
C O N S T R A I N T S

Identifying Buildings in
Aerial Images Using
Constraint Relaxation and
Variable Elimination
Thomas H. Kolbe, Lutz Plümer, and Armin B. Cremers, University of Bonn

THIS ARTICLE DESCRIBES AN AP-
plication of constraint logic programming
that comes from the research field of object
recognition: the identification of buildings in
aerial images. 3D building extraction is
needed for an increasing number of tasks
related to measurement, planning, construc-
tion, environment, transportation, energy,
and property management. Semiautomatic
photogrammetric tools are well established,1

but they reveal inefficiencies due to the
extensive amount of data that must be
acquired. The integration of automatic, or at
least semiautomatic, image-understanding
tools to photogrammetry provides a way to
achieve efficiency in 3D data acquisition.

Researchers in photogrammetry and
remote sensing have studied this topic exten-
sively, because of its high practical relevance.
In fact, a German National Research Coun-
cil program called “Semantic Modeling” has
been running since 1993, bringing together
photogrammeters, cartographers, and com-
puter scientists. Its main goal is to incorpo-
rate semantics and explicit models into the
object-recognition process. Here, we show
how we incorporate explicit models in the
subproject “Building Extraction” by using

constraint techniques and logic programming
embedded in the Eclipse System.2–4

Modeling buildings

We employ a generic, hierarchical building
model with a coherent 2D and 3D represen-
tation.5 Figure 1 shows the four aggregation
levels: buildings, building parts, feature aggre-
gates, and features. A volumetric 3D building
model contains building parts subdivided into
terminals and connectors. These terminals and
connectors build some form of construction
kit, where only certain building parts fit to oth-
ers. This allows generic modeling of complex
buildings such as L-shaped, S-shaped, or U-
shaped houses. We can even model rows of

buildings this way. Building parts themselves
contain special groups of features called fea-
ture aggregates. Features build the lowest
level of the hierarchy and are subdivided into
three classes: point, line, and region.

The coherent 2D and 3D modeling allows
different interpretation strategies. For exam-
ple, the transition from 2D image space to
the 3D object space can occur at different lev-
els. One or more 2D raster images give the
interpretation its starting point. A digital ele-
vation model (DEM), if available, provides
additional 3D information about the height
of observable objects in the given scene’s
context. The final result is a 3D instance of
the building model.

The L-shaped saddleback-roof house in
Figure 1 is an example of a special building

THE AUTHORS SHOW HOW CONSTRAINT LOGIC PROGRAMMING

CAN HELP DETECT BUILDINGS FROM THE AIR. THE RECOGNITION

SYSTEM DESCRIBED IN THIS ARTICLE USES CONSTRAINT

RELAXATION AND VARIABLE ELIMINATION TO HANDLE

UNCERTAINTY AND UNOBSERVABILITY OF BUILDING PARTS.

JANUARY/FEBRUARY 2000 1094-7167/00/$10.00 © 2000 IEEE 33

hypothesis. To identify houses in aerial
images, we need such a hypothesis. In this
article, we focus on identifying buildings for
which the hypotheses are already given.6

The formal methods applied to describe
our models are constructive solid-geometry
models augmented by constraints, aspect
graphs, and structures for image features and
their interrelationships. On the 3D object-
level volumes, CSG models represent build-
ings’geometry and physical properties. (CSG
is a formalism well established for man-made
artifacts in computer-aided design.)

Although CSG models use Boolean oper-
ators to construct complex objects from
primitives, most building semantics must be
represented by additional constraints. For
example, CSG models might say that a sim-

ple hip-roof house has a block and a prism,
and additional constraints might state that the
prism is fitted to the upper part of the block
so that it takes into account the roof gutters.
Other constraints restrict form parameters
such as building height, width, and depth to
reasonable sizes and ratios.

On the 2D image level, relations such as par-
allelism, collinearity, and adjacency associate
observable features such as points, lines, and
regions. These observations, extracted by low-
level, syntactic operators build the feature rela-
tion graph. This graph’s representation is
mainly intentional, because only certain rela-
tions such as feature adjacency are explicitly
enumerated by the feature extraction process.

A third model—the aspect graph—relates
objects represented by constrained CSG mod-

els to observations aggregated in FRGs.7 One
aspect graph is derived for each polyhedral
CSG house model, specifying which part of
that model is observable from a certain view-
point. An aspect graph’s nodes represent the
topologically different views (aspects) of 3D
objects, and the edges specify view changes.
Figure 2 shows a building’s CSG model and
its aspect graph. Once again, every aspect is
composed of points, lines, and regions.

Image model and data. Aerial images have
a typical size of about 10,000 × 10,000 pix-
els. Grey-level images have one channel per
pixel; color or radar images have more. To
interpret the image contents, we segment and
aggregate it into three feature classes: points,
lines, and homogeneous regions (blobs).8

Figure 3 shows part of an aerial image and
the result of its segmentation. The extracted
features form a level of symbolic description,
which is transformed to Prolog terms. Fea-
tures are stored as Prolog facts, such as

line(id,y1,x1,y2,x2,angle,

length,scale,type)

point(id,y,x,scale,strength,

type)

blob(id,bbox_y1,bbox_x1,bbox_

y2,bbox_x2,stripes,size,

circum,formfactor,numholes,

interiorpoint_y,interiorpoint

_x,diameter,gravitypoint_y,

gra svitypoint_x,mainangle,

intensity,intensityvariance)

Another result of the segmentation is the
feature-adjacency relation, enumerating the
neighbors of each feature.An extensional sub-
graph of the FRG, the feature-adjacency graph
is represented by Prolog facts of the form

fag_edge(edge_id,feature_id1,

type1,feature_id2,type2)

To get an idea of the combinatorial com-
plexity of the search task, note that even the
segmentation of small portions of an aerial
image results in several thousand points,
lines, and regions. The number of edges
of the corresponding feature-adjacency
graph is one order of magnitude higher (see
Figure 3).

Object models and their transformations.
From constrained CSG models, we derive the
corresponding aspect graphs represented by
Prolog facts similar to the facts representing

34 IEEE INTELLIGENT SYSTEMS

Connector

Region

Point

Line

Corner

Wing

Terminal

Building

Face

Building part

Feature
aggregate

Feature

2D 3D

Figure 1. Hierarchical, coherent 2D and 3D model for building reconstruction.

(a) (b)

Figure 2. (a) 3D model of a hip-roof house; (b) the corresponding aspect graph. Every node of the aspect graph repre-
sents a class of topologically invariant object views.

the image features. Implicit in this transfor-
mation is a mapping of 3D object models to
2D representations. Our system transforms
each aspect to a CLP clause such as the one
in Figure 4.

As the figure suggests, the number of vari-
ables corresponds to the number of features
associated with one aspect, and the number
of constraints to the number of relations spe-
cific for that aspect. The domain variables F1,
…, F3 represent expected observable regions;
L1, …, L10 represent expected observable
lines. Their domains are the corresponding
class’s features extracted from the whole
image. Therefore, the number of extracted
lines (respectively, regions) determines the
domain sizes. In the listed CLP clause
house_aspect, the first two lines construct and
assign the domains to the variables. The next
two lines impose all-distinct constraints on
each class of variables, ensuring that all vari-
ables are assigned different image features.
The following fag_arc constraints restrict
the given variable pairs to have only adjacent
features for values. Finally, theline_par-
allel constraints state that lines must be
parallel to constitute valid values for the given
variable pairs. To keep this example simple,
we omit the variables representing point fea-
tures and the other, mostly geometrical con-
straints. Most of the constraints refer to inten-
tional relations of the FRG (parallelism).
Hence, instead of a simple lookup, explicit
arithmetic computations are needed, and this
degrades performance considerably. Appro-
priate representation of geometry, however,
reduces necessary computations. If, for exam-
ple, lines are specified by polar coordinates,
the test for parallelism is immediate. Other
representations might require time-consum-
ing calculations.

We have found that the following differ-
ent types of constraints are essential for our
application context:

• Adjacency of features: fag_arc(F1, F2)
is true if the features F1 and F2 are neigh-
bored and, thus, (F1, F2) is an edge of the
(extensional) feature-adjacency graph.

• (Approximate) parallelism of lines:
line_parallel(L1, L2) is true if the
enclosed angle between the lines going
through the two line segments L1 and L2

is smaller than a given threshold.
• (Approximate) collinearity of a line and

a point: collinear(P, L) is true if point P is
closer than a given threshold to the line
going through line segment L.

• Two line segments lie in the same half
plane:same_side_lines(Lref, L1, L2)
is true if the two line segments L1 and L2

lie on the same side of the line going
through the third line segment Lref.

Whereas fag_arc is a topological con-
straint, the other three types are geometrical
constraints. We empirically determine the
needed thresholds for the line_parallel
and collinear constraints by statistical analy-
sis of training matches. For simple detached
buildings such as bungalows, saddleback-roof
houses, or hip-roof houses, each aspect is typ-
ically specified by about 25 variables and
more than 100 constraints.

Applying constraint logic
programming

Applications of constraint logic program-
ming in domains with spatial attributes,

although promising, are rare. Nevertheless,
CLP is a language context that can represent
and link the different kinds of models used
in the interpretation process. The application
context just described suggests using the
CLP(FD) (that is, CLP over finite domains)
paradigm to solve the difficult combinator-
ial problems arising in image interpretation.
In fact, David Waltz’s seminal paper on the
interpretation of line drawings, which initi-
ated the AI-related research on constraint
propagation and from which the technique
of forward checking that underlies CLP(FD)
emerged, was entitled “Understanding Line
Drawings of Scenes with Shadows.”9

Finite domains of structured terms. As we
described, the aspect model implies a domain
variable for each expected feature in the
image. To instantiate this template and iden-
tify the corresponding object, the task is to
find a matching set of extracted image fea-
tures. Solving the given constraint-satisfac-

JANUARY/FEBRUARY 2000 35

Figure 3. (a) Portion of a greyscale aerial raster image; (b) its segmentation into points, lines, and homogeneous
regions. This small image already contains about 3,300 points, 3,100 lines, and 2,100 regions. The corresponding fea-
ture-adjacency graph contains 24,000 edges.

extracted_blobs (BlobDom), [F1,F2,F3] ∈ BlobDom,
extracted_lines(LineDom), [L1,...,L10] ∈ LineDom,
all_distinct([F1,F2,F3]),

all_distinct([L1,...,L10]),

fag_arc(F1,L1), fag_arc(F1,L2), fag_arc(F1,L3),

fag_arc(F1,L4), fag_arc(F1,L5), fag_arc(F2,L4),

fag_arc(F2,L6), fag_arc(F2,L8), fag_arc(F2,L10),

fag_arc(F3,L5), fag_arc(F3,L7), fag_arc(F3,L9),

fag_arc(F3,L10)

line_parallel(L2,L3), line_parallel(L6,L7),

line_parallel(L6,L10), line_parallel(L7,L10),

line_parallel(L4,L8), line_parallel(L5,L9).

house_aspect(F1,F2,F3,L1,...,L10):-

F1

F2 F3

L1

L3 L2

L4 L5

L8 L9

L6 L7

L10

Figure 4. Constraint representation of an aspect of a saddleback-roof house containing lines L1, …, L10 and regions
F1, …, F3. The extracted image features build the variable domains. The fag_arc constraints express the adja-
cencies between lines and regions.

36 IEEE INTELLIGENT SYSTEMS

tion problem accomplishes this.
The CSP either fails (if there is
no possible solution) or succeeds
with a complete and consistent
variable binding. The extracted
image features are given as facts
of a database as the result of the
previous image-segmentation
process. The object domain’s
finiteness suggests the applica-
tion of a CLP(FD) constraint
solver. We decided to use the
Prolog/CLP system Eclipse
because of its good scalability,
extensibility, multiple argument
indexing, and efficient implementation of
domain reduction, propagation, and suspen-
sion handling.4

The three different image feature classes
(point, line, and region) are objects of com-
plex structure. They are represented by Pro-
log terms. This representation causes a prob-
lem, because in most implementations of
CLP(FD), variable domains might contain
only integer numbers or atoms. This makes
it impossible to represent a complex object
as one value of a domain variable. To over-
come this problem, we define the variable
domains Dblob, Dline, and Dpoint as the sets of
the (atomic) object identifiers of all extracted
objects of the corresponding classes. The
general feature domain Dfeature is then defined
by Dfeature := Dblob ∪ Dline ∪ Dpoint.

Adapting and extending the FD constraint
solver. Given the problem just described,
constraints relate names of the respective
terms specifying aggregated objects. Thus,
the syntactical format is satisfied. The
semantics of our constraints just illustrated
refer to specific object attributes. Parallelism,
for instance, refers to the coordinates of
points of line features.

Therefore, we cannot directly apply the
given standard (and often built-in) con-
straints of most CLP(FD) systems (that is,
<, ≤, =, ≠, ≥, >, at most, and element). We
have implemented an extension to the
built-in solver that can reflect this indirec-
tion and handle the constraints specified in
the “Object models and their transforma-
tions” section. This extension lets the con-
straint solver handle arbitrary test predi-
cates. As with the CLP system CHIP’s
lookahead and forward declarations, the
user augments constraints by specifying the
inference rule to be used for solving them.
So, the approximate parallelism constraint

is implemented in the following way:

line_parallel_test(L1,L2) :-
line(L1,_,_,_,_,Alpha,_,_,_),
line(L2,_,_,_,_,Beta,_,_,_),
Diff is abs(Alpha-Beta),
Diff < MAXANGLE_THRESHOLD.

line_parallel(L1,L2) :-
forwardcheck(L1:L2:line_
parallel_test(L1,L2)).

As the listing shows, the indirection is han-
dled by the test predicate, which first fetches
the needed object-attribute values (here, the
line angles) from the database and then
checks for the condition. The second predi-
cate specifies that the forward-checking han-
dler must handle line_parallel(L1, L2),
and that L1 and L2 are this constraint’s
domain variables. The line_parallel

constraint is forward-checkable if both argu-
ments are ground or if one argument is
ground and the other is a domain variable.

Although there are many constraints, in
most cases a single constraint is not very
specific. On the other hand, the variable
domains are of considerable size. Thus, for-
ward checking alone is too weak and
requires explicit generation of values for
variables in most cases. The feature-adja-
cency graph’s special characteristics—
mainly, the small degree of its nodes—make
lookahead feasible. It plays a crucial role in
our context, if implemented efficiently, as
the benchmarks given in the last section
illustrate. Lookahead has an efficiency
problem: the respective constraints are eval-
uated repetitively, and computation costs for
each single evaluation might be rather high.
A special caching mechanism lets us replace
these time-consuming computations with
simple lookups. The cache is a set of Pro-
log facts of the form

cache(constraint_name,
old_domain1, old_domain2,
new_domain1, new_domain2,
changed1, changed2)

where constraint_name de-
notes the type of binary con-
straint (for example, line_

parallel), and the two flags
changed1 and changed2 indi-
cate reductions in the respective
domains. In a certain sense,
(old_domain1, old_domain2)
specify a context where a
domain reduction for the given

constraint type might be reused.

Handling unobservable objects and con-
straint violation. To find a matching, the
constraint solver must assign every variable
an extracted image feature and satisfy all
constraints. Unfortunately, because of occlu-
sions, noise, low contrast, and segmentation
errors, building parts are often unobservable
in the image, and some constraints might be
violated. In such cases, the matching between
the extracted image features and the corre-
sponding building model using standard con-
straint techniques would fail.

The simple relaxed approach. One approach
would be to relax violated constraints to find
a solution. In fact, several established
schemes, such as Maximum Constraint Sat-
isfaction and Molly Wilson and Alan Born-
ing’s Hierarchical Constraint Logic Pro-
gramming (HCLP) are based on this idea.
Every constraint violation causes costs, and
the best solution comes from minimizing the
total cost of all constraints. However, for the
identification of buildings in aerial images,
this approach has severe deficiencies.

First, it is not clear where the constraint
weights come from or how they can be
derived. How can we combine the different
constraint weights to build a global evalua-
tion function? Also, the semantic of the eval-
uation function with respect to the recog-
nized building is unclear.

Second, this approach does not reflect the
difference between unobservability of build-
ing parts and the violation of constraints.
Although in both cases constraints cannot be
satisfied, we must treat them differently.
Because in certain cases the unobservability
of objects for low contrast is predictable, the
unobservability of an object on the one hand
might not simply be rated by the sum of the

Glossary
CAD Computer-aided design

CSG Constructive solid geometry

CSP Constraint-satisfaction problem

CLP Constraint logic programming

CLP(FD) Constraint logic programming over finite domains

DEM Digital elevation model

DFG Deutsche Forschungsgemeinschaft

FRG Feature-relation graph

Tcl Tool command language (available from Sun
Microsystems/Scriptics Corporation)

TK Toolkit (the graphical user interface extension to Tcl)

relaxation costs of all incident constraints. On
the other hand, the costs for dropping the
respective variable and the relaxation of its
incident constraints must be greater than zero;
otherwise, the best solution (for minimal costs)
would be to drop all variables and constraints.

For these reasons, we take a different
approach.

Our approach. To reflect the difference
between unobservability and constraint vio-
lation, we extend every variable domain by
the wildcard symbol * and every constraint
c(v1, …, vn) by a three-valued domain variable
b ∈ {−1, 0, 1} to c′(v1, …, vn,b). The handler
for the extended constraint c′ works as a wrap-
per for the original constraint c. It prevents
failure of the whole CSP if c is violated or can-
not be satisfied, because of unobservability of
an incident object, by setting b to the appro-
priate value. The b variable indicates the sta-
tus of the original constraint c, where –1
means violated, 0 relaxed, and 1 satisfied.

The wildcard is a special value standing
for a feature that was expected in the model
but not observed in the image. If a variable
gets assigned the wildcard value, the solver
relaxes all incident original constraints c by
setting the status variables of the corre-
sponding extended constraints c′ to 0. Thus,
assigning the wildcard value to a variable
effectively eliminates it from the given CSP.

To give a well-defined meaning to the best
matching, we use George Vosselman’s evalu-
ation function for the rating of relational
matchings.10 This method applies concepts
from information theory to compute constraint
weights from probabilities about the satisfia-
bility of the different constraints. These prob-
abilities are determined empirically from per-
fect training matches. Every constraint gets
two weights: one for violation (mostly having
a negative value), and one for satisfaction (usu-
ally having a positive value). The weights
replace the –1 and 1 values and express that a
constraint’s status either contradicts or sup-
ports a match. If a constraint becomes relaxed
because of an incident object’s unobservabil-
ity, the constraint is rated 0, because it neither
supports nor contradicts the mapping. Using
information theory, combining constraint
weights involves simply summing all weights
to construct the global evaluation function.
Finally, the best matching is found by maxi-
mizing this function. Based on Vosselman’s
results, we know that maximizing such a func-
tion yields the most likely match in a strict
probabilistic sense.11 Figure 5 shows the

extended constraint representation of the house
aspect with respect to Figure 4.

Controlling the search:
heuristics

Identifying objects has an immanent com-
binatorial complexity. In the previous discus-
sion, the number of involved variables, their
domain sizes, and the number of constraints

are all very high. This is due to the magnitude
of extracted image data and the large number
of features required to specify buildings, from
aspects to aspect graphs to various CSG mod-
els. Obviously, the identification of strong
heuristics supporting the inherent capabilities
of CLP(FD) is of utmost importance.

We apply heuristics in the two (succes-
sive) reasoning phases of constraint place-
ment and variable instantiation. In both
phases, the heuristics determine the order

JANUARY/FEBRUARY 2000 37

house_aspect(F1,F2,F3,L1,...,L10,Sum) :-

F1

F2 F3

L1

L3 L2

L4 L5

L8 L9

L6 L7

L10

extracted_blobs(BlobDom), [F1,F2,F3] ∈ BlobDom,∪{*},
extracted_lines(LineDom), [L1,...,L10] ∈ LineDom,∪{*},
all_distinct([F1,F2,F3]),

all_distinct([L1,...,L10]),

fag_arc(F1,L1,C1), fag_arc(F1,L1,C2), fag_arc(F1,L1,C3),

fag_arc(F1,L4,C4), fag_arc(F1,L5,C5), fag_arc(F2,L4,C6),

fag_arc(F2,L6,C7), fag_arc(F2,L8,C8), fag_arc(F2,L10,C9),

fag_arc(F3,L5,C10),fag_arc(F3,L7,C11),fag_arc(F3,L9,C12),

fag_arc(F3,L10,C13),

line_parallel(L2,L3,C14), line_parallel(L6,L7,C15),

line_parallel(L6,L10,C16), line_parallel(L7,L10,C17),

line_parallel(L4,L8,C18), line_parallel(L5,L9,C19),

Sum = C1 + C2 + ... + C1 + C19.

Figure 5. Extended constraint representation of an aspect of a saddleback-roof house. With respect to Figure 4, vari-
able domains are extended by the wildcard value *. Furthermore, constraints are extended by the indicator variables
C1, …, C19, reflecting both the satisfiability status and the weight of each constraint. Finally, the clause header is
extended by an argument containing the global evaluation function, which is defined as the sum of all indicator vari-
ables. The best matching comes from maximizing this function using built-in predicates of the Eclipse system.

Figure 6. Screenshot of a working session with the Image Interpretation Laboratory. The big window lists the con-
straints and variables representing an aspect of a saddleback-roof house. The deselected constraints were relaxed
because of unobservability or constraint violation by the matching process. The upper right window highlights the
assigned image features of the best matching found for the given building model. The window at the bottom left
shows the reconstructed building.

in which the constraints and the variables
are processed.

CLP(FD) has an incremental solver, where
the actual constraint store is only updated and
not completely rebuilt when new constraints
are added. Therefore, carefully selecting the
next constraint to add to the constraint store
can help minimize domains after each place-
ment step, thus reducing the overall compu-
tation time. For example, let’s say there are
three domain variables A, B, and C with
domains DA{1 … 2000}, DB{1 … 2000} and
DC{1 … 30} and two lookahead constraints
cons(A, B) and cons(B, C). Processing the
second constraint first would be better
because DB would very likely be reduced sig-
nificantly. If DB is significantly reduced
before processing the first constraint, this
constraint’s computational costs will be a lot
less. Although this special heuristic sounds
rather obvious, Eclipse unfortunately does
not supply it as a built-in feature.

When all constraints are in the constraint
store, and no further domain reduction (due to
constraint propagation) is possible, the system
must explicitly instantiate variables to reach a
solution. Because each instantiation initiates
propagation and, therefore, determines the
domain reduction of all directly or transitively
related variables, the instantiation order is cru-
cial for the effective complexity. Here, two dif-
ferent types of heuristics are considered:

• Application-dependent heuristics consider
qualitative information imposed by the
application models. For example, both the
model and our observations show that,
after feature extraction, the lines found are
more likely to be fragmented than are the
regions. So, it is advantageous to start
variable instantiation with region variables
and instantiate line variables afterward.

• General, application-independent heuris-
tics are based on general measures for the
propagation potential of variables and the
strength of constraints. Eclipse already
provides the two instantiation heuristics
“most constrained variable” and “first
failure.” We added the heuristic for con-
straint placement “smallest domains
first,” which is of special relevance for
lookahead constraints.

An illustrating example

Our “Interpretation Laboratory” is an inter-
active tool for the design and evaluation of
models, interpretation strategies, and heuris-
tics. This software platform, which is imple-
mented in Eclipse-Prolog and Tcl/Tk, offers
immediate access to all system components
(such as the extended constraint solver, image
and model data, and graphical user interface)
supporting a step-by-step extension.All kinds
of data are represented by Prolog terms and
stored as facts in the database. Therefore, they
are immediately accessible at any time and for
all reasoning components. The tight coupling
to the graphical user interface allows not only
the graphical presentation of matching results
but also the visualization of the entire reason-
ing process. Figure 6 shows a screenshot of a
working session.

Table 1 lists some benchmarks done on a
Sparc-10 using the environment described
and are meant as a hint of the processing
time’s magnitude. The aim was to find all
solutions for the house aspect shown in Fig-
ure 4. The data are from a portion of an aer-
ial image about four times larger than the one
shown in Figure 6. The domain sizes in this
example are |Dline| = 1185 and |Dblob| = 212.
Column tplcmnt shows the time needed for the
placement of all 45 constraints (before
explicit value generation). Column tsolving

shows the time for calculating all solutions.
All time data are given in seconds.

The large number of solutions looks rather
astonishing at first. Apart from symmetries,
the fragmentation of one line on the object
level into several lines on the image level
results in many different possible mappings
between the same image part, on the one
hand, and the same aspect on the other—thus
generating distinct solutions by our current
implementation. Focusing on distinct regions,
however, reduces the number of solutions to
just a bit higher than one.

38 IEEE INTELLIGENT SYSTEMS

Figure 7. Focusing the search by identifying roof regions. The spots are derived from the analysis of the corresponding
geographical area’s digital elevation model.

Table 1. Benchmarks giving an idea of the computation times needed to find all solutions of the house aspect
shown in Figure 4. In this example, the segmented aerial image contains 1,185 lines and 212 regions. The
large number of solutions is due to model symmetry and fragmentation of image features. When a priori

knowledge about some feature assignments is available, search time dramatically decreases.

CACHE TPLCMNT TSOLVING ΣT NUMBER OF SOLUTIONS CACHE HIT RATIO (%)

Without a priori knowledge:
Disabled 2.45 22.76 25.21 4,608 —
Enabled 1.15 17.87 19.02 4,608 32.52

With knowledge of roof regions:
Disabled 1.11 4.45 5.56 4,608 —
Enabled 0.77 2.84 3.61 4,608 57.55

With knowledge of front region and top edge:
Disabled 1.52 1.30 2.82 2,160 —
Enabled 1.06 0.96 2.02 2,160 44

JANUARY/FEBRUARY 2000 39

Figure 7 illustrates how applying the tools
of the Image Interpretation Laboratory incor-
porates additional information in the reason-
ing process. The spots visualize the hypoth-
esis of building positions derived from
analyzing a digital elevation model. A DEM
is a rectangular or triangulated point raster
where every point has a height coordinate.
Such DEMs can be automatically derived
when stereo images showing the same scene
from different viewpoints are available. The
spots focus on the features to be considered in
the interpretation process. The benefit of such
a priori knowledge about possible region fea-
tures for roof faces is far smaller computation
times, as shown in the benchmarks.

TO THE BEST OF OUR KNOWLEDGE,
this is the first attempt at applying constraint
logic programming over finite domains
to object recognition. This is astounding,
because constraint solving has its roots in
this application domain. The technique of
propagating domain reductions emerged
from Waltz’s seminal paper on the interpre-
tation of line drawings for 3D object recon-
struction.9

From our perspective, applying CLP(FD)
to this task is not straightforward, for several
reasons. First, CLP techniques are based
on categorical constraints; in real images,
expected object parts are unobservable, or
constraints cannot be enforced that often.
Although the CLP scheme provides methods
to efficiently prune the search space, many
other functionalities are also needed:

• extendable constraint handlers to allow
the implementation of relaxable con-
straints and wildcard assignments;

• database facilities providing efficient
access to the many complex objects
extracted from aerial images;

• a universal programming language for
implementing model transformations and
the overall strategy for building recon-
struction; and

• graphical visualization and a user inter-
face.

From a practical point of view, what is
important is not only a fine paradigm, but its
implementation and embedding in a univer-
sal, flexible, and extendible software-devel-

opment system. Eclipse turned out to be an
appropriate platform fulfilling those needs.

Acknowledgments
We did this work largely within the project

“Semantic Modeling and Extraction of Spatial
Objects from Images and Maps,” especially in the
subproject “Building Extraction,” which is sup-
ported by the German National Research Council
(Deutsche Forschungsgemeinschaft, DFG). We
profited heavily from discussions with our coop-
eration partners Wolfgang Förstner, Volker Stein-
hage, Felicitas Lang, and André Fischer. We thank
the DFG for supporting our work.

References
1. P. Suetens, P. Fua, and A.J. Hanson, “Com-

putational Strategies for Object Recognition,”
ACM Computing Surveys,Vol. 24, No. 1, Mar.
1992, pp. 5–61.

2. J. Jaffar and M.J. Maher, “Constraint Logic
Programming: A Survey,” J. Logic Program-
ming, Vol. 19, No. 20, 1994, pp. 503–581.

3. P. van Hentenryck, Constraint Satisfaction in
Logic Programming, Logic Programming
Series, MIT Press, Cambridge, Mass., 1989.

4. M. Wallace, S. Novello, and J. Schimpf,
ECLiPSe: A Platform for Constraint Logic
Programming, tech. report, Imperial College,
London, UK, 1997.

5. C. Braun et al., “Models for Photogrammet-
ric Building Reconstruction,” IEEE Computer
Graphics & Applications, Vol. 19, No. 1,
Jan./Feb. 1995, pp. 109–118.

6. A. Fischer, T.H. Kolbe, and F. Lang, “Inte-
gration of 2D and 3D Reasoning for Building
Reconstruction Using a Generic Hierarchical
Model,” Semantic Modeling for the Acquisi-

tion of Topographic Information from Images
and Maps, W. Förstner and L. Plümer, eds.,
Birkhäuser Verlag, Basel, Switzerland, 1997,
pp. 159–180.

7. J.J. Koenderink and A.J. van Doorn, “The
Internal Representation of Solid Shape with
Respect to Vision,” Biological Cybernetics,
Vol. 32, 1979, pp. 211–216.

8. W. Förstner, “A Framework for Low Level
Feature Extraction,” Proc. European Conf.
Computer Vision ’94, Vol. II, Lecture Notes in
Computer Science, No. 801, Springer-Verlag,
New York, 1994, pp. 383–394.

9. D.L. Waltz, “Understanding Line Drawings
of Scenes with Shadows,” Psychology of
Computer Vision, P.H. Winston, ed.,
McGraw-Hill, New York, 1975, pp. 19–91.

10. G. Vosselman, “Relational Matching,” Lec-
ture Notes in Computer Science, No. 628,
Springer-Verlag, New York, 1992.

11. T.H. Kolbe, “Constraints for Object Recog-
nition in Aerial Images—Handling of Unob-
served Features,” Proc. Fourth Int’l Conf.
Principles and Practice of Constraint Pro-
gramming, Lecture Notes in Computer Sci-
ence, No. 1520, Springer-Verlag, Berlin,
1998, pp. 295–309.

Thomas H. Kolbe is a researcher at the Univer-
sity of Bonn, Germany. He received his PhD from
the University of Vechta, Germany, with a thesis
on building recognition. His research interests
include building recognition, constraints, logic
programming, and information systems. Contact
him at the Inst. for Cartography and Geoinforma-
tion, Univ. of Bonn, Meckenheimer Allee 172,
53115 Bonn, Germany; tk@ikt.uni-bonn.de;
www.ikt.uni-bonn.de/kolbe.

Lutz Plümer is full professor and chair of Geoin-
formation at the University of Bonn. He received
his PhD from the University of Dortmund with a
thesis on termination proofs for logic programs,
and his venia legendi from the University of Bonn
with a thesis on verification of parallel logic pro-
grams. His current research focuses on geoinfor-
mation systems. Contact him at the Inst. for Car-
tography and Topography, Univ. of Bonn,
Meckenheimer Allee 172, 53115 Bonn, Germany;
Lutz.Pluemer@ikt.uni-bonn.de; www.ikt.uni-bonn.
de/pluemer.

Armin B. Cremers is full professor and chair of
Computer Science III at the University of Bonn.
His scientific research is in the areas of informa-
tion systems and AI. Contact him at the Inst. of
Computer Science III, Univ. of Bonn, Römerstr.
164, 53117 Bonn, Germany; abc@cs.uni-bonn.de;
www.cs.uni-bonn.de/~abc.

THE BENEFIT OF SUCH

A PRIORI KNOWLEDGE ABOUT

POSSIBLE REGION FEATURES

FOR ROOF FACES IS FAR

SMALLER COMPUTATION

TIMES, AS SHOWN IN THE

BENCHMARKS.

