κ(t)

(
Ỹ (t)b(t) +

∫
R0

Z̃(t, z)γ(t, z)`(dz)
)
.(3.24)



19

Hence

(3.25) f(t, Ṽ (t), Ỹ (t), Z̃(t, .)) = −a(t)− r(t)
κ(t)

(
Ỹ (t)b(t) +

∫
R0

Z̃(t, z)γ(t, z)`(dz)
)
.

Now we have to prove that f is Lipschitz. Let

(3.26) h(t) =
a(t)− r(t)

κ(t)
, t ∈ [0, T ].

We have

|f(t, x1, y1, z1)− f(t, x2, y2, z2)| ≤ |h(t)|
[
|y1 − y2||b(t)|+

∫
R0

|z1 − z2||γ(t, z)|`(dz)
]

≤ |h(t)|[|y1 − y2||b(t)|

+ (

∫
R0

|z1 − z2|2`(dz))
1
2 (

∫
R0

|γ(t, z)|2`(dz))
1
2 ]

≤
√
κ(t)|h(t)|

(
|y1 − y2|+ ‖z1 − z2‖

)
.

Thus f is Lipschitz if there exists a positive constant C such that√
κ(t)|h(t)| = |a(t)− r(t)|√

κ(t)
≤ C ∀t ∈ [0, T ]

and we prove the statement for Ṽ .
From equation (3.22), we have

dṼ1,ε(t) = −f 1
ε (t, Ṽ1,ε(t), Ỹε(t), Z̃ε(t, .), ζ̃ε(t))dt+ Ỹε(t)dW (t) + ζ̃ε(t)dB(t)

+

∫
R0

Z̃ε(t, z)Ñ(dt, dz),

Ṽ1,ε(T ) = ξ̃1
ε ,

where

Ỹε(t) = π̃1,ε(t)b(t) + Y FS
1,ε (t), ζ̃ε(t) = π̃1,ε(t)G(ε)γ̃(t) + Y FS

2,ε (t),

Z̃ε(t, z) = π̃1,ε(t)γ(t, z)1{|z|>ε}(z) + ZFS
ε (t, z),(3.27)

f 1
ε (t, Ṽ1,ε(t), Ỹε(t), Z̃ε(t, .), ζ̃ε(t)) = −π̃1,ε(t)(a(t)− r(t)).

With the same arguments as above and using (3.21) we can prove that

π̃1,ε(t) =
1

κ(t)

{
Ỹε(t)b(t) + ζ̃ε(t)G(ε)γ̃(t) +

∫
R0

Z̃ε(t, z)1{|z|>ε}(z)γ(t, z)`(dz)
}
.(3.28)

Hence

f 1
ε (t, Ṽ1,ε(t), Ỹε(t), Z̃ε(t, .), ζ̃ε(t)) = −a(t)− r(t)

κ(t)

(
Ỹε(t)b(t) + ζ̃ε(t)G(ε)γ̃(t)

+

∫
R0

Z̃ε(t, z)1{|z|>ε}(z)γ(t, z)`(dz)
)

(3.29)
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and

|f 1
ε (t, x1, y1, z1, ζ1)− f 1

ε (t, x2, y2, z2, ζ2)|

≤ |h(t)|
[
|y1 − y2||b(t)|+

∫
R0

1{|z|>ε}(z)|z1 − z2||γ(t, z)|`(dz)

+G(ε)|γ̃(t)||ζ1 − ζ2|
]

≤
√
κ(t)|h(t)|

(
|y1 − y2|+ |ζ1 − ζ2|+ ‖z1 − z2‖

)
and we prove the statement. �

Now we present the following main result in which we prove the robustness of the value
of the portfolio.

Theorem 3.2. Assume that (3.9) holds and that for all t ∈ [0, T ],

(3.30)
∣∣ γ̃(t)(a(t)− r(t))

κ(t)

∣∣ ≤ K , P-a.s.

Let Ṽ , Ṽ1,ε be given by (3.14), (3.22), respectively. Then

E
[

sup
0≤t≤T

|Ṽ (t)− Ṽ1,ε(t)|2
]
≤ CE[|ξ̃ − ξ̃1

ε |2] + C̃G2(ε) .

Proof. This is an immediate result of Theorem 2.6 with ρ = 1 and noticing that f(t, 0, 0, 0) =
0. We only have to prove the assumption (2.3) on the drivers f and f 1

ε given by (3.25) and
(3.29). We have for all t ∈ [0, T ], recalling (3.26)

|f(t, Ṽ (t), Ỹ (t), Z̃(t, .))− f 1
ε (t, Ṽ1,ε(t), Ỹε(t), Z̃ε(t, .), ζ̃ε(t))|

=
∣∣∣h(t)

{
(Ỹ (t)− Ỹε(t))b(t)− ζ̃ε(t)G(ε)γ̃(t)

+

∫
|z|>ε

(Z̃(t, z)− Z̃ε(t, z))γ(t, z)`(dz) +

∫
|z|≤ε

Z̃(t, z)γ(t, z)`(dz)
}∣∣∣

≤ |h(t)|(
√
κ(t) + |γ̃(t)|)

{
|Ỹ (t)− Ỹε(t)|+ ‖Z̃(t, .)− Z̃ε(t, .)‖

+G(ε)‖Z̃(t, .)‖+ |ζ̃ε(t)|
}
,

which proves the statement. �

Remark 3.3. We used the expectation E[|ξ̃ − ξ̃ρε |2] to dominate the convergence results.

In finance the discounted contingent claim ξ̃ = ξ/S(0)(T ) is given by the payoff function
ξ = g(S(1)(T )). Thus we have

E[|ξ̃ − ξ̃ρε |2] = E
[∣∣∣g(S(1)(T ))

S(0)(T )
− g(S

(1)
ρ,ε (T ))

S(0)(T )

∣∣∣2], ρ = 0, 1, 2,

where the case ρ = 0 refers to the second candidate-approximation of Section 3.3 and
ρ = 2 refers to the one in Section 3.2. The convergence of the latter quantity when ε
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goes to 0 was studied in Benth et al. [4] using Fourier transform techniques. It was also
studied in Kohatsu-Higa and Tankov [25] in which the authors show that adding a small
variance Brownian motion to the big jumps gives better convergence results than when we
only truncate the small jumps. For this purpose the authors consider a discretisation of
the price models.

The next theorem contains the robustness result for the amount of wealth to invest in
the stock in a locally risk-minimizing strategy.

Theorem 3.4. Assume that (3.9) holds and that for all t ∈ [0, T ],

sup
t≤s≤T

γ̃2(s) ≤ K, inf
t≤s≤T

κ(s) ≥ K̃, P-a.s.,(3.31)

where K is a positive constant and K̃ is a strictly positive constant. Let π̃, π̃1,ε be given
by (3.24), (3.28), respectively. Then for all t ∈ [0, T ],

E
[ ∫ T

t

|π̃(s)− π̃1,ε(s)|2ds
]
≤ CE[|ξ̃ − ξ̃1

ε |2] + C̃G2(ε),

where C and C̃ are positive constants.

Proof. Using (3.24) and (3.28), we have

|π̃(s)− π̃1,ε(s)|2 =
1

κ2(s)

{
(Ỹ (s)− Ỹε(s))b(s)− ζ̃ε(s)G(ε)γ̃(s)

+

∫
|z|>ε

(Z̃(s, z)− Z̃ε(s, z))γ(s, z)`(dz) +

∫
|z|≤ε

Z̃(s, z)γ(s, z)`(dz)
}2

≤ C

κ(s)

{
|Ỹ (s)− Ỹε(s)|2 + |ζ̃ε(s)|2

+G2(ε)|γ̃2(t)|
∫

R0

|Z̃(s, z)|2`(dz) +

∫
R0

|Z̃(s, z)− Z̃ε(s, z)|2`(dz)
}
.

Hence from Lemma 2.3, Theorem 2.4 and Lemma 3.1, we deduce

E
[ ∫ T

t

|π̃(s)− π̃1,ε(s)|2ds
]
≤ C

inft≤s≤T κ(s)

{
E
[ ∫ T

t

|Ỹ (s)− Ỹε(s)|2ds
]

+ E
[ ∫ T

t

|ζ̃ε(s)|2ds
]

+G2(ε) sup
t≤s≤T

γ̃2(s)E
[ ∫ T

t

∫
R0

|Z̃(s, z)|2`(dz)ds
]

+ E
[ ∫ T

t

∫
R0

|Z̃(s, z)− Z̃ε(s, z)|2`(dz)ds
]}

≤ C̃E[|ξ̃ − ξ̃1
ε |2] + ĈG2(ε)E[ξ2]

and we prove the statement. �

The robustness of the process φFS defined in (3.12) is shown in the next theorem.
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Theorem 3.5. Assume that (3.9) and (3.31) hold and for all t ∈ [0, T ],

(3.32) sup
t≤s≤T

κ(s) ≤ K̂ <∞, P-a.s.

Let φFS, φFS1,ε be given by (3.12), (3.20), respectively. Then for all t ∈ [0, T ], we have

E
[
|φFS(t)− φFS1,ε (t)|2

]
≤ CE[|ξ̃ − ξ̃1

ε |2] + C ′G2(ε),

where C and C ′ are positive constants.

Proof. From (3.23), (3.27), Theorem 2.6, and Theorem 3.4, we have

E
[ ∫ T

t

|Y FS(s)− Y FS
1,ε (s)|2ds

]
≤ C

{
E
[ ∫ T

t

|Ỹ (s)− Ỹ1,ε(s)|2ds
]

+ sup
t≤s≤T

κ(s)E
[ ∫ T

t

|π̃(s)− π̃1,ε(s)|2ds
]}

≤ C̃E[|ξ̃ − ξ̃1
ε |2] +KG2(ε)E[|ξ̃|2].(3.33)

Moreover, starting again from (3.27) we arrive at

E
[ ∫ T

t

|Y FS
2,ε (s)|2ds

]
≤ C

{
E[

∫ T

t

|ζ̃ε(s)|2ds+ sup
t≤s≤T

κ(s)E
[ ∫ T

t

|π̃(s)− π̃1,ε(s)|2ds
]

+G2(ε) sup
t≤s≤T

γ̃2(s)E
[ ∫ T

t

|π̃(s)|2ds
]
.

However from (3.24) and Lemma 2.3, we get

E
[ ∫ T

t

|π̃(s)|2ds
]
≤ 1

inft≤s≤T κ(s)

{
E
[ ∫ T

t

Ỹ 2(s)ds
]

+ E
[ ∫ T

t

∫
R0

Z̃2(s, z)`(dz)ds
]}

≤ CE[ξ̃2].(3.34)

Thus from Theorem 2.4 and Theorem 3.4 we conclude in view of assumption (3.32)

E
[ ∫ T

t

|Y FS
2,ε (s)|2ds

]
≤ CE[|ξ̃ − ξ̃1

ε |2] + C ′G2(ε)E[ξ̃2].(3.35)

Let G2(∞) =
∫

R0
g2(z)`(dz). From (3.23), (3.27), Theorem 2.4, Theorem 3.4 and (3.34),

we obtain

E
[ ∫ T

t

∫
R0

|ZFS(s, z)− ZFS
ε (s, z)|2`(dz)ds

]
≤ CE

[ ∫ T

t

∫
R0

|Z̃(s, z)− Z̃ε(s, z)|2`(dz)ds
]

+G2(∞) sup
t≤s≤T

γ̃2(s)E
[ ∫ T

t

|π̃(s)− π̃1,ε(s)|2ds
]
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+G2(ε) sup
t≤s≤T

γ̃2(s)E
[ ∫ T

t

|π̃(s)|2ds
]

≤ CE[|ξ̃ − ξ̃1
ε |2] + C ′G2(ε)E[ξ̃2].(3.36)

Finally from (3.12) and (3.20), we infer

E[|φFS(t)− φFS1,ε (t)|2] ≤ E
[ ∫ T

0

|Y FS(s)− Y FS
1,ε (s)|2ds

]
+ E

[ ∫ T

0

|Y FS
2,ε (s)|2ds

]
+ E

[ ∫ T

0

∫
R0

|ZFS(s, z)− ZFS
ε (s, z)|2`(dz)ds

]
and combining with the relations (3.33), (3.35) and (3.36) the result follows. �

Let C(t) = φFS(t) + Ṽ (0) and C1,ε(t) = φFS1,ε (t) + Ṽ1,ε(0). Then the processes C and

C1,ε are the cost processes in a locally risk-minimizing strategy for ξ̃ and ξ̃1
ε . In the next

corollary we prove the robustness of this cost process.

Corollary 3.6. Assume that (3.9), (3.30), (3.31), and (3.32) hold. Then for all t ∈ [0, T ],
we have

E[|C(t)− C1,ε(t)|2] ≤ K̃E[|ξ̃ − ξ̃1
ε |2] +K ′G2(ε),

where K̃ and K ′ are two positive constants.

Proof. From Theorem 3.2, we deduce

E
[
|Ṽ1,ε(0)− Ṽ (0)|2] ≤ CE[|ξ̃ − ξ̃1

ε |2] + C̃G2(ε).

Applying the latter together with Theorem 3.5 we get

E[|C(t)− C1,ε(t)|2] = E
[
|(Ṽ1,ε(0) + φFS1,ε (t))− (Ṽ (0) + φFS(t))|2]

≤ 2
(
E
[
|Ṽ1,ε(0)− Ṽ (0)|2] + E[|φFS1,ε (t)− φFS(t)|2]

)
≤ K̃E[|ξ̃ − ξ̃1

ε |2] +K ′G2(ε).

�

In the next section we present a second candidate-approximation to S and we study the
robustness of the quadratic hedging strategies.

3.2. Second candidate-approximation to S. In this model we truncate the small jumps
in S. We obtain dS

(1)
2,ε (t) = S

(1)
2,ε (t)

{
a(t)dt+ b(t)dW (t) +

∫
|z|>ε

γ(t, z)Ñ(dt, dz)
}
,

S
(1)
2,ε (0) = S(1)(0) = x .
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The discounted price process is given by

dS̃2,ε(t) = S̃2,ε(t)
{

(a(t)− r(t))dt+ b(t)dW (t) +

∫
|z|>ε

γ(t, z)Ñ(dt, dz)
}
.

It is easy to show that S̃2,ε converges to S̃ in L2 when ε goes to 0 with rate of convergence

G2(ε). Notice that this second choice of the approximating process S
(1)
2,ε allows to work

under the same filtration F as for the original process. However it involves a different
variance.

Let π̃2,ε = χFS2,ε S̃2,ε, where χFS2,ε ∈ Θ, (3.7). Without going through details and since the
computations are similar to the previous section, we claim that the discounted value of the

portfolio associated with S̃2,ε is given by
dṼ2,ε(t) = π̃2,ε(t)(a(t)− r(t))dt+ π̃2,ε(t)b(t)dW (t)

+

∫
|z|>ε

π̃2,ε(t)γ(t, z)Ñ(dt, dz) + dφFS2,ε (t),

Ṽ2,ε(T ) = ξ̃2
ε ,

where φFS2,ε is a P-martingale such that [φFS2,ε ,M2,ε] is a local martingale with M2,ε being the

locally square integrable local martingale part in S̃2,ε and where ξ̃2
ε is the discounted value

of the contingent claim. Moreover, φFS2,ε (T ) is a FT -measurable square integrable random
variable. Thus applying Theorem 1.1 with H = F and using the P-martingale property of
φFS2,ε we know that there exist stochastic integrands Y FS

ε and ZFS
ε , such that

φFS2,ε (t) =

∫ t

0

Y FS
ε (s)dW (s) +

∫ t

0

∫
R0

ZFS
ε (s, z)Ñ(ds, dz).

Thus the equation we obtain for the approximating problem Ṽ2,ε is given by

(3.37)


dṼ2,ε(t) = π̃2,ε(t)(a(t)− r(t))dt+ (π̃2,ε(t)b(t) + Y FS

ε (t))dW (t)

+

∫
R0

(
π̃2,ε(t)γ(t, z)1{|z|>ε}(z) + ZFS

ε (t, z)
)
Ñ(dt, dz),

Ṽ2,ε(T ) = ξ̃2
ε .

To prove similar convergence results as in Section 3.1, we identify (3.37) with the BSDEJ
(2.1). In that case the driver of (3.37) is given by

(3.38) f 0
ε (t, Ṽ2,ε(t), Ỹε(t), Z̃ε(t, ·)) = −hε(t)

[
b(t)Ỹε(t) +

∫
|z|>ε

Z̃ε(t, z)γ(t, z)`(dz)
]
,

where

(3.39) hε(t) =
a(t)− r(t)
κε(t)

and κε(t) = b2(t) +

∫
|z|>ε

γ2(t, z)`(dz) .

In the following lemma we prove that under some conditions on the parameters of the price
process, f 0

ε is Lipschitz and satisfies (2.2).
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Lemma 3.7. Define κ1(t) = b2(t) +
∫
|z|>1

γ2(t, z)`(dz). Assume that for all t ∈ [0, T ], we

have

(3.40)
|a(t)− r(t)|√

κ1(t)
≤ K, P-a.s.,

where K is a positive constant. Then f 0
ε (t, x, y, z), t ∈ [0, T ], satisfies a uniform Lipschitz

condition in (x, y, z), for all ε ∈ [0, 1].
Moreover, assume

(3.41) inf
t≤s≤T

κ(s) ≥ K̂, and sup
t≤s≤T

γ̃2(t) ≤ K̃ P-a.s.,

where K̂ and K̃ are positive constants. Then f 0
ε (t, x, y, z), t ∈ [0, T ], satisfies condition

(2.2).

Proof. We have

|f 0
ε (t, x1, y1, z1)− f 0

ε (t, x2, y2, z2)| ≤ |hε(t)|
[
b(t)|y1 − y2|+

∫
|z|>ε
|z1 − z2|γ(t, z)`(dz)

]
≤ |a(t)− r(t)|√

κ1(t)

[
|y1 − y2|+ (

∫
R0

|z1 − z2|2`(dz))
1
2

]
.

Thus f 0
ε is Lipschitz requiring (3.40) is satisfied.

Recall the expressions of h and hε in (3.26) and (3.39), respectively. Then we have using
(3.25) and (3.38)

|f(t, Ṽ (t), Ỹ (t), Z̃(t, ·))− f 0
ε (t, Ṽε(t), Ỹε(t), Z̃ε(t, ·))|

≤ |h(t)b(t)||Ỹ (t)− Ỹε(t)|+ |h(t)− hε(t)||b(t)Ỹε(t)|

+ |h(t)|
∫

R0

|Z̃(t, z)− Z̃ε(t, z)||γ(t, z)|`(dz)

+ |h(t)− hε(t)|
∫

R0

|Z̃ε(t, z)γ(t, z)|`(dz) + |hε(t)|
∫
|z|≤ε
|Z̃ε(t, z)γ(t, z)|`(dz) .

Notice that

|h(t)− hε(t)| = |a(t)− r(t)| |κε(t)− κ(t)|
|κ(t)κε(t)|

≤ |a(t)− r(t)|
|κ(t)κ1(t)|

γ̃2(t)G2(ε) .

Thus

|f(t, Ṽ (t), Ỹ (t), Z̃(t, ·))− f 0
ε (t, Ṽε(t), Ỹε(t), Z̃ε(t, ·))|

≤ |a(t)− r(t)|√
κ(t)

(
|Ỹ (t)− Ỹε(t)|+ (

∫
R0

|Z̃(t, z)− Z̃ε(t, z)|2`(dz))
1
2

)
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+G2(ε)
|a(t)− r(t)|
|κ1(t)|

γ̃2(t)
[ 1√

κ(t)
+ 1
](
|Ỹε(t)|+ (

∫
R0

|Z̃ε(t, z)|2`(dz))
1
2

)
and the statement of the lemma follows providing that conditions (3.40) and (3.41) hold.

�

We do not prove in this section the convergence results since they follow the same lines

as the latter section. However we claim that, considering the approximation S̃2,ε, the value
of the portfolio, the amount of wealth to invest in the stock, and the cost process in the
locally risk-minimizing strategy are robust when imposing certain boundedness conditions
on the parameters of the price process.

3.3. Third candidate-approximation to S. In the candidate-approximation S1,ε, the
variance of the continuous part is given by b2(t) + G2(ε)γ̃2(t), which is the same as the
sum of the variance of the small jumps and the variance of the continuous part in S.
We studied this approximation by embedding the original model solution into a larger
filtration G. If one insists on working under the filtration F, then one could also select a

third candidate-approximation S
(1)
0,ε in the following way. dS

(1)
0,ε (t) = S

(1)
0,ε (t)

{
a(t)dt+ (b(t) + G̃(ε)γ̃(t))dW (t) +

∫
|z|>ε

γ(t, z)Ñ(dt, dz)
}
,

S
(1)
0,ε (0) = S(1)(0) = x ,

where G̃(ε) satisfies the relation

(b(t) + G̃(ε)γ̃(t))2 = b2(t) +G2(ε)γ̃2(t).

We choose

(3.42) G̃(ε) =
−b(t) + sgn(b(t))

(
b2(t) + γ̃2(t)G2(ε)

) 1
2

γ̃(t)
,

which is clearly vanishing when ε goes to 0.

Notice that we obtain this third candidate-approximation S
(1)
0,ε by truncating the small

jumps of the jump-diffusion and replacing them by the Brownian motion W which is scaled

with G̃(ε)γ̃(t). G̃(ε) is chosen in a way to keep the same variance as the original model
S(1).

The discounted price process is given by

dS̃0,ε(t) = S̃0,ε(t)
{

(a(t)− r(t))dt+ (b(t) + G̃(ε)γ̃(t))dW (t) +

∫
|z|>ε

γ(t, z)Ñ(dt, dz)
}
.

It is easy to show that S̃0,ε(t) converges to S̃(t) in L2 when ε goes to 0 with rate of

convergence G̃(ε).
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The locally square integrable local martingale M0,ε in the semimartingale decomposition

of S̃0,ε is given by

M0,ε(t) =

∫ t

0

(b(s) + G̃(ε)γ̃(s))S̃0,ε(s)dW (s) +

∫ t

0

∫
|z|>ε

γ(s, z)S̃0,ε(s)Ñ(ds, dz) .

We define the process α0,ε by

α0,ε(t) :=
a(t)− r(t)

S̃0,ε(t)
(
b2(t) +

∫
R0
γ2(t, z)`(dz)

) , 0 ≤ t ≤ T.

Thus the mean-variance tradeoff process K0,ε is given by

K0,ε(t) =

∫ t

0

α2
0,ε(s)d〈M0,ε〉(s) =

∫ t

0

(a(s)− r(s))2

b2(s) +
∫

R0
γ2(s, z)`(dz)

ds = K(t) .

Let ξ0
ε be a square integrable contingent claim as a financial derivative with underlying

S̃0,ε. We denote the discounted payoff of ξ0
ε by ξ̃0

ε = ξ0
ε/S

(0)(T ). Following the same steps
as before, we get the following equation for the value of the portfolio

dṼ0,ε(t) = π̃0,ε(t)(a(t)− r(t))dt+ π̃0,ε(t)(b(t) + G̃(ε)γ̃(t))dW (t)

+

∫
|z|>ε

π̃0,ε(t)γ(t, z)Ñ(dt, dz) + dφFS0,ε (t),

Ṽ0,ε(T ) = ξ̃0
ε ,

where π̃0,ε = χFS0,ε S̃0,ε and χFS0,ε ∈ Θ, (3.7). Since φFS0,ε (T ) is a FT -measurable square
integrable random variable, then applying Theorem 1.1 with H = F and using the P-
martingale property of φFS0,ε we know that there exist stochastic integrands Y FS

ε and ZFS
ε ,

such that

φFS0,ε (t) = E[φFS0,ε (T )] +

∫ t

0

Y FS
ε (s)dW (s) +

∫ t

0

∫
R0

ZFS
ε (s, z)Ñ(ds, dz).(3.43)

Using the same arguments as for φFS1,ε we can prove that E[φFS0,ε (T )] = E[φFS0,ε (0)] = 0. In

view of the orthogonality of φFS0,ε with respect to M0,ε, we have

0 = Y FS
ε (t)[b(t) + G̃(ε)γ̃(t)] +

∫
R0

ZFS
ε (t, z)γ(t, z)1{|z|>ε}(z)`(dz).(3.44)

The equation we obtain for the approximating problem is thus given by

(3.45)


dṼ0,ε(t) = π̃0,ε(t)(a(t)− r(t))dt+

(
π̃0,ε(t)[b(t) + G̃(ε)γ̃(t)] + Y FS

ε (t)
)
dW (t)

+

∫
R0

(
π̃0,ε(t)γ(t, z)1{|z|>ε}(z) + ZFS

ε (t, z)
)
Ñ(dt, dz),

Ṽ0,ε(T ) = ξ̃0
ε .

In the next lemma we prove that Ṽ0,ε satisfies the set of equations of type (2.1).

Lemma 3.8. Assume that (3.9) holds. Let Ṽ0,ε be given by (3.45). Then Ṽ0,ε satisfies a
BSDEJ of type (2.1).
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Proof. We rewrite equation (3.45) as dṼ0,ε(t) = −f 0
ε (t, Ṽ0,ε(t), Ỹε(t), Z̃ε(t, .))dt+ Ỹε(t)dW (t) +

∫
R0

Z̃ε(t, z)Ñ(dt, dz),

Ṽ0,ε(T ) = ξ̃0
ε ,

where we introduce the processes Ỹε, Z̃ε and the function f 0
ε by

Ỹε(t) = π̃0,ε(t)[b(t) + G̃(ε)γ̃(t)] + Y FS
ε (t),

Z̃ε(t, z) = π̃0,ε(t)γ(t, z)1{|z|>ε}(z) + ZFS
ε (t, z),(3.46)

f 0
ε (t, Ṽ0,ε(t), Ỹε(t), Z̃ε(t, .)) = −π̃0,ε(t)(a(t)− r(t)).

With the same arguments as above and using (3.44) we can prove that

π̃0,ε(t) =
1

κ(t)

{
Ỹε(t)

[
b(t) + G̃(ε)γ̃(t)

]
+

∫
R0

Z̃ε(t, z)1{|z|>ε}(z)γ(t, z)`(dz)
}
.(3.47)

Hence

f 0
ε (t, Ṽ0,ε(t), Ỹε(t), Z̃ε(t, .)) = −a(t)− r(t)

κ(t)

(
Ỹε(t)[b(t) + G̃(ε)γ̃(t)]

+

∫
R0

Z̃ε(t, z)1{|z|>ε}(z)γ(t, z)`(dz)
)

and along the same lines as in the proof of Lemma 3.7 it is easy to show that f 0
ε is Lipschitz

when (3.9) holds. This proves the statement. �

Now we present the following theorem in which we prove the robustness of the value of
the portfolio.

Theorem 3.9. Assume that (3.9) and (3.30) hold. Let Ṽ , Ṽ0,ε be given by (3.14), (3.45),
respectively. Then we have

E
[

sup
0≤t≤T

|Ṽ (t)− Ṽ0,ε(t)|2
]
≤ CE[|ξ̃ − ξ̃0

ε |2] + C̃[G̃2(ε) +G2(ε)]E[|ξ̃0
ε |2],

where C and C̃ are positive constants and G̃(ε) is given by (3.42).

Proof. Following the same steps as in the proof of Theorem 3.2, we can show that f 0
ε

satisfies condition (2.2). Indeed

|f(t, x1, y1, z1)− f 0
ε (t, x2, y2, z2)|

≤ |h(t)|
[
|y1 − y2||b(t)|+ G̃(ε)|y2||γ̃(t)|+

∫
|z|≤ε
|z2||γ(t, z)|`(dz)

+

∫
R0

|z1 − z2||γ(t, z)|`(dz)
]

≤ |h(t)|
[
|y1 − y2||b(t)|+ G̃(ε)|y2||γ̃(t)|+ (

∫
|z|≤ε
|γ(t, z)|2`(dz))

1
2 (

∫
R0

|z2|2`(dz))
1
2
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+ (

∫
R0

|γ(t, z)|2`(dz))
1
2 (

∫
R0

|z1 − z2|2`(dz))
1
2

]
≤ |h(t)|(

√
κ(t) + |γ̃(t)|)

[
|y1 − y2|+ G̃(ε)|y2|+G(ε)‖z2‖+ ‖z1 − z2‖

]
.

From (3.30) and (3.9) and noticing that f 0
ε (t, 0, 0, 0) = 0, we prove the statement by

applying Theorem 2.6. �

Remark 3.10. In the convergence result in the latter theorem, the term E[|ξ̃0
ε |2] appears.

It is given by

E[|ξ̃0
ε |2] = E

[∣∣∣g(S
(1)
0,ε (T ))

S(0)(T )

∣∣∣2],
where g is the payoff function. In case g is Lipschitz with K being the Lipschitz coefficient
and g(0) = 0, then we have

E
[∣∣∣g(S

(1)
0,ε (T ))

S(0)(T )

∣∣∣2] ≤ KE
[∣∣∣S(1)

0,ε (T )

S(0)(T )

∣∣∣2].
This latter quantity is bounded in ε by a constant (see Lemma 3.2 in Benth et al. [4]).

In case g is not Lipschitz, one can still prove the boundedness of E[|g(S
(1)
0,ε (T ))/S(0)(T )|2]

using Fourier transforms as in Benth et al. [4].

In the next theorem we prove the robustness of the amount of wealth to invest in a
locally risk-minimizing strategy.

Theorem 3.11. Assume that (3.9) and (3.41) hold. Let π̃, π̃0,ε be given by (3.24), (3.47),
respectively. Then

E
[ ∫ T

t

|π̃(s)− π̃0,ε(s)|2ds
]
≤ CE[|ξ̃ − ξ̃0

ε |2] + C̃[G̃2(ε) +G2(ε)]E[|ξ̃0
ε |2] ,

where C and C̃ are positive constants.

Proof. We have

|π̃(s)− π̃0,ε(s)|2 =
1

κ2(s)

{
(Ỹ (s)− Ỹε(s))b(s)− Ỹε(s)G̃(ε)γ̃(s)

+

∫
R0

(Z̃(s, z)− Z̃ε(s, z))γ(s, z)`(dz) +

∫
|z|≤ε

Z̃ε(s, z)γ(s, z)`(dz)
}2

≤ C

κ(s)

{
|Ỹ (s)− Ỹε(s)|2 + G̃2(ε)γ̃2(s)|Ỹε(s)|2

+

∫
R0

|Z̃(s, z)− Z̃ε(s, z)|2`(dz) +G2(ε)γ̃2(s)

∫
R0

|Z̃ε(s, z)|2`(dz)
}
,

where C is a positive constant. Hence from Theorem 2.4 and Lemma 2.3, we deduce

E
[ ∫ T

t

|π̃(s)− π̃0,ε(s)|2ds
]
≤ C

inft≤s≤T κ(s)

{
E
[ ∫ T

t

|Ỹ (s)− Ỹε(s)|2ds
]
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+ G̃2(ε) sup
t≤s≤T

γ̃2(s)E
[ ∫ T

t

|Ỹε(s)|2ds
]

+G2(ε) sup
t≤s≤T

γ̃2(s)E
[ ∫ T

t

∫
R0

|Z̃ε(s, z)|2`(dz)ds
]

+ E
[ ∫ T

t

∫
R0

|Z̃(s, z)− Z̃ε(s, z)|2`(dz)ds
]}

≤ C̃E[|ξ̃ − ξ̃0
ε |2] + C ′(G̃2(ε) +G2(ε))E[|ξ̃0

ε |2]

and we prove the statement. �

In the next theorem we deal with the robustness of the process φFS.

Theorem 3.12. Assume that (3.9) and (3.41) hold. Let φFS, φFS0,ε be given by (3.12),
(3.43), respectively. Then for all t ∈ [0, T ] we have

E
[
|φFS(t)− φFS0,ε (t)|2

]
≤ CE[|ξ̃ − ξ̃0

ε |2] + C̃[G̃2(ε) +G2(ε)]E[|ξ̃0
ε |2] + C ′G2(ε),

where C, C̃, and C ′ are positive constants.

Proof. From (3.23), (3.46), Lemma 2.3, Theorem 2.4 and Theorem 3.11, we have

E
[ ∫ T

t

|Y FS(s)− Y FS
ε (s)|2ds

]
≤ C

{
E
[ ∫ T

t

|Ỹ (s)− Ỹε(s)|2ds
]

+ sup
t≤s≤T

κ(s)E
[ ∫ T

t

|π̃(s)− π̃0,ε(s)|2ds
]}

+ G̃2(ε) sup
t≤s≤T

γ̃2(s)E
[ ∫ T

t

|π̃0,ε(s)|2ds
]

≤ C̃E[|ξ̃ − ξ̃0
ε |2] + C ′[G̃2(ε) +G2(ε)]E[|ξ̃0

ε |2].

Combining (3.23), (3.46), Lemma 2.3, Theorem 2.4 and Theorem 3.11, we arrive at

E
[ ∫ T

t

∫
R0

|ZFS(s, z)− ZFS
ε (s, z)|2`(dz)ds

]
≤ CE

[ ∫ T

t

∫
R0

|Z̃(s, z)− Z̃ε(s, z)|2`(dz)ds
]

+G2(∞) sup
t≤s≤T

γ̃2(s)E
[ ∫ T

t

|π̃(s)− π̃0,ε(s)|2ds
]

+G2(ε) sup
t≤s≤T

γ̃2(s)E
[ ∫ T

t

|π̃(s)|2ds
]

≤ CE[|ξ̃ − ξ̃0
ε |2] + C ′G2(ε)E[ξ̃2] + C̃[G̃2(ε) +G2(ε)]E[|ξ̃0

ε |2]

and the result follows. �



31

Define the cost process in the risk-minimizing strategy for ξ̃0
ε by

C0,ε(t) = φFS0,ε (t) + Ṽ0,ε(0).

Then an obvious implication of the last theorem is the robustness of the cost process and it
is easy to show that under the same conditions of the last theorem we have for all t ∈ [0, T ],

E[|C(t)− C0,ε(t)|2] ≤ KE[|ξ̃ − ξ̃0
ε |2] +K ′G2(ε) + K̃[G̃2(ε) +G2(ε)]E[|ξ̃0

ε |2],

where K, K ′, and K̃ are positive constants.
Analogously and using similar computations, one can prove the robustness of the amount

invested in the riskless asset in locally risk-minimizing strategies.

3.4. A note on the robustness of the mean-variance hedging strategies. A mean-
variance hedging (MVH) strategy is a self-financing strategy for which we do not impose
the replication requirement. However we insist on the self-financing constraint. In this

case we define the shortfall or loss from hedging ξ̃ by

ξ̃ − Ṽ (0)−
∫ T

0

Γ̃(s)dS̃(s), Ṽ (0) ∈ R, Γ̃ ∈ Θ .

In order to obtain the MVH strategy one has to minimize the latter quantity in the L2-

norm by choosing (Ṽ (0), Γ̃) ∈ (R,Θ). Schweizer [29] gives a formula for the number of
risky assets in a MVH strategy where he assumes that the so-called extended mean-variance
tradeoff process is deterministic.

In this paper, given the dynamics of the stock price process S, the process A defined
in (3.4) is continuous. Thus the mean-variance tradeoff process and the extended mean-
variance tradeoff process defined in Schweizer [29] coincide. Therefore applying Theorem
3 and Corollary 10 in Schweizer [29] and assuming that the mean-variance tradeoff process
K is deterministic, the discounted number of risky assets in a MVH strategy is given by

(3.48) Γ̃(t) = χ̃FS(t) + α(t)
(
Ṽ (t−)− Ṽ (0)−

∫ t

0

Γ̃(s)dS̃(s)
)
,

where α and χ̃FS are as defined in (3.5) and (3.10), and Ṽ is the value of the portfolio in a

locally risk-minimizing strategy. Multiplying (3.48) by S̃ we obtain the following equation
for the amount of wealth in a MVH hedging strategy

Υ̃(t) = π̃(t) + h(t)
(
Ṽ (t−)− Ṽ (0)−

∫ t

0

Υ̃(s)

S̃(s)
dS̃(s)

)
,

where h is given by (3.26). Since K is deterministic then a, b, r, γ, and thus h should be

deterministic. We consider the approximating stock process S̃1,ε. The amount of wealth

in a MVH strategy associated to S̃1,ε is given by

Υ̃1,ε(t) = π̃1,ε(t) + h(t)
(
Ṽ1,ε(t−)− Ṽ1,ε(0)−

∫ t

0

Υ̃1,ε(s)

S̃1,ε(s)
dS̃1,ε(s)

)
.
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Before we show the robustness of the mean-variance hedging strategies. We present the

following lemma in which we show the boundedness in L2 of Υ̃.

Lemma 3.13. Assume that the mean-variance tradeoff process K (3.6) is deterministic
and that (3.9) holds true. Then for all t ∈ [0, T ],

E[Υ̃2(t)] ≤ C(T )E[ξ̃2],

where C(T ) is a positive constant depending on T .

Proof. Applying Itô isometry and Hölder inequality, we get

E[Υ̃2(t)] ≤ E[π̃2(t)] + C ′h2(t)
(
E[Ṽ 2(t)] + E[Ṽ 2(0)]

+

∫ t

0

E[Υ̃2(s)]{(a(s)− r(s))2 + b2(s) +

∫
R0

γ2(s, z)`(dz)}ds
)
,

where C ′ is a positive constant. Using Lemma 2.3, Lemma 3.1, and equation (3.24), the
result follows applying Gronwall’s inequality. �

In the following theorem we prove the robustness of the amount of wealth in a MVH
strategy.

Theorem 3.14. Assume the mean-variance tradeoff process is deterministic and that (3.9)
and (3.31) hold. Then for all t ∈ [0, T ],

E
[
|Υ̃(t)− Υ̃1,ε(t)|2] ≤ CE[|ξ̃ − ξ̃1

ε |2] + C̃G2(ε).

Proof. We have

|Υ̃(t)− Υ̃1,ε(t)|

≤ |π̃(t)− π̃1,ε(t)|+ |h(t)|
(
|Ṽ (t−)− Ṽ1,ε(t−)|+ |Ṽ (0)− Ṽ1,ε(0)|

+

∫ t

0

|Υ̃(s)− Υ̃1,ε(s)||a(s)− r(s)|ds+ |
∫ t

0

(Υ̃(s)− Υ̃1,ε(s))b(s)dW (s)|

+ |
∫ t

0

∫
|z|>ε

(Υ̃(s)− Υ̃1,ε(s))γ(s, z)Ñ(ds, dz)|

+G(ε)|
∫ t

0

(Υ̃1,ε(s)− Υ̃(s)γ̃(s)dB(s)|

+ |
∫ t

0

∫
|z|≤ε

Υ̃(s)γ(s, z)Ñ(ds, dz)|+G(ε)|
∫ t

0

Υ̃(s)γ̃(s)dB(s)|
)
.

Using Itô isometry and Hölder inequality, we get

E[|Υ̃(t)− Υ̃1,ε(t)|2]

≤ E[|π̃(t)− π̃1,ε(t)|2] + C̃h2(t)
(
E[|Ṽ (t)− Ṽ1,ε(t)|2] + E[|Ṽ (0)− Ṽ1,ε(0)|2]



33

+

∫ t

0

E[|Υ̃(s)− Υ̃1,ε(s)|2]
(
|a(s)− r(s)|2 + |b(s)|2 +

∫
R0

|γ(s, z)|2`(dz)
)
ds

+G2(ε)

∫ t

0

E[Υ̃2(s)]γ̃2(s)ds
)
,

where C̃ is a positive constant. Using Theorem 3.2, Theorem 3.4, and Lemma 3.13 the
result follows applying Gronwall’s inequality. �

We proved in this section that when the mean-variance tradeoff process K defined in
(3.6) is deterministic, then the amount of wealth in a MVH strategy is robust towards the
choice of the model. It follows immediately that the value of the portfolio and the amount
invested in the riskless asset are also robust for the mean-variance hedging strategy. The

same results hold true when we consider the stock price process S̃0,ε or S̃2,ε . We do not

present these results since they follow the same lines as for the approximation S̃1,ε.

4. Conclusion

In this paper we consider different models for the price process. Then using BSDEJs we
proved that the locally risk-minimizing and the mean-variance hedging strategies are robust
towards the choice of the model. Our results are given in terms of estimates containing

E[|ξ̃ − ξ̃ρε |2], which is a quantity well studied by Benth et al. [4] and Kohatsu-Higa and
Tankov [25]

We have specifically studied three types of approximations of the price S and we con-
sidered the role of the filtration in our study of these approximations. It is also possible to
consider other approximations to the price S. For example we can add to the Lévy process
a scaled Brownian motion. In that case, based on the robustness of the BSDEJs, we can
also prove the robustness of quadratic hedging strategies. This type of approximation was
discussed and justified in a paper by Benth et al. [4].

As far as further investigations are concerned, we consider in another paper a time-
discretisation of these different price models and study the convergence of the quadratic
hedging strategies related to each of these time-discretised price models to the quadratic
hedging strategies related to the original continuous time model. Moreover, we are con-
cerned with the characterization of the approximating models which give the best conver-
gence rates when the robustness of quadratic hedging strategies is taken into account.
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life insurance contracts in a Lévy process financial market. Insur. Math. Econ., 42(3), pp. 1128–1137.

[34] Øksendal, B., and Zhang, T. (2009). Backward stochastic differential equations with respect to general
filtrations and applications to insider finance. Preprint No. 19, September, Department of Mathemat-
ics, University of Oslo, Norway.


