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Abstract—We address the linear precoder design problem
based on chance constrained quality-of-service (QoS) power
minimization in the vector broadcast channel (BC). We divide the
problem into a two step optimization that separates the precoder
design from the power allocation. For the power allocation, we
propose a map that fits into the framework of standard inter-
ference functions. Therefore, we can compute the optimal power
allocation for given beamformers and detect whether a tuple
of beamformers is feasible. This allows us to test conservative
and non-conservative approaches for the beamformer design,
e.g., a design based on a rank-one channel approximation is
used. Numerical results show that the approximation is adequate
for the non-conservative calculation approach, i.e., the post-
processing power allocation is capable of compensating for the
suboptimal beamforming. Thereby, a wider range of rate targets
is achieved than with the conservative beamformer designs.

Index Terms—QoS power minimization; power allocation; sta-
tistical CSI; chance-constrained requirements; rank-one channels

I. INTRODUCTION

In this work, we focus on linear transmit beamforming for

decreasing the required power at a multi-antenna transmitter,

while reliably serving several mobiles with a pre-defined

data rate. For perfect channel state information (CSI) at the

transmitter, this QoS optimization problem is well explored

(e.g., [1]–[3]). Recent advances for QoS optimization (e.g., [4],

[5]) also take into account that the transmitter is not fully

aware of the channel states in reality. Only a statistical model

for the channels can be acquired, so that formulations have to

be used that are robust w.r.t. these uncertainties.

In this context, we address the linear precoder design prob-

lem based on chance constrained QoS power minimization,

where certain rate targets shall be achieved with predefined

probabilities. Unfortunately, these chance constraints are non-

convex in the beamformers and their closed-form expressions

are intractable for state of the art optimization methods

(e.g., [6], [7]). Therefore, the recent literature concentrates on

conservative convex approximations of the chance constraints

to efficiently compute ‘robust’ beamformers with standard

convex interior-point solvers [4], [5], [8]–[11] (more detailed

explanations are given in Section IV).
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For these approaches, we observed two important draw-

backs. First, the conservative optimizations might propose a

transmit power that considerably exceeds the optimum of the

actual problem. Second, the methods might detect infeasibility

even though the original problem formulation is feasible.

To overcome the first issue, we present a twofold solution

approach similar to [12] that separates the beamformer design

from the power allocation. However, we give up the fixed

precoding and allow for an adaptive design, e.g., with either of

the conservative approaches. To compensate for the suboptimal

beamforming, we suggest the application of a power allocation

based on the fixed point framework of standard interference

functions [13]. This power allocation minimizes the transmit

power subject to the probabilistic constraints for given feasible

beamformers. As a consequence, the proposed transmit power

can be considerably reduced.

Unfortunately, the suggested power allocation is unable to

extend the feasible set of the conservative approaches. These

approaches fail to deliver reasonable beamformers in case they

detect infeasibility. This motivates to test adequate non-robust

beamformer designs as an input for the optimal power alloca-

tion. For example, we can use a rank-one channel approxima-

tion to propose a non-conservative beamformer calculation.

To detect whether the power allocation can compensate for

the non-robust beamforming and fulfill the original chance

constraints, we establish a feasibility test based on the fixed

point map of the power allocation that was introduced in a

general form in [14]. In Section VII, numerical results show

that the rank-one channel approximations are adequate for the

beamformer calculation in scenarios with a dominant channel

mean. That is, the power allocation is capable of compensating

for the suboptimal beamforming. Thereby, we achieve a wider

range of rate targets than with existing conservative designs.

II. SYSTEM MODEL

In the considered vector BC, K mobiles are simultaneously

served in the same frequency band by an N -antenna base

station. The base station linearly precodes the independent

data signals sk ∼ NC(0, 1) with the beamforming vectors

tk ∈ C
N , k ∈ {1, . . . ,K}, and simultaneously transmits the

superimposed outcomes x =
∑K

k=1 tksk over the frequency

flat fading channels hH
k ∈ C1×N , k ∈ {1, . . . ,K}, to the K

mobiles. Besides the channel distortion, each mobile suffers



from zero-mean additive Gaussian noise nk ∼ NC(0, σ
2
k) with

variance σ2
k > 0, k ∈ {1, . . . ,K}, such that the received signal

of mobile k is given by yk = hH
k tksk + hH

k

∑

i6=k tisi + nk.
As mentioned in the introduction, the base station is not

aware of the channel states hk , while the mobiles are assumed

to have sufficiently accurate knowledge. The base station

models the channel states as complex Gaussian vectors

hk = mk +C
1/2
k wk (1)

with mean mk, covariance matrix Ck, and the white error

wk∼NC(0, IN ), k ∈ {1, . . . ,K}.

III. QUALITY OF SERVICE OPTIMIZATION

We focus on a QoS based beamformer design. The QoS

metrics of interest are the achievable user rates. For user k,

rk = I(yk; sk) = log2(1 + SINRk) (2)

with the signal-to-interference-plus-noise-ratio (SINR)

SINRk =
|hH

k tk|2
σ2
k +

∑

i6=k |hH
k ti|2

(3)

is required to lie reliably above a threshold ρk ∈ R+, k ∈
{1, . . . ,K}. The objective is to minimize the base station’s

resources, which are represented by the transmit power

Ptx =
K
∑

k=1

‖tk‖22. (4)

Note that this problem is non-convex in above formulation

and might become infeasible for N < K . However, equiva-

lently rewriting it into a standard SINR form, feasibility of the

problem can be determined in closed-form [15] and efficient

algorithmic solutions can be found either via a convex problem

reformulation or via uplink-downlink duality and fixed point

iterations (e.g., see [1], [2]) for the perfect CSI setup.

The feasibility issue and finding tractable problem reformu-

lations become more difficult when assuming only statistical

channel knowledge at the base station, i.e., the mean mk and

the covariance Ck of the Gaussian channels hk . Then, we

cannot directly rely on (2) for the QoS power minimization.

Instead, a robust formulation is considered, where the proba-

bility of an outage shall not exceed a predefined percentage

εk ∈ (0, 1). This chance-constrained optimization reads as

minimize
t1,...,tK

K
∑

i=1

‖ti‖22 (P.1)

subject to Pr(rk ≥ ρk) ≥ 1− εk ∀ k ∈ {1, . . . ,K}.
Note that this problem might already become infeasible for

sufficiently large targets ρk, k ∈ {1, . . . ,K}, even for N ≥ K
since we are not aware of the channel states.

To see the nature of the probabilistic requirements in (P.1),

we equivalently rewrite them via inserting (2) and (3):

Pr(rk ≥ ρk) = Pr
(

hH
k Bkhk ≥ σ2

k

)

≥ 1− εk (5)

where Bk = 1
2ρk−1tkt

H
k −∑

i6=k tit
H
i . Due to the Hermitian

form in hk of the stochastic constraint, the probability in (5)

is strictly positive, only if Bk has a positive eigenvalue,

otherwise it is zero for sure. In the previous case, the prob-

ability is a cumulative distribution function (CDF) of a non-

central indefinite quadratic form in complex Gaussian random

variables and can be computed as in [6], [7], for example.

IV. CONSERVATIVE SOLUTION APPROACHES

It is well known that above chance constraints are non-

convex in the optimization parameters and their closed-form

expressions are intractable for the state of the art optimiza-

tion methods (e.g., see references in [7]). Therefore, several

tractable convex approximations were proposed for the beam-

former design that are robust in the sense that their solutions

fulfill the actual chance constraints in (P.1).

• Most prominent are the approaches in [5], [8]. Therein,

the probabilistic rate constraints are rewritten into affinely

perturbed linear matrix inequalities whose probability is

approximated in [16].

• In [9], a semidefinite relaxation approach is considered,

where a Bernstein’s type inequality is employed accord-

ing to [17] to remove the uncertainty expression and

obtain a convex formulation.

• In the approximations of [4], [10], [11], worst-case

constraints replace the chance constraints. That is, the

probabilistic constraints in (P.1) are replaced by the de-

terministic requirements rk ≥ ρk that have to be fulfilled

for all wk in (1) that lie in set Wk, e.g., a simple sphere,

where Pr(wk ∈ Wk) = 1− εk, k ∈ {1, . . . ,K}.

Due to the conservatism, the actually achieved probabil-

ities (5) of these approaches strongly depend on the given

requirements. If the different rate targets ρk, k ∈ {1, . . . ,K},

are close to being infeasible, a conservative approach might

result in an objective that considerably exceeds the optimum

of (P.1) or detect infeasibility even though (P.1) is feasible.

These issues motivated us to propose a twofold solution ap-

proach with separate beamformer design and power allocation.

In contrast to the power allocation in [12], the following power

allocation is optimal and applicable for any suboptimal but

feasible set of fixed beamformers.

V. POST-PROCESSING POWER ALLOCATION

Motivated by the conservatism of above mentioned beam-

former designs, we next propose a (post-processing) power

allocation that compensates for the suboptimal beamforming.

To this end, we recast the given beamformer tuple as

tk = τk
√
pk (6)

with unit-norm τk ∈ CN and the per-user transmit powers

pi ∈ R+, i ∈ {1, . . . ,K}. Inserting (6) into (5), the reliability

probability of mobile k reads as

Fk(p, σ
2
k) = Pr

(

βk,kpk −
∑

i6=k

βk,ipi ≥ σ2
k

)

(7)

with βk,j = |hH
k τj |2 for j 6= k and βk,k = 1

2ρk−1 |hH
k τk|2

being correlated (non-central) chi-square distributed with de-

gree 2 for Gaussian hk and p = [p1, . . . , pK ]T comprises



the per-user power allocation at the base station. The transmit

power (4) becomes Ptx =
∑K

i=1 pi = 1
Tp, such that the power

allocation optimization reads as

minimize
p

1
Tp (P.2)

subject to Fk(p, σ
2
k) ≥ 1− εk ∀ k ∈ {1, . . . ,K},

p ≥ 0.

Note that the solution to (P.2) depends on the distribution

of hk and the beamformer directions τk, k ∈ {1, . . . ,K}. The

proposed approach can be applied for a quite general class of

channel distributions, besides Gaussian ones.

Definition 1. We say that a channel distributions is well-

behaved if Fk(p, σ
2
k) in (7) is continuously

(i) increasing in pk for fixed pi, i 6= k and σ2
k;

(ii) decreasing in each pi, i 6= k for fixed pk and σ2
k;

(iii) decreasing in σ2
k , for fixed pj , j ∈ {1, . . . ,K}.

for all probability values Fk(p, σ
2
k) ∈ (0, 1).

Examples for well-behaved channel distributions are all

distributions with continuous probability density functions

(PDF) that are non-zero in CN , e.g., the Gaussian distribution.

Note that all reliability requirements in (P.2) are satisfied

with equality in the optimum due to the given monotonicity

properties (i)-(iii) in Definition 1. That is, the optimizer p⋆

of (P.2) satisfies Fk(p
⋆, σ2

k) = 1− εk for all k ∈ {1, . . . ,K}.

Moreover, whenever a power allocation p satisfies the proba-

bility constraints in (P.2), they are also satisfied by p′ = αp

with α > 1 since Fk(αp, σ
2
k) = Fk(p,

σ2

k

α ) [cf. (7)] that

increases for decreasing
σ2

k

α [see (iii) of Definition 1].

A. Fixed-Point Framework

These properties motivate a fixed-point iteration based so-

lution approach to (P.2). To this end, we define the functions

fk : RK
+ → R+, p 7→ fk(p), k ∈ {1, . . . ,K}, where

fk(p) = min
{

x : Pr
(

βk,kx−
∑

i6=k

βk,ipi≥σ2
k

)

= 1−εk

}

. (8)

Proposition 1. The map f : RK
+ → RK

+ with p 7→ f(p) =
[f1(p), . . . , fK(p)]Tand fk(p) defined in (8) is a standard

interference function according to [13].

In other words, f(p) satisfies the three properties:

f(p) > 0 (positivity)

f(p) ≥ f(p′) for p ≥ p′ (monotonicity)

αf(p) > f(αp) for α > 1, (scalability)

where the vector inequalities are component-wise. Therefore,

the simple fixed-point iteration

p(n+1) = f(p(n)) (9)

converges to the unique global optimizer p⋆ of (P.2) for any

initial p(0) if (P.2) is feasible [13].

Proof of Proposition 1: Elementwise positivity of f(p)
follows directly by the definition of fk(p) in (8) and the

monotonicity property (i) in Definition 1 for εk ∈ (0, 1).
Similarly, using property (ii) in Definition 1, we have that

Pr
(

βk,kx−
∑

i6=k

βk,ip
′
i ≥ σ2

k

)

≥ Pr
(

βk,kx−
∑

i6=k

βk,ipi ≥ σ2
k

)

for all x > 0 when p ≥ p′ ≥ 0. Therefore, we can conclude

with (i) in Definition 1 that fk(p) ≥ fk(p
′), where equality

holds only if p′k > pk and p′l = pl for all l 6= k and strict

inequality holds if there is one p′l > pl with l 6= k. This

proves elementwise monotonicity of f(p).
To prove the scalability property elementwise, we write the

following inequality that is valid for α > 1:

fk(αp) = min

{

x : Pr

(

βk,k
x

α
−
∑

i6=k

βk,ipi ≥
σ2
k

α

)

= 1− εk

}

= αmin

{

z : Pr

(

βk,kz −
∑

i6=k

βk,ipi ≥
σ2
k

α

)

= 1− εk

}

(iii)
< αmin

{

z : Pr

(

βk,kz −
∑

i6=k

βk,ipi ≥ σ2
k

)

= 1− εk

}

= αfk(p),

where the first equality follows from the definition of fk in (8),

the second equality follows from substituting z = x/α, and

the inequality is due to property (iii) of Definition 1.

B. Feasibility Detection

To test whether (P.2) is feasible, we can exploit that (9) re-

sults in a component-wise monotonically increasing sequence

when starting from the all zero vector [13, Lemma 2], i.e.,

0=p(0)≤p(1)≤ . . .≤p(n). If the sequence converges before

exceeding some threshold for Ptx, the convergence point is the

optimal solution. Otherwise, infeasibility can be declared.

However, since the transmit power is unbounded in (P.2),

above test fails when the optimum lies above the transmit

power threshold. For an alternative test, we consider the

high power limit, where σ2
k → 0, k ∈ {1, . . . ,K} and the

continuous monotone vector map f(p) comprises the elements

fk(p) = min
{

x : Pr
(

βk,kx−
∑

i6=k

βk,ipi≥0
)

= 1−εk

}

. (10)

In contrast to positivity and monotonicity, that are still valid

for this f(p), the scalability property changes to

αf(p) = f(αp) for α > 0. (scale-invariance)

Therefore, we can normalize p to 1
Tp = 1. In other words,

f(p) is now a general interference function according to [1].

To test whether the probabilistic constraints Fk(p, 0) ≥
1 − εk, k ∈ {1, . . . ,K} can be satisfied simultaneously,

the generalized signal-to-interference-ratio (SIR) balancing

approach of [14] can be used. That is, we search for the p

that balances the SIRs pk/fk(p) at their maximum value, i.e.,

C−1 = max
1Tp=1

min
l

pl
fl(p)

. (11)

If C < 1 the probability constraints in (P.2) can be satisfied

with finite p and for C = 1 infinite transmit power is required.



For C > 1 the probability requirements are infeasible with the

given beamformers. To find the optimizer of (11), we can use

the (scaled) fixed point iteration [14]

p(n+1) = f(p(n))/1Tf(p(n)). (12)

If the sequence has converged to the optimum p⋆ of (11), the

balancing level C−1 is simply found via Cp⋆ = f(p⋆).
Convergence of (12) to the unique fixed point p⋆ of (11) is

ensured if the interference function f(p) is primitive (strongly

order-preserving), i.e., if p′ ≥ p with p′ 6= p implies

fm(p′) > fm(p) for some positive integer m (cf. [14,

Lemma 2]). Since the considered beamformers and channel

distributions are well-behaved (see Definition 1) and fk(p) is

strictly increasing in all pl with l 6= k, it is straightforward to

show that primitivity is satisfied with at most m = 2.

VI. NON-CONSERVATIVE BEAMFORMER DESIGN

Now we are aware of optimally allocating power to the users

for given (feasible) beamformers. However, the power alloca-

tion does not extend the feasible set for the conservative QoS

optimizations, that fail to deliver a reasonable beamformer

whenever they detect infeasibility, even though (P.1) is feasi-

ble. This motivates the use of non-conservative approximations

for the chance constraints in (P.1), e.g., we use a simple rank-

one approximation of the channel for this purpose.

We approximate hk with h̃k = vkak(hk), where the param-

eters vk and ak(hk) are chosen to minimize the mean square

error E
[

‖hk−h̃k‖22
]

, i.e., ak(hk) = vH
k hk with unit-norm vk,

that denotes the dominant eigenvector of mkm
H
k +Ck. This

model is a good approximation when either the entries in hk

are strongly correlated, e.g., in satellite mobile communica-

tions, or when the mean mk is dominant over the covariance.

We first approximate (5) by replacing hk with h̃k . If we

rewrite the result in terms of the outage probability, we obtain

Pr
(

h̃H
k Bkh̃k < σ2

k

)

= 1− Pr
(

h̃H
k Bkh̃k ≥ σ2

k

)

≤ εk (13)

with matrix Bk defined below (5). This stochastic requirement

contains the quadratic form h̃H
k Bkh̃k = Xkv

H
k Bkvk where

Xk = |ak(hk)|2 is non-central χ2-distributed with two degrees

of freedom and non-centrality parameter λk = 2|E[ak(hk)]|
2

var(ak(hk))
.

Substituting this quadratic form into (13), we can write

Pr

(

Xk <
σ2
k

vH
k Bkvk

)

= Fχ2

2,λk

(

σ2
k

vH
k Bkvk

)

≤ εk

where Fχ2

2,λk

is the CDF of Xk. Since the stochastic event

is now separated into a random left-hand side and a deter-

ministic right-hand side, we can equivalently reformulate the

probabilistic constraint into the deterministic requirement

σ2
k

vH
k Bkv

≤ q (14)

where q = F−1
χ2

2,λk

(εk) is the inverse CDF of the non-central

χ2-distributed random variable Xk (e.g., see [18]) that is

evaluated at εk and independent of the optimization variables.
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Figure 1. CDF of the Achieved Outage Probability

Via inserting Bk = 1
2ρk−1tkt

H
k − ∑

i6=k tit
H
i [cf. (5) and

below] into (14) and reformulating the result, we approximate

the chance constraints in (P.1) to obtain a standard QoS power

minimization with SINR-like requirements [cf. (3)], i.e.,

minimize
t1,...,tK

K
∑

i=1

‖ti‖22 (P.3)

subject to
|vH

k tk|2
σ2

k

q +
∑

i6=k |vH
k ti|2

≥ 2ρk − 1 ∀ k ∈ {1, . . . ,K}.

This optimization problem can for example be solved with

the methods and algorithms in [1], [2]. Moreover, feasibility

of (P.3) can be declared whenever
∑K

k=1 2
−ρk > K−N [15].

Note, however, that feasibility of (P.3) does not imply fea-

sibility of (P.1) because of the non-conservatism of the rank-

one channel approximation. Whether the optimal beamformers

of (P.3) are feasible for (P.2) or not has to be detected with

the test in Subsection V-B. If the test is positive, the power

allocation in Subsection V-A results in a feasible solution

for (P.1). Otherwise, we fail to detect feasibility of (P.1).

VII. NUMERICAL RESULTS

In this section, we present simulation results to compare the

non-conservative rank-one approximation based beamformer

design with the following conservative approaches: the ro-

bust SOCP formulation from [8] and the two semidefinite

relaxation approaches from [11] and [9] that are based on

a worst-case (sphere bounding) design reformulation and a

probability approximation with Bernstein’s type inequality,

respectively. Moreover, we show that the power allocation

is able to compensate for the suboptimal beamforming, i.e.,

it reduces the proposed minimal transmit power for the con-

servative approaches and ensures reliability of the optimistic

beamforming based on the rank-one approximation.

The simulations were performed for the following setup:

the number of users and transmit antennas are K = N = 3,

σ2
k = 0.1, ten percent outage is allowed, i.e., εk = 0.1, and

the channel covariance matrices are fixed to Ck = 0.01
N IN ,

k ∈ {1, 2, 3}. We use the rate targets ρ1 = ρ3 = 0.1ρ
and ρ2 = 0.2ρ, where the common factor ρ is successively

increased. The channel means are drawn from a standard

complex Gaussian distribution of appropriate dimensions.
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In Fig. 1, we plotted the CDF curves for the achieved outage

probabilities of the conservative methods and the rank-one

approximation approach. We created these curves by drawing

500 channel mean realizations, applying above beamformer

designs for ρ = 2, and calculating the resulting outage prob-

abilities for all three users. As can be seen, the actual outage

probabilities of the conservative designs are below 0.015.

This promises considerable performance gains for the post-

processing. In contrast, the rank-one channel approximation

results in beamforming that violates the outage requirements

(see Fig. 1). However, the outage requirement εk = 0.1 is met

after the additional power allocation. The curves support our

expectation that the rank-one approximation is optimistic and

additional power has to be spent for meeting the requirements.

We observe these behaviors also in Fig. 2, where the

minimal transmit power Ptx is plotted over ρ for an exemplary

scenario. Therein, the transmit powers of the conservative

approaches lie considerably above the optimistic rank-one

channel approximation approach (thick lines). After the ad-

ditional power allocation (thin lines), all four beamformer

designs achieve similar Ptx within their feasible set. For the

conservative approaches, we applied standard interior-point

solvers that fail to deliver a precoder above the infeasibility

thresholds: about ρ = 3 for the robust SOCP and about ρ = 6
for the semidefinite relaxation approaches. Therefore, the

power allocation fails above these values for ρ. The rank-one

approximation method is however applicable over the whole

range for ρ. Its results are already close to the post-processing

transmit powers for ρ ≤ 3. For ρ ≥ 3, its beamformers are

still adequate, so that the additional power allocation meets the

outage requirements. Hence, a wider range of ρ values can be

supported than for the conservative beamformer designs.

The power gain due to the additional power allocation is

more than 3dB for the Bernstein’s inequality approach, 5dB

for the sphere bounding method, and about 7dB for the robust

SOCP formulation at ρ = 1. The gain is even larger, when ρ is

close to the infeasibility bound of these methods. The power

loss for reaching the required reliability with the beamformers

of the rank-one channel approximation appears to be small but

increasing with ρ (see Fig. 2). In other words, the larger the

rate requirements, the less accurate is this approximation.

VIII. CONCLUSION

We have shown that the proposed minimal transmit power

of state-of-the-art chance-constrained beamformer designs can

be considerably reduced with an additional power allocation.

Moreover, when the power allocation is able to compensate for

the suboptimal beamforming, non-conservative designs may

extend the achievable feasibility range of the conservative

ones. These results motivate us to investigate upper bounds

for chance constraints in future works. The bounds will serve

as the basis for necessary feasibility tests and optimistic per-

formance characterizations in probabilistic QoS optimizations.
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