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Abstract. In this paper we will show how constraint solving methods
can be applied for the recognition of buildings in aerial images. Object
models are transformed to constraint representations which are matched
against extracted image features. To cope with disturbances caused by
occlusions and noise, we distinguish between the unobservability of a) re-
lations between object parts and b) object parts themselves. Whereas
other approaches for solving over-constrained problems suggest to reduce
the relaxation of a variable to the relaxation of its incident constraints, we
argue that both cases have to be treated separately. Information theory
is applied to derive constraint weights on a probabilistic basis. We extend
constraints and variables in a way which provides for an adequate inte-
gration of constraint violation and variable elimination on the one hand,
and allows the determination of the maximum likelihood estimation for
the matching between model and image on the other hand.

1 Introduction

The automation of 3D object extraction, esp. buildings, is an issue of high impor-
tance due to the increasing demand for 3D city models. 3D data are needed for
various applications including geo-information systems, transmitter placement,
urban planning, cartography, and environmental related investigations.

The complexity and variability of buildings makes the use of strict models
and low level image matching techniques like template matching and pattern
classification unfeasible [24]. Relational matching was identified to be the ap-
propriate scheme, where model and image are decomposed into graph structures
and matched against each other [23, 26]. In section 2 we explain the employed
models in detail.

To cope with the huge number of involved image features and the high com-
plexity of building models, we have to apply efficient techniques in order to
solve the underlying subgraph isomorphism problem. The application of con-
straint solving techniques [18], which has a long tradition in computer vision
[28, 10, 23], proved to achieve good efficiency on large images [16]. However,
they rely on the fact that all variables can be assigned values and all constraints
can be fulfilled. Unfortunately this is often not the case, because of disturbances
in the image like occlusions, noise and segmentation errors. Thus the problem
often is over-constrained.



In recent years different methods for solving over-constrained systems have
been developed [7, 19, 30]. Although several frameworks were proposed which
have these methods as special cases [8, 15], the specific techniques concentrate
either on the relaxation of constraints or on the elimination of variables. Un-
observability of objects in aerial images occurs rather often, and sometimes it
can even be predicted (for example, when we know about low contrast). Clearly
in these cases the unobservability of an object may not be punished as hard as
the violation of constraints between observed objects. Therefore a more natural
model is required which makes this distinction explicit.

We developed a modeling scheme, which distinguishes between the unob-
servability of objects and the violation of relations between objects. Above, it
integrates both effects into one evaluation function. Our concept is based on
information theory and is motivated by work on relational matching [1, 26]. It is
explained in section 4. The evaluation function gives the best matching a proba-
bilistic semantic, namely the maximum likelihood estimation. The relaxation of
constraints is achieved by program transformation, namely augmentation of the
constraints by an additional variable which rates the violation resp. satisfaction
of that constraint. Our concept can further be used in conjunction with standard
consistency techniques and thus can be implemented i.e. on top of a CLP(FD)
system. This is explicated in section 5.

At the end of the article (section 6) we finally show that our proposed mod-
eling scheme also builds a natural link between MaxCSP and Dynamic CSP.

2 Building Recognition as a CSP

For the recognition of buildings we basically apply two models. On the one hand
we have a (3D) object model, describing the shape and geometry of buildings.
The model primitives consist of volumetric building parts that can be combined
to more or less complex building structures. On the other hand we have a (2D)
image model, which describes the objects and their relations that can be observed
in the image. Here the primitives consist of points, lines and faces. Relations
include (among others) line parallelism, neighbourhood, and collinearity.

The gap between the 3D object model and the 2D image model is bridged us-
ing aspect graphs. Aspect graphs enumerate all topologically invariant views on
an object model, and can be efficiently computed for polyhedral 3D objects. Ev-
ery aspect is represented in terms of the image model. Relations are propagated
from the object model to the 2D aspects.

The modeling is presented in detail in [2]. The strategy, esp. how building
hypotheses are generated and selected, is described in [5].

To identify an aspect and thus the underlying building in an image, the aerial
raster image is segmented to derive a symbolic image description [6]. The ex-
tracted image features are also represented in terms of the image model. The
features and their interrelationships form the feature relation graph FRG.

Now, the model and the extracted image features both are given as relational
structures (graphs), where the nodes represent objects and the edges relations.
The aim is to find the (small) model graph in the (huge) feature relation graph



FRG. To solve this subgraph isomorphism problem, we transform the model
graph into a constraint satisfaction problem CSP(V,D,C), where the variables
V represent the model primitives, and the constraints C the model relations. The
variable domains D consist of the set of extracted image features. The task then
is to find a valid assignment of extracted image features to the model variables,
which satisfies all model constraints. This combinatorial problem is also known
as the consistent labeling problem [10, 11].

As we have shown in [16], constraint logic programming over finite domains
CLP(FD) [25, 13] has proved to be an appropriate platform for representing
the different models and performing the search. The application of consistency
techniques (forward checking and look-ahead) [17, 9, 18] provided an acceptable
efficiency.
Applied constraints. For the task of building recognition we employ four
different types of constraints. Fig. 1 shows the geometric constraints and fig. 2
the topological constraints.
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Fig. 1. Geometric constraints being used to describe a building roof consisting of points
P1, . . . , P6, lines L1, . . . , L7, and faces F1, F2.
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Fig. 2. Topological con-
straints used for the roof
model.

segment L and a point P have to be collinear. This
is realized by measuring the distance between the
point and the straight line that goes through the
line segment. The constraint now checks whether
the distance is below a given threshold.

The line parallel(L1, L2) constraint states
that two line segments L1 and L2 have to be par-
allel. It is realized by computing the angle differ-
ence between both lines and the test whether it is
smaller than a given threshold value.

same side line(Lref , L1, L2) is a ternary con-
straint, stating that two line segments L1 and L2

have to lie in the same halfplane which is defined by the straight line going
through a third line segment Lref .

feature adjacent(F1, F2) is a topological constraint, demanding that two
image features F1 and F2 have to be neighboured, where features can be points,
lines and faces. Since the feature adjacency graph is derived during the image



segmentation and all neighboured feature pairs are enumerated, the test of this
constraints reduces to a simple look-up.
Unobserved features and violation of constraints. The application of
standard constraint solving methods demands that every variable can be as-
signed a value and all constraints can be satisfied. However, occlusions, low
contrast, noise, and image segmentation errors often cause disturbances, which
in the last consequence have two different effects: 1) relations that are expected
in the model do not hold between the corresponding image features, and 2) ex-
pected model features are not observed in the image and therefore objects are
missing (see fig. 3 for an example). Thus the given CSPs are over-constrained
and the employed techniques have to be adapted to reflect these problems.
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Fig. 3. Portion of an aerial image showing a saddleroof building (on the left) and the
segmentation result with typical disturbances (in the middle). From the segmentation
process the ridge point P2 on the right of the roof was not observed. Therefore the
incident relations cannot be observed either, which is indicated by question marks
in the right image. Furthermore the same side line(L2, L6, L7) constraint and the
collinear(L7, P4) constraint is violated. This is indicated by the two flash symbols in
the right image.

3 The Problem is Over-Constrained – What Literature
Offers

An over-constrained system OCS is a CSP with no solution, because some con-
straints contradict others [14]. Nevertheless, to allow for the computation of
(a somewhat sub-optimal) result, there are four possibilities of weakening the
problem [7]: 1) enlarging a variable domain, 2) enlarging a constraint domain,
3) removing a variable, and 4) removing a constraint. Since there are generally
different possibilities to weaken one CSP, they have to be rated by an evaluation
function, allowing the definition of an ordering on them.

In literature several methods with specific evaluation functions for solving
OCS have been proposed. They can be basically classified into two categories:

1. Relaxation of constraints (HCLP [30], MaxCSP [8])
2. Elimination of variables (Dynamic CSP [19])

Above, different frameworks (PCSP [8], GOCS [15]) have been suggested. These
frameworks abstract from concrete evaluation functions and the way of weak-
ening the original problem. As we will explain below, they have HCLP and/or



MaxCSP as instances. To clarify the relation between the mentioned methods,
we have arranged them in a taxonomy as shown in fig. 4. In the following we will
give a brief overview of each method, explain their position in the taxonomy,
and discuss their use for our task of object recognition.
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Fig. 4. Taxonomy of OCS methods. The only method focussing on variable elimination,
DCSP, has not been cast in a general framework yet.

Maximum Constraint Satisfaction (MaxCSP) is the most simple and
yet best-known method. It has been investigated in detail by Freuder and Wallace
in [8]. The underlying (natural) metric simply counts the number of satisfied
constraints. The best solutions are those with the smallest number of constraint
violations.

Hierarchical Constraint Logic Programming (HCLP) was developed
by Wilson, Borning et al. ([29, 30]), and expresses preferences by employing a
constraint hierarchy. Constraints on the highest level of the hierarchy always have
to be satisfied. Constraints on lower levels may be violated. The lexicographic
ordering of the hierarchy levels ensures that the satisfaction of a more impor-
tant constraint is always rated higher than alternatively satisfying an arbitrary
number of constraints from lower levels.

HCLP can be considered as a framework for the relaxation of constraints, be-
cause it allows different ways to construct the evaluation function. For example,
in [15] MaxCSP is shown to be an instance of HCLP.

Partial Constraint Satisfaction (PCSP) is a framework developed by
Freuder and Wallace [7, 8] that regards any modification of the original CSP as
a change of the problem space PS. It is general in the sense that any distance
function that is a metric can be used to measure the difference of a modified
problem space PS′ to the original PS.

In [8] several concrete metrics are proposed, with MaxCSP being investigated
in detail. However, none of them dealt explicitly with the relaxation of variables.

General framework for Over-Constrained Systems (GOCS) has been
proposed by Jampel in his PhD thesis [15] as an abstraction from HCLP and
PCSP. First it is shown that (most) problems expressed in HCLP can be trans-
formed to PCSP and vice versa, when the evaluation function is expressed in
terms of constraint augmentations (weakening method 2) from above). The main
focus of GOCS lies on the compositionality of evaluation functions and solving
schemes. Unfortunately, the relation to Dynamic CSP was only raised as a ques-
tion of future research in the conclusion of the thesis.



Dynamic CSP (DCSP) was developed by Mittal and Falkenhainer [19]
and is, to the best of our knowledge, the only scheme that explicitly handles
the elimination of variables. In DCSP variables can be activated or switched
off by special activity constraints. The circumstances under which variables are
activated can depend on variable valuations in the form P (v1, . . . , vn) → active :
vj or on the activity status from other variables active : v1 ∧ . . . ∧ active : vn →
active :vj . When a variable is deactivated, all its incident constraints also become
deactivated. A subset of the variables, called the initial set, denotes the variables
which have always to be active and therefore will be present in any solution.
Discussion. The main problem of the methods that map constraint violation
and variable elimination onto the weakening of constraints (MaxCSP, HCLP)
is that the elimination of a variable can only be simulated by the relaxation of
its incident constraints. Since every constraint also has to be relaxable due to
a simple violation of the underlying relation, what costs should be assigned to
each constraint? These two cases have to be distinguished, because otherwise the
cost for variable elimination would be equal to the violation of all its incident
constraints, which does not necessarily reflect the importance of the variable and
thus will often be over-estimated.

The same applies to the frameworks PCSP and GOCS. Although they are not
restricted to the weakening of constraints, the authors state that any of the four
weakening possibilities enumerated above may be reduced to the augmentation
of constraints by new, compatible relation tuples. Whereas logically correct, this
leads to the problems mentioned when defining an evaluation function. Moreover,
augmenting constraint or variable domains to resolve the inconsistencies is not
feasible, if we further want to use consistency techniques. They rely on the fact
that 1) variable domains become monotonically smaller as search proceeds, and
2) the set of relation tuples defining compatible value combinations remains
constant.

The problem of DCSP as the only available method for handling variable
elimination is, that if variables are active, all constraints between them have to
be satisfied. This clearly is too restrictive for our application domain (cf. fig. 3).

We will therefore need a scheme which explicitly distinguishes between the
unobservability of objects (realised by variable elimination + relaxation of in-
cident constraints) and relations between objects (by single constraint relax-
ations). Starting point for the integration of both effects into one evaluation
function is the work of Vosselman on relational matching [26]. He was the first
who succeeded to provide for a sound integration of unobservability of objects
and their relations in an evaluation function for relational matching.

4 An Evaluation Function Based on Information Theory
In literature several evaluation functions for measuring the similarity of two
relational descriptions (graph structures) D1 = (V1, E1) and D2 = (V2, E2) have
been proposed. We will briefly review the crucial aspects of three important
established schemes in chronological order, and explain how they overcome the
deficencies (which are closely related to those of the reviewed OCS methods) of
their ancestors.



Shapiro and Haralick [22] suggested a (still popular) metric to measure the
structural error E of a mapping between two relational descriptions D1 and D2.
They simply count the number of relation tuples that are not mapped by the
mapping function h : V1 7→ V2 from E1 to E2 and vice versa: E(h) = |E1 ◦ h −
E2|+ |E2 ◦ h−1 −E1|. Later they extended their metric by allowing normalized,
weighted relation attributes (cf. [11]). There are two main problems with this
metric: 1) Graph nodes in V1 that have no mapping partner in V2 are mapped to a
dummy element (the so-called wildcard, symbolized by ∗). As we have discussed
above with using constraint relaxation methods for variable elimination, it is
difficult to assign costs for such wildcard mappings. Costs cannot be 0, because
then the best mapping would only consists of wildcard mappings. 2) It is difficult
to determine constraint weights, because relations can have attributes of different
types (real, integer, symbolic).

Boyer and Kak [1] proposed to regard relational matching as a commu-
nication problem, where the first description D1 is transmitted over a dis-
crete, noisy communication channel and is received as a somewhat distorted

Mapping function
h: D1->D2

Receiver

Noise
source

Trans-
mitter

Communication     channel

Message D1 Message D2

Fig. 5. Information theoretic modeling of a discrete
communication channel

description D2 (see fig. 5).
In 1948 Shannon in-
troduced a quantitative
measure for the informa-
tion contained in a trans-
mitted message [21]. The
relation between the in-
formation contained in a
symbol a and the proba-
bility that a will be cho-
sen from an alphabet is
defined by the equation
I(a) = − log P (a). It can

be regarded as a measure of surprise that a was observed: the higher the prob-
ability, the lower the information content we get. The conditional information
I(a|b) = − log P (a|b) measures the surprise if we know that a was sent whereas
we receive b. It is a measure for the uncertainty of the transmission.

Boyer and Kak showed that the information content of a relational descrip-
tion is I(D) = I(V ) + I(E), with I(V ) =

∑
v∈V I(v) being the sum of the

information contained in the nodes, and I(E) =
∑

e∈E the information con-
tained in the relations. The information of a node vi itself consists of the sum1

of the information contained in each attribute aj : I(vi) =
∑

aj∈vi
I(aj). The

information contributed by an attribute a depends on the probability of a tak-
ing a certain valuel: I(a = valuel) = − log P (a = valuel). The information of
a relation ei is defined as the sum over the information of all relation tuples
I(ei) =

∑
tupj∈ei

I(tupj). Finally, the information contained in a relation tuple
is the sum over the relation tuple attributes I(tupj) =

∑
aj∈tupj

I(aj), where
I(aj) has the same definition as above.

1 Assuming that all attributes are statistically independent.



Now the conditional information between two description I(D2|D1) is defined
in an analogous manner by replacing the probabilities by conditional probabili-
ties. Since the conditional information measures the uncertainty of a transmission
(and here also the quality of a channel), the task of finding the best mapping
ĥ from D1 to D2 can be reduced to the minimization ĥ : minh Ih(D2|D1). The
authors showed that ĥ maximizes P (h|D1 ∩D2), expressing that ĥ is the most
likely mapping under the given descriptions, the maximum likelihood estimation
(cf. [4]) between D1 and D2.

The most important contribution of the proposed scheme for our purposes
is that (in contrast to the first method presented above) weights now reflect
the probabilistic nature of attribute values, and that they easily combine to
an evaluation function having a probabilistic semantic. However, it does not
solve the problem of wildcard mappings, because it is not possible to define the
conditional information I(∗|a) between an attribute a and a wildcard.

Here the work of Vosselman [26] begins, who switched from using the condi-
tional information to the mutual information, which is a symmetrical measure
of the information that a symbol a gives about another b (and vice versa). It is
defined as [12]:

I(a ; b) = log2

P (a ∩ b)
P (a) · P (b)

(1)

= log2

P (a|b)
P (a)

= log2

P (b|a)
P (b)

(2)

Since the mutual information measures the similarity rather than the difference
between relational structures, it has to be maximized in order to find the best
mapping ĥ. Vosselman showed that maximizing Ih(D1;D2) is equivalent to max-
imizing P (h|D1 ∩ D2). Still, ĥ is the maximum likelihood estimation between
the relational descriptions D1 and D2.

The crucial improvement wrt. the model of Boyer and Kak consists in the
evaluation of wildcard mappings. Since a relation attribute from an object model
rm and a wildcard are statistically independent, following eqn. 1 this leads to

I(rm ; ∗) = log
P (rm) · P (∗)
P (rm) · P (∗)

(because rm and ∗ are independent)

= 0 (3)

This means that wildcard mappings neither support nor contradict to a mapping.
A matching consisting only of wildcard mappings therefore would contain no
(mutual) information.

To see how the modeling scheme can be applied to the constraint represen-
tation of object models we have presented in section 2, suppose that our model
relations are denoted by rm, and the relations that can be observed in the seg-
mented image by ri. Then the mutual information between every pair (rm, ri)
can be calculated from eqn. 2 by applying Jeffrey’s Rule [20]:

I(ri ; rm) = log2

P (ri|rm)
P (ri)

= log2

P (ri|rm)∑
r′

m
P (ri|r′m) · P (r′m)

(4)



The mutual information has to be computed for every value combination of
rm and ri, which in this case are the four tuples (true, true), (true, false),
(false, true), and (false, false). Eq. 5 shows the calculation for the first tuple:

I(ri = t ; rm = t) = log2

P (ri = t|rm = t)
P (ri=t|rm=t)P (rm=t)+P (ri=t|rm=f)P (rm=f)

(5)

The following example (tab. 1 and tab. 2) demonstrates the computation of
the mutual information, when the a priori probabilities for the model relation
and the conditional probabilities for the image relation wrt. the model relation
are given:

Table 1. Example for a priori probabilities for model relation rm (left) and
conditional probabilities of image relation ri wrt. model relation rm (right).

r P (r)

true 0.17
false 0.83

P (ri|rm) rm = true rm = false

ri = true 0.95 0.00
ri = false 0.05 1.00

Table 2. Resulting mutual information calculated from table 1 using equa-
tion 4. The upper left value was computed using eqn. 5 which is derived from
eqn. 4 for the case (ri = true , rm = true) .

I(ri ; rm) [bits] rm = true rm = false

ri = true 2.56 −∞
ri = false −4.07 0.25

From this example we can see that if a predicted model relation can be
observed in the image, it supports the matching by 2.56 bits. Otherwise, if the
same relation would not hold for the image, it contradicts the matching by 4.07
bits. If the relation could not be observed, because of a wildcard mapping of an
incident variable, it would be rated 0.

Before we now proceed with the definition of our CSP modeling scheme we will
summarize the four main points from this section, because we will explicitly refer
to them later:

1. The mutual information between a (relation or object) attribute and a wild-
card is 0.

2. The combination of the ratings of objects and relations is done by simply
building the sum over the mutual information of all attributes.

3. For relations having no other attributes except for true/false the mutual
information is given as a 2×2-table.

4. The mapping ĥ with the highest mutual information corresponds to the
maximum likelihood estimation.



5 Combining Variable Elimination and Constraint
Relaxation

We assume that the model which should be matched with the extracted image
features is given as a CSP(V,D,C) with variables V , associated domains D,
and constraints C. Now, to distinguish between the relaxation of a constraint
due to a simple violation or due to the unobservability of an incident variable
every constraint c(v1, . . . , vn) ∈ C is extended by a three-valued domain variable
b ∈ {−1, 0, 1} to a constraint c′(v1, . . . , vn, b) with

c′(v1, . . . , vn, b) ⇔ (b = 1 ∧ c(v1, . . . , vn)) ∨
(b = −1 ∧ ¬c(v1, . . . , vn)) ∨
(b = 0) (6)

This variable can be seen both as an indicator and a control switch for the
constraint. If on the one hand the original constraint c becomes entailed, b will
be set to one. On the other hand, if b is set to 1, c has to be satisfied in order
to satisfy c′, thus the original constraint c will be enforced. Analogously, if c
becomes contradictory2, b will be set to −1, and if b is set to −1, the negation
of c is enforced. The third case (b = 0) allows for an unconditional relaxation of
c′ wrt. the original constraint c.

Each variable domain d ∈ D is extended by the wildcard value ’∗’ (compara-
ble to an explicit null value in record fields of databases) to a domain d′ = d∪{∗}
with

∀vi ∈ V : (vi = ∗ ⇔ ∀c′j(. . . , vi, . . . , bj) ∈ C ′ : bj = 0) (7)

This condition relates the indicator variables to the original CSP variables. It
expresses that if a wildcard is assigned to a variable, the b variables of all incident
constraints have to be 0, to satisfy the constraints c′. The other way around, if
the b variables of all constraints which are incident to a variable are set to 0, the
variable has to be assigned the wildcard value.

As one might already suspect the three-valued variable b is closely related to
the wildcard mapping and the mutual information. In fact it covers main point
1) from the end of the last section. The values −1 and 1 are inspired from point
3), esp. from the mutual information in the left column of tab. 2. A satisfied
constraint supports a matching (b = 1), a violated constraint gives a malus
(b = −1).

According to point 2) from last section, the evaluation function is defined as
the sum over the b variables of the transformed constraints:

f(C ′) =
|C′|∑
i=1

bi with c′i(. . . , bi) ∈ C ′ (8)

Maximization of this function leads to the best matching (cf. point 4) from last
section).
2 Contradiction here has the same definition as in [15]: there does not exist any model

(in the logical sense) in which all constraints without c are true, and c is also true.



Up to now, constraints have been unweighted. If a maximum likelihood estima-
tion is desired, two things have to be done:
1. The values 1 and −1 of the b variables have to be replaced by the mutual

information I(rm = true; ri = true) resp. I(rm = true; ri = false) (cf. left
column of tab. 2).

2. The set of complementary constraints C̄ has to be determined. When the
set of all possible (binary) constraints is C = {c(vi, vj) | vi, vj ∈ V, i 6= j},
the set of complementary constraints then is C̄ = {¬c | c ∈ C ∧ c /∈ C}.
These are the constraints which state that relations which are not true in
the object model must also be false in the image. The values 1 and −1
of their indicator variables have to be replaced by the mutual information
I(rm = false; ri = false) resp. I(rm = false; ri = true) (shown in the right
column of tab. 2).

The problem here is that we get a quadratic number of constraints wrt. the
number of variables, because |C ∪̇C̄| = |C|. We therefore omit the complementary
constraints in the following, knowing that the best matching is related to but
not guaranteed to be the maximum likelihood estimation. It is an issue of future
research to estimate and limit the error.

Application to building recognition. Adding the b variables significantly
enlarges the search space (by a factor of 3|C|). However, a careful modeling in
the context of an application domain allows a priori reductions of the search
space. We will exemplify this in the following for the definition of geometric
constraints and the knowledge about the observability of image features.

The geometric constraints line parallel and collinear play an important
role wrt. the quality of a reconstructed building. Violations of these constraints
are not tolerated, because it can be observed that in all of these cases one
of the participating image features is not correctly extracted from the image.
As explained in section 2 the constraints were defined using thresholds. If we
now set the threshold to the maximum difference we find in a (large) set of
training matches, the constraint will be true for all training examples3. Thus
the conditional probability P (ri = true|rm = true) that can be derived from
the training data set will be 1 and therefore P (ri = false|rm = true) = 0. This
means the constraint will not be violated in any acceptable matching. It can
only be relaxed due to the unobservability of an incident variable. Therefore we
can remove the −1 from the domains of the b variables of line parallel and
collinear constraints.

If one has knowledge about the observability of certain model parts, this can
be exploited by the a priori elimination of wildcards from the resp. variable do-
mains. In the system we have described in [5], the generation of building models
is indexed by previously reconstructed 3D corners. Since the reconstruction of
the corners uses the same image(s) as the final recognition of the complete build-
ing, the observability of the resp. building corners is propagated via the building
model to the resulting CSP.
3 We assume that the training matches were done by an expert, who can decide in

every case, wether a certain deviation is acceptable.



Although a detailed explanation of the implementation is out of the scope of
this paper, we will drop a few words on this topic. The modeling scheme is
implemented by extending the CLP(FD) solver of the Eclipse system [27]. We
adapted the inference rules for forward checking (FCIR) and look ahead (LAIR)
as defined by van Hentenryck in [25], and provide a language interface similar to
the constraint declarations of CHIP [3]. At the moment we only use the values
−1 and 1 for the b variables, but we are currently evaluating test data sets to
gain the probability distributions needed to compute the mutual information.
Fig. 6 shows three example matchings that were determined using the proposed
scheme.

Fig. 6. Matching results for three buildings. The left building already was shown in
fig. 3. The proposed evaluation function (correctly) decides that most violations of
geometric constraints are best reflected by assuming the unobservability of incident
variables. On the left one corner point and the right ridge point were mapped to a
wildcard. Note that the right edge of the upper roof face is mapped correctly although
it violates a same side line constraint (cf. fig. 3). In the middle one roof edge and
the incident corner point were mapped to a wildcard, because the line parallel and
collinearity constraint could not be satisfied. Finally, on the right two corner points
and the left edge of the lower roof face have a wildcard mapping.

6 Related Work

In section 3 we have pointed out that MaxCSP only considers the relaxation of
constraints whereas Dynamic CSP is restricted to the elimination of variables.
Here we show that both MaxCSP and Dynamic CSP may be regarded as spe-
cial cases of our evaluation function. We show this by simulating MaxCSP and
Dynamic CSP in terms of our model.

To implement the MaxCSP metric, one simply has to remove the 0 from the
domains of the b variables and the wildcard ∗ from the variable domains. Thus
constraints can only be relaxed, if the underlying relation is violated. Clearly,
maximizing eqn. 8 then maximizes the number of satisfied constraints.

Dynamic CSP forbids the violation of constraints between active variables.
Therefore we remove the −1 from the domains of the b variables. The initial
variable set is always active and thus present in any solution. This is ensured by
removing the wildcard ∗ from the variables in this set. Activity constraints of
the form P (v1, . . . , vj) → active : vk are transformed to P ′(v1, . . . , vj , b) ⇔ (b =
0) ∨ (b = 1 ∧ (P (v1, . . . , vj) → vk 6= ∗)). The other activity constraints can be



transformed in a analogous way. This simulation of Dynamic CSP is similar to
the one mentioned in [19].

Finally, we demonstrate the use of the proposed scheme with an example
given by Freuder and Wallace for PCSP in [8] (which can be seen as a simple
version of a configuration problem). The problem is that we have a minimal

{Cordovans,
   sneakers}

{denims, dress blue,
       dress grey}

SHOES

{grey, green}

SHIRT

TIE
{grey, turquoise}

SLACKS

(sneakers, grey)}
{(Cordovans,grey),

{(green,grey)}

{(dress grey, turquoise),
(dress blue, grey)}

{(Cordovans, grey)}

{(green, dress grey), (grey, denims),
(grey, dress blue)}

{(Cordovans, dress grey),
(sneakers, denims)}

Fig. 7. Robot clothing example adopted from [8] and extended
by a tie. The MaxCSP approach finds two best-rated solutions
with two constraint violations each: 1) Cordovans, grey shirt,
grey tie, dress blue slacks (yuck!), and 2) Cordovans, green
shirt, grey tie, dress grey slacks (which is not much better).
Our evaluation function in contrast decides that it is best to
wear sneakers, denims, and a grey shirt and to drop the tie.

wardrobe and some
restrictions which
clothes can be worn
together with oth-
ers. It is shown in
fig. 7 and has un-
der the given con-
ditions no solution.
When applying the
MaxCSP metric to
solve the over-con-
strained problem,
every variable has
to be assigned a
clothing article, be-
cause MaxCSP is
not capable of vari-
able relaxation4. In
this example this
leads to the two

”best” solutions which suggest to wear Cordovans, a grey shirt, a grey tie, and
dress blue slacks or Cordovans, a green shirt, a grey tie, and dress grey slacks.
Both solutions obviously are inacceptable. Allowing also for the elimination of
variables, we instead get a solution that suggests to drop the tie, which is not
only the most comfortable but also the least eye-offending proposal.

7 Conclusion and Future Work

We have presented a modeling scheme for CSPs which provides a smart integra-
tion of the unobservability of object parts and their interrelationships in the con-
text of object recognition. The proposed evaluation function has a probabilistic
basis. Information theory is applied to derive constraint weights from probabil-
ity distributions of relations. These probabilities can be empirically derived from
training matchings. This concept allows the definition of the best matching in a
probabilistic sense, namely the maximum likelihood estimation between model
and image data. Over-constrained systems which are modeled using this concept
can be solved by the application of standard constraint solving methods.

We have implemented the scheme in CLP(FD) by extending the solver of the
Eclipse system and have succesfully applied it for the recognition of buildings
in aerial images. We have shown how domain specific restrictions can be used to

4 The same applies to HCLP, which also cannot handle the elimination of variables.



sharpen the modeling of constraints and how a priori knowledge can be used for
initial pruning of the search space.

Finally, by demonstrating that MaxCSP and DCSP are special cases of our
concept we have established an up to now missing (natural) link between them.

Future work has two main focuses, the first concentrating on the evaluation
function and the second on operational aspects:

1) The proposed evaluation scheme is close to maximum likelihood estima-
tion. However, if the latter has to be ensured, not only the constraints for the
relations that are true in the object model but also constraints for the comple-
mentary negated relations have to be posted. Clearly, the quadratic number of
required constraints is too big. Therefore further investigation has to be done
on how this can be avoided and what the probabilistic interpretation of such a
reduced model will be.

2) The proximity to MaxCSP suggests the examination of its sophisticated
heuristics in the context of our model. Furthermore it would be interesting to cast
the proposed modeling scheme in the general frameworks of PCSP and GOCS
to gain further insights into the evaluation function (i.e. wrt. compositionality).
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[6] W. Förstner. A Framework for Low Level Feature Extraction. In J.-O. Eklundh,
editor, Computer Vision, ECCV ’94, Vol. II, number 801 in Lecture Notes in
Computer Science, pages 383–394. Springer-Verlag, 1994.

[7] E. C. Freuder. Partial Constraint Satisfaction. In N. Sridharan, editor, Proc. of
the 11. Int. Joint Conf. on Artificial Intelligence IJCAI’89 in Detroit, MI, USA.
Morgan Kaufmann, 1989.



[8] E. C. Freuder and R. J. Wallace. Partial Constraint Satisfaction. In M. Jampel,
E. Freuder, and M. Maher, editors, Over-Constrained Systems, number 1106 in
LNCS, pages 63–110. Springer-Verlag, Berlin, 1996.

[9] R. M. Haralick and G. L. Elliott. Increasing Tree Search Efficiency for Constraint
Satisfaction Problems. Artificial Intelligence, 14:263–313, 1980.

[10] R. M. Haralick and L. G. Shapiro. The Consistent Labeling Problem: Part I. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 1:173–184, 1979.

[11] R. M. Haralick and L. G. Shapiro. Computer and Robot Vision, volume II.
Addison-Wesley Publishing Company, 1993.

[12] F. M. Ingels. Information and Coding Theory. Intext Educational Publishers, San
Francisco, Toronto, London, 1971.

[13] J. Jaffar and M. J. Maher. Constraint Logic Programming: A Survey. Journal of
Logic Programming, 19/20:503–581, 1994.

[14] M. Jampel. A Brief Overview of Over-Constrained Systems. In M. Jampel,
E. Freuder, and M. Maher, editors, Over-Constrained Systems, number 1106 in
LNCS, pages 1–22. Springer-Verlag, Berlin, 1996.

[15] M. B. Jampel. Over-Constrained Systems in CLP and CSP. PhD thesis, Dep. of
Computer Science, City University London, UK, September 1996.
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