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Abstract

Exploiting data models lies at the core of many algorithms and techniques in neuroscience,
machine learning, and signal processing. In this context, models based on sparse repre-
sentations have been proven extremely valuable, and numerous algorithms for exploiting
sparsity in applications and for learning sparse data models have been proposed over the
last years. Two related but distinctive approaches have emerged that are known as the
sparse synthesis model and the co-sparse analysis model.

The underlying assumption of the synthesis model is that a signal can be formed by lin-
early combining a set of building blocks, known as the atoms of a dictionary. Therein,
sparsity comes into play by requiring this set to be as small as possible. In contrast to this,
in the analysis model a signal is mapped to a higher dimensional space by an analysis op-
erator and the image of this mapping is assumed to be sparse. One famous application of
these models is regularizing inverse problems in image processing. Most crucial for the
performance of both models is the choice of a proper dictionary/analysis operator. They
should be chosen such that a maximally sparse representation of the considered signal can
be achieved. Either they can be defined analytically, or be learned from representative train-
ing samples of the considered signal class. It is well-known that learned models outperform
analytic ones as they are better adapted to the data of interest, which in turn leads to sparser
representations. Furthermore, learning algorithms allow to find sparse representation of
classes of data for which no analytic model exists.

The focus of my thesis lies on learning sparse data models considering both the synthe-
sis and the analysis point of view with emphasis on their applications to image processing
tasks. Concretely, in the first part I introduce two new algorithms called Separable Dictio-
nary Learning (SeDiL) and Geometric Analysis Operator Learning (GOAL) that are based
on geometric conjugate gradient optimization on suitable manifolds. Although these meth-
ods are general in terms of being independent of a specific signal class or application, here,
my major interest in terms of applications lies on image data and solving classical linear
inverse problems.

SeDiL operates on the product of unit spheres and can be used to learn both unstructured
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conventional dictionaries as well as dictionaries having a separable structure. Compared to
the conventional approach, enforcing a separable structure allows learning dictionaries of
higher dimension and reduces the computational burden for both learning the dictionary
and employing it in applications. This is of special interest for image processing tasks as it
allows working with larger image-patches and thus permits to capture larger image struc-
tures. Another advantage of SeDiL is the possibility to control the crucial mutual coherence
of a learned dictionary.

The proposed analysis operator learning approach GOAL works on the oblique manifold,
i.e. the set of full-rank matrices with normalized columns. During the learning process, the
condition number and the mutual coherence of an operator are controlled, and the trivial
solution is avoided inherently. Through synthetic tests, I show that GOAL outperforms all
existing analysis operator learning techniques in terms of computational complexity, accu-
racy in finding a generating ground truth operator, and generality. Furthermore, several
results for image denoising, inpainting, and superresolution reveal the state-of-the-art per-
formance of GOAL in real world applications.

In the second part, I introduce the novel multimodal co-sparse analysis model that per-
mits to model statistical dependencies of diverse modalities representing the same physical
object. This model suggests that measurements acquired in different modalities originating
from the same scene share a common co-support when a suitable set of analysis operators is
used. For this set of operators, no analytic form exists and these operators must be learned
from aligned example signals. To that end, I propose an extension of GOAL that uses a suit-
able sparsifying function to enforce the coupled co-support assumption during the learning
process. The performance of the proposed model is evaluated for the task of depth map
superresolution based on aligned depth- and intensity-information.
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Chapter 1

Introduction

One of the core steps in numerous signal processing tasks constitutes to identifying, ex-
tracting, or recovering information that is contained in a signal that belongs to some specific
class. To achieve this, one can exploit that basically every kind of data or signal carrying
information has some underlying inner structure. This inner structure can be understood
as a set of rules, which all representatives of a specific signal class follow. Typical exam-
ples for signal classes are natural images, medical imagery, or speech data, just to list a few
out of countless examples. Now, knowing this inner structure allows composing models
of the considered signal class, which in turn can be used to reveal the important informa-
tion contained in a given sample of the class. Here, a model means nothing more but a
set of mathematical relations that a signal is assumed to satisfy, i.e. a model mathemati-
cally represents the inner structure of a signal. The success of various applications in signal
processing such as compression, interpolation, detection, recognition, or solving inverse
problems heavily relies on appropriate data models. A good model should be as simple
as possible while being able to represent the signal as accurately as possible [44]. The ad-
vantage of simple models has already been expressed through Occam’s razor principle that
can be traced back to the 14th century, which says that if two models are equally expres-
sive the simpler one should be preferred. By a simple model, I understand one that only
requires a few parameters to model a sample of a signal class. In this thesis, parsimonious
signal models and their applicability for solving inverse problems in image processing are
of major interest and will be covered intensively.

The goal of inverse problems in general is to determine a signal 𝒔 ∈ ℝ𭑛 from some given
observations 𝒚 ∈ ℝ𭑚 that might be noisy and/or incomplete. Typical examples of inverse
problems include signal denoising, signal deconvolution, or signal completion. To state
this problem formally, let 𝑨 ∈ ℝ𭑚×𭑛 be a known system matrix that models the sampling
process, and let 𝝐 ∈ ℝ𭑚 be some additive noise term. Then the measurement process can
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Chapter 1 Introduction

be written as

𝒚 = 𝑨𝒔 + 𝝐. (1.1)

Certainly, when 𝝐 = 0𭑚 and 𝑚 ≥ 𝑛, the reconstructed signal 𝒔⋆ ∈ ℝ𭑛 simply can be
computed via 𝒔⋆ = 𝑨†𝒚. However, in the presence of noise or when the system is under-
determined (i.e 𝑚 < 𝑛) infinitely many solutions to Problem (1.1) exist. Hence, additional
prior information about the signal at hand is required to regularize the reconstruction task.
This is where signal models can help; when we know that a signal belongs to a certain class
for which a model is available, one way to regularize the recovery problem is to search for
the signal that is both consistent with the measurements 𝒚 and at the same time is compat-
ible with the assumed model. Commonly, these two properties can be enforced by finding
the signal that minimizes two penalty functions

𝑓 (𝒔) ∶ ℝ𭑛 → ℝ+, (1.2)

which must be small when the resulting signal is consistent with the measurements and

𝑔(𝒔) ∶ ℝ𭑛 → ℝ+, (1.3)

which must be small when the resulting signal fits the model. Function (1.1) depends on the
assumed noise statistics whereas Function (1.3) depends on the postulated signal model.
This general procedure is depicted in Figure 1.1.

As stated in [42] there has been an evolution of signal models during the last decades that
resulted in gradually decreasing modeling errors, which in turn led to gradually increas-
ing performance of applications that exploit those models. Important milestones that have
been established throughout this evolution are the Principal Component Analysis (PCA),
ℓ2 minimization based models, weighted ℓ2 Tikhonov regularization, Mixture of Gaussians
models, or Independent Component Analysis (ICA). Currently, we are in the era of sparse
and redundant data models with ubiquitous realizations and applications. These models
are both theoretically interesting as well as powerful in applications. Consequently, this
topic has become well-accepted and today is one of the most important fields of research in
the communities of signal processing, computer vision, and machine learning [15]. The fol-
lowing section serves as a brief introduction on this topic, with the focus on the application
of solving inverse problems.
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Figure 1.1: This figure depicts the general procedure of inverse problems.

1.1 Background of Sparse and Redundant Data Modeling

A commonality of many natural and informative signals is that elements of the same signal
class do not cover the entire surrounding space ℝ𭑛, but actually reside in a union of much
lower dimensional subspaces of dimension 𝑘, with 𝑘 ≪ 𝑛. As an example, consider the class
of natural images. A natural image when transformed e.g. into the wavelet domain only
contains 𝑘 coefficients that are large in magnitude while all other 𝑑 − 𝑘 coefficients are very
small or exactly zero in the ideal case, see Figure 1.2(b). The 𝑘 large coefficients carry all im-
portant information about the image and the corresponding wavelets span the subspace the
image resides in. Knowing these coefficients is sufficient to accurately reconstruct the im-
age in the pixel domain by taking the linear combination of the 𝑘 corresponding wavelets cf.
Figure 1.2(c). This fact forms the backbone of the JPEG2000 compression format [122]. Ide-
ally, all possible (𭑑

𭑘) combinations of wavelets form the union of k-dimensional subspaces
where all natural images reside in.

The example mentioned above is just one specific instance of a more general concept,
which assumes that for every class of informative signals there exists a set of 𝑑 suitable
building blocks {𝒅𭑖 ∈ ℝ𭑛}𭑑

𭑖=1, which are called atomic signals, atoms, or codewords that allows
to represent each element of the class as a linear combination of only a few such atoms. Let
the atoms form the columns of a matrix 𝑫 = [𝒅1, … , 𝒅𭑑] ∈ ℝ𭑛×𭑑 called dictionary, and let
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Chapter 1 Introduction

(a) Ground truth image. (b) 10% largest wavelet coefficients
of (a).

(c) Image reconstructed from the
wavelet coefficients given in (b).

Figure 1.2: This figure exemplifies the capability of sparse signal representations. The most important informa-
tion of an image (a) can be accurately recovered (c) using only 10% of the wavelet coefficients (b) of the ground
truth image.

𝒙 ∈ ℝ𭑑 be the vector of transform coefficients, then a signal can be compactly written as

𝒔 =
𭑑

∑
𭑖=1

𝒅∶,𭑖𝑥𭑖 = 𝑫𝒙. (1.4)

The question now becomes how a unique and meaningful representation 𝒙 of 𝒔 can be
found. Assuming 𝑫 to be a full-rank matrix, certainly, for 𝑑 = 𝑛 this representation is simply
given by 𝒙 = 𝑫†𝒔. However, in the general and more expressive overcomplete or redun-
dant setting 𝑑 > 𝑛, the dictionary has a non-trivial nullspace and consequently infinitely
many realizations 𝒙 exist that multiplied by 𝑫 result in the same signal 𝒔. Nevertheless, the
representation 𝒙 that reflects the prior assumption that the signal lies in a low-dimensional
subspace spanned by a few columns of 𝑫 is uniquely defined under some mild conditions
on 𝑫 and the dimension of the subspace, cf. [34]. In this case, 𝒙 only contains 𝑘 ≪ 𝑑 non-zero
coefficients, i.e. the vector is sparse, and the 𝑘 columns of 𝑫 spanning the subspace where
the signal resides are indexed by the support of 𝒙

supp(𝒙) ∶= {𝑖| 𝑥𭑖 ≠ 0} (1.5)

i.e. the positions of its non-zero entries.
Now, going back to the task of solving inverse problems, this sparsity assumption can

be used to regularize the problem by seeking the sparsest vector 𝒙 that most accurately ex-
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1.1 Background of Sparse and Redundant Data Modeling

plains the available measurements 𝒚. To put this formally, let 𝑔(𝒙) be some penalty function
that enforces 𝒙 to be sparse, then the signal recovery problem can be tackled by first solving

𝒙⋆ ∈ arg min𝒙 𝑔(𝒙) subject to 𝑓 (𝒚 − 𝑨𝑫𝒙) ≤ 𝜖, (1.6)

and afterwards computing 𝒔⋆ = 𝑫𝒙⋆. Therein, 𝑓 depends on the assumed noise statistics
of the measurements, and 𝜖 ∈ ℝ+

0 determines how closely 𝑨𝑫𝒙 has to resemble the mea-
surements. Allowing a certain discrepancy 𝜖 can be necessary when the signal cannot be
exactly represented as a sparse decomposition of atoms but only approximately, or when
the measurements are noisy. As the final signal estimate 𝒔⋆ is synthesized from 𝒙⋆ via the
dictionary 𝑫, Problem (1.6) is known as the sparse synthesis model [45].

The synthesis model has an interesting "fraternal twin" that also relies on a parsimonious
signal representation and which is known as the co-sparse analysis model [45, 86]. The un-
derlying assumption of this signal model is that there exists an analysis operator 𝜴 ∈ ℝ𭑎×𭑛

with 𝑎 ≥ 𝑛 that maps 𝒔 into a sparse analyzed vector, i.e.

𝜶 ∶= 𝜴𝒔 ∈ ℝ𭑎. (1.7)

The analysis operator in this model can be interpreted as the counterpart of the dictionary
in the synthesis model. The rows of 𝜴 are the analysis atoms and they analyze the signal
which explains the model's name. In contrast to the synthesis model, where a signal is
fully described by the non-zero elements of the sparse code 𝒙, in the analysis model the zero
elements of the analyzed vector 𝜶 describe the subspace the signal belongs to. Concretely,
the signal resides in the orthogonal complement of the subspace spanned by the rows of 𝜴
that are indexed by the co-support of 𝜶

co-supp(𝜶) ∶= {𝑖| 𝛼𭑖 = 0}, (1.8)

i.e. the positions of its zero elements. To further emphasize the difference between the two
models, the term co-sparsity has been introduced in [85, 86], which denotes the number of
zero elements of 𝜶. The co-sparse analysis model can again be exploited as a regularizer for
solving inverse problems via

𝒔⋆ ∈ arg min𝒔 𝑔(𝜴𝒔) subject to 𝑓 (𝒚 − 𝑨𝒔) ≤ 𝜖. (1.9)

The function 𝑓 and the parameter 𝜖 have the same meaning as in the synthesis model. A
co-sparse representation is enforced in the same way as enforcing sparsity via minimiz-
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ing an appropriate function 𝑔. Note that for the interesting redundant setup, the analysis
model is computationally simpler to solve as one only has to optimize over 𝑛 unknowns,
i.e. the dimension of the signal, as opposed to 𝑑 unknowns in the synthesis model, i.e. the
dimension of the sparse code.

As a short summary, in the sparse synthesis model a signal is formed by linearly combin-
ing a set of building blocks, i.e. the atoms of a dictionary. Therein the question that arises is,
which smallest set of atoms can be chosen to form the signal. Conversely, in the co-sparse
analysis model, the true signal is carved out by requiring it to follow a set of constraints,
i.e. it must be orthogonal to many analysis atoms. For 𝑑 = 𝑎 = 𝑛, and assuming that dic-
tionaries and analysis operators are non-singular matrices, it is known that both models
are identical with 𝜴 = 𝑫−1. However, in the interesting redundant setting 𝑑, 𝑎 ≥ 𝑛 the
two models differ significantly [45] and have different strengths and weaknesses. While
the synthesis model is well-studied both in theory and in applications and is more intuitive
to understand due to its generative nature, the analysis model is theoretically more expres-
sive as it exhibits a much larger set of unions of subspaces and is also simpler to optimize
due to the smaller number of unknowns. It is still unclear whether one model should be
preferred over the other, and both are viable options for e.g. regularizing inverse problems.
Most crucial for the performances of both models in applications are:

1. An adequate measure of sparsity together with efficient algorithms for solving the
arising optimization problem.

2. The choice of an expressive dictionary or analysis operator, respectively, which al-
low a maximally sparse and accurate representation of the considered signal class of
interest.

In the following section, I provide a brief overview on the state-of-the-art concerning the
two issues raised above.

1.2 State-of-the-Art

1.2.1 Sparse Synthesis Model

Finding the sparsest solution to Problem (1.6) is known as sparse coding, sparse approxi-
mation, basis selection, or variable selection. Ideally, the ℓ0-pseudo-norm

‖𝒙‖0 ∶= |{𝑖| 𝑥𭑖 ≠ 0}|, (1.10)
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which counts the non-zero entries of 𝒙 ∈ ℝ𭑑, should be employed as the sparsity measure,
i.e. 𝑔(𝒙) = ‖𝒙‖0. Unfortunately, finding the exact minimum ℓ0-solution is NP-hard [87] as it
requires a combinatorial search whose complexity grows exponentially in 𝑑. Besides that,
natural signals might not be truly sparse but rather compressible. Compressible means that
most of a the energy of a signal is contained in only a few large coefficients and all others are
very small in magnitude but not necessarily zero. For those signals, the ℓ0-pseudo-norm
might be a suboptimal penalty function. Throughout this thesis, I will loosely use the term
sparse for both truly sparse- and compressible signals. To account for these issues, other
sparsifying functions that have similar properties as the ℓ0-pseudo-norm can be used. The
required behavior is that the function does not penalize large coefficients heavily, while it
pushes small coefficients towards zero. Mathematically, this is accomplished by a function
whose derivative is large around zero and is small or even vanishes for large values. Three
commonly applied sparsifying functions having these properties and the ℓ1-norm, which
is the most prominent sparsity inducing function as it is the closest convex surrogate of the
ℓ0-pseudo-norm, are shown in Figure 1.3.

Now, one straightforward way to find a sparse solution is to use a smooth differentiable
sparsity measure and utilize standard optimization solvers. However, theses methods ne-
glect the structure that underlies the sparse coding problem and are therefore computa-
tionally inefficient. That is why a large number of efficient techniques have been proposed
that are explicitly designed to solve the sparse coding task. They can be roughly catego-
rized into (i) greedy pursuit methods like Orthogonal Matching Pursuit (OMP) [96] that
find an approximate, or under some side conditions even exact minimum ℓ0 solution,(ii)
methods like Least Angle Regression (LARS) [39] based on minimizing the ℓ1-norm which
is the closest convex relaxation of the ℓ0-pseudo-norm, and (iii) methods that employ non-
convex ℓ0-surrogates like ℓ𭑝-pseudo-norms with 𝑝 < 1, e.g. the FOCal Underdetermined
System Solver (FOCUSS) [61, 100]. In Section 2.1.1, I provide a more detailed overview and
explanations of various sparse solvers.

The success of all sparse coding techniques most crucially depends on the choice of the
dictionary 𝑫. Generally, one can choose a dictionary from two major classes: (i) analytic dic-
tionaries and (ii) learned dictionaries. Analytic dictionaries like the Discrete Cosine Trans-
form (DCT) or diverse Wavelet Transforms [82] are built on mathematical models of the
type of signal they should represent. They offer fast implementations and are applicable to
a large set of signals. This generality of being able to represent many signals in a good way
comes at the cost of not necessarily representing specific signals optimally. More expres-
sive dictionaries with fine tuned atoms can be obtained by learning the structure, which
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Figure 1.3: This figure shows four commonly applied sparsifying functions with different parameter settings.

underlies the considered signal class directly from a set of representative training signals.
Figure 1.6 shows both the atoms of an analytically defined dictionary and the atoms of a
learned dictionary. Compared to the learned atoms, the analytic ones show a more regular
structure.

Dictionary learning algorithms aim at finding the dictionary 𝑫 ∈ ℝ𭑛×𭑑 that allows to de-
scribe a set of 𝑀 training samples {𝒔𭑖 ∈ ℝ𭑛}𭑀

𭑖=1 as closely as possible with the sparsest pos-
sible representations {𝒙𭑖 ∈ ℝ𭑑}𭑀

𭑖=1. Formally, let 𝑺 = [𝒔1, … , 𝒔𭑀] ∈ ℝ𭑛×𭑀 be a matrix con-
taining the 𝑀 training samples arranged as its columns, and let 𝑿 = [𝒙1, … , 𝒙𭑀] ∈ ℝ𭑑×𭑀

be a matrix that contains the corresponding sparse representations. Then the dictionary
learning process can be stated as

{𝑫⋆, 𝑿⋆} ∈ arg min
𝑫,𝑿

𝐺(𝑿) subject to 𝐹(𝑺 − 𝑫𝑿) ≤ 𝜖,
𝑫 ∈ ℭ. (1.11)
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(a) Atoms of the overcomplete discrete cosine
transform.

(b) Atoms learned by SeDiL.

Figure 1.4: This figure shows the 256 atoms of dimension 𭑛 = 64 of the analytic overcomplete discrete cosine
transform (a) and of a dictionary learned by the algorithm SeDiL (b), which is introduced in Chapter 4. Each
atom is represented as an (8 × 8) dimensional patch, where a black pixel corresponds to the smallest negative
entry, a gray pixel is a zero entry, and a white pixel corresponds to the largest positive entry.

Therein, 𝐺 ∶ ℝ𭑑×𭑀 → ℝ+ measures the overall sparsity of the training set, 𝐹 ∶ ℝ𭑛×𭑀 → ℝ+

measures how closely each sample is represented by its sparse code, 𝜖 reflects the assumed
noise energy, and ℭ is some predefined admissible set of solutions. Restricting possible so-
lutions to an admissible set like matrices with normalized columns is necessary to avoid the
scale ambiguity problem, i.e. obtaining entries of 𝑫 that tend to infinity, while the entries
of 𝑿 tend to zero, as this is clearly the sparsest possible solution to Problem (1.11). Further-
more, this constraint set can be used to enforce desired properties on the dictionary such as
bounded self coherence, or bounded coherence to other matrices. In simple words, the self
coherence of 𝑫 measures the similarity between the dictionary's atoms and is an important
criterion for theoretically analysis of sparse coding techniques. I want to emphasize here
that to learn a dictionary one has to optimize over both the sparse code 𝑿 and the dictionary
𝑫. The probably best known dictionary learning algorithms are the method of Olshausen
and Field [90], the Method of Optimal Directions (MOD) [46], and K-SVD [43]. Roughly
speaking, those techniques are based on alternating between fixing 𝑫 and updating 𝑿 with
some sparse coding algorithm followed by fixing 𝑿 and updating 𝑫, see Figure 1.5. They
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Sparse 
Coding

Dictionary
Update

Figure 1.5: This figure depicts the two step procedure commonly followed by dictionary learning algorithms.

mainly differ in the employed constraint set and in the way the dictionary is updated. A
detailed introduction on this topic is given in Section 2.1.2.

1.2.2 Co-Sparse Analysis Model

Recall that the goal of the co-sparse analysis model is to determine the signal 𝒔 such that the
analyzed vector 𝜶 = 𝜴𝒔 with respect to a given analysis operator is as sparse as possible.
Certainly, when 𝒔 is free of noise one of the analysis model's advantages is that a signal's
sparse analyzed version is straightforwardly computed by 𝜶 = 𝜴𝒔, without having to solve
an optimization problem. However, if noisy measurements 𝒚 = 𝒔 + 𝝐 or incomplete mea-
surements with 𝑚 < 𝑛 are given, finding the signal that results in the sparsest vector 𝜶 is
no longer trivial and requires to solve the co-sparse analysis optimization problem (1.9).
Therefore, the same penalty functions as introduced above for the synthesis model can be
used to enforce the solution to be sparse. Depending on the choice of 𝑔, the arising optimiza-
tion problem can be tackled via general purpose solvers like the reweighted ℓ1 algorithm
[18] or standard first-order methods. In contrast to the synthesis sparse coding problem
for which many specialized solvers are available, only a few specialized co-sparse analysis
solvers such as the greedy-like methods introduced in [58] exist, which I review in more
depth in Section 2.2.1.

Similar to choosing the dictionary in the synthesis model, one has the options to either
select an analytically defined analysis operator or to learn an operator that is better adapted
to the signal class of interest. The probably best known and most widely applied analytic
analysis operator is the finite difference operator, which approximates first-order deriva-
tives. This operator is also used for computing the famous Total Variation (TV)-norm [111]
in image processing. Other analytic operators are the transposed of diverse tight frames,
which are also used as dictionaries, such as the overcomplete cosine transform (ODCT).
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Learning an analysis operator is conceptually similar to learning a dictionary. Concretely,
let 𝑺 ∈ ℝ𭑛×𭑀 again denote the matrix of 𝑀 training samples, then the problem is to find
the solution to

𝜴 ∈ arg min
𭜴

𝐺(𝜴𝑺) subject to 𝜴 ∈ ℭ. (1.12)

Therein, the function 𝐺 ∶ ℝ𭑎×𭑀 → ℝ again measures the overall sparsity of the analyzed
training set and ℭ is some predefined admissible set of analysis operators that is required
to avoid the trivial solution 𝜴 = 0𭑎×𭑛. Note that the analysis operator learning problem in
the noiseless setting, i.e. when ideal training samples are considered, only requires to opti-
mize over the operator, which is much easier compared to the dictionary learning problem
where both the dictionary and the sparse code have to be determined simultaneously. In
contrast to the large amount of existing dictionary learning algorithms, the number of anal-
ysis operator learning methods is rather small. Field-of-Experts [107] and Analysis K-SVD
[109] are two prominent examples, and more approaches are introduced in detail in Sec-
tion 2.2.2. A comparison of analytically defined analysis atoms and analysis atoms learned
from example signals is presented in Figure 1.6. Again as for the synthesis case, the analytic
analysis atoms show a more regular structure as compared to the learned analysis atoms.

(a) Analysis atoms of the finite difference operator. (b) Analysis atoms learned by GOAL.

Figure 1.6: This figure shows the 128 analysis atoms of dimension 𭑛 = 64 of the analytic finite difference
operator (a) and of an analysis operator learned by the algorithm GOAL (b), which is introduced in Chapter
5. Each analysis atom is represented as an (8 × 8) dimensional patch, where a black pixel corresponds to the
smallest negative entry, a gray pixel is a zero entry, and a white pixel corresponds to the largest positive entry.

1.3 Formulation of the Research Problem

The large number of both well-established and newly published works that deal with the
problem of learning sparse signal models and their applications in diverse signal process-
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ing tasks is only one indicator for the timeliness, vitality, and importance of this topic. In
this thesis, I investigate both problems regarding dictionary learning and analysis operator
learning and concretely aim at solving the following issues.

1.3.1 Dictionary Learning

1. Most dictionary learning techniques produce unstructured matrices whose possible
dimensions are inherently limited by available computational resources and that are
rather expensive to be used in applications. In contrast, many analytic dictionaries
like the ODCT can be applied very efficiently to higher dimensional signals due to
having a separable matrix structure. Motivated by this, I want to find a way to learn
dictionaries that have a separable structure such that they combine the advantages of
being well-tuned to the signal of interest as well as offering a computationally efficient
implementation.

2. The applicability of a dictionary depends on several internal properties like its condi-
tion number or its coherence to itself or to other matrices. The self coherence can be
simply understood as a measure of how similar a dictionary's atoms are. For example,
employing sparse coding techniques to solve inverse problems is only guaranteed to
succeed when incoherent dictionaries are used. For this reason, I want to investigate
how such internal properties can be controlled directly during the learning process.

3. Many dictionary learning techniques are based on a suboptimal optimization proce-
dure that alternates between optimizing the sparse code while fixing the dictionary
and updating the dictionary while fixing the sparse code, see Figure 1.1. Furthermore,
the dictionary update often only aims at increasing the data fidelity and neglecting
the constraint set. Consequently, a subsequent projection on the admissible set is re-
quired to obtain a feasible solution. Here, I want to jointly learn both the dictionary
and the sparse codes, with the dictionary being updated such that it always remains
feasible, i.e. within the set of constraints.

1.3.2 Analysis Operator Learning

1. Compared to the matured topic of dictionary learning, the problem of learning an
analysis operator that is adapted to a signal class of interest is still in its infancy, and
only few algorithms are available. Therefore, I want to develop a novel analysis opera-
tor learning method that is independent of a specific signal class and thus universally
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applicable. The algorithm should handle large training sets efficiently and should
avoid overfitting the operator to subsets of the training data. Crucial internal param-
eters of the operator like its mutual coherence and its condition number should be
controllable during the learning process.

2. One interesting application for employing learned overcomplete analysis operators is
regularizing inverse problems for image reconstruction. This problem is rather new,
and it is yet unclear how the above mentioned internal properties of an analysis oper-
ator influence the reconstruction quality. In this work, I want to determine empirically
an answer to this question.

3. In fields like robotics, diverse sensors are often employed that observe the same phys-
ical object but acquire measurements in different modalities. As those measurements
originate from the same object, it seems likely that they are statistically dependent.
How to model these dependencies between the modalities and how applications
could benefit from such a modeling, are interesting and important questions. Here,
I want to investigate whether the co-sparse analysis model is a valuable approach
for modeling these dependencies. As an application, I consider the enhancement of
corresponding intensity images and depth maps representing the identical three di-
mensional scenes.

1.4 Contributions

To solve the issues raised in Section 1.3, in the first part of my thesis I introduce two new
algorithms called Separable Dictionary Learning (SeDiL) and Geometric Analysis Operator
Learning (GOAL) that are based on geometric conjugate gradient optimization on suitable
manifolds. SeDiL works on the product of unit spheres and allows learning both unstruc-
tured conventional dictionaries as well as dictionaries, which have a separable matrix struc-
ture. Due to the optimization over the product of spheres no projection onto the admissible
set of solutions is required and the scale ambiguity problem is inherently avoided. It jointly
optimizes over both the dictionary and the sparse code and permits to control the crucial
mutual coherence of the learned dictionary. To enforce sparsity, I employ a smooth non-
convex ℓ0 surrogate. As non-convex optimization is prone to get trapped in local minima,
I employ a non-monotone line search technique, which empirically showed to reduce this
problem.

The proposed analysis operator learning approach GOAL works on the oblique mani-
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fold, i.e. the set of full-rank matrices with normalized columns. The algorithm controls the
condition number and the mutual coherence of a learned operator and inherently avoids
the trivial solution. A smooth non-convex ℓ0 surrogate is used as the sparsifying function.
To avoid overfitting the operator to specific subsets of the training data, I suggest to min-
imize both the empirical mean and the empirical variance of the sparsity measure of the
analyzed training set. This is simply achieved by considering the square of the sparsity
promoting function of each sample. In synthetic tests, I show that my method outperforms
all existing analysis operator learning techniques in terms of required computation time,
accuracy in finding a generating ground truth operator, and generality. To give an answer
towards the question which properties an analysis operator should have to be valuable for
regularizing inverse problems in imaging, I perform a large image denoising test. From
this I conclude that a well suited operator should have moderate mutual coherence and be
well conditioned.

In the second part, I introduce the novel multimodal co-sparse analysis model that per-
mits to model statistical dependencies of various modalities representing the same physical
object. This model suggests that measurements acquired in different modalities originating
from the same scene share a common co-support, when a suitable set of analysis operators
is used. For this set of operators, no analytic form exists and it must be learned from aligned
example signals. Therefore, I propose an extension of GOAL that uses a suitable sparsifying
function enforcing the coupled co-support assumption. The performance of the proposed
model is evaluated for the task of depth map superresolution.

1.5 Thesis Outline

The main chapters of this thesis are partially based on a number of peer reviewed publica-
tions for which the references are provided right at the beginning of the respective chapter.

The remainder of this thesis is organized as follows. In Chapter 2 the current state-of-the-
art regarding both the sparse synthesis model and the co-sparse analysis model is reviewed.
After that, in Chapter 3 the general idea behind optimization on matrix manifolds and the
specific conjugate gradient method are explained. Chapter 4 introduces the new dictionary
learning method SeDiL and evaluates how dictionaries learned by SeDiL perform in image
processing tasks. In Chapter 5, the novel analysis operator learning approach GOAL is in-
troduced. Both synthetic and real world experiments are presented that compare GOAL to
the state-of-the-art and show the performance of an operator learned by using GOAL for
solving the three classical image processing problems of denoising, inpainting, and super-
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resolution. In Chapter 6 the multimodal co-sparse analysis model is introduced, and its
performance is evaluated experimentally for the task of depth map upsampling with the
help of an aligned intensity image.
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Chapter 2

State-of-the-Art on Sparse Data Modeling

This chapter reviews the current state-of-the-art on sparse data modeling considering both
the sparse synthesis model as well as the co-sparse analysis model. For both models, I
first review existing algorithm for enforcing the respective model assumption, and second
methods that aim at learning an appropriate dictionary and analysis operator, respectively.

2.1 Sparse Synthesis Model

2.1.1 Sparse Coding

Solving the sparse coding problem (1.6) is an important and heavily researched task for
which a huge number of algorithms have been proposed already. The most prominent
techniques can be roughly divided into (i) greedy pursuit methods, (ii) methods based
on convex relaxations of the ℓ0-pseudo-norm, and (iii) methods that employ non-convex
ℓ0-surrogates. In the following, I shortly explain the concepts underlying those three classes
of solvers each with the help of at least one representative example algorithm. I selected
the respective algorithms due to their importance and common application in dictionary
learning methods, which are covered in the subsequent subsection. As stated above, the
amount of existing sparse coding algorithms is immense and too large to explain every
single method in detail. Nevertheless, for the interested reader and to give credit to other
researches, I provide pointers to the literature for further important representative algo-
rithms of each solver class.

To fix notations, in the following a quadratic error term is assumed, i.e. 𝑓 (⋅) = 1
2‖ ⋅ ‖2

2,
which is also in accordance to the common independent and identically distributed (i.i.d.)
Gaussian noise assumption in the literature. The support of 𝒙, i.e. the indices of its non-zero
entries, is denoted by ℐ ∶= supp(𝒙). Furthermore, without loss of generality the columns of
𝑫 are assumed to have unit Euclidean norm. With the shorthand notation 𝒁 ∶= 𝑨𝑫 ∈ ℝ𭑚×𭑑,
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I will consider three equivalent formulations for the sparse coding problem, which read as

𝒙⋆ ∈ arg min𝒙 𝑔(𝒙) subject to 1
2‖𝒚 − 𝒁𝒙‖2

2 ≤ 𝜖, (2.1)

𝒙⋆ ∈ arg min𝒙
1
2‖𝒚 − 𝒁𝒙‖2

2 subject to 𝑔(𝒙) ≤ 𝑠, (2.2)

𝒙⋆ ∈ arg min𝒙
1
2‖𝒚 − 𝒁𝒙‖2

2 + 𝜆𝑔(𝒙). (2.3)

In Equation (2.1) an upper bound 𝜖 ≥ 0 on the discrepancy between the measurements
and the reconstructions is employed, in (2.2) the sparsity is upper bounded by 𝑠 > 0, while
Equation (2.3) is the unconstrained Lagrangian form of the two former problems with 𝜆 > 0
being the Lagrange multiplier that weighs between fidelity to the measurements and spar-
sity of the solution. Note that for an appropriate choice of 𝜖, 𝑠, and 𝜆 the solutions of Prob-
lem (2.1)-(2.3) coincide.

Greedy Pursuit Methods

Greedy Pursuit Methods employ 𝑔(𝒙) = ‖𝒙‖0, which in general is NP-Hard [87], and aim at
finding and approximate solution to Problem (2.1) or (2.2). Roughly speaking, these meth-
ods start with 𝒙(0) = 0𭑑, i.e. an empty support ℐ(0) = ∅, and sequentially add elements to
the support of 𝒙, i.e. increasing its ℓ0-pseudo-norm such that the error between the measure-
ments and the current sparse approximation ‖𝒚 − 𝒁𝒙(𭑖)‖2

2 is decreased. One of the earliest
and best known pursuit methods is the Orthogonal Matching Pursuit (OMP) algorithm
[96], which is based on the following procedure. At the 𝑖-th iteration, it first computes the
residual 𝒓(𭑖) = 𝒚 − 𝒁𝒙(𭑖−1) and then finds the column of 𝒁 that is most strongly correlated
with 𝒓(𭑖), i.e.

𝑘(𭑖) = arg max
𭑘

|𝒓(𭑖)⊤𝒛∶,𭑘|. (2.4)

This column index is then added to the support of 𝒙, i.e. ℐ(𭑖) = ℐ(𭑖−1) ∪ {𝑘(𭑖)}. In the sec-
ond step, the weights of the support 𝒙ℐ(𭑖) are updated by projecting 𝒚 orthogonally onto the
columns of 𝒁 that are index by ℐ(𭑖), i.e. 𝒙ℐ(𭑖) = 𝒁†

∶,ℐ(𭑖)𝒚. In this way, a new non-zero entry is
added at each iteration and all weights are updated accordingly. Depending on the consid-
ered formulation the algorithm stops when the norm of the residual falls below a threshold
‖𝒓(𭑖)‖2 ≤ 𝜖1, i.e. Formulation (2.1), a certain number 𝑠 of non-zeros of 𝒙 has been determined,
i.e. Formulation (2.2), or the maximum correlation between the residual and any column
lies below a threshold ‖𝒁𝒓(𭑖)‖∞ ≤ 𝜖2. Computationally efficient implementations of OMP
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exist that utilize the QR-factorization [29] or the Cholesky-factorization [22] of 𝒁 to avoid
having to explicitly compute its pseudoinverse.

Algorithms closely related to OMP are Matching Pursuit (MP) [83], Gradient Pursuits
[13], and the Optimized OMP (OOMP) [102], which all differ in the way the support is up-
dated. One drawback common to all these methods is that only one coefficient is added
to the support at each iteration. Consequently, these methods are only computationally
efficient for very sparse signals but perform rather badly when the sparsity of the signal in-
creases due to an increased number of necessary iterations. To overcome this, greedy-like
algorithms such as Stagewise Orthogonal Matching Pursuit (StOMP) [37] and Regularized
Orthogonal Matching Pursuit (ROMP) [89] have been proposed that add multiple coeffi-
cients per iteration to the support of the signal. Even better performance is achieved by
methods such as Compressive Sampling Matching Pursuit (CoSaMP) [88], Subspace Pur-
suit (SP) [25], Hard Thresholding Pursuit (HTP) [51], and Iterative Hard Thresholding (IHT)
[14] that do not only update the support by adding multiple coefficients but also allow re-
moving elements found at previous iterations.

Convex Relaxations

Convex relaxation approaches tackle the sparse coding problem by exchanging the
ℓ0-pseudo-norm with the ℓ1-norm

‖𝒙‖1 ∶= ∑
𭑖

|𝑥𭑖|, (2.5)

which is its closest convex surrogate. With this and 𝜖 = 0, Problem (2.1) in signal processing
is known as Basis Pursuit (BP) while for 𝜖 > 0 it is called Basis Pursuit Denoising (BPDN)
[20]. Formulated as in Equation (2.2), from the statistical machine learning community
it is known as the Least Absolute Shrinkage and Selection Operator (LASSO) [123]. One
nice property about employing 𝑔(𝒙) = ‖𝒙‖1 is that the sparse coding problem becomes a
Linear Program (LP), for which the globally optimal solution can be found using generic
LP-solvers like interior point methods [20, 68]. However, such generic solvers are rather
slow, computationally demanding, and do not always scale well to large scale problems.
Due to this, several approximate ℓ1-solvers exist that exploit the specific structure of the
ℓ1-norm to efficiently determine a solution.

Very prominent examples belonging to this class of solvers are the Least Angle Regres-
sion (LARS) [39] algorithm and its Homotopy versions LARS-LASSO [39, 94] and LARS-EN
[147]. These methods solve Problem (2.3) for a sequence of decreasing values of 𝜆 and pro-
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Chapter 2 State-of-the-Art on Sparse Data Modeling

vide the full regularization path, i.e. all solutions 𝒙 that correspond to all possible values
of 𝜆. Similar to OMP, these algorithms start from 𝒙(0) = 0𭑑 with the Lagrange multiplier
initialized to 𝜆(0) = ‖𝒁⊤𝒚‖∞ and sequentially update the support of 𝒙 element by element,
with a new index being identified as given in Equation (2.4). The difference to OMP lies in
the way the associated weights are computed. While OMP computes the weights such that
the columns of 𝒁∶,ℐ(𭑖) are maximally uncorrelated with the residual, LARS based methods
compute them such that all columns of 𝒁∶,ℐ(𭑖) are equally correlated with the residual. This
amounts to solving a linearly-penalized least-squares problem rather than a regular least-
squares problem as in OMP. In contrast to LARS, LARS-LASSO and LARS-EN do not only
add elements to the support but also allow removing elements that have been added at pre-
vious iterations. As the number of required iterations is equal to the number of non-zeros
of 𝒙, removing elements might slow down the convergence of the algorithms; however, in
practice elements are rarely removed. At each iteration, the new value 𝜆(𭑖+1), which either
leads to adding an element to or removing it from the support of 𝒙 can be computed in
closed form. For an in-depth discussion of the relation between LARS, LARS-LASSO, and
OMP see [36].

Another important class of approximate ℓ1-solvers is the class of Iterative Shrinkage
Thresholding (IST) algorithms as proposed for example in [28, 40, 49, 54]. They are among
the most widely applied methods especially for large scale optimization problems as they
only require a few matrix vector operations together with a shrinkage or soft thresholding
step to solve the sparse coding problem. In the shrinkage step, all entries of a vector smaller
than a threshold are set to zero, while all other entries are shrinked towards zero, i.e.

(shrink𭜆(𝒙))𭑖 ∶=
⎧{
⎨{⎩

𝑥𭑖 − sgn(𝑥𭑖)𝜆 if |𝑥𭑖| > 𝜆
0 otherwise

. (2.6)

In their most general formulation, IST algorithms start with 𝒙(0) = 0𭑑 and determine the
solution to Problem (2.3) by iterating the update step 𝒙(𭑖+1) = 𝒙(𭑖) + 𝑡(shrink𭜆(𝒙(𭑖) + 𝒁⊤(𝒚 −
𝒁𝒙(𭑖))) − 𝒙(𭑖)). Therein, 𝑡 ∈ ℝ+

0 is the step size that can be set fixed or chosen by e.g. a line
search approach. As standard IST algorithms are known to converge slowly, techniques that
build upon IST have been suggested that aim at enhancing the performance while keeping
its simplicity. Examples include Two Step Iterative Shrinkage Thresholding (TwIST) [12],
Fast Iterative Shrinkage Thresholding (FISTA) [7], or the split Bregman method [60]. For a
nice an broad overview of IST based algorithms and their theoretical properties, see [146].

Last, I want to note that many more first-order ℓ1-solvers applicable for large scale prob-
lems exist such as Gradient Projection for Sparse Recovery (GPSR) [50], Nesterov's algo-
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rithm (NESTA) [8], and Sparse Reconstruction by Separable Approximation (SpaRSA) [132],
which should be interpreted as a framework for sparse coding rather than a concrete algo-
rithm. For a broad introduction to the topic of sparse coding by convex optimization, I refer
the interested reader to [5].

Non-Convex Relaxations

Non-convex sparse coding techniques enforce sparsity by employing non-convex ℓ0 surro-
gates such as the ℓ𭑝-pseudo-norm

‖𝒙‖𭑝
𭑝 ∶= ∑

𭑖
|𝑥𭑖|𭑝, (2.7)

with 𝑝 < 1. Compared to the ℓ1-norm that penalizes larger coefficients more heavily than
smaller ones, ℓ𭑝-pseudo-norms more closely resemble the democratic ℓ0-pseudo-norm, as
both large and small coefficients are penalized more equally. On the downside, these func-
tions are more difficult to optimize and suffer from getting stuck in local minima that
might be far away from the global optimal solution. One prominent non-convex sparse
coding approach is the FOCal Underdetermined System Solver (FOCUSS) [61, 100], which
is closely related to iteratively reweighted least squares. In its basic implementation, it uses
𝑔(𝒙) = ‖𝒙‖𭑝

𭑝 and assumes 𝜖 = 0. To derive the algorithm, Problem (2.1) is first reformulated
in Lagrangian form

𝐿(𝒙, 𝝀) ∶= ‖𝒙‖𭑝
𭑝 + 𝝀⊤(𝒚 − 𝒁𝒙), (2.8)

with 𝝀 ∈ ℝ𭑚 being a vector of Lagrange multipliers. Now, a necessary condition for (𝒙⋆, 𝝀⋆)
to be a minimum or a stationary point of Equation (2.8), is that the gradient of (2.8) with
respect to 𝒙 and 𝝀 at (𝒙⋆, 𝝀⋆) has to vanish, i.e.

∇𝒙𝐿(𝒙⋆, 𝝀⋆) ∶= 𝑝𝑾𝒙⋆𝒙⋆ − 𝒁⊤𝝀⋆ = 0𭑑, ∇𭝀𝐿(𝒙⋆, 𝝀⋆) ∶= 𝒚 − 𝒁𝒙⋆ = 0𭑚, (2.9)

with 𝑾𝒙⋆ = diag−1([|𝑥⋆
1 |𭑝−2, … , |𝑥⋆

𭑑 |𭑝−2]) ∈ ℝ𭑑×𭑑, where diag−1 ∶ ℝ𭑑 → ℝ𭑑×𭑑 forms a
diagonal matrix with the elements of the input vector on the diagonal. This matrix simply
arises from the gradient of Equation (2.7), where the 𝑖-th component is concretely given as
( 𭜕

𭜕𝒙 ‖𝒙‖𭑝
𭑝)𭑖 = 𝑝|𝑥𭑖|𭑝−1 sgn(𝑥𭑖) = 𝑝|𝑥𭑖|𭑝−2𝑥𭑖. Now, eliminating 𝝀⋆ from (2.9) and solving for 𝒙⋆

results in 𝒙⋆ = 𝑾−1
𝒙⋆ 𝒁⊤(𝒁𝑾−1

𝒙⋆ 𝒁⊤)−1𝒚, which is the necessary condition a stationary point
has to fulfill. Based on this, FOCUSS starts from some initial solution, e.g. the minimum
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ℓ2-norm solution 𝒙(0) = 𝒁†𝒚, and iteratively updates it via

𝒙(𭑖+1) = 𝑾−1
𝒙(𭑖)𝒁⊤(𝒁𝑾−1

𝒙(𭑖)𝒁⊤)−1𝒚, (2.10)

until some user defined convergence criterion is met. The algorithm can be easily extended
to deal with noisy measurements, i.e. 𝜖 > 0, by changing the update formula to

𝒙(𭑖+1) = 𝑾−1
𝒙(𭑖)𝒁⊤(𝜇𝑰𭑚 + 𝒁𝑾−1

𝒙(𭑖)𝒁⊤)−1𝒚, (2.11)

with 𝜇 ∈ ℝ+ being proportional to the assumed noise power 𝜖. Further extensions ex-
ist that employ other sparsifying functions like Gaussian and Shannon entropy diversity
measures or the ℓ0-pseudo-norm.

The reweighted ℓ1-minimization technique proposed in [18] is an iterative algorithm sim-
ilar to FOCUSS. Each iteration consist of solving a weighted ℓ1-minimization problem, with
the required weights being computed from the sparse coefficients determined at the pre-
vious iteration. Each weighted ℓ1-minimization problem can be tackled by any ℓ1-solver.
Note that this general purpose technique can also be applied for solving the analysis sparse
coding problem as introduced below in Section 2.2.1.

The success of finding a sparse representation of a signal most severely depends on the
choice of the dictionary 𝑫, regardless which sparse coding technique is applied, as the
dictionary determines all possible subspaces a signal can reside in. Generally, one can
choose a dictionary from two major classes: (i) analytic dictionaries and (ii) dictionaries
learned from example signals. Analytic dictionaries are built on mathematical models
of the type of signal they should represent. Most prominent examples include the Dis-
crete Cosine Transform (DCT), diverse Wavelet Transforms [82], Wedgelets [33], Curvelets
[142], or Contourlets [31]. Mostly, these dictionaries are either orthogonal, bi-orthogonal,
or tight-frames, which in a noiseless setup allow to compute the sparse code by a simple
matrix vector multiplication. They have the advantages of being theoretically sound and
of offering a fast implementation that avoids explicit matrix vector multiplications in large
scale settings. Due to these properties, analytic dictionaries form the backbone of modern
data compression algorithms. However, their expressive capabilities and their adaptivity
to more specific data is too limited to be used in mid- and high-level signal analysis and
processing tasks. First approaches towards finding more expressive sparse data represen-
tations aimed at adapting the atoms of analytic dictionaries to specific signal classes. Rep-
resentatives following this approach are Wavelet Packages [21], Steerable Wavelets [119], or
Bandlets [72]. However, these models are still too generic to handle specific subsets of sig-
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nal classes in an optimal way. Better dictionaries with finer tuned atoms can be obtained by
learning the structure, which underlies the considered signal class directly from example
signals belonging to the class. This task known as dictionary learning accounts for one of the
two major topics of my thesis, and the next subsection gives an overview of state-of-the-art
methods of that area.

2.1.2 Dictionary Learning

Given a set of 𝑀 training samples {𝒔𭑖 ∈ ℝ𭑛}𭑀
𭑖=1 that are drawn from the signal class of

interest, dictionary learning algorithms aim at finding the dictionary 𝑫 ∈ ℝ𭑛×𭑑 that permits
to describe all 𝑀 samples as closely as possible with the sparsest possible representations
{𝒙𭑖 ∈ ℝ𭑑}𭑀

𭑖=1. Formally, let 𝑺 ∶= [𝒔1, … , 𝒔𭑀] ∈ ℝ𭑛×𭑀 be a matrix containing the 𝑀 training
samples arranged as its columns, and let 𝑿 ∶= [𝒙1, … , 𝒙𭑀] ∈ ℝ𭑑×𭑀 be a matrix containing
the corresponding 𝑀 sparse representations, then the dictionary learning process can be
stated as

{𝑫⋆, 𝑿⋆} ∈ arg min
𝑫,𝑿

𝐺(𝑿) subject to 𝐹(𝑺 − 𝑫𝑿) ≤ 𝜖,
𝑫 ∈ ℭ. (2.12)

Therein, the function 𝐺 ∶ ℝ𭑑×𭑀 → ℝ+ measures the overall sparsity of the training set,
𝐹 ∶ ℝ𭑛×𭑀 → ℝ+ measures how closely each sample is represented by its sparse code, 𝜖
reflects the assumed noise energy, and ℭ is some predefined admissible set of solutions.
Restricting possible solutions to an admissible set is necessary to avoid the scale ambiguity
problem, i.e. getting entries of 𝑫 that tend to infinity, while the entries of 𝑿 tend to zero,
which is clearly the sparsest possible solution. Furthermore, a constraint set can be used to
enforce desired internal structures or properties on the dictionary such as bounded self co-
herence, or coherence to other matrices. Such properties are important for both theoretical
analyses of sparse coding techniques and for the success of sparsity exploiting applications.
In the following, I provide explanations of the most influential achievements in the field of
dictionary learning.

Maximum Likelihood-Based Dictionary Learning

The first dictionary learning approach was reported in the seminal work of Olshausen and
Field in 1996 [90] and has been further extended in [91]. Their goal was to find a set of image
filters, i.e. dictionary atoms that have similar properties as the receptive fields of simple cells
found in the brain's primary visual cortex. Receptive fields are spatially localized i.e. their
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support is limited, they are oriented, and they are bandpass which means that they are
selective to structure at different spatial scales. The authors claim that atoms, which permit
to represent image-patches as a sparse and statistically independent linear combination,
exactly account for these properties.

To infer these atoms from example data, the authors propose a probabilistic framework
that aims at fitting the distribution of all possible realizations that emerge from the hypoth-
esized model 𝑃(𝒔|𝑫), as closely as possible to the true distribution of all signals belonging
to the considered signal class 𝑃(𝒔). The accuracy of this fitting can be assessed via the
Kullback-Leibler divergence between the two distributions

𝐾𝐿(𝑃(𝒔) ‖ 𝑃(𝒔|𝑫)) = ∑
𭑖

𝑃(𝒔𭑖) ln (
𝑃(𝒔𭑖)

𝑃(𝒔𭑖|𝑫)) , (2.13)

which is zero when the two distributions coincide and that becomes larger the more they
differ. Consequently, for a given training set, the optimal dictionary can be found by mini-
mizing Equation (2.13). As 𝑃(𝒔) does not depend on 𝑫 but is fixed, this problem is equiva-
lent to finding the maximum likelihood estimator

𝑫⋆ = arg max
𝑫

1
𭑀

𭑀
∑
𭑖=1

ln(𝑃(𝒔𭑖|𝑫)), (2.14)

where the conditional probability distribution that 𝒔𭑖 arises from the postulated sparse data
model is given as

𝑃(𝒔𭑖|𝑫) = ∫ 𝑃(𝒔𭑖|𝒙, 𝑫)𝑃(𝒙)𝑑𝒙. (2.15)

To compute the two required distributions 𝑃(𝒔𭑖|𝒙, 𝑫) and 𝑃(𝒙), the authors made two as-
sumptions. First, they assume that the approximation error is normally distributed with
zero mean and standard deviation 𝜎 , i.e. they assume i.i.d. Gaussian noise. With this, the
probability that 𝒔 arises from 𝒙 is

𝑃(𝒔|𝒙, 𝑫) = const exp ( − 1
2𭜎2 ‖𝒔 − 𝑫𝒙‖2

2), (2.16)

with const being a constant scale factor. Second, the assumption about the entries of 𝒙
being sparse and statistically independent is used to define the distribution 𝑃(𝒙). Statistical
independence is modeled by taking a factorial distribution of the entries of 𝒙, i.e. 𝑃(𝒙) =
∏𭑖 𝑃(𝑥𭑖). Sparsity is implemented by requiring the distribution of every coefficient 𝑥𭑖 to be
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uni-modal with a peaked maximum at zero and heavy tails. With these two requirements,
they end up with

𝑃(𝒙) = const exp ( − 𝛽𝑔(𝒙)), (2.17)

using e.g. 𝑔(𝒙) = ‖𝒙‖1 for the Laplacian distribution, or 𝑔(𝒙) = ∑𭑖 ln(1 + 𝑥2
𭑖 ) for the Cauchy

distribution.
Unfortunately, finding the solution to (2.14) is computationally intractable as it would

require to integrate over all possible sparse codes 𝒙 in Equation (2.15). Nevertheless, the
integral can be approximated by evaluating 𝑃(𝒔|𝒙, 𝑫)𝑃(𝒙) only at its maximum, which is
valid due to the shape of 𝑃(𝒙) having only one heavily peaked maximum. Using this, the
dictionary learning problem is formulated as

𝑫⋆ = arg max
𝑫

1
𭑀

𭑀
∑
𭑖=1

arg max𝒙𭑖
ln (𝑃(𝒔𭑖|𝒙𭑖, 𝑫)𝑃(𝒙𭑖)). (2.18)

Inserting (2.16) and (2.17) into Equation (2.18) and exchanging the maximization problem
by a minimization task, the final dictionary learning problem reads as

𝑫⋆ = arg min
𝑫

1
𭑀

𭑀
∑
𭑖=1

arg min𝒙𭑖
‖𝒔𭑖 − 𝑫𝒙𭑖‖2

2 + 𝜆𝑔(𝒙𭑖) (2.19)

with 𝜆 = 2𝜎2𝛽.
To solve Problem (2.19), an iterative method based on two alternating steps is suggested.

In the first step, the dictionary is fixed and the sparse coefficients are updated by an iter-
ative method such that the gradient of (2.19) with respect to each coefficient vanishes. In
the second step, the sparse coefficients are fixed and the dictionary is updated via standard
gradient descent with a fixed step size. In that way, an approximate ML-estimate of the dic-
tionary is obtained. As this procedure does not avoid the trivial solution, all columns of 𝑫
are normalized to have bounded Euclidean norm after the dictionary update step. Thereby,
each atom is normalized independently such that the variance of the corresponding sparse
coefficients is equal to a preset value. These steps are repeated until some user defined con-
vergence criterion is met. Other closely related ML dictionary learning approaches can be
found in [73, 74].
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Maximum a Posteriori-Based Dictionary Learning

The dictionary learning technique proposed by Kreutz-Delgado et al. in [71] also adopts
a probabilistic point of view to derive a solution to Problem (2.19). However, instead of
computing a ML-estimate of 𝑫 and 𝑿 , they compute a joint Maximum a Posteriori (MAP) es-
timate. To that end, they assume that a dictionary is an element of a compact submanifold
of ℝ𭑛×𭑑 and propose two extensions to the sparse coding algorithm FOCUSS for learning
such dictionaries, which they dubbed FOCUSS-FDL and FOCUSS-CNDL. FOCUSS-FDL
(Frobenius-Normalized Dictionary Learning) is a method for learning dictionaries with
unit Frobenius norm, while FOCUSS-CNDL (Column-Normalized Dictionary Learning)
learns dictionaries whose atoms have equally fixed Euclidean norm. The two methods en-
force the respective constraints on the dictionary directly during the learning procedure
through appropriate update rules. The two proposed update rules are the main contri-
bution of [71], and offer a more sophisticated update compared to simply projecting the
dictionary on the admissible set of solutions after it has been updated.

The complete iterative dictionary learning procedure for both FOCUSS-FDL and
FOCUSS-CNDL is as follows. The FOCUSS algorithm in its noisy version as given in
Equation(2.11) with 𝑔(𝒙) = ‖𝒙‖𭑝

𭑝, 𝑝 ≤ 1 and fixed 𝑫 is used to compute the sparse code
of a training sample. To account for the joint MAP estimation of 𝑫 and 𝑿 , the dictionary
is updated every time 𝑀𭑆 ≪ 𝑀 sparse coefficients vectors have been updated, i.e. at each
sweep over the training set the dictionary is updated ⌈ 𭑀

𭑀𭑆
⌉ times. Furthermore, to update

coefficient vector 𝒙𭑖 only one iteration of the FOCUSS algorithm is executed at each sweep.
Therefore, sparse code determined at the previous sweep is used for initialization. This
sweep over the entire training set is repeated for a fixed number of iterations. The au-
thors experimentally show that FOCUSS-FDL often learns useless atoms having Euclidean
norm very close to zero, especially in the most relevant overcomplete dictionary learning
case. This phenomenon is inherently avoided by FOCUSS-CNDL, and should therefore be
preferred according to the authors.

Another MAP based algorithm that has commonalities with [71] is the majorization
method introduced by Yaghoobi et al. [135]. They suggest relaxing the tight constraints of
fixed Frobenius norm and fixed column norm by the constraints of upper bounded Frobe-
nius norm and upper bounded column-norm. This relaxation results in two convex ad-
missible sets of solutions, and the arising optimization problem is solved efficiently by a
majorization method. As stated by the authors, this flexible approach further allows pos-
ing additional constraints on the dictionary such as finding a dictionary with minimum
number of atoms.
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Method of Optimal Directions (MOD)

In 1999, Engan et al. introduced an iterative least squares based dictionary learning algo-
rithms coined Method of Optimal Directions (MOD) [46]. Therein, each sparse code is
restricted to have at most 𝑘 non-zero entries, and the goal is to find the dictionary which
minimizes the Mean Squared Error (MSE) between the training set and its current sparse
approximation 𝑫𝑿 , which is formally stated as

{𝑫⋆, 𝑿⋆} ∈ arg min
𝑫,𝑿

1
𭑀𭑛‖𝑺 − 𝑫𝑿‖2

𭐹 subject to ‖𝒙𭑖‖0 ≤ 𝑘, ∀𝑖 = 1, … , 𝑀. (2.20)

To solve Problem (2.20), the authors suggest an iterative block-coordinate descent method,
which consists of first fixing 𝑫 and updating the sparse code 𝑿 via any sparse coding
method such as OMP or FOCUSS, followed by fixing 𝑿 and updating the dictionary. As
𝑿 is fixed during the dictionary update step, the only function that has to be minimized is
‖𝑺 − 𝑫𝑿‖2

𭐹, and the minimizer can be computed in closed form via

𝑫 = 𝑺𝑿⊤(𝑿𝑿⊤)−1. (2.21)

This update step does not avoid the scale ambiguity problem and to account for this, the
columns of 𝑫 are normalized to unit Euclidean norm after they have been updated. These
steps are repeated either until the MSE does not change significantly between two consec-
utive iterations, or a maximum number of iterations has been reached. The MOD algo-
rithm only requires a few update steps until convergence, however, computing the inverse
(𝑿𝑿⊤)−1 can be computationally expensive and/or unstable.

An extension of MOD has been presented in [47] for learning convolutional dictionaries.
Furthermore, this modification permits to incorporate linear constraints on the dictionary
entries directly into the learning process. Such linear constraints are e.g. selected entries
being equal to zero or equal to certain other entries. This is motivated by structures com-
monly present in analytic dictionaries and reduces the computational burden of applying
learned dictionaries of this kind. Another notable MOD based approach is given in [120],
which is an online dictionary learning algorithm capable of handling very large training
sets. This algorithm updates the dictionary continuously each time a new training sample
is available using recursive least squares without having to store or process all contributing
samples at each dictionary update step.
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K-SVD

The probably best known and most widely used dictionary learning technique is the K-
SVD algorithm developed by Aharon et al. [43]. Similar to MOD, K-SVD also follows an
iterative block-coordinate descent approach to solve Problem (2.20) using any sparse cod-
ing approach like OMP in the sparse coding stage. However, it differs significantly in the
dictionary update stage. While MOD updates the entire dictionary at once in a single step,
K-SVD performs a sequential atom-by-atom update. Furthermore, the support of the cur-
rently considered atom, i.e. the non-zero entries of the corresponding row of 𝑿 , is also re-
fined according to the updated atom. As only the non-zero entries are changed, the sparsity
of 𝑿 is not affected by this.

Concretely, let 𝒅∶,𭑗 be the atom to be updated and let 𝒙𭑗,∶ be the 𝑗-th row of 𝑿 , then the data
term to be minimized can be factorized as

‖𝑺 − 𝑫𝑿‖2
𭐹 = ‖𝑺 − ∑

𭑖≠𭑗
𝒅∶,𭑖𝒙𭑖,∶ − 𝒅∶,𭑗𝒙𭑗,∶‖2

𭐹 = ‖𝑹𭑗 − 𝒅∶,𭑗𝒙𭑗,∶‖2
𭐹. (2.22)

Minimizing Equation (2.22) jointly with respect to 𝒅∶,𭑗 and 𝒙𭑗,∶ is simply done by a rank-1
approximation of 𝑹𭑗 obtained through its Singular Value Decomposition (SVD). However,
this update would most certainly destroy the sparsity pattern of 𝒙𭑗,∶. To overcome this, the
authors propose to only consider the reduced matrix 𝑹𭑅

𭑗 that consists of the columns of 𝑹𭑗

indexed by the support of 𝒙𭑗,∶. Let ℐ = {𝑖 | 𝑥𭑗𭑖 ≠ 0, ∀𝑖 = 1, … , 𝑀} denote this index set,
then the atom and the coefficients are updated by computing the SVD 𝑹𭑅

𭑗 = 𝑼Σ𝑽⊤ and
setting 𝒅∶,𭑗 = 𝒖∶,1 and 𝒙𭑗,ℐ = 𝜎11𝒗⊤

∶,1. In that way, only the non-zero coefficients are updated
and the sparsity is preserved or might be even increased. Furthermore, the atoms always
remain normalized as 𝑼 is orthogonal, thus, the scale ambiguity problem is automatically
avoided.

Due to its efficiency and simplicity, several variants of the K-SVD algorithm have been
proposed. These include algorithms for learning from noisy training signals [43], handling
color images [80], learning discriminative dictionaries for segmentation and classification
[66, 79], finding structured dictionaries [110], or learning dictionaries working on multiple
scales [93].

Online Dictionary Learning

Apart from the online extension of MOD [120] all algorithms explained above are iterative
learning techniques that require the complete batch of training samples together with the
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corresponding sparse codes at each iteration. Due to memory and computational limita-
tions this restricts the possible number of samples to be considered. However, large training
sets are valuable as they minimize the risk of overfitting the dictionary to the training data
and allow to better approximate the expected cost rather than the empirical cost.

To be able to handle large training sets, in [78] Mairal et al. proposed an online dictionary
learning algorithm based on stochastic approximations that only requires one sample at
each iteration together with two small matrices for updating the dictionary. Concretely,
they minimize a ℓ1-regularized least squares cost function and restrict the atoms to the
convex set of vectors with Euclidean norm less or equal to one, i.e.

arg min
𝑫

1
𭑡

𭑡
∑
𭑖=1

(arg min𝒙𭑖

1
2‖𝒔𭑖 − 𝑫𝒙𭑖‖2

2 + 𝜆‖𝒙𭑖‖1) subject to ‖𝒅∶,𭑗‖2 ≤ 1, ∀𝑗 = 1, … , 𝑑, (2.23)

At the 𝑡-th iteration the algorithm draws one training sample 𝒔𭑡 from the available set and
computes its sparse code 𝒙𭑡 with respect to the current dictionary using the LARS-LASSO
algorithm. This sparse code is then fixed, and the dictionary is updated by minimizing the
data fidelity term with respect to 𝑫. To do this efficiently, the problem is reformulated as

𝑫⋆ = arg min
𝑫

1
𭑡

𭑡
∑
𭑖=1

1
2‖𝒔𭑖 − 𝑫𝒙𭑖‖2

2 subject to ‖𝒅∶,𭑗‖2 ≤ 1, ∀𝑗 = 1, … , 𝑑,

= arg min
𝑫

1
𭑡 (1

2 tr(𝑫⊤𝑫𝑨(𭑡)) − tr(𝑫⊤𝑩(𭑡))) subject to ‖𝒅∶,𭑗‖2 ≤ 1, ∀𝑗 = 1, … , 𝑑.

(2.24)

with 𝑨(𭑡) =
𭑡

∑
𭑖=1

𝒙𭑖𝒙𭑇
𭑖 = 𝑨(𭑡−1) + 𝒙𭑡𝒙𭑇

𭑡 ∈ ℝ𭑑×𭑑 and 𝑩(𭑡) =
𭑡

∑
𭑖=1

𝒔𭑖𝒙𭑇
𭑖 = 𝑩(𭑡−1) + 𝒔𭑡𝒙𭑇

𭑡 ∈ ℝ𭑛×𭑑.
Now, the dictionary that minimizes Equation (2.24) is found in a column by column fash-
ion, with an additional orthogonal projection of each atom onto the constraint set. For this
approach, only two low-dimensional matrices 𝑨(𭑡), 𝑩(𭑡) have to be stored and updated at
each iteration together with only solving the sparse coding problem for one single sample.
Compared to always processing the complete training set as done in conventional learning
methods this massively reduces the required memory and computational resources. Fur-
thermore, the algorithm does not require any cumbersome manual step size tuning and
uses the atoms determined at iteration 𝑡 − 1 to initialize the update at iteration 𝑡.

To further enhance the performance of the method, the authors suggest to simultaneously
process small batches of training samples, known as mini-batches, instead of processing
only one sample at each iteration. This is a heuristic commonly applied for accelerating
stochastic gradient descent methods. Furthermore, to improve the rate of convergence they
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propose to give more weight to new data points by scaling down the old information con-
tained in 𝑨(𭑡−1) and 𝑩(𭑡−1). The author of [99] further extended this approach in such a
manner that it is possible to learn dictionaries with low coherence.

2.2 Co-Sparse Analysis Model

2.2.1 Analysis Sparse Coding

In the co-sparse analysis signal model, recall that the goal is to find the signal 𝒔 such that the
analyzed vector 𝜶 ∶= 𝜴𝒔 is as sparse as possible. Certainly, when 𝒔 is free of noise one of the
advantages of the analysis model is that no optimization problem has to be solved and the
sparse analyzed version of a signal is straightforwardly given as the matrix vector product
𝜴𝒔. However, if the measurements are noisy, i.e. 𝒚 = 𝒔+𝝐 or incomplete, i.e. 𝑚 < 𝑛, finding
the signal that results in the sparsest vector 𝜶 is no longer trivial and requires to solve the
analysis sparse coding problem

𝒔⋆ ∈ arg min𝒔 𝑔(𝜴𝒔) subject to ‖𝒚 − 𝑨𝒔‖2
2 ≤ 𝜖. (2.25)

Here, as for the sparse coding problem introduced in 2.1.1, I employ the common quadratic
error term, which corresponds to the assumption of i.i.d. Gaussian noise. Now, one straight-
forward way to tackle Problem (2.25), is to utilize the ℓ1-norm [16, 45, 129] or any appropri-
ate differentiable function as the measure of sparsity and employ any convex optimization
solver or any first-order general purpose solver. Besides that, another possibility is to use a
specialized solver that exploits the structure of the co-sparse analysis model. Compared to
the numerous specialized synthesis sparse coding techniques, only a handful specialized
analysis sparse coding approaches exist, which I review in the following.

Greedy Pursuit Methods

As for the synthesis sparse coding problem, pursuit methods exist that find an approximate
solution to Problem (2.25) with 𝑔(𝜴𝒔) = ‖𝜴𝒔‖0 by determining the co-support of 𝒔 in a
greedy one-by-one fashion. Here, I want to explain the underlying concept based on the
Backward-Greedy (BG) analysis sparse coding approach [109] with 𝑨 = 𝑰𭑛, i.e. a basic
denoising problem. This algorithm aims at finding the signal 𝒔, which for a given analysis
operator has the smallest co-rank. Let ℐ denote the co-support of 𝒔, then the co-rank of 𝒔
with respect to 𝜴 is defined as the rank of the submatrix of 𝜴 whose rows are indexed by
ℐ, i.e. rk(𝜴ℐ,∶). The co-rank measure is related to the dimension 𝑐 of the subspace the signal
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resides in via rk(𝜴ℐ,∶) = 𝑛 − 𝑐. Now, given the noisy measurements 𝒚 the analysis based
signal reconstruction problem is formulated as

{𝒔⋆, ℐ⋆} ∈ arg min
𝒔,ℐ

‖𝒔 − 𝒚‖2
2 subject to 𝜴ℐ,∶𝒔 = 0|ℐ|,

rk(𝜴ℐ,∶) = 𝑛 − 𝑐, (2.26)

with |ℐ| being the cardinality of the set. The BG-algorithm solves Problem (2.26) by itera-
tively determining one row of 𝜴 at a time that corresponds to a zero entry of 𝜶. It starts from
𝒔(0) = 𝒚 and initializes the co-support with the empty set, i.e. ℐ(0) = ∅. At each iteration the
index of the row 𝝎𭑗,∶, which is most uncorrelated with the current signal estimate is added
to the co-support, i.e.

ℐ(𭑖) = ℐ(𭑖−1) ∪ arg min
𭑗∉ℐ(𭑖−1)

|𝝎𭑗,∶𝒔(𭑖−1)|. (2.27)

Then, the signal estimate is updated by 𝒔(𭑖) = (𝑰𭑛 −𝜴†
ℐ(𭑖),∶𝜴ℐ(𭑖),∶)𝒚, i.e. the measurements are

projected on the subspace that is orthogonal to the selected rows. Note that this projection
can be computed efficiently without explicitly computing the pseudoinverse 𝜴†

ℐ(𭑖),∶. Finally,
the current co-support is refined by adding the indices of the rows whose inner product
with the current signal estimate |𝝎𭑗,∶𝒔(𭑖)| is less than a user defined threshold. The entire
process is repeated until the signal estimate has the user defined co-rank 𝑛 − 𝑐.

An improved version of BG called Optimized BG (OBG), has also been suggested in [109].
Rather than simply selecting the row whose inner product with 𝒔(𭑖−1) is the smallest, the
full co-support update and projection step for all possible rows not already added to the
co-support is performed. Then, the row that leads to the smallest decrease in the energy of
the signal, i.e. the atom that minimizes ‖𝒔(𭑖−1) − 𝒔(𭑖)‖2, is added to the co-support. Note that
this version is computationally more demanding compared to its unoptimized counterpart.

Another greedy pursuit method is the Greedy-Analysis-Pursuit (GAP) algorithm intro-
duced in [86]. The main conceptual difference between GAP and BG is that GAP initializes
the co-support of the signal with all row indices of 𝜴, i.e. ℐ(0) = {1, … , 𝑎}, and then it-
eratively removes one index at a time. This means that it detects the non-zero entries of
𝜶, rather than its zero entries as done by BG, thus, it is computationally more efficient for
signals with high level of co-sparsity.

Last, I want to mention that these methods can be used to solve more general inverse
problems with 𝑨 ≠ 𝑰𭑛. Therefore, the signal update has to be changed from the standard
projection step to solving the constrained least squares problem 𝒔(𭑖) = arg min𝒔 ‖𝜴ℐ(𭑖),∶𝒔‖2

2 +
𝜆‖𝒚 − 𝑨𝒔‖2

2 at each iteration, see [86].
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Greedy-Like Pursuit Methods

Analysis Iterative Hard Threshold (AIHT), Analysis Hard Thresholding Pursuit (AHTP)
[59], Analysis CoSaMP (ACoSaMP), and Analysis Subspace Pursuit (ASP) [57] are four
greedy-like algorithms that transfer the concepts of the four synthesis based sparse cod-
ing algorithms IHT, HTP, CoSaMP, and SP to the analysis sparse coding problem. All four
methods are iterative algorithms that aim at finding the signal whose co-support is equal
to 𝑙. Therefore, the function co𭑙(𝒔) is required that returns the set of 𝑙 indices corresponding
to the 𝑙 smallest values in magnitude of 𝜴𝒔. The outcome of co𭑙 can be interpreted as an
approximation of the co-support of the signal, and constitutes the analysis counterpart to
the hard thresholding operation performed in the synthesis case for finding the support of
a signal. At each iteration, all four algorithms perform different approximate projections of
the measurements on the closest co-sparse subspace to update the signal. The methods are
initialized with 𝒔(0) = 0𭑛 and consequently ℐ(0) = {1, … , 𝑎}, and repeat the steps introduced
below until a user-defined stopping criterion is met.

At the 𝑖-th iteration, AIHT and AHTP first take a step of length 𝑡 in the direction of the
negative gradient of the fidelity term, i.e. 𝒔𭑔 = 𝒔(𭑖−1) + 𝑡𝑨⊤(𝒚 − 𝑨𝒔(𭑖−1)), and update the
approximate co-support via ℐ(𭑖) = co𭑙(𝒔𭑔). Then, AIHT finds the signal estimate 𝒔(𭑖) by
projecting 𝒔𭑔 onto the nullspace of 𝜴ℐ(𭑖),∶, while AHTP finds it by solving the optimization
problem 𝒔(𭑖) = arg min𝒔 ‖𝒚−𝑨𝒔‖2

2 subject to 𝜴ℐ(𭑖),∶𝒔 = 0|ℐ(𭑖)|. Crucial to the recovery success
of both methods is the choice of the step size 𝑡, see [58] for a discussion on that issue.

ACoSaMP and ASP first compute a temporary co-support 𝒞 that is given as the in-
tersection of ℐ(𭑖−1) and co𭑐𭑙(𝑨⊤(𝒚 − 𝑨𝑠(𭑖−1))), with 0 < 𝑐 ≤ 1. The parameters 𝑐 is
most commonly set to one. Next, 𝒞 is used to compute a temporary signal estimate via
𝒔𭑔 = arg min𝒔 ‖𝒚 − 𝑨𝒔‖2

2 subject to 𝜴𝒞,∶𝒔 = 0|𝒞|. As the co-support of 𝒔𭑔 can be smaller
than the targeted dimension 𝑙, the co-support is reestimated by ℐ(𭑖) = co𭑙(𝒔𭑔). Using ℐ(𭑖),
ACoSaMP computes 𝒔(𭑖) identical to AIHT, while ASP performs the same update as AHTP.

AIHT and AHTP are computationally less demanding compared to ACoSaMP and ASP,
while the latter are more efficient in finding the best co-sparse signal estimate. A theoretical
analysis of all four greedy-like methods regarding recovery guarantees can be found in [58].

As for the sparse synthesis model whose performance most severely depends on the em-
ployed dictionary, the success of the co-sparse analysis model depends on the chosen anal-
ysis operator. How to chose and learn an analysis operator from example data is covered
in the next section.

32



2.2 Co-Sparse Analysis Model

2.2.2 Analysis Operator Learning

Regarding the choice of the analysis operator, similar to choosing the dictionary in the
sparse synthesis model, there are two possible alternatives: either select an analytically
defined analysis operator or employ a learned operator that is adapted to the signal class
of interest. The probably best known and most widely applied analytic analysis operator
is the finite difference operator, which approximates first order derivatives. This operator
is also used for computing the famous Total Variation (TV)-norm [111] in image process-
ing. Other analytic operators are the transposed of diverse tight frames such as the over-
complete cosine transform, undecimated wavelet transforms [105], the curvelet transform
[121], or a concatenation of several of these transforms [16]. As for dictionaries in the syn-
thesis model, these general purpose approaches are not able to find an optimal co-sparse
representation of more specific signals, and to account for this an analysis operator can be
learned from representative examples signals. In contrast to the huge amount of existing
dictionary learning methods, the number of existing analysis operator learning algorithms
is rather small. In the following, I explain the most important contributions in this field.

Field-of-Experts

Field-of-Experts (FoE) introduced by Black and Roth [106, 107] is the earliest method that
aims at learning an analysis operator from example signals. Even though the authors did
not use the terms analysis model and analysis operator, the concepts underlying FoE are
same as those underlying the analysis model.

Motivated by finding a probabilistic prior model for the spatial structure of natural im-
ages, they formulate a high-order Markov Random Field (MRF) defined over an entire im-
age. If 𝒔 ∈ ℝ𭑁 denotes a vectorized image with 𝑁 pixels, then each pixel of 𝒔 is interpreted
as one node of the MRF. For each node, a maximal clique 𝒔[𭑗] ∈ ℝ𭑛 is defined, which for
the 𝑗-th node is nothing more but the (√𝑛×√𝑛)-dimensional patch centered at the 𝑗-th pixel
of 𝒔. A local field potential is assigned to each node by analyzing the associated clique via
𝑎 linear filters 𝝎𭑖, 𝑖 = 1, … , 𝑎, together with 𝑎 expert functions 𝜙(⋅, 𝛾𭑖), 𝑖 = 1, … , 𝑎 as

𝐸𭐹𭑜𭐸(𝒔[𭑗], Θ) ∶= −
𭑎

∑
𭑖=1

𝜙(𝝎⊤
𭑖 𝒔[𭑗], 𝛾𭑖). (2.28)

Therein, Θ = {𝝎𭑖, 𝛾𭑖}𭑎
𭑖=1 denotes the set of model parameters. Equation (2.28) connects

the FoE model with the analysis model: The linear filters are the transposed of the rows
of the analysis operator, and 𝜙 is a function that enforces the filter responses to be sparse.
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One example function suggested by the authors is the logarithm of Student's-t distribution
𝜙(𝝎⊤

𭑖,∶𝒔[𭑗], 𝛾𭑖) = ln(1 + 1
2(𝝎⊤

𭑖 𝒔[𭑗])2)−𭛾𭑖, with 𝛾𭑖 ∈ ℝ+. With this, the Field-of-Experts model
for an entire image is formulate as

𝑝𭐹𭑜𭐸(𝒔, Θ) ∶= 1
𭑍(Θ) exp ⎛⎜⎜

⎝

𭑁
∑
𭑗=1

−𝐸𭐹𭑜𭐸(𝒔[𭑗], Θ)⎞⎟⎟
⎠

, (2.29)

with 𝑍(Θ) being a normalization factor that is also known as the partition function. Equa-
tion (2.29) is a Markov random field of experts, which explains the name of the algorithm.

Now, the required model parameters Θ are learned from a set of 𝑀 training images 𝒮 =
{𝒔𭑖 ∈ ℝ𭑁}𭑀

𭑖=1 by maximizing the log-likelihood function

Θ⋆ ∈ arg max
Θ

𭑀
∑
𭑖=1

ln(𝑝𭐹𭑜𭐸(𝒔𭑖, Θ)). (2.30)

In the FoE approach, this is done by standard gradient ascent, which for the 𝑖-th parameter
set 𝜃𭑖 leads to the update formula

𝜃(𭑘+1)
𭑖 = 𝜃(𭑘)

𭑖 + 𝑡 ⎛⎜
⎝

⟨
𝜕𝐸𭐹𭑜𭐸

𝜕𝜃𭑖
⟩

𭑝𭐹𭑜𭐸

− ⟨
𝜕𝐸𭐹𭑜𭐸

𝜕𝜃𭑖
⟩

𝒮

⎞⎟
⎠

. (2.31)

Therein, 𝑡 ∈ ℝ+ is a user defined step size, ⟨𭜕𭐸𭐹𭑜𭐸
𭜕𭜃𭑖

⟩
𝒮

is the expectation with respect to the 𝑀

training samples, and ⟨𭜕𭐸𭐹𭑜𭐸
𭜕𭜃𭑖

⟩
𭑝𭐹𭑜𭐸

is the expectation with respect to the model distribution

𝑝𭐹𭑜𭐸. While the former is simply given as the average 𝑖-th partial derivative over all training
samples, the latter cannot be computed in closed form. However, it can be approximated
using Markov Chain Monte Carlo (MCMC) sampling techniques. As MCMC sampling is
known to be slow, the authors instead employ a hybrid Monte Carlo sampler in combination
with contrastive divergence [64], i.e. initializing the sampler at the training data and just
performing one MCMC iteration.

Extensions of the FoE model exist, e.g. to handle color images [84], that employ Gaussian
Scale Mixtures as expert functions and an efficient Gibbs Sampler [114], or enforce the filters
to be normalized and employ persistent contrastive divergence to learn them [55].

Learning Uniformly Normalized Tight Frames

A constrained ℓ1-optimization problem for learning an analysis operator from a possibly
noisy set of training samples has been introduced in [137, 138, 139]. Let 𝒀 ∈ ℝ𭑛×𭑀 be the

34



2.2 Co-Sparse Analysis Model

matrix whose columns constitute the noisy training samples, the analysis operator problem
can be formulated as

{𝜴⋆, 𝑺⋆} ∈ arg min
𭜴,𝑺

‖𝜴𝑺‖1 + 𭜆
2 ‖𝑺 − 𝒀‖2

𭐹 subject to 𝜴 ∈ ℭ, (2.32)

where an optimization over both the operator 𝜴, as well as the denoised training set
𝑺 ∈ ℝ𭑛×𭑀 has to be performed. The weighting parameter 𝜆 ∈ ℝ+ is chosen depend-
ing on the assumed noise energy and ℭ denotes an admissible set of solutions. In anal-
ogy to dictionary learning, constraining the operator to an admissible set is necessary to
avoid the trivial solution 𝜴 = 0𭑎×𭑛 and other useless solutions. To that end, the authors
discuss the properties of several constraint sets. First, they argue that the common con-
straint used by dictionary learning methods of solely fixing the norm of the atoms of 𝜴, i.e.
‖𝝎𭑖,∶‖2 = const, ∀𝑖 = 1, … , 𝑎, is not sufficient to find a useful operator. Though 𝜴 = 0𭑎×𭑛

is avoided, this constraint leads to a simple rank-1 operator with only one distinctive row
𝝎⋆ given as 𝝎⋆ = arg min𭝎 ‖𝝎𝑺‖1 repeated 𝑎 times. Intuitively, this problem could be re-
solved by additionally requiring 𝜴 having full-rank. Unfortunately, this rather lose con-
straint leads to an ill-conditioned operator that contains rows that are all strongly correlated
with 𝝎⋆. A well-conditioned operator can be found, by demanding 𝜴 to be a Tight Frame
(TF), i.e. 𝜴⊤𝜴 = 𝑰𭑛. However, in the interesting overcomplete case, the authors show that
this constraint alone results in an operator that is a concatenation of a (𝑛 × 𝑛)-dimensional
orthogonal basis, and an (𝑎 − 𝑛 × 𝑛)-dimensional zero matrix. Consequently, this operator
does not provided any more information compared to a complete square analysis operator.

From these observations, the authors finally propose to restrict the set of solutions to ma-
trices that are tight frames with normalized rows. This set of matrices is known as Uniformly
Normalized Tight Frames (UNTF), and is formally defined as

ℭUNTF ∶= {𝜴 ∈ ℝ𭑎×𭑛 ∣ 𝜴⊤𝜴 = 𝑰𭑛, ‖𝝎𭑖,∶‖2 = const, ∀𝑖 = 1, … , 𝑎}. (2.33)

Employing this constraint set in Problem (2.32) allows to learn a well-conditioned overcom-
plete analysis operator. To solve the arising optimization problem, an alternating projected
subgradient method is proposed based on first fixing 𝑺 and updating the operator, followed
by fixing the operator and updating the signal estimates. The operator is updated by tak-
ing a step of length 𝑡 in the direction of the negative subgradient 𝜴𭐺 = 𝜕𭜴‖𝜴𝑺‖1, followed
by projecting 𝜴 + 𝑡𝜴𭐺 onto the UNTF-set. This projection can only be computed approxi-
mately via projecting 𝜴 + 𝑡𝜴𭐺 onto the TF-set, i.e. setting all its singular values to one and
afterwards normalizing each row to const. When the projection onto the TF-set leads to a

35



Chapter 2 State-of-the-Art on Sparse Data Modeling

zero row, this row is replaced by a random vector normalized to const. The step-size 𝑡 is
either fixed or determined by a line search that ensures that the cost function decreases.

To update 𝑺 a standard co-sparse coding problem has to be solved, which can be done by
any co-sparse coding technique. In [139], the convexity of the ℓ1+ℓ2 problem is exploited
and 𝑺 is updated via the Douglas Rachford Splitting technique, which is also known as
the Augmented Lagrangian method. The two alternating steps of the analysis operator
learning algorithm are repeated either for a fixed number of iterations or until the relative
change between two consecutive solutions falls below a user defined threshold. It is stated
by the authors that their algorithm is not guaranteed to converge to an operator that is an
UNTF, but they always observed convergence in practice.

Analysis K-SVD

Analysis K-SVD as proposed in [108, 109] is an analysis operator learning approach that
takes a similar route as the widely known K-SVD dictionary learning technique. Its under-
lying assumption is that every ideal noise free example signal 𝒔𭑖 lies in a low-dimensional
subspace of dimension 𝑐 < 𝑛, which is related to an analysis operator 𝜴 that can be learned
from a set of noisy training signals 𝒀 ∈ ℝ𭑛×𭑀 while simultaneously denoising the set. With
𝑺 ∶= [𝒔1, … , 𝒔𭑀] ∈ ℝ𭑛×𭑀 being the denoised training set and ℐ𭑖 denoting the co-support of
the 𝑖-th training signal, the analysis operator learning problem is formulated as

{𝜴⋆, 𝑺⋆, {ℐ⋆
𭑖 }𭑀

𭑖=1} ∈ arg min
𭜴,𝑺,{ℐ𭑖}𭑀

𭑖=1

‖𝑺 − 𝒀‖2
𭐹 subject to 𝜴ℐ𭑖,∶𝒔∶,𭑖 = 0|ℐ𭑖|, ∀𝑖 = 1, … , 𝑀

rk(𝜴ℐ𭑖,∶) = 𝑛 − 𝑐, ∀𝑖 = 1, … , 𝑀

‖𝝎𭑗,∶‖2 = 1, ∀𝑗 = 1, … , 𝑎,
(2.34)

where the rows of 𝜴 are constrained to unit Euclidean norm to avoid the trivial solution.
This optimization problem is solved by an iterative two-phase block-coordinate-relaxation
approach. Starting from an initial analysis operator, the algorithm first fixes 𝜴 and opti-
mizes over both the signal estimates 𝑺 and the co-supports {ℐ𭑖}

𭑀
𭑖=1 using the BG or OBG-

algorithm explained in Section 2.2.1. In the second phase, the determined co-supports are
used to update the operator, where similar to the synthesis K-SVD dictionary learning al-
gorithm each analysis atom 𝝎𭑗,∶ is updated independently. Concretely, the 𝑗-th atom is up-
dated by first identifying the set 𝒞 ∶= {𝑖 | 𝑗 ∈ ℐ𭑖, 𝑖 = 1, … , 𝑀} that contains the indices
of those signal estimates whose co-supports include the index 𝑗. Then, this set is used to
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update the row 𝝎𭑗,∶ by solving

𝝎𭑗,∶ = arg min𭝎 ‖𝝎𝒀∶,𝒞‖2
2 subject to ‖𝝎‖2 = 1, (2.35)

with 𝒀∶,𝒞 being the submatrix of 𝒀 containing the columns indexed by 𝒞 . The solution to
Problem (2.35) is given in closed form as the left singular vector of 𝒀∶,𝒞 that corresponds to
its smallest singular value.

The two phases of the algorithm are repeated for a fixed number of iterations. To resolve
possible deadlock situations in this iterative process, the authors propose to reinitialize an
atom whenever it is contained in too few co-supports of the training signals, or whenever it
becomes too similar to any other atom of 𝜴. One proposed reinitialization is to randomly
select 𝑛 − 1 columns of 𝒀 , and to use the vector that spans their nullspace as the new anal-
ysis atom. As stated by the authors, one advantage of their algorithm is that each atom is
updated independently and, thus, the update can be performed in parallel.

Very closely related to the analysis K-SVD method is the approach presented in [92]. This
algorithm sequentially finds the rows of the analysis operator by identifying directions that
are orthogonal to a subset of the training samples. Starting from a randomly initialized vec-
tor 𝝎 ∈ ℝ𭑛, a candidate row is found by first computing the inner product of 𝝎 with the
entire training set, followed by extracting the reduced training set 𝑺𭑅 of samples whose in-
ner product with 𝝎 is smaller than a threshold. Thereafter, 𝝎 is updated to be the eigenvec-
tor corresponding to the smallest eigenvalue of the Gramian matrix 𝑺𭑅𝑺⊤

𭑅. This procedure
is iterated several times until a convergence criterion is met. If the determined candidate
vector is sufficiently distinctive from already found ones, it is added to 𝜴 as a new row,
otherwise it is discarded. This process is repeated until the desired number 𝑎 of rows have
been determined.

Learning Sparsifying Transforms

Last, I want to mention a generalization of the analysis model called Sparse Transform Model,
which has been introduced by Ravishankar and Bresler in [101]. The assumption that un-
derpins this model is that a signal multiplied by a sparsifying transform 𝑾 ∈ ℝ𭑎×𭑛 results
in an approximately sparse vector, i.e. 𝑾𝒔 = 𝜶 + 𝝐 where 𝜶 ∈ ℝ𭑎 is sparse and 𝝐 ∈ ℝ𭑎 is
called the representation error that is assumed to have small energy compared to the signal.
This assumption also underlies classical transform coding techniques, which explains the
name transform model. The advantage of this approach is that 𝜶 does not necessarily have
to lie in the range space of 𝑾 , which means that this model is able to represent a wider class
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of signals compared to the analysis model. To find a signal that adheres to this model, the
transform sparse coding problem

𝜶⋆ = arg min𭜶 ‖𝜶 − 𝑾𝒔‖2
2 subject to ‖𝜶‖0 ≤ 𝑠, (2.36)

has to be solved. This can be done exactly by thresholding the product 𝑾𝒔, i.e. only re-
taining the 𝑠 largest coefficients and setting the others to zero. Once 𝜶⋆ is known, the corre-
sponding signal is recovered by solving 𝒔⋆ = arg min𝒔 ‖𝜶⋆−𝑾𝒔‖2

2, which is given analytically
in closed form as 𝒔⋆ = 𝑾†𝜶⋆. Note that this approach is computationally much easier as
the synthesis- or analysis sparse coding task, which both require to solve an optimization
problem.

Like in the other sparse data models, successfully applying the transform model severely
depends on the choice of 𝑾 , and learning this matrix from training samples {𝒔𭑖 ∈ ℝ𭑛}𭑀

𭑖=1
is highly valuable. Simply learning 𝑾 via

{𝑾⋆, {𝜶⋆
𭑖 }𭑀

𭑖=1} = arg min
𝑾,{𭜶𭑖}𭑀

𭑖=1

𭑀
∑
𭑖=1

‖𝜶𭑖 − 𝑾𝒔𭑖‖2
2 subject to ‖𝜶𭑖‖0 ≤ 𝑠, 𝑖 = 1, … , 𝑀. (2.37)

suffers from the scale ambiguity problem as well as from leading to degenerated matrices
that e.g. contain repeated- , zero-, or linearly dependent rows. To avoid these problems, the
authors of [101] argue that 𝑾 must be a full column rank matrix with bounded Frobenius
norm. As their goal is to find a square matrix, i.e. 𝑎 = 𝑛, they enforce the full-rank con-
straint by minimizing the negative logarithm of the determinate of 𝑾 . Additionally, they
minimize the Frobenius-norm of 𝑾 . These constraints do not only avoid the aforemen-
tioned degenerated cases but also enforce 𝑾 to be well-conditioned, which the authors
empirically show to be an important property in applications. Combining all that, learning
the sparsifying transform is accomplished by

{𝑾⋆, {𝜶⋆
𭑖 }𭑀

𭑖=1} = arg min
𝑾,{𭜶𭑖}𭑀

𭑖=1

𭑀
∑
𭑖=1

‖𝜶𭑖 − 𝑾𝒔𭑖‖2
2 − 𝜆 ln det 𝑾 + 𝜇‖𝑾‖2

𭐹 (2.38)

subject to ‖𝜶𭑖‖0 ≤ 𝑠, 𝑖 = 1, … , 𝑀,

with 𝜆, 𝜇 ∈ ℝ+ being two manually tuned weighting factors. To solve Problem (2.38), an
alternating optimization process is suggested, which is based on fixing 𝑾 and computing
{𝜶𭑖}𭑀

𭑖=1 by thresholding {𝑾𝒔𭑖}𭑀
𭑖=1, followed by fixing {𝜶𭑖}𭑀

𭑖=1 and solving for 𝑾 by a standard
conjugate-gradient scheme. An extension of Problem (2.38) is also proposed in [101] that
allows to simultaneously learn 𝑾 and denoise the training data.
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Chapter 3

Optimization on Matrix Manifolds

When the set of solutions of an optimization problem is known to be restricted to a smooth
manifold geometric optimization techniques that exploit the underlying manifold structure
can be employed to efficiently solve the optimization problem. Among those techniques,
geometric Conjugate Gradient (CG) methods have been proven very efficient in various ap-
plications, due to the combination of moderate computational complexity and good con-
vergence properties, see e.g. [70] for a CG-type method on the oblique manifold.

All sparse data model learning algorithms proposed in this thesis are based on geometric
CG-methods. For this reason, in this section I first shortly review the general concepts of
optimization on matrix manifolds. After that, I explain how a general differentibale cost
function can be optimized by means of a geometric CG-method. For a more in-depth intro-
duction on optimization on matrix manifolds, I refer the interested reader to [1].

3.1 General Concept

Let M be a smooth Riemannian submanifold of some Euclidean space endowed with the
standard Frobenius inner product

⟨𝑸, 𝑷⟩ ∶= tr(𝑸⊤𝑷), (3.1)

and let 𝑓 ∶ M → ℝ be a differentiable cost function. The ultimate goal of this section is to
introduce and understand optimization methods that are capable of solving optimization
problems on manifolds, i.e. to find a solution to

arg min
𝑿∈M

𝑓 (𝑿). (3.2)
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All geometric concepts presented in this section are visualized in Figure 3.1 to alleviate the
understanding.

To every point on the manifold 𝑿 ∈ M one can assign a tangent space 𝑇𝑿 M. The tangent
space at 𝑿 is a real vector space that contains all possible directions that tangentially pass M
through 𝑿 . Each tangent space is associated with an inner product inherited from the sur-
rounding Euclidean space, which allows to measure distances and angles on the manifold
M. An element 𝜩 ∈ 𝑇𝑿 M is called a tangent vector at 𝑿 .

The Riemannian gradient of 𝑓 at 𝑿 is an element of the tangent space 𝑇𝑿 M that points
in the direction of steepest ascent of the cost function on the manifold. For the case where
𝑓 is globally defined on the entire surrounding Euclidean space, the Riemannian gradient
𝑮(𝑿) is nothing more but the orthogonal projection of the (standard) Euclidean gradient
∇𝑓 (𝑿) onto the tangent space 𝑇𝑿 M. In formulas, this is given as

𝑮(𝑿) ∶= Π𭑇𝑿 M(∇𝑓 (𝑿)). (3.3)

For the optimization procedures described in the subsequent chapters, it is necessary to
understand the notion of geodesics. A geodesic Γ(𝑿, 𝜩, 𝑡) is a smooth curve on M emanating
from 𝑿 in the direction of 𝜩 ∈ 𝑇𝑿 M, which locally describes the shortest path between two
points on M. Intuitively, it can be interpreted as the equivalent of a straight line in the man-
ifold setting. Now, in minimization procedures conventional iterative line search methods
search for the next iterate by determine how far they have to step along a given search di-
rection such that the cost function decreases sufficiently, i.e. the search is performed along a
straight line determined by the search direction. This concept is generalized to the manifold
setting as follows. Given a current point 𝑿(𭑖) together with a search direction 𝑯(𭑖) ∈ 𝑇𝑿(𭑖) M
at the 𝑖-th iteration, the step size 𝛼(𭑖) ∈ ℝ+, which leads to a sufficient decrease of the cost
function can be determined by finding the minimizer of

𝛼(𭑖) = arg min
𭑡≥0

𝑓 (Γ(𝑿(𭑖), 𝑯(𭑖), 𝑡)). (3.4)

This procedure exactly corresponds to a line search along a geodesic rather than along a
straight line. Once 𝛼(𭑖) has been determined, we obtain a new iterate that lies on M through

𝑿(𭑖+1) = Γ(𝑿(𭑖), 𝑯(𭑖), 𝛼(𭑖)), (3.5)

i.e. one moves from 𝑿(𭑖) along the geodesic in the direction of 𝑯(𭑖) for length 𝛼(𭑖).
Returning to the problem stated at the beginning, one straightforward approach to min-
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3.1 General Concept

Figure 3.1: This figure shows two points 𝑿 and 𝒀 on a manifold M together with their corresponding tangent
spaces 𭑇𝑿 M and 𭑇𝒀 M depicted in light blue. Furthermore, the Euclidean gradient ∇𭑓 (𝑿) of some cost function
𭑓 and its projection onto the tangent space at 𝑿 Π𭑇𝑿 M(∇𭑓 (𝑿)) are shown. The geodesic Γ(𝑿, 𝑯, 𭑡) in the
direction of 𝑯 ∈ 𭑇𝑿 M connecting the two points 𝑿 and 𝒀 is shown. The dashed line typifies the role of a
parallel transport of the gradient in the tangent space 𭑇𝑿 M to the tangent space 𭑇𝒀 M.
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imize 𝑓 is to alternate Equations (3.3), (3.4), and (3.5) using 𝑯(𭑖) = −𝑮(𭑖), with the short
hand notation 𝑮(𭑖) ∶= 𝑮(𝑿(𭑖)). This approach exactly corresponds to the steepest descent
on a Riemannian manifold. However, as in standard Euclidean optimization, steepest de-
scent only has a linear rate of convergence. Therefore, here I focus on a conjugate gradient
method on manifolds, as it offers a superlinear rate of convergence, while at the same time
being efficiently applicable to large scale optimization problems with low computational
complexity, as opposed quasi newton method or second order methods.

3.2 Geometric Conjugate Gradient

In CG-methods, the search direction for the next iteration 𝑯(𭑖+1) ∈ 𝑇𝑿(𭑖+1) M is a linear
combination of the current gradient 𝑮(𭑖+1) ∈ 𝑇𝑿(𭑖+1) M and the previous search direction
𝑯(𭑖) ∈ 𝑇𝑿(𭑖) M. Since the addition of vectors that belong to different tangent spaces is not
a well-defined operation, 𝑯(𭑖) needs to be mapped from 𝑇𝑿(𭑖) M to 𝑇𝑿(𭑖+1) M. This map-
ping is performed by the so-called parallel transport 𝒯 (𝜩, 𝑿(𭑖), 𝑯(𭑖), 𝛼(𭑖)), which transports
a tangent vector 𝜩 ∈ 𝑇𝑿(𭑖) M along the geodesic Γ(𝑿(𭑖), 𝑯(𭑖), 𝑡) to the tangent space 𝑇𝑿(𭑖+1) M
while maintaining the angle of 𝜩 to the geodesic. With this, and using the shorthand nota-
tion

𝒯 (𭑖+1)
𭜩 ∶= 𝒯 (𝜩, 𝑿(𭑖), 𝑯(𭑖), 𝛼(𭑖)), (3.6)

the new search direction is computed by

𝑯(𭑖+1) = −𝑮(𭑖+1) + 𝛽(𭑖)𝒯 (𭑖+1)
𝑯(𭑖) , (3.7)

where 𝛽(𭑖) ∈ ℝ is calculated by some CG update formula adopted to the manifold setting.
The most commonly used update formulas are those by Fletcher-Reeves (FR), Hestenes-
Stiefel (HS), Polak-Ribiere (PR), and Dai-Yuan (DY). With 𝒀(𭑖+1) = 𝑮(𭑖+1) − 𝒯 (𭑖+1)

𝑮(𭑖) , they
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read as

𝛽(𭑖)
FR =

⟨𝑮(𭑖+1), 𝑮(𭑖+1)⟩
⟨𝑮(𭑖), 𝑮(𭑖)⟩

, (3.8)

𝛽(𭑖)
HS =

⟨𝑮(𭑖+1), 𝒀(𭑖+1)⟩
⟨𝒯 (𭑖+1)

𝑯(𭑖) , 𝒀(𭑖+1)⟩
, (3.9)

𝛽(𭑖)
PR =

⟨𝑮(𭑖+1), 𝒀(𭑖+1)⟩
⟨𝑮(𭑖), 𝑮(𭑖)⟩

, (3.10)

𝛽(𭑖)
DY =

⟨𝑮(𭑖+1), 𝑮(𭑖+1)⟩
⟨𝒯 (𭑖+1)

𝑯(𭑖) , 𝒀(𭑖+1)⟩
. (3.11)

Now, a solution to Problem (3.2) is computed by alternating between computing the search
direction on M via (3.7), finding an appropriate step size by solving (3.4), and updating the
current optimal point through (3.5) until some user-specified convergence criterion is met,
or a maximum number of iterations has been reached.

As the functions considered here are non-quadratic terms, search directions found at
consecutive iterations gradually loose conjugacy. Furthermore, for optimization problems
over variables of dimension 𝑛 CG can only produce 𝑛 conjuagte vectors. To deal with theses
issues, the search direction should be reset at least every 𝑛 iterations to the steepest descent
direction. This reset can be performed earlier for example every fixed 𝑗 < 𝑛 iterations, if the
function value does not decrease sufficiently, or when the gradients of the cost function at
two consecutive iterations are not sufficiently orthogonal, cf. [98].
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Chapter 4

Geometric Dictionary Learning

This chapter is partially based on the published work:

S. Hawe, M. Seibert, and M. Kleinsteuber. Separable Dictionary Learning. In
IEEE Conference on Computer Vision and Pattern Recognition, pp. 438--445. 2013.

As already stated in previous chapters, many techniques in computer vision, machine
learning, and statistics rely on the fact that a signal of interest admits a sparse represen-
tation over some dictionary. Dictionaries can either be composed analytically, or learned
from a suitable set of example signals that represent the considered class. While analytic
dictionaries permit to capture the global structure of a signal and often come along with
a fast implementation, learned dictionaries are known to perform better in applications as
they are more adapted to the considered class of signals. When we are dealing with images,
unfortunately, memory limitations and the numerical burden for (i) learning a dictionary
and for (ii) employing the dictionary for image processing tasks only allows working with
relatively small image-patches that only contain local image information.

To overcome these two drawbacks of learned dictionaries, in this chapter, I present an
algorithm that is able to learn dictionaries that have a separable matrix structure. This
structure, on the one hand, permits to work with larger patch-sizes, and on the other hand,
such dictionaries can be applied more efficiently in image processing tasks compared to
unstructured dictionaries. The proposed learning procedure is based on an optimization
process over a product of spheres manifold, which updates the dictionary as a whole, thus
controls basic dictionary properties such as mutual coherence explicitly during the learning
procedure. In simple words, the mutual coherence of 𝑫 measures the similarity between
the atoms of the dictionary. The presented learning scheme is not limited to find separable
dictionaries but is also able to learn standard unstructured ones. In that case, the presented
method competes with state-of-the-art dictionary learning methods like K-SVD.
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4.1 Introduction

Exploiting the fact that a signal 𝒔 ∈ ℝ𭑛 has a sparse representation over some dictionary
𝑫 ∈ ℝ𭑛×𭑑 is the backbone of many successful signal reconstruction and data analysis al-
gorithms. Having a sparse representation means that 𝒔 is the linear combination of only a
few columns of 𝑫, referred to as atoms. Formally, this reads as

𝒔 = 𝑫𝒙, (4.1)

where the transform coefficient vector 𝒙 ∈ ℝ𭑑 is sparse, i.e. most of its entries are zero or
small in magnitude. For the performance of algorithms exploiting this model, it is crucial
to find a dictionary that allows the signal of interest to be represented most accurately with
a coefficient vector 𝒙 that is as sparse as possible. Basically, dictionaries can be assigned
to two classes: analytic dictionaries and learned dictionaries. Analytic dictionaries are built
on mathematical models of the general type of signal they should represent. They can be
used universally and allow a fast implementation. Popular examples include Wavelets [81],
Bandlets [72], and Curvlets [121] among several others.

It is well-known that learned dictionaries yield a sparser representation than analytic
ones. Given a set of representative training signals, dictionary learning algorithms aim at
finding the dictionary over which the training set admits a maximally sparse representa-
tion. Formally, let 𝑺 = [𝒔1, … , 𝒔𭑚] ∈ ℝ𭑛×𭑀 be the matrix containing the 𝑀 training samples
arranged as its columns, and let 𝑿 = [𝒙1, … , 𝒙𭑚] ∈ ℝ𭑑×𭑀 contain the corresponding 𝑀
sparse transform coefficient vectors, then learning a dictionary can be stated as the mini-
mization problem

{𝑿⋆, 𝑫⋆} = arg min
𝑿,𝑫

𝑔(𝑿) subject to ‖𝑫𝑿 − 𝑺‖2
𭐹 ≤ 𝜖,

𝑫 ∈ ℭ. (4.2)

Therein, 𝑔 ∶ ℝ𭑑×𭑀 → ℝ is a function that promotes sparsity, 𝜖 reflects the noise power,
and ℭ is some predefined admissible set of solutions. Common dictionary learning ap-
proaches that employ optimization problems similar to (4.2) include probabilistic ones like
[46, 71, 144], and clustering based ones such as K-SVD [3], see Chapter 2 or [126] for a more
comprehensive overview. Dictionaries produced by these techniques are unstructured ma-
trices that allow determining highly sparse representations of the associated signals of inter-
est. However, the dimensions of the corresponding signals and consequently the possible
dimensions of the dictionary are inherently restricted by limited memory and limited com-
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putational resources. Furthermore, those dictionaries are computationally expensive to be
applied within signal reconstruction algorithms where many matrix vector multiplications
have to be performed, particularly if the processed signals are large.

To overcome these drawbacks of learned dictionaries, in this chapter, I present a method
for learning dictionaries that are efficiently applicable in image reconstruction tasks and
that permit to work with larger patch sizes compared to those commonly used in other
dictionary learning schemes. The crucial idea is to enforce the dictionary to have a separa-
ble matrix structure. Due to this, I dubbed the algorithm SeDiL, short form for Separable
Dictionary Learning. Here, separable means that the dictionary 𝑫 ∈ ℝ𭑛×𭑑 is given by the
Kronecker product of two smaller dictionaries 𝑪 ∈ ℝℎ×𭑐 and 𝑹 ∈ ℝ𭑤×𭑟 with 𝑟, 𝑐 ≪ 𝑑 and
ℎ, 𝑤 ≪ 𝑛, i.e.

𝑫 = 𝑹 ⊗ 𝑪

=
⎡⎢⎢⎢
⎣

𝑟11𝑪 ⋯ 𝑟1𭑟𝑪
⋮ ⋱ ⋮

𝑟𭑤1𝑪 ⋯ 𝑟𭑤𭑟𝑪

⎤⎥⎥⎥
⎦

∈ ℝ𭑛×𭑑. (4.3)

The relation between a signal 𝒔 ∈ ℝℎ𭑤 and its sparse representation 𝒙 ∈ ℝ𭑐𭑟 according to
(4.1) is then given as

𝒔 = (𝑹 ⊗ 𝑪)𝒙 = vec(𝑪 vec−1(𝒙)𝑹⊤), (4.4)

where the vector space isomorphism vec∶ ℝ𭑐×𭑟 → ℝ𭑐𭑟 is defined by stacking the columns
of the considered matrix on top of each other. Employing this separable structure instead of
a full unstructured dictionary clearly reduces the computational cost of both the learning
algorithm as well as dictionary based signal reconstruction tasks. More precisely, for a
separation with ℎ, 𝑤 ∼ √𝑛, the computational burden reduces from 𝑂(𝑛) to 𝑂(√𝑛).

Clearly, the proposed scheme is in principle applicable to any class of signals. However,
here the focus lies on signals that have an inherent two-dimensional structure such as im-
ages. To fix the notation for the rest of this work, if 𝑪 and 𝑹 are given as above, the two
dimensional signal 𝑺 ∈ ℝℎ×𭑤 is given from its sparse representation 𝑿 ∈ ℝ𭑟×𭑐 via

𝑺 = 𝑪𝑿𝑹⊤. (4.5)

The proposed dictionary learning scheme SeDiL is based on an adaption of Problem (4.2)
to a product of unitary spheres and incorporates a regularization term that allows to control
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the mutual coherence of a learned dictionary. In contrast to most learning techniques, the
dictionary and the sparse code are updated simultaneously. The arising optimization prob-
lem is solved by a Riemannian conjugate gradient method combined with a non-monotone
line search technique adapted to the manifold setting. For the general separable case, the
method is able to learn dictionaries from high dimensional signals where conventional
learning techniques fail. To show that such a dictionary is able to extract and to recover
the global information contained in the training data, a separable dictionary is learned on a
face database with each face image having a resolution of (64 × 64) pixels. This dictionary
is then applied in a face inpainting experiment where large missing regions are recovered
solely based on the information contained in the dictionary.

Besides that, for the special case 𝑹 = 1, SeDiL yields a new algorithm for learning stan-
dard unstructured dictionaries. To evaluate the applicability of SeDiL in standard image
processing tasks, I present a denoising experiment that shows the performance of both a
separable and a non-separable dictionary learned by SeDiL on (8 × 8)-dimensional image-
patches. I selected this task as denoising can be seen as a standard benchmark test that al-
lows my method to be easily compared with existing dictionary learning techniques. From
the achieved results it can be seen that the separable dictionary outperforms its analytic
counterpart, the overcomplete discrete cosine transform, and that the non-separable one
achieves similar performance as state-of-the-art learning methods like K-SVD.

Last, I like to mention that SeDiL can be straightforwardly extended to signals of even
more dimensions, such as volumetric 3𝐷-signals, by employing multiple Kronecker prod-
ucts, i.e. one for each dimension.

4.2 Structured Dictionary Learning

Instead of learning dense unstructured dictionaries as described in Chapter 2, which are
costly to apply in signal reconstruction tasks and that are unable to deal with higher di-
mensional signals, techniques exist that aim at learning dictionaries that bypass these lim-
itations. This line of research is still in its early stage, and only few prior works in this
direction exist. In the following, I shortly review some existing techniques that focus on
learning efficiently applicable and high dimensional dictionaries. After that, I introduce
my novel approach.
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4.2.1 Prior Art

In [110], a method is proposed for learning a dictionary such that each atom itself is sparse
over some fixed analytic base dictionary. Employing a sparse dictionary in signal pro-
cessing tasks requires less arithmetic operations compared to applying a dense dictionary,
hence, it is computationally more efficient. The concrete learning algorithm extends the
famous K-SVD approach by introducing an additional prior that enforces the sparsity con-
straint on the atoms of the dictionary. As this algorithm is based on the K-SVD method,
however, it is not capable to handle higher dimensional signals.

An approach called compressible dictionary learning, which also follows the idea of find-
ing a dictionary that is sparse over a given base dictionary, has been introduced in [136].
In contrast to [110], sparsity is enforced globally over the entire dictionary rather than en-
forcing a fixed level of sparsity over each atom. The authors state that this model is less
restrictive as compared to the method of [110]. Again, this approach cannot deal with high
dimensional signals.

In [2] an alternative structure for dictionaries called signature dictionary has been pro-
posed. The structure can be interpreted as a small image, where every patch at every possi-
ble location and size is a potential dictionary atom. The advantages of this structure include
near-translation-invariance, reduced overfitting to the training set, and less memory- and
computational requirements compared to unstructured dictionaries. However, the small
number of parameters in this model makes this dictionary more restrictive than other struc-
tures. This approach has been further extended in [9] to learn real translational-invariant
atoms.

Hierarchical frameworks for tackling the problem of learning high dimensional dictio-
naries are presented in [67] and [134]. The latter work uses this framework in conjunction
with a screening technique and random projections. I like to mention that SeDiL has the
potential to be combined with such hierarchical frameworks.

Developed in parallel to the approach presented here and even published at the same
conference, a method that aims at learning separable filters has been introduced [103]. By
a filter, the authors understand an atom of a dictionary that has been reshaped to a matrix
whose size is equal to the 2D signal it has to be applied to, e.g. the patch size in image
processing. Because a separable filter can be interpreted as a rank-1 matrix, the basic idea is
to enforce the separability by minimizing the rank of the filters followed by a thresholding
operation on the singular values of the filters to find exact rank-1 matrices. To that end,
two conceptually different learning algorithms have been suggested. The first algorithm
is based on a standard convolutional ℓ1-based dictionary learning task, augmented by an
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additional penalty term that enforces the nuclear norm of each filter to be minimal. The
nuclear norm of a matrix corresponds to the sum of its singular values and is the closest
convex relaxation of the matrix rank. Consequently, enforcing the nuclear norm of a matrix
to be small amounts to finding matrices with low rank. The arising optimization problem is
solved by a stochastic gradient descent scheme. The second algorithm first learns a standard
dictionary and afterwards tries to approximate each of the atoms of this dictionary by a
linear combination of a few separable filters, which are again found by a nuclear norm
minimization. In both approaches, the final separable filters, i.e. filters with rank one, are
determined in a post processing step by computing the singular values of a learned filter
and setting all of them but the largest to zero. An advantage of the second approach is
that it can be applied to any existing set of filters and that it can be combined with any
dictionary learning technique. In contrast to this approach, here, I directly aim at learning
rank-1 filters as the product of two 1D filters without requiring a thresholding operation.

Last, I want to mention two different algorithms proposed in [118] and [6] that similar
to my proposed method control the mutual coherence of a dictionary during the learning
processes. In [118], this is achieved via a regularization term introduced into the dictionary
update step. Concretely, to update the dictionary the algorithm solves

𝑫 = arg min
𝑫

∑
𭑖

‖𝑫𝒙𭑖 − 𝒔𭑖‖2
2 + 𝜆‖𝑫⊤𝑫 − 𝑰𭑑‖2

𭐹, (4.6)

where the latter term influences the mutual coherence of the dictionary. The higher 𝜆 ∈ ℝ+

is chosen, the lower the mutual coherence gets. The Problem (4.6) is solved by a limited
BFGS algorithm. Similar to the penalty function used in SeDiL, this term reduces the av-
erage angle between all atoms, but in contrast to SeDiL it does not necessarily avoid two
or more atoms to be completely identical. In [6], the mutual coherence is controlled by
decorrelating the learned atoms via an iterative projection method that is complemented
by a rotation of the dictionary. The rotation step, which can be computed in closed form, is
done in order to reduce the approximation error ∑𭑖 ‖𝑫𝒙𭑖 −𝒔𭑖‖2

2 of the resulting decorrelated
dictionary. Basically, this technique can be combined with any dictionary learning method
and is performed either after the dictionary has been fully trained, or at each step of any
iterative learning approach.

4.2.2 Proposed Approach

The dictionary learning technique proposed here adapts Problem (4.2) to the separable dic-
tionary case as follows. The separable dictionary is denoted by 𝑫 = 𝑹 ⊗ 𝑪 and the goal is
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to learn 𝑹 and 𝑪 from a representative set of training samples 𝒮 = (𝑺1, … , 𝑺𭑀) ∈ ℝℎ×𭑤×𭑀.
The set of sparse representations of all 𝑀 samples is 𝒳 = (𝑿1, … , 𝑿𭑀) and I measure the
overall sparsity via

𝑔(𝒳) ∶=
𭑚

∑
𭑗=1

𭑐
∑
𭑘=1

𭑟
∑
𭑙=1

ln(1 + 𝜌|𝑥𭑘𭑙𭑗|2), (4.7)

where 𝑥𭑘𭑙𭑗 denotes the (𝑘, 𝑙)-entry of 𝑿𭑗 ∈ ℝ𭑐×𭑟, and 𝜌 ∈ ℝ+ is a smoothing parameter.
This non-convex sparsity measure is commonly employed in the literature and more closely
resembles the ℓ0-pseudo-norm as compared to the convex ℓ1-norm sparsity measure.

Besides enforcing the separable matrix structure, the second important ingredient of my
approach is the admissible set of solutions ℭ, which imposes the following constraints on
the dictionary.

(i) The columns of 𝑫 have unit Euclidean norm, i.e. ‖𝒅∶,𭑖‖2 = 1 for 𝑖 = 1, … , 𝑑.

(ii) The coherence of 𝑫 shall be moderate.

Constraint (i) is commonly employed in various dictionary learning procedures to avoid
the scale ambiguity problem, i.e. getting entries of 𝑫 that tend to infinity, while the entries of
𝒳 tend to zero as this is the global minimizer of the sparsity measure 𝑔(𝒳). Matrices with
normalized columns admit a manifold structure, known as the product of unit spheres,
which is formally defined as

S(𝑛, 𝑑) ∶= {𝑫 ∈ ℝ𭑛×𭑑| ddiag(𝑫⊤𝑫) = 𝑰𭑑}. (4.8)

Here, ddiag(𝒁) forms a diagonal matrix with the diagonal entries of the square matrix
𝒁. As the Kronecker product of two matrices with normalized columns again results in a
matrix with normalized columns, and as the proposed method should be able to learn both
structured and unstructured dictionaries I require that 𝑪 is an element of S(ℎ, 𝑐) and that 𝑹
is an element of S(𝑤, 𝑟).

The soft constraint (ii), which requires the mutual coherence of the dictionary to be mod-
erate, is a well-known requirement introduced in dictionary learning methods, and is moti-
vated by the theory of Compressive Sensing [35]. Roughly speaking, the mutual coherence
of 𝑫 measures the similarity between the atoms of the dictionary, or, ''a value that exposes
the dictionary's vulnerability, as [...] two closely related columns may confuse any pursuit tech-
nique.'' [41]. The most common mutual coherence measure for a dictionary with normalized
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columns is given by

𝜇(𝑫) ∶= max
𭑖<𭑗

|𝒅⊤
∶,𭑖𝒅∶,𭑗|. (4.9)

This is a worst case measure, which has been relaxed by other measures that are better
suited for practical purposes. For example, in [34, 41, 128] the coherence is measured as
the average of the absolute values of all inner products between distinct atoms of 𝑫 that
are above a user defined threshold 𝑡 ∈ ℝ+, and [38] considers the sum of squares of all
elements in {|𝒅⊤

∶,𭑖𝒅∶,𭑗| | 𝑖 < 𝑗}. Here, I introduce an alternative mutual coherence measure,
which has been proven extremely useful in image processing applications and is explicitly
given as

𝑟(𝑫) ∶= −∑
1≤𭑖<𭑗≤𭑑

ln (1 − (𝒅⊤
∶,𭑖𝒅∶,𭑗)2). (4.10)

Since this measure is differentiable, it can be integrated into smooth optimization proce-
dures. Furthermore, when it is used within a dictionary learning scheme, the log-barrier
function avoids the algorithm from producing dictionaries that contain useless mutually
identical atoms.

To justify the proposed measure, note that minimizing 𝑟(𝑫) implicitly influences the well-
known worst case measure 𝜇(𝑫). Concretely, the relation between (4.10) and the classical
mutual coherence (4.9) is given by

1
𭑁𝑫

𝑟(𝑫) ≤ − ln(1 − 𝜇(𝑫)2) ≤ 𝑟(𝑫), (4.11)

with 𝑁𝑫 ∶= 𭑑(𭑑−1)
2 denoting the number of summands in Equation (4.9). To see the validity

of Equation (4.11), note that since all atoms are normalized to unit Euclidean norm, the
equation 0 ≤ |𝒅⊤

∶,𭑖𝒅∶,𭑗|2 ≤ 1 holds due to the Cauchy-Schwarz inequality. Consequently, all
summands − ln(1 − (𝒅⊤

∶,𭑖𝒅∶,𭑗)2) are non-negative. Moreover,

max
𭑖<𭑗

(− ln(1 − (𝒅⊤
∶,𭑖𝒅∶,𭑗)2)) = − ln(1 − 𝜇(𝑫)2), (4.12)

and therefore

− ln(1 − 𝜇(𝑫)2) ≤ 𝑟(𝑫) ≤ −𝑁𝑫 ln(1 − 𝜇(𝑫)2), (4.13)
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which implies Equation (4.11). Now, to exploit this relation for the desired separable dic-
tionary case, first consider the following lemma.

Lemma 4.1. The mutual coherence of the Kronecker product of two matrices 𝑪 and 𝑹 with normal-
ized columns is equal to the maximum of the individual mutual coherences, i.e.

𝜇(𝑹 ⊗ 𝑪) = max {𝜇(𝑪), 𝜇(𝑹)}. (4.14)

Proof. First, notice that since the columns of 𝑪 and 𝑹 all have unit Euclidean norm, the
diagonal entries of both 𝑪⊤𝑪 and 𝑹⊤𝑹 are equal to one, thus, the mutual coherence 𝜇(𝑪)
and 𝜇(𝑹) is given by the largest off-diagonal absolute value of the Gramian matrices 𝑪⊤𝑪
and 𝑹⊤𝑹, respectively. Analogously, 𝜇(𝑹 ⊗ 𝑪) is simply the largest off-diagonal absolute
value of the matrix (𝑹 ⊗ 𝑪)⊤(𝑹 ⊗ 𝑪) = (𝑹⊤𝑹) ⊗ (𝑪⊤𝑪). Due to the definition of the Kro-
necker product and the unit diagonal of the Gramian matrices, each entry of 𝑹⊤𝑹 and 𝑪⊤𝑪
reappears in the off-diagonal entries of (𝑹 ⊗ 𝑪)⊤(𝑹 ⊗ 𝑪). This yields the two inequalities
𝜇(𝑹) ≤ 𝜇(𝑹 ⊗ 𝑪) and 𝜇(𝑪) ≤ 𝜇(𝑹 ⊗ 𝑪), which can be combined to

max {𝜇(𝑪), 𝜇(𝑹)} ≤ 𝜇(𝑹 ⊗ 𝑪). (4.15)

On the other hand, each entry of (𝑹⊤𝑹) ⊗ (𝑪⊤𝑪) is a product of the entries of 𝑹⊤𝑹 and
𝑪⊤𝑪. This explicitly means that we can write 𝜇(𝑹 ⊗ 𝑪) = ̃𝑟 ̃𝑐, with ̃𝑟 and ̃𝑐 being entries of
the Gramian matrices 𝑹⊤𝑹 and 𝑪⊤𝑪, respectively. Since we have 0 ≤ ̃𝑐, ̃𝑟 ≤ 1, this provides
the two inequalities 𝜇(𝑹 ⊗ 𝑪) ≤ ̃𝑟 and 𝜇(𝑹 ⊗ 𝑪) ≤ ̃𝑐, and hence

𝜇(𝑹 ⊗ 𝑪) ≤ max {𝜇(𝑪), 𝜇(𝑹)}. (4.16)

Combining Equation (4.15) and Equation (4.16) provides the desired result. �

Now, substituting 𝜇(𝑹 ⊗ 𝑪) into Equation (4.11) and then applying Lemma 4.1 yields

max { 1
𭑁𝑹

𝑟(𝑹), 1
𭑁𝑪

𝑟(𝑪)} ≤ − ln(1 − 𝜇(𝑹 ⊗ 𝑪)2) ≤ max {𝑟(𝑹), 𝑟(𝑪)}, (4.17)

which holds due to the monotone behavior of the logarithm. Therefore, if max{𝑟(𝑹), 𝑟(𝑪)}
is small, then 𝜇(𝑹 ⊗ 𝑪) is bounded as well. To learn a separable dictionary 𝑫 = 𝑹 ⊗ 𝑪 with
moderate mutual coherence, I exploit the relation

𝑐1(𝑟(𝑹) + 𝑟(𝑪)) ≤ max {𝑟(𝑹), 𝑟(𝑪)} ≤ 𝑐2(𝑟(𝑹) + 𝑟(𝑪)), (4.18)
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for some positive constants 𝑐1, 𝑐2 ∈ ℝ+, and minimize 𝑟(𝑹) + 𝑟(𝑪) instead of
max{𝑟(𝑹), 𝑟(𝑪)} as this is computationally easier to handle.

Putting all the collected ingredients together, the cost function I want to minimize to learn
a separable dictionary reads as

𝑓 ∶ ℝ𭑐×𭑟×𭑀 × S(ℎ, 𝑐) × S(𝑤, 𝑟) → ℝ,

(𝒳, 𝑪, 𝑹) ↦ 1
2𭑀

𭑀
∑
𭑗=1

‖𝑪𝑿𭑗𝑹⊤ − 𝑺𭑗‖2
𭐹 + 𭜆

𭑀𝑔(𝒳) + 𝜅(𝑟(𝑪) + 𝑟(𝑹)). (4.19)

Therein, 𝜆 ∈ ℝ+ weighs between the sparsity of 𝒳 and how accurately {𝑪𝑿𭑗𝑹⊤}𭑀
𭑗=1 repro-

duce the training samples. By adjusting this parameter, both perfect noise free training data
as well as noisy training data can be handles by SeDiL. The second weighting factor 𝜅 ∈ ℝ+

controls the mutual coherence of the learned dictionary. The higher it is chosen, the lower
the dictionary's mutual coherence gets.

4.3 Separable Dictionary Learing (SeDiL)

Knowing that the feasible set of solutions to Problem (4.19) is restricted to a smooth mani-
fold allows one to apply the concepts explained in Chapter 3 to learn the dictionary. In the
following, I concretize the concepts for the situation at hand and first present the geome-
try of the considered problem followed by introducing the ingredients that are necessary to
implement the geometric dictionary learning algorithm. The presented formulas regarding
the geometry of S(𝑛, 𝑑) are derived in detail in [1].

4.3.1 Geometry of the Problem

In the proposed dictionary learning scheme, the considered manifold is a product manifold
given as

M ∶= ℝ𭑐×𭑟×𭑀 × S(ℎ, 𝑐) × S(𝑤, 𝑟), (4.20)

which is a Riemannian submanifold of ℝ𭑐×𭑟×𭑀 × ℝℎ×𭑐 × ℝ𭑤×𭑟. In the following, I denote an
element of M by 𝒴 ∶= (𝒳, 𝑪, 𝑹).

Due to the product structure of M, the tangent space of M at a point 𝒴 ∈ M is simply the
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product of all individual tangent spaces, i.e.

𝑇𝒴 M ∶= ℝ𭑐×𭑟×𭑀 × 𝑇𝑪 S(ℎ, 𝑐) × 𝑇𝑹 S(𝑤, 𝑟). (4.21)

Consequently, the orthogonal projection of some arbitrary point 𝒬 ∶= (𝒬1, 𝑸2, 𝑸3) ∈
ℝ𭑐×𭑟×𭑀 × ℝℎ×𭑐 × ℝ𭑤×𭑟 onto the tangent space 𝑇𝒴 M is

Π𭑇𝒴 M(𝒬) ∶= (𝒬1, Π𭑇𝑪 S(ℎ,𭑐)(𝑸2), Π𭑇𝑹 S(𭑤,𭑟)(𝑸3)). (4.22)

In concrete formulas, for the applied product of unit spheres manifold the tangent space at
a point 𝑫 ∈ S(𝑛, 𝑑) is given by

𝑇𝑫 S(𝑛, 𝑑) ∶= {Ξ ∈ ℝ𭑛×𭑑| ddiag(𝑫⊤Ξ) = 0𭑑×𭑑}, (4.23)

and the associated orthogonal projection of some matrix 𝑸 ∈ ℝ𭑛×𭑑 onto the tangent space
(4.23) reads as

Π𭑇𝑫 S(𭑛,𭑑)(𝑸) ∶= 𝑸 − 𝑫 ddiag(𝑫⊤𝑸). (4.24)

Each tangent space of M is endowed with the Riemannian metric inherited from the sur-
rounding Euclidean space, which for two points 𝒬 = (𝒬1, 𝑸2, 𝑸3) ∈ 𝑇𝒴 M and 𝒫 =
(𝒫1, 𝑷2, 𝑷3) ∈ 𝑇𝒴 M is given by

⟨𝒬, 𝒫⟩ ∶=
𭑀
∑
𭑗=1

tr(𝑸⊤
1,𭑗𝑷1,𭑗) + tr(𝑸⊤

2 𝑷2) + tr(𝑸⊤
3 𝑷3). (4.25)

Next, a way to compute geodesics on the considered manifold is required. While in general
there is no closed form solution to that problem, the case at hand allows for an efficient
implementation.

Let 𝒅 ∈ S𭑛−1 be a point on a unit sphere and let 𝒉 ∈ 𝑇𝒅 S𭑛−1 be a tangent vector at 𝒅, then
the geodesic in the direction of 𝒉 is a great circle given as

𝛾(𝒅, 𝒉, 𝑡) ∶=
⎧{
⎨{⎩

𝒅, if ‖𝒉‖2 = 0

𝒅 cos(𝑡‖𝒉‖2) + 𝒉 sin(𭑡‖𝒉‖2)
‖𝒉‖2

, otherwise.
(4.26)

Using this, the geodesic through 𝑫 ∈ S(𝑛, 𝑑) in the direction of 𝑯 ∈ 𝑇𝑫 S(𝑛, 𝑑) is simply
the combination of the great circles emerging from each column of 𝑫 in the direction of the
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corresponding column of 𝑯 , i.e.

ΓS(𭑛,𭑑)(𝑫, 𝑯, 𝑡) ∶= [𝛾(𝒅∶,1, 𝒉∶,1, 𝑡), … , 𝛾(𝒅∶,𭑑, 𝒉∶,𭑑, 𝑡)]. (4.27)

Now, let ℋ = (ℋ1, 𝑯2, 𝑯3) ∈ 𝑇𝒴 M be a given search direction on the considered product
manifold, due to this product structure a geodesic on M is given by

ΓM(𝒴, ℋ, 𝑡) = (𝒳 + 𝑡ℋ1, ΓS(ℎ,𭑐)(𝑪, 𝑯2, 𝑡), ΓS(𭑤,𭑟)(𝑹, 𝑯3, 𝑡)). (4.28)

To solve optimization problem (4.19), I employ a geometric conjugate gradient method as
explained in Section 3.2 adapted to the problem at hand. To that end, we need to understand
how the parallel transport 𝒯M between two tangent spaces is performed for the examined
manifold (4.21). Therefore, again first consider the geometry of S𭑛−1, for which the parallel
transport of a tangent vector 𝝃 ∈ 𝑇𝒅 S𭑛−1 along the great circle 𝛾(𝒅, 𝒉, 𝑡) reads as

𝜏(𝝃 , 𝒅, 𝒉, 𝑡) ∶= 𝝃 −
𝝃⊤𝒉
‖𝒉‖2

2
(𝒅‖𝒉‖2 sin(𝑡‖𝒉‖2) + 𝒉(1 − cos(𝑡‖𝒉‖2))). (4.29)

Again, due to the product structure of S(𝑛, 𝑑) the parallel transport of 𝜩 ∈ 𝑇𝑫 S(𝑛, 𝑑) along
the geodesic ΓS(𭑛,𭑑)(𝑫, 𝑯, 𝑡) is given by

𝒯S(𭑛,𭑑)(𝜩, 𝑫, 𝑯, 𝑡) ∶= [𝜏(𝝃∶,1, 𝒅∶,1, 𝒉∶,1, 𝑡), … , 𝜏(𝝃∶,𭑑, 𝒅∶,𭑑, 𝒉∶,𭑑, 𝑡)]. (4.30)

Thus, a tangent space element Ξ ∶= (Ξ1, 𝜩2, 𝜩3) ∈ 𝑇𝒴 M is transported in the direction of
ℋ ∈ 𝑇𝒴 M via

𝒯M(Ξ, 𝒴, ℋ, 𝑡) ∶= (Ξ1, 𝒯S(ℎ,𭑐)(𝜩2, 𝑪, 𝑯2, 𝑡), 𝒯S(𭑤,𭑟)(𝜩3, 𝑹, 𝑯3, 𝑡)). (4.31)

4.3.2 Implementation

To employ a CG optimization method, one first requires a way to compute the CG-update
parameter 𝛽(𭑖). To that end, several update formulas exist that lead to different behaviors
in applications and that have different theoretical convergence properties. Here, I employ
a hybridization of the Hestenes-Stiefel (HS) formula (3.9) and the Dai Yuan (DY) formula
(3.11), which is given by

𝛽(𭑖)
hyb = max (0, min(𝛽(𭑖)

DY, 𝛽(𭑖)
HS)). (4.32)
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This update formula has been suggested in [27] and as explained therein combines the good
numerical performance of HS with the desirable global convergence properties of DY.

To find an appropriate step size 𝛼(𭑖), I propose a Riemannian adaptation of the non-
monotone line search algorithm introduced in [143]. Standard monotone line search tech-
niques find the step size such that, at each iteration, the cost function decreases, whereas
non-monotone line search methods permit some temporary increase in the function value.
By that, those methods have the potential to improve the likelihood of finding a global mini-
mum of a non-convex optimization problem as well as to increase the convergence speed, cf.
[26]. This is especially useful in the present case, as the cost function is highly non-convex.
Most non-monotone line search techniques determine the bound of sufficient decrease by
taking the maximum value of the cost function over the last 𝑘 iterations. In contrast to that,
the method employed here utilizes a convex combination of the function values from all
previous iterations. To employ this method in my setting, some straightforward modifi-
cations have to be made to the original algorithm such that it operates along the geodesic
ΓM(𝒴, ℋ, 𝑡) instead of a straight line, see Algorithm 4.1 for the pseudocode. The line search

Algorithm 4.1 Non-Monotone Line Search on M at the 𝑖-th Iteration
Input: 𝑡(𭑖)

0 > 0, 0 < 𝑐1 < 1, 0 < 𝑐2 < 0.5 0 ≤ 𝜂(𭑖) ≤ 1, 𝑄(𭑖), 𝐶(𭑖)

Set: 𝑡 ← 𝑡(𭑖)
0

while 𝑓 (ΓM(𝒴(𭑖), ℋ(𭑖), 𝑡)) > 𝐶(𭑖) + 𝑐2𝑡⟨𝒢(𭑖), ℋ(𭑖)⟩ do
𝑡 ← 𝑐1𝑡

end while
Set: 𝑄(𭑖+1) ← 𝜂(𭑖)𝑄(𭑖) + 1,

𝐶(𭑖+1) ←
𭜂(𭑖)𭑄(𭑖)𭐶(𭑖)+𭑓(ΓM(𝒴(𭑖),ℋ(𭑖),𭑡))

𭑄(𭑖+1)

𝛼(𭑖) ← 𝑡,
Output: 𝛼(𭑖), 𝑄(𭑖+1), 𝐶(𭑖+1)

is initialized with 𝐶(0) = 𝑓 (𝒴(0)) and 𝑄(0) = 1.
Finally, let 𝑬𭑖𭑗 denote a square matrix whose 𝑖-th entry in the 𝑗-th column is equal to one

and all other entries being zero, the concrete formulas for the Euclidean gradient

∇𝑓 (𝒴) = ( 𭜕
𭜕𝒳 𝑓 , 𭜕

𭜕𝑪 𝑓 , 𭜕
𭜕𝑹 𝑓 ) (4.33)
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of the considered cost function (4.19) are

𭜕
𭜕𝒳 𝑓 = { 1

𭑀𝑪⊤(𝑪𝑿𭑗𝑹⊤ − 𝑺𭑗)𝑹 + 𭜆
𭑀

𭜕
𭜕𝑿𭑗

𝑔(𝑿𭑗)}
𭑀

𭑗=1
, (4.34)

𭜕
𭜕𝑪 𝑓 = 1

𭑀

𭑀
∑
𭑗=1

(𝑪𝑿𭑗𝑹⊤ − 𝑺𭑗)𝑹𝑿⊤
𭑗 + 𝜅 𭜕

𭜕𝑪 𝑟(𝑪), (4.35)

𭜕
𭜕𝑹 𝑓 = 1

𭑀

𭑀
∑
𭑗=1

(𝑪𝑿𭑗𝑹⊤ − 𝑺𭑗)⊤𝑪𝑿𭑗 + 𝜅 𭜕
𭜕𝑹𝑟(𝑹), (4.36)

with

𭜕
𭜕𝑿 𝑔(𝑿) =2

𭑐
∑
𭑘=1

𭑟
∑
𭑙=1

𝜌𝑥𭑘𭑙
1 + 𝜌𝑥2

𭑘𭑙
𝑬𭑘𭑙 (4.37)

being the gradient of the sparsity promoting function (4.7) with respect to 𝑿 , and

𭜕
𭜕𝑫𝑟(𝑫) = 𝑫 ∑

1≤𭑖<𭑗≤𭑑

2𝒅⊤
∶,𭑖𝒅∶,𭑗

1 − (𝒅⊤
∶,𭑖𝒅∶,𭑗)2 (𝑬𭑖𭑗 + 𝑬𭑗𭑖). (4.38)

being the gradient of the logarithmic barrier function (4.10). From this, the corresponding
Riemannian gradient is simply computed as given in Equation (3.3), using the orthogo-
nal projection (4.22). For legibility, the shorthand notation 𝒢(𭑖) ∶= 𝒢(𝒴(𭑖)) will be used
throughout the rest of this chapter to denote the Riemannian gradient computed at the 𝑖-th
iteration.

The complete SeDiL method that permits to learn a dictionary with a separable matrix
structure is summarized in Algorithm 4.2. ,

4.4 Experiments

4.4.1 Patch-Based Image Denoising

To show how dictionaries learned via SeDiL perform in real applications, I present the re-
sults achieved for denoising images corrupted by additive white Gaussian noise of different
standard deviation 𝜎noise. I chose this application as it can be seen as a standard bench-
mark for determining the performance of a dictionary and allows my method to be easily
compared with existing dictionary learning techniques. The images and the noise levels
chosen here are an excerpt of those commonly used in the literature. The peak signal-to-
noise ratio (PSNR) between the ground truth image vec(𝑺) ∈ ℝ𭑁 and the recovered image
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Algorithm 4.2 Separable Dictionary Learning (SeDiL)
Input: Initial dictionaries 𝑪(0) ∈ S(ℎ, 𝑐), 𝑹(0) ∈ S(𝑤, 𝑟), training data 𝒮 ∈ ℝℎ×𭑤×𭑀, param-

eters 𝜌, 𝜆, 𝜅, thresh
Set: 𝑖 ← 0, 𝒴(0) ← ({𝑪(0)𝑺𭑗𝑹(0)⊤}𭑀

𭑗=1, 𝑪(0), 𝑹(0)), 𝒢(0) ← Π𭑇𝒴(0) M(∇𝑓 (𝒴(0))), ℋ(0) ← −𝒢(0)

repeat
Compute 𝛼(𭑖), 𝑄(𭑖+1), 𝐶(𭑖+1) according to Algorithm 4.1 in conjunction with Equation
(4.19)
𝒴(𭑖+1) ← ΓM(𝒴(𭑖), ℋ(𭑖), 𝛼(𭑖)), cf. (4.28)
𝒢(𭑖+1) ← Π𭑇𝒴(𭑖+1) M(∇𝑓 (𝒴(𭑖+1))), cf. (4.34)-(4.36),(4.22)

ℋ(𭑖+1) ← −𝒢(𭑖+1) + 𝛽(𭑖)
ℎ𭑦𭑏𝒯 (𭑖+1)

ℋ(𭑖) , cf. (4.32), (4.31)
𝑖 ← 𝑖 + 1

until ‖𝒢(𭑖)‖2 < thresh ∨ 𝑖 = maximum # iterations
Output: 𝒴⋆ ← 𝒴(𭑖)

vec(𝑺⋆) ∈ ℝ𭑁 computed by

PSNR = 10 ln ⎛⎜⎜
⎝

2552𝑁
∑𭑁

𭑖=1(𝑠𭑖 − 𝑠⋆
𭑖 )2

⎞⎟⎟
⎠

(4.39)

is used to quantify the reconstruction quality. As an additional quality measure, I use the
Mean Structural SIMilarity Index (MSSIM) computed with the same set of parameters as
originally suggested in [130]. The MSSIM ranges between zero and one, with one mean-
ing perfect image reconstruction. Compared to the PSNR, the MSSIM better reflects the
subjective visual impression of quality.

I present the denoising performance of both a universal unstructured dictionary, i.e.
𝑫1 = 1 ⊗ 𝑪, and a universal separable dictionary 𝑫2 = 𝑹 ⊗ 𝑪, both learned from the
same training data using SeDiL. By universal, I mean that the dictionary is not specifi-
cally learned for a certain image or image class but is universally applicable to any images
showing natural scenes. Without loss of generality, I worked on square image-patches with
𝑤 = ℎ = 8, which is in accordance to the patch-sizes mostly used in the literature and
learned four times overcomplete dictionaries. For the unstructured dictionary, this results
in 𝑐 = 4𝑤ℎ, and for the separable one it leads to 𝑐 = 𝑟 = 2𝑤, i.e. 𝑪 and 𝑹 are of equal
dimensions and 𝑫2 = 𝑹 ⊗ 𝑪 ∈ ℝ4𭑤ℎ×𭑤ℎ is of the same size as its unstructured counterpart
𝑫1. For the training phase, 40 000 image-patches were extracted from four different exam-
ple images at random positions. Of course, these images are not considered further within
the performance evaluations. The training patches were normalized to have zero mean and
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unit ℓ2-norm. I initialized 𝑪 and 𝑹 with random matrices with normalized columns. Global
convergence to a local minimum has always been observed, regardless of the initialization.
The weighting parameters were empirically set to 𝜌 = 100 and 𝜆 = 𝜅 = 0.1

𭑐𭑟 . The result-
ing atoms of the unstructured dictionary 𝑫1 and the separable dictionary 𝑫2 = 𝑹 ⊗ 𝑪 are
shown in Figure 4.1(a) and 4.1(b), respectively.

(a) Atoms of unstructured dictionary. (b) Atoms of separable dictionary.

Figure 4.1: This figure show atoms learned by SeDiL of (a) unstructured dictionary 𝑫1 = 1⊗𝑪 and (b) separable
dictionary 𝑫2 = 𝑹 ⊗ 𝑪 for a patch size of (8 × 8). Each atom is shown as an (8 × 8) block where a black pixel
corresponds to the smallest negative entry, gray is a zero entry, and white corresponds to the largest positive
entry.

To denoise an image, first, the optimal sparse representations {𝑿⋆
𭑖 }𭑁

𭑖=1 of all possible over-
lapping noisy image-patches {𝑺𭑖}𭑁

𭑖=1 with respect to 𝑪, 𝑹 are found by solving

𝑿⋆
𭑖 = arg min

𝑿𭑖
‖𝑿𭑖‖1 + 𝜆𭑑‖𝑪𝑿𭑖𝑹⊤ − 𝑺𭑖‖2

𭐹, ∀𝑖 = 1, … , 𝑁, (4.40)

and a clean image-patch is computed from its sparse coefficients via 𝑺⋆
𭑖 = 𝑪𝑿⋆

𭑖 𝑹⊤. In
the present experiments, I employed the Fast Iterative Shrinkage-Thresholding Algorithm
(FISTA) [7] to solve Problem (4.40). The regularization parameter 𝜆𭑑 depends on the noise
level and I empirically set it to 𝜆𭑑 = 𭜎noise

100 . As I am considering all overlapping image-
patches, several solutions for the same pixel exist, and the final clean image is built by
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Table 4.1: This table shows the PSNR in dB and the MSSIM for denoising the five test images corrupted by five
different noise levels 𭜎noise. Each cell presents the results for the respective image and noise level for five differ-
ent methods: top left FISTA+K-SVD dictionary, top right FISTA+unstructured SeDiL, middle left FISTA+ODCT,
middle right FISTA+separable SeDiL, bottom BM3D.

lena barbara boat peppers house
𝜎noise / PSNR PSNR MSSIM PSNR MSSIM PSNR MSSIM PSNR MSSIM PSNR MSSIM

5 / 34.15 38.42 38.55 0.942 0.944 37.19 37.70 0.959 0.962 36.61 37.03 0.929 0.936 37.06 37.47 0.914 0.921 38.82 38.90 0.944 0.946
38.45 38.51 0.943 0.946 37.93 37.65 0.963 0.965 37.09 37.04 0.938 0.938 37.53 37.39 0.923 0.922 39.03 38.90 0.950 0.948
38.45 0.942 38.27 0.964 37.25 0.938 37.60 0.920 39.77 0.956

10 / 28.13 35.41 35.49 0.907 0.909 33.08 33.71 0.922 0.928 33.54 33.67 0.879 0.882 34.75 34.83 0.875 0.877 35.66 35.63 0.896 0.897
35.29 35.34 0.907 0.910 33.99 33.49 0.931 0.929 33.45 33.65 0.879 0.883 34.65 34.76 0.876 0.878 35.37 35.54 0.896 0.898
35.79 0.915 34.96 0.942 33.91 0.887 35.02 0.878 36.69 0.921

20 / 22.11 32.24 32.31 0.857 0.859 28.88 29.61 0.846 0.859 30.28 30.35 0.800 0.802 32.38 32.40 0.837 0.838 32.83 32.75 0.856 0.856
32.00 32.11 0.856 0.858 29.95 29.28 0.865 0.854 29.94 30.25 0.792 0.800 31.98 32.23 0.832 0.838 32.11 32.45 0.848 0.854
32.98 0.875 31.78 0.905 30.89 0.825 32.80 0.845 33.79 0.871

30 / 18.59 30.35 30.41 0.821 0.822 26.56 27.22 0.775 0.790 28.36 28.41 0.741 0.743 30.81 30.80 0.810 0.810 30.93 30.83 0.826 0.826
30.02 30.15 0.817 0.820 27.61 26.90 0.800 0.782 27.96 28.27 0.729 0.739 30.28 30.55 0.803 0.809 30.07 30.45 0.815 0.822
31.22 0.843 29.82 0.868 29.13 0.779 31.32 0.820 32.13 0.847

50 / 14.15 27.85 27.88 0.760 0.761 24.05 24.43 0.666 0.679 25.96 25.98 0.658 0.659 28.43 28.41 0.761 0.761 28.03 27.92 0.767 0.766
27.52 27.64 0.754 0.758 24.75 24.24 0.691 0.671 25.61 25.83 0.646 0.654 27.94 28.18 0.753 0.759 27.43 27.60 0.755 0.760
29.02 0.798 27.23 0.794 26.79 0.705 29.24 0.782 29.72 0.811

averaging all corresponding overlapping pixels. The achieved results for the five images
and the five noise level are given in Table 4.1.

To compare and rank the learned dictionaries among existing state-of-the-art techniques,
I learned a universal dictionary 𝑫KSVD with the K-SVD algorithm from the same training
set as used for SeDiL and that is of equal dimension as the unstructured dictionary 𝑫1.
Then, I used this dictionary together with FISTA to solve the same denoising Problems as
described above. From Table 4.1, it can be seen that using 𝑫1 always yields similar denois-
ing results compared to utilizing 𝑫KSVD. Employing the separable dictionary 𝑫2 leads to
results that are slightly worse compared to employing its unstructured counterpart. This is
the tribute that has to be paid for its predefined structure. However, the separability allows
a fast implementation just as the popular and also separable Overcomplete Discrete Cosine
Transform (ODCT). Here, it can be observed that the separable dictionary 𝑫2 learned by
SeDiL outperforms the ODCT for most images, while requiring exactly the same computa-
tional cost.

4.4.2 Global Face Image Inpainting

The second advantage besides computational efficiency that comes along with the capa-
bility of learning a separable dictionary is that SeDiL permits to determine sparse repre-
sentations for image-patches whose dimensions let other unstructured dictionary learning
methods fail due to numerical reasons. In order to demonstrate the capability of SeDiL
within this domain, a separable dictionary is learned from a training set that consists of
12 000 images each of dimension (64 × 64) showing frontal face views of different persons.
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These training images were randomly extracted from the 13 228 faces of the "Cropped La-
beled Faces in the Wild Database" 1 [65, 112]. The remaining 1228 images were used for the
inpainting experiments as explained below. Note that the face positions and the facial ex-
pressions in the pictures are arbitrary and diverse; see Figure 4.3 for five exemplary chosen
training face images. The dimensions of the resulting matrices 𝑹, 𝑪 were set to (64 × 128)
and all other parameters required for the learning procedure have been chosen as above.

The ability of the separable dictionary to capture the global structure and information that
underlies the training samples is illustrated by a face image inpainting experiment, where
large missing regions have to be filled up solely based on the available measurements and
the information contained in the dictionary. For this experiment, I assume that the position
of the pixels that have to be filled up are given. The inpainting procedure is again conducted
by applying FISTA on the inverse problem

𝑿⋆ = arg min
𝑿

‖𝑿‖1 + 𝜆𭑑‖ pr(𝑪𝑿𝑹⊤) − 𝒚‖2
2, (4.41)

where 𝜆𭑑 is again a weighting parameter, the measurements 𝒚 ∈ ℝ𭑚 are the available
image data, and pr(⋅) ∶ ℝ𭑤×ℎ → ℝ𭑚 is a projection onto the pixel positions that correspond
to the available measurements. An excerpt of the achieved results is presented in Figure
4.3. From these results, it can be seen that the learned dictionary is able to reproduce the
global structure that underlies the training data, which is certainly not possible with an
analytic dictionary such as the ODCT. I like to mention that this experiment should not be
seen as a highly sophisticated face inpainting method, but rather should supply evidence
that SeDiL is able to learn a separable dictionary that properly extracts and recovers the
global information contained in the employed training set.

Figure 4.2: This figure shows five exemplarily chosen training images.

1http://itee.uq.edu.au/~conrad/lfwcrop/
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4.5 Summary

Figure 4.3: This figure presents five exemplary large scale inpainting results. The first row shows the original
images from which large regions have been removed in the second row. The last row shows the inpainting
results achieved by SeDiL.

4.5 Summary

In this chapter I introduced a new dictionary learning algorithm called SeDiL that is able
to learn both conventional unstructured dictionaries as well as dictionaries with a separa-
ble matrix structure. Employing a separable structure on dictionaries reduces the general
computational complexity of both learning and applying the dictionary from 𝑂(𝑛) to 𝑂(√𝑛)
compared to employing unstructured dictionaries, where 𝑛 denotes the size of the consid-
ered signals. Due to this, separable dictionaries can be learned using far larger signal di-
mensions as compared to those used for learning unstructured dictionaries. Furthermore,
they can be applied very efficiently in image reconstruction tasks. Another advantage of
SeDiL is that it permits to control the mutual coherence of the resulting dictionary during
the learning phase. To that end, I introduce a new mutual coherence measure and showed
how it is related to the classical mutual coherence measure. The overall optimization pro-
cedure for learning the dictionary is solved by an efficient geometric conjugate gradient
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algorithm that exploits the underlying manifold structure. In this optimization framework
both the dictionary and the sparse codes of the training samples are updated simultane-
ously. For the classical small scale image processing case, I presented numerical image
denoising results that show the state-of-the-art performance of the proposed algorithm.
The ability to learn sparse representations of large image-patches is demonstrated by face
image inpainting experiments.
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Geometric Analysis Operator Learning

This chapter is partially based on the published work:

S. Hawe, M. Kleinsteuber, and K. Diepold. Analysis Operator Learning and Its
Application to Image Reconstruction. In IEEE Transactions on Image Processing,
22(6), pp. 2138--2150. 2013.

S. Hawe, M. Kleinsteuber, and K. Diepold. Cartoon-Like Image Reconstruction
via Constrained ℓ𭑝-Minimization. In IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 717--720. 2012.

S. Hawe, M. Kleinsteuber, and K. Diepold. Dense Disparity Maps from Sparse
Disparity Measurements. In IEEE International Conference on Computer Vision, pp.
2126--2133. 2011.

Exploiting a priori known structural information lies at the core of many image reconstruc-
tion methods that can be stated as inverse problems. The synthesis model, which assumes
that images can be decomposed into a linear combination of very few atoms of some dic-
tionary, is now a well-established tool for designing image reconstruction algorithms. An
interesting alternative is the analysis model, where the signal is multiplied by an analysis
operator and the outcome is assumed to be sparse. This approach has only recently gained
increasing interest. The quality of reconstruction methods based on the analysis model
severely depends on the right choice of a suitable analysis operator.

In this chapter, I present an algorithm for learning an analysis operator from training im-
ages called Geometric Analysis Operator Learning (GOAL). This method is based on a non-
convex ℓ𭑝-norm minimization on the set of full-rank matrices with normalized columns.
This admissible set of solutions admits a manifold structure known as the Oblique Mani-
fold, which is exploited to efficiently solve the arising optimization problem by a geometric
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conjugate gradient technique. Additionally, a penalty term is introduced that prevents the
algorithm from learning redundant atoms and permits to control the mutual coherence of
a learned operator.

Through a series of synthetic experiments, I show that GOAL outperforms all existing
analysis operator learning techniques in terms of computational complexity, accuracy in
finding a generating ground truth operator, and generality. To evaluate how an analysis
operator learned by GOAL performs in real world image processing applications, I com-
pare its performance as a regularizer for solving inverse problems with employing other
operators learned by state-of-the-art analysis operator learning techniques. Concretely, the
inverse problems I consider here are image denoising, image inpainting, and single image
superresolution. The obtained numerical results show that GOAL outperforms all existing
analysis operator learning techniques and that it achieves competitive performance in all
evaluated applications compared to specialized state-of-the-art approaches.

5.1 Introduction

5.1.1 Problem Description

Linear inverse problems are ubiquitous in the field of image processing. Prominent exam-
ples are image denoising [97], image inpainting [10], image superresolution [53], or image
reconstruction from few indirect measurements as in Compressive Sensing [17]. Basically,
in all these problems the goal is to reconstruct an unknown image 𝒔 ∈ ℝ𭑛 as accurately as
possible from a set of indirect, incomplete, and maybe corrupted measurements 𝒚 ∈ ℝ𭑚

with 𝑛 ≥ 𝑚, see [69] for a detailed introduction to inverse problems. Formally, this mea-
surement process can be written as

𝒚 = 𝑨𝒔 + 𝝐, (5.1)

where the vector 𝝐 ∈ ℝ𭑚 models sampling errors and noise, and 𝑨 ∈ ℝ𭑚×𭑛 is the measure-
ment matrix modeling the respective sampling process. In many cases, reconstructing 𝒔 by
simply inverting Equation (5.1) is ill-posed because either the exact measurement process
and hence 𝑨 is unknown, as for example in blind image deconvolution, or the number of
observations is much smaller compared to the dimension of the signal, which is the case
in Compressive Sensing and image inpainting. To overcome this ill-posedness and to sta-
bilize the solution, prior knowledge or assumptions about the structure of images can be
exploited.
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5.1.2 Synthesis Model and Dictionary Learning

For didactical reasons, in this section I very briefly review the synthesis model as described
in more detail in Chapter 1 and 2. Its underlying assumption is that natural images admit
a sparse representation 𝒙 ∈ ℝ𭑑 over some dictionary 𝑫 ∈ ℝ𭑛×𭑑 with 𝑑 ≥ 𝑛. A vector 𝒙 is
called sparse when most of its coefficients are equal to zero or small in magnitude. When 𝒔
admits a sparse representation over 𝑫, it can be expressed as a linear combination of only
very few columns of the dictionary {𝒅𭑖}𭑑

𭑖=1, called atoms, given as

𝒔 = 𝑫𝒙. (5.2)

For 𝑑 > 𝑛, the dictionary is said to be overcomplete or redundant.
Now, using the knowledge that (5.2) allows a sparse solution, an estimation of the original

signal in Equation (5.1) can be obtained from the acquired measurements 𝒚 by first solving

𝒙⋆ ∈ arg min𝒙 𝑔(𝒙) subject to ‖𝑨𝑫𝒙 − 𝒚‖2
2 ≤ 𝜖, (5.3)

and afterwards synthesizing the signal from the computed sparse coefficients via 𝒔⋆ = 𝑫𝒙⋆.
In Problem (5.3), 𝑔 ∶ ℝ𭑑 → ℝ is a function that promotes or measures sparsity, and 𝜖 ∈ ℝ+

is an estimated upper bound on the noise power ‖𝝐‖2
2. Note that here I assumed the error

to be normally distributed and, therefore employed the ℓ2-norm for measuring how closely
the reconstruction resembles the measurements. Depending on the assumed noise statistics
any other appropriate error term could be employed. Regarding the sparsity promoting
function 𝑔, common choices include the ℓ𭑝-norm of a vector 𝒗

‖𝒗‖𭑝
𭑝 ∶= ∑

𭑖
|𝑣𭑖|𭑝, (5.4)

with 0 < 𝑝 ≤ 1, or differentiable approximations of (5.4). As the signal is synthesized from
the sparse coefficients, the reconstruction model (5.3) is called the synthesis reconstruction
model, cf. [45].

As explained in detail in Section 2.1.1, to find the minimizer of Problem (5.3) various algo-
rithms based on convex or non-convex optimization, greedy pursuit methods, or Bayesian
frameworks exist that may employ different choices of 𝑔. Common to all these algorithms
is that their performance regarding the reconstruction quality severely depends on an ap-
propriately chosen dictionary 𝑫. Ideally, one is seeking for a dictionary where 𝒔 can be
represented most accurately with a coefficient vector 𝒙 that is as sparse as possible. Recall
that dictionaries can either be defined analytically or learned from example signals of the
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considered signal class of interest. While the former are universally applicable and offer fast
implementations, the latter permit to find sparser representations of signals that belong to
the considered signal class, which in turn leads to increased performance in applications.
An in depth introduction on the topic of dictionary learning together with a review of sev-
eral state-of-the-art methods is given in Section 2.1.2.

5.1.3 Analysis Model

An alternative to the synthesis model (5.3) for reconstructing a signal, is to solve

𝒔⋆ ∈ arg min𝒔 𝑔(𝜴𝒔) subject to ‖𝑨𝒔 − 𝒚‖2
2 ≤ 𝜖, (5.5)

which is known as the analysis model [45]. Therein, 𝜴 ∈ ℝ𭑎×𭑛 with 𝑎 ≥ 𝑛 is called the analysis
operator, and the analyzed vector 𝜶 ∶= 𝜴𝒔 ∈ ℝ𭑎 is assumed to be sparse, where sparsity is
again measured via an appropriate function 𝑔. As for the synthesis model given in Equation
(5.3), the error is assumed to be normally distributed. In contrast to the synthesis model,
where a signal is fully described by the non-zero elements of 𝒙, in the analysis model the
zero elements of the analyzed vector 𝜶 describe the subspace containing the signal. To
emphasize this difference, the term co-sparsity has been introduced in [85], which simply
counts the number of zero elements of 𝜶.

As the level of sparsity in the synthesis model depends on the chosen dictionary, the co-
sparsity of an analyzed signal depends on the chosen analysis operator 𝜴. Off-the-shelf
analysis operators proposed in the literature include the fused Lasso [124], the translation
invariant wavelet transform [117], and probably best known the finite difference operator
which is closely related to the total-variation [111]. They all have shown very good perfor-
mance when used within the analysis model for solving diverse inverse problems in image
processing. The question is: Can the performance of analysis based signal reconstruction tasks be
improved by applying a learned analysis operator instead of an analytic one, as it is the case for the
synthesis model where learned dictionaries outperform analytic dictionaries? In [45], it has been
discussed that the two models differ significantly, and the naïve way of learning a dictionary
and simply employing its transposed or its pseudoinverse as the learned analysis operator
fails. Hence, different algorithms are required to learn an analysis operator from example
data.
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5.2 Analysis Operator Learning

5.2.1 General Scheme

The topic of analysis operator learning has only recently started being investigated, and
only a small number of prior work exists. Basically, given a set of 𝑀 training samples {𝒔𭑖 ∈
ℝ𭑛}𭑀

𭑖=1, the general goal of analysis operator learning techniques is to find a matrix 𝜴 ∈
ℝ𭑎×𭑛 with 𝑎 ≥ 𝑛, which leads to a maximally sparse representation 𝜴𝒔𭑖 of each of the 𝑀
training samples. For the case of image processing, the training samples are distinctive
vectorized image-patches extracted from a set of training images. Let 𝑺 = [𝒔1, … , 𝒔𭑀] ∈
ℝ𭑛×𭑀 be a matrix where its columns constitute the training samples, then the problem can
be formally written as

𝜴⋆ ∈ arg min
𭜴

𝐺(𝜴𝑺) subject to 𝜴 ∈ ℭ, (5.6)

where 𝜴 is required to be an element of some constraint set ℭ, and 𝐺 is an appropriate
function that measures the sparsity of the matrix 𝜴𝑺. In Section 2.2.2, I explain the rele-
vant analysis operator learning methods that aim at tackling Problem (5.6). These methods
mainly differ in the used sparsity measure and the employed constraint set, which is neces-
sary to avoid the trivial solution 𝜴 = 0𭑎×𭑛 and that furthermore permits to enforce certain
properties on the operator. In the following I provide a motivation for the sparsity measure
and the constraint set employed here to tackle the analysis operator learning problem.

5.2.2 Motivation of the Proposed Approach

Sparsity Measure

In the quest for designing an analysis operator learning algorithm, the natural question
arises: What properties should an analysis operator possess to call it a good operator depending
on ones needs? Clearly, given a signal 𝒔 that belongs to a certain signal class, the aim is to
find an operator 𝜴 such that 𝜴𝒔 is as sparse as possible, which clearly motivates to minimize
the expected sparsity 𝔼[𝑔(𝜴𝒔)]. All state-of-the-art learning methods presented in Section
2.2.2 can be explained in this way, i.e. for their employed measure of sparsity 𝑔 they aim
at learning an analysis operator 𝜴 that minimizes the empirical arithmetic mean of the
sparsity over all 𝑀 randomly drawn training samples. This, however, does not necessarily
mean to learn the optimal operator if the purpose is to sparsely represent a large set of signals
that all belong to the same class whose intraclass diversity is large, e.g. the class of natural
image-patches. The reason for this is that even if the expected sparsity with respect to the
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Figure 5.1: This figure illustrates two possible distributions 𭑃𭑟(𭑔(𭜴𭑖𝒔) ≤ 𭑥) for two analysis operators. 𭜴1:
low expectation 𭑔1, high variance (dashed line); 𭜴2: moderate expectation 𭑔2, moderate variance (solid line).
Although 𭜴1 yields a smaller expectation, there are more signals compared to 𭜴2 where the sparsity model
fails, i.e. 𭑃𭑟(𭑔(𭜴1𝒔) ≥ 𭑢) > 𭑃𭑟(𭑔(𭜴2𝒔) ≥ 𭑢) for some suitable upper bound 𭑢.

learned operator is low, there is a high probability that some realizations of this signal class
cannot be represented in a sparse way, i.e. that for a given upper bound 𝑢, the probability
𝑃𝑟(𝑔(𝜴𝒔) ≥ 𝑢) exceeds a tolerable value. This phenomenon is illustrated in Figure 5.1.

Because of this, the algorithm presented here aims at minimizing the empirical expecta-
tion of a sparsifying function 𝑔(𝜴𝒔𭑖) for all training samples 𝒔𭑖, while additionally keeping
its empirical variance moderate. In other words, I try to avoid that the analyzed vectors of
many similar training samples become "very sparse" and consequently prevent 𝜴 from being
adapted to the remaining ones that show more diverse and more interesting structure. For
image processing, this is of particular interest if the training patches are chosen randomly
from natural images, because there is a high probability of collecting a large subset of very
similar patches, e.g. very smooth homogeneous regions, that bias the learning process.

Concretely, the goal is to find an 𝜴 that minimizes both the squared empirical mean

𝑔2 = ( 1
𭑀

𭑀
∑
𭑖=1

𝑔(𝜴𝒔𭑖))2, (5.7)
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as well as the empirical variance

𝜎2
𭑔 = 1

𭑀

𭑀
∑
𭑖=1

(𝑔(𝜴𝒔𭑖) − 𝑔)2 , (5.8)

of the sparsity of all 𝑀 analyzed vectors. Here, I achieve this by minimizing the sum of (5.7)
and (5.8), which results in

𝑔2 + 𝜎2
𭑔 = 𝑔2 + 1

𭑀

𭑀
∑
𭑖=1

𝑔(𝜴𝒔𭑖)2 + 𝑔2 − 2𝑔(𝜴𝒔𭑖)𝑔

= 𝑔2 + 1
𭑀

𭑀
∑
𭑖=1

𝑔2 − 2
𭑀

𭑀
∑
𭑖=1

𝑔(𝜴𝒔𭑖)𝑔 + 1
𭑀

𭑀
∑
𭑖=1

𝑔(𝜴𝒔𭑖)2

= 2𝑔2 − 2𝑔 1
𭑀

𭑀
∑
𭑖=1

𝑔(𝜴𝒔𭑖) + 1
𭑀

𭑀
∑
𭑖=1

𝑔(𝜴𝒔𭑖)2

= 1
𭑀

𭑀
∑
𭑖=1

𝑔(𝜴𝒔𭑖)2. (5.9)

Using 𝑔(⋅) = 1
𭑝‖ ⋅ ‖𭑝

𭑝, and introducing the factor 1
2 together with the shorthand notation

𝑽 = 𝜴𝑺 ∈ ℝ𭑎×𭑀, the final sparsity measure I suggest here reads as

𝐽𭑝(𝑽) ∶= 1
2𭑀

𭑀
∑
𭑖=1

(1
𭑝

𭑎
∑
𭑗=1

|𝑣𭑗𭑖|𭑝)2 = 1
2𭑀

𭑀
∑
𭑖=1

(1
𭑝‖𝒗∶,𭑖‖

𭑝
𭑝)2, (5.10)

with 0 ≤ 𝑝 ≤ 1.

Constraint Set and Penalty Functions

Now, going back to the problem of learning an analysis operator, certainly, without any
constraints on 𝜴, the useless solution 𝜴 = 0𭑎×𭑛 is the global minimizer of Problem (5.6).
To avoid the trivial solution and to enforce certain properties on the operator as explained
later in this section, I suggest to regularize the problem by imposing the following three
constraints on 𝜴.

(i) The rows 𝝎𭑖,∶ of the analysis operator 𝜴 have unit Euclidean norm, i.e. ‖𝝎𭑖,∶‖2 = 1 for
𝑖 = 1, … , 𝑎.

(ii) The analysis operator 𝜴 has full-rank, i.e. rk(𝜴) = 𝑛.

(iii) The analysis operator 𝜴 does not have linear dependent rows, i.e. 𝝎𭑖,∶ ≠ ±𝝎𭑗,∶ for
𝑖 ≠ 𝑗.
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Constraint (i) is a common regularization employed in dictionary/analysis operator learn-
ing algorithms and avoids ambiguities due to scaling, i.e. when the entries of a row-vector
𝝎𭑖,∶ are all small then 𝝎𭑖,∶ will be small as well and no information is gained by that. The
rank condition (ii) on 𝜴 is motivated by the fact that different input samples 𝒔1, 𝒔2 ∈ ℝ𭑛

with 𝒔1 ≠ 𝒔2 should be mapped to different analyzed vectors 𝜴𝒔1 ≠ 𝜴𝒔2. With Condition
(iii) useless redundant transform coefficients in an analyzed vector are avoided.

The two constraints (i) and (ii) motivate to consider the set of full-rank matrices with
normalized columns, which has the nice property of admitting a manifold structure known
as the Oblique Manifold [127]

OB(𝑛, 𝑎) ∶= {𝑿 ∈ ℝ𭑛×𭑎∣ rk(𝑿) = 𝑛, ddiag(𝑿⊤𝑿) = 𝑰𭑎}. (5.11)

This definition only yields a non-empty set if 𝑎 ≥ 𝑛, which is the case examined here. Thus,
from now on I consider 𝑎 ≥ 𝑛. Remember that by constraint (i) I require the rows of 𝜴 to
have unit Euclidean norm. Hence, I restrict the transposed of the learned analysis operator
to be an element of the oblique manifold, i.e. 𝜴⊤ ∈ OB(𝑛, 𝑎).

Since OB(𝑛, 𝑎) is open and dense in the set of matrices with normalized columns, an
additional penalty term is necessary that ensures the result to adhere to the rank constraint
(ii) and that prevents iterates from approaching the boundary of OB(𝑛, 𝑎). Due to this, first
consider the following lemma.

Lemma 5.1. For all elements 𝑿 ∈ OB(𝑛, 𝑎) with 1 < 𝑛 ≤ 𝑎 the inequality

0 < det (1
𭑎 𝑿𝑿⊤) ≤ ( 1

𭑛)𭑛 (5.12)

holds true.

Proof. Due to the full-rank condition on 𝑿 , the Gramian matrix 𝑿𝑿⊤ is positive definite,
consequently the strict inequality 0 < det(1

𭑎 𝑿𝑿⊤) applies. To see the second inequality of
Lemma 5.1, due to the unit norm columns of 𝑿 observe that

‖𝑿‖2
𭐹 = tr(𝑿𝑿⊤) = 𝑎, (5.13)

which implies tr(1
𭑎 𝑿𝑿⊤) = 1. Since the trace of a matrix is equal to the sum of its eigen-

values, which are strictly positive in the present case, it follows that the strict inequality
0 < 𝜆𭑖 < 1 holds true for all eigenvalues 𝜆𭑖, 𝑖 = 1, … , 𝑛 of 1

𭑎 𝑿𝑿⊤. From the well-known
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relation between the arithmetic- and the geometric-mean it can be seen that

𭑛√∏ 𝜆𭑖 ≤ 1
𭑛 ∑ 𝜆𭑖. (5.14)

Since the determinant of a matrix is equal to the product of its eigenvalues, together with
∑ 𝜆𭑖 = tr(1

𭑎 𝑿𝑿⊤) = 1, it follows that

det (1
𭑎 𝑿𝑿⊤) = ∏ 𝜆𭑖 ≤ ( 1

𭑛)𭑛, (5.15)

which completes the proof. �

Now, considering Lemma 5.1 and recall that 𝜴⊤ ∈ OB(𝑛, 𝑎), I eventually propose to en-
force the full-rank constraint through minimizing the penalty function

ℎ(𝜴) ∶= − 1
𭑛 ln(𭑛) ln det (1

𭑎 𝜴⊤𝜴), (5.16)

with the normalization factor 1
𭑛 ln(𭑛) arising from Equation (5.15).

Next, to enforce Condition (iii), the following result proves useful.

Lemma 5.2. For a matrix 𝑿 ∈ OB(𝑛, 𝑎) with 1 < 𝑛 ≤ 𝑎, the inequality |𝒙⊤
∶,𭑖𝒙∶,𭑗| ≤ 1 applies, where

equality holds true if and only if 𝒙∶,𭑖 = ±𝒙∶,𭑗.

Proof. By the definition of OB(𝑛, 𝑎) the columns of 𝑿 are normalized, consequently Lemma
5.2 directly follows from the well-known Cauchy-Schwarz inequality. �

Using Lemma 5.2, Condition (iii) can be enforced by minimizing the logarithmic barrier
function of the scalar products of all distinctive rows of 𝜴, i.e.

𝑟(𝜴) ∶= − 2
𭑎(𭑎−1) ∑

1≤𭑖<𭑗≤𭑎
ln(1 − (𝝎𭑖,∶𝝎⊤

𭑗,∶)2), (5.17)

with 𭑎(𭑎−1)
2 being the number of summands.

Finally, combining all introduced constraints, the optimization problem I propose here
for learning the transposed analysis operator reads as

𝜴⊤ ∈ arg min
𝑿∈OB(𭑛,𭑎)

𝐽𭑝(𝑿⊤𝑺) + 𝜅 ℎ(𝑿⊤) + 𝜇 𝑟(𝑿⊤). (5.18)

Therein, the two weighting factors 𝜅, 𝜇 ∈ ℝ+ control the influence of the two constraints
on the final analysis operator.
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Influence of the Weighting Parameters

In the following, I briefly discuss how the two penalty functions 𝑟 and ℎ and the weighting
parameters 𝜅 and 𝜇 influence an operator learned by the proposed algorithm. First, the
following lemma clarifies the role of 𝜅.

Lemma 5.3. Let 𝜴 be a minimum of ℎ in the set of transposed oblique matrices, i.e.

𝜴⊤ ∈ arg min
𝑿∈OB(𭑛,𭑎)

ℎ(𝑿⊤), (5.19)

then the condition number of 𝜴 is equal to one.

Proof. It is well-known that equality of the arithmetic and the geometric mean in Equation
(5.14) holds true, if and only if all eigenvalues 𝜆𭑖 of 1

𭑎 𝑿𝑿⊤ are identical, i.e. 𝜆1 = … = 𝜆𭑛.
Hence, if 𝜴⊤ ∈ arg min

𝑿∈OB(𭑛,𭑎)
ℎ(𝑿⊤) holds, then it follows that det(1

𭑎 𝜴⊤𝜴) = ( 1
𭑛)𭑛, and

consequently all singular values of 𝜴 coincide. This implies that the condition number of
𝜴, which is defined as the quotient of the largest to the smallest singular value, is equal to
one. �

With other words, the minima of Problem (5.19) are uniformly normalized tight frames
(UNTF), which have been used in [139] to regularize the analysis operator learning prob-
lem. For the algorithm proposed here, it can be concluded from Lemma 5.3 that the larger
𝜅 is chosen, the smaller the condition number of 𝜴 gets, approaching one at the limit. Thus,
learning analysis operators that are UNTFs is a special case of my method. To further un-
derstand how the condition of an analysis operator influences its applicability in signal
processing tasks, remember the well-known inequality

𝜎min‖𝒔1 − 𝒔2‖2 ≤ ‖𝜴𝒔1 − 𝜴𝒔2‖2 ≤ 𝜎max‖𝒔1 − 𝒔2‖2, (5.20)

with 𝜎min being the smallest singular value of 𝜴 and 𝜎max being the largest one, respec-
tively. From this inequality it follows that an analysis operator found with a large 𝜅, i.e.
obeying 𝜎min ≈ 𝜎max, carries over distinctness of different signals to their analyzed ver-
sions. In other words, different signals are mapped to different analyzed vectors, which
in turn helps to to find a unique solution of inverse problems that are regularized by the
analysis model.

The second weighting parameter 𝜇 controls the influence of the penalty term (5.17) on
the learning process, and consequently regulates the redundancy between the rows of the
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5.3 Geometric Analysis Operator Learning Algorithm (GOAL)

analysis operator. This in turn avoids useless redundant coefficients in an analyzed vector
𝜴𝒔. To show further implications, consider the following lemma.

Lemma 5.4. The difference between the 𝑖-th and the 𝑗-th entry of an analyzed vector 𝜴𝒔 is bounded
by

|𝝎𭑖,∶𝒔 − 𝝎𭑗,∶𝒔| ≤ √2(1 − 𝝎𭑖,∶𝝎⊤
𭑗,∶) ‖𝒔‖2, (5.21)

with 𝝎𭑖,∶, 𝝎𭑗,∶ again being the 𝑖-th and 𝑗-th row of 𝜴.

Proof. From the Cauchy-Schwarz inequality one gets

|𝝎𭑖,∶𝒔 − 𝝎𭑗,∶𝒔| = |(𝝎𭑖,∶ − 𝝎𭑗,∶)𝒔| ≤ ‖𝝎𭑖,∶ − 𝝎𭑗,∶‖2‖𝒔‖2. (5.22)

Since by definition ‖𝝎𭑖,∶‖2 = ‖𝝎𭑗,∶‖2 = 1, it follows that ‖𝝎𭑖,∶ − 𝝎𭑗,∶‖2 = √2(1 − 𝝎𭑖,∶𝝎⊤
𭑗,∶). �

Lemma 5.4 implies, that if the 𝑖-th entry of the analyzed vector is significantly larger than
zero, then a large absolute value of 𝝎𭑖,∶𝝎⊤

𭑗,∶ prevents the 𝑗-th entry from being small. To
achieve a high level of co-sparsity, this is an unwanted effect that GOAL avoids via the
function 𝑟 given in Equation (5.17). The larger 𝜇 is chosen, the more weight is assigned to
𝑟 and the more diverse the rows of 𝜴 become. I want to mention here, that the same effect
is achieved by minimizing the mutual coherence of the analysis operator, which is given
as max

𭑖≠𭑗
|𝝎𭑖,∶𝝎⊤

𭑗,∶|. My experiments suggest that enlarging 𝜇 leads to minimizing the mutual
coherence of an analysis operator.

Now, having introduced all necessary ingredients for the analysis operator learning
method GOAL, in the following section, I explain how the manifold structure of OB(𝑛, 𝑎)
together with the concepts introduced in Chapter 3 can be exploited to efficiently solve the
associated optimization problem.

5.3 Geometric Analysis Operator Learning Algorithm (GOAL)

Knowing that the feasible set of solutions to Problem (5.18) is restricted to a smooth mani-
fold permits to formulate a geometric conjugate gradient (CG)-method to learn the analysis
operator. In this subsection, I present all necessary ingredients to implement this approach.
Results regarding the geometry of OB(𝑛, 𝑎) are derived e.g. in [127]. To enhance legibility,
and since the dimensions 𝑛 and 𝑎 are fixed throughout the rest of this chapter, the oblique
manifold is further on denoted by OB.
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Chapter 5 Geometric Analysis Operator Learning

First, as OB is a submanifold of the product of unit spheres manifold, all formulas re-
grading the tangent space, the orthogonal projection onto the tangent space, the geodesics,
and the parallel transport are equivalent to those given in Section 4.3. Next, to employ a
geometric CG-method, a differentiable cost function 𝑓 is required. However, the original
cost function presented in Problem (5.18) is not differentiable due to the non-smoothness
of the ℓ𭑝-pseudo-norm (5.10). To overcome this problem, I exchange Function (5.10) with a
smooth approximation that is concretely given as

𝐽𭑝,𭜈(𝑽) ∶= 1
2𭑀

𭑀
∑
𭑗=1

⎛⎜
⎝

1
𭑝

𭑎
∑
𭑖=1

(𝑣2
𭑖𭑗 + 𝜈)

𭑝
2 ⎞⎟
⎠

2
, (5.23)

with 𝜈 ∈ ℝ+ being a smoothing parameter. The smaller 𝜈 is chosen, the more closely
the approximation resembles the original function (5.10). Now, to implement the operator
learning algorithm the gradient of the cost function is required. Using 𝑽 = 𝜴𝑺 together
with the shorthand notation 𝑧𭑖𭑗 ∶= (𝜴𝑺)𭑖𭑗, the gradient of the sparsity inducing function
(5.23) reads as

𭜕
𭜕𭜴 𝐽𭑝,𭜈(𝜴𝑺) = ⎡⎢

⎣
1
𭑀

𭑀
∑
𭑗=1

1
𭑝

𭑎
∑
𭑖=1

(𝑧2
𭑖𭑗 + 𝜈)

𭑝
2

𭑎
∑
𭑖=1

(𝑧𭑖𭑗(𝑧2
𭑖𭑗 + 𝜈)

𭑝
2 −1𝑬𭑖𭑗)⎤⎥

⎦
𝑺⊤. (5.24)

Next, I reformulate the rank penalty term (5.16) as

ℎ(𝜴) = − 1
𭑛 ln(𭑛) ln det (1

𭑎 𝜴⊤𝜴)

= − 1
𭑛 ln(𭑛) ln ( ∏

𭑖

1
𭑎 𝜆𭑖)

= − 1
𭑛 ln(𭑛) ln ( 1

𭑎𭑛 ∏
𭑖

𝜆𭑖)

= ln(𭑎)
ln(𭑛) − 1

𭑛 ln(𭑛) ln det(𝜴⊤𝜴), (5.25)

with 𝜆𭑖 denoting the eigenvalues of 𝜴⊤𝜴. This reformulation is necessary to avoid numer-
ical instabilities in real implementations when 𝑛 and 𝑎 become so large that the factor 1

𭑎𭑛

dominates the penalty term and leads to ℎ(𝜴) = − ln(0) = ∞, independent of the true
rank of the operator. The gradient of the rank penalty term is not affected by this reformu-
lation and is given as

𭜕
𭜕𭜴ℎ(𝜴) = − 2

𭑛 ln(𭑛)𝜴(𝜴⊤𝜴)−1. (5.26)
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Last, with 𝑬𭑗𭑖 denoting a square matrix whose 𝑖-th entry in the 𝑗-th column is equal to one
and all other entries being zero the gradient of the logarithmic barrier function (5.17) reads
as

𭜕
𭜕𭜴 𝑟(𝜴) = 2

𭑎(𭑎−1)
⎡⎢
⎣

∑
1≤𭑖<𭑗≤𭑎

2𝝎𭑖,∶𝝎⊤
𭑗,∶

1 − (𝝎𭑖,∶𝝎⊤
𭑗,∶)2 (𝑬𭑖𭑗 + 𝑬𭑗𭑖)⎤⎥

⎦
𝜴. (5.27)

Combining Equations (5.24), (5.26), and (5.27), the gradient of the cost function

𝑓 (𝑿) ∶= 𝐽𭑝,𭜈(𝑿⊤𝑺) + 𝜅 ℎ(𝑿⊤) + 𝜇 𝑟(𝑿⊤) (5.28)

that I suggest here for learning an analysis operator is given by

∇𝑓 (𝑿) = 𭜕
𭜕𝑿 𝐽𭑝,𭜈(𝑿⊤𝑺) + 𝜅 𭜕

𭜕𝑿 ℎ(𝑿⊤) + 𝜇 𭜕
𭜕𝑿 𝑟(𝑿⊤). (5.29)

As in Chapter 3, in following I use the shorthand notation 𝑮(𭑖) ∶= 𝑮(𝑿(𭑖)) to denote the
Riemannian gradient determined at the 𝑖-th iteration.

Finally, for the CG-update parameter 𝛽(𭑖), I employ the same hybrid formula (4.32) as used
for the separable dictionary learning algorithm. To compute the step size 𝛼(𭑖), I use an adap-
tion of the well-known backtracking line search to the geodesic Γ(𝑿(𭑖), 𝑯(𭑖), 𝑡). Roughly
speaking, this algorithm determines the step size by iteratively decreasing an initial step
size 𝑡(𭑖)

0 by a constant factor 𝑐1 < 1 until the Armijo condition that ensures a sufficient
decrease of 𝑓 is met. The entire procedure is given in Algorithm 5.1. Such simple line
search techniques are very efficient, while being almost as accurate as computing the exact
minimizer of Problem (3.4) which, however, is computationally more demanding. In my

Algorithm 5.1 Backtracking Line Search on Oblique Manifold
Input: 𝑡(𭑖)

0 > 0, 0 < 𝑐1 < 1, 0 < 𝑐2 < 0.5, 𝑿(𭑖), 𝑮(𭑖), 𝑯(𭑖)

Set: 𝑡 ← 𝑡(𭑖)
0

while 𝑓 (Γ(𝑿(𭑖), 𝑯(𭑖), 𝑡)) > 𝑓 (𝑿(𭑖)) + 𝑡𝑐2⟨𝑮(𭑖), 𝑯(𭑖)⟩ do
𝑡 ← 𝑐1𝑡

end while
Output: 𝛼(𭑖) ← 𝑡

implementation, I empirically set 𝑐1 = 0.9 and 𝑐2 = 10−2 and as also proposed in [56] used

𝑡(0)
0 = ‖𝑮(0)‖−1

𭐹 , (5.30)
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as an initial guess for the step size at the first CG-iteration 𝑖 = 0. In the subsequent iterations,
the backtracking line search is initialized by the step size found at the previous iteration
divided by the line search parameter 𝑐1, i.e.

𝑡(𭑖)
0 =

𝛼(𭑖−1)

𝑐1
. (5.31)

The complete approach GOAL for learning the analysis operator is summarized in Algo-
rithm 5.2. Note that under the condition that the Fletcher-Reeves update formula is used
together with some mild conditions on the step-size selection, the convergence of Algo-
rithm 5.2 to a critical point, i.e. lim inf

𭑖→∞
‖𝑮(𭑖)‖ = 0, is guaranteed by a result provided in [104].

Algorithm 5.2 Geometric Analysis Operator Learning (GOAL)
Input: Initial analysis operator 𝜴⊤

init ∈ OB, training data 𝑺, parameters 𝑝, 𝜈, 𝜅, 𝜇
Set: 𝑖 ← 0, 𝑿(0) ← 𝜴⊤

init, 𝑮(0) ← Π𭑇𝑿(0) M(∇𝑓 (𝑿(0))), 𝑯(0) ← −𝑮(0)

repeat
𝛼(𭑖) ← arg min

𭑡≥0
𝑓 (Γ(𝑿(𭑖), 𝑯(𭑖), 𝑡)), cf. Algorithm 5.1 in conjunction with Equation (5.28)

𝑿(𭑖+1) ← Γ(𝑿(𭑖), 𝑯(𭑖), 𝛼(𭑖)), cf. Equation (4.28)
𝑮(𭑖+1) ← Π𭑇𝑿(𭑖+1) M(∇𝑓 (𝑿(𭑖+1))), cf. Equations (4.22) and (5.29)

𝛽(𭑖) ← max (0, min(𝛽(𭑖)
DY, 𝛽(𭑖)

HS)), cf. Equations (3.9), (3.11)
𝑯(𭑖+1) ← −𝑮(𭑖+1) + 𝛽(𭑖)𝒯 (𭑖+1)

𝑯(𭑖) , cf. Equations (3.6), (4.30)
𝑖 ← 𝑖 + 1

until ‖𝑿(𭑖) − 𝑿(𭑖−1)‖𭐹 < 10−4 ∨ 𝑖 = maximum # iterations
Output: 𝜴⋆ ← 𝑿(𭑖)⊤

5.4 Synthetic Experiments

In this section, I evaluate the performance of GOAL to recover a known ground truth anal-
ysis operator 𝜴 ∈ ℝ𭑎×𭑛 from synthetically created training samples. The training samples
were created such that they reside in a 𝑟-dimensional subspace with 𝑟 < 𝑛 and admit a
co-sparse representation with 𝑛 − 𝑟 zeros over the ground truth operator. To concretely
generate such a training sample 𝒔 ∈ ℝ𭑛, I followed the procedure presented in [92], which
consists of first selecting a random 𝑛 − 𝑟 dimensional set of row indices ℐ ⊂ {1, … , 𝑎}, and
then projecting a random vector 𝒖 ∈ ℝ𭑛 onto the orthogonal complement of the selected
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rows, i.e.

𝒔 = (𝑰𭑛 − 𝜴†
ℐ,∶𝜴ℐ,∶)𝒖. (5.32)

In that way, the level of co-sparsity of 𝒔 with respect to 𝜴 is either 𝑛 − 𝑟 if the operator is in
general position, or higher if the rows of the operator exhibit linear dependencies, as it is
the case for the finite difference operator.

In the following experiments, I employed several test sets, each consisting of 𝑀 = 25 000
signals of dimension 𝑛 = 25 created as described above using a two times overcomplete
ground truth analysis operator, i.e. 𝑎 = 2𝑛 = 50. All elements 𝒔𭑖 of the same set have the
same level of co-sparsity. To test the influence of the generating operator on the ability of
the learning algorithm to recover it, I used three different ground truth operators that are
(i) an operator with random Gaussian entries 𝜴RAND ∈ ℝ50×25, (ii) the 2D-finite difference
operator 𝜴DIFF ∈ ℝ50×25, and (iii) a randomly generated uniformly normalized tight frame
𝜴UNTF ∈ ℝ50×25. For every generating operator I created 𝑛 − 1 = 24 training sets with
different level of co-sparsity varying between one and 𝑛 − 1 = 24. From each of these
72 training sets, I learned an analysis operator 𝜴⋆ ∈ ℝ50×25 using GOAL, and measured
how closely 𝜴⋆ fits the respective ground truth operator. To that end, I used two standard
measures from the literature that I called 𝐶1 and 𝐶2, which are described below.

𝐶1 denotes the percentage of exactly recovered analysis atoms. The 𝑖-th atom 𝝎⋆
𭑖,∶ is as-

sumed to be recovered exactly whenever

min
𭑗

(1 − |𝝎⋆
𭑖,∶𝝎⊤

𭑗,∶|) < 0.01, (5.33)

holds true.

𝐶2 is the Euclidean distance between the recovered operator 𝜴⋆ and the generating op-
erator, i.e. 𝐶2 = ‖𝜴 − 𝜴⋆‖𭐹. As correctly recovered atoms are likely to have different row
indices in the ground truth operator 𝜴 and the recovered operator 𝜴⋆, 𝐶2 is computed after
reordering the rows in the 𝜴⋆ such that the most similar rows of 𝜴 and 𝜴⋆ have the same
row index.

To rank the operator recovery performance of GOAL among the performance of other
analysis operator learning techniques, I additionally made all experiments with 𝜴⋆

AKSVD ∈
ℝ50×25 learned by AK-SVD [109], and 𝜴⋆

𭐴𭑂𭐿 ∈ ℝ50×25 learned by the UNTF constraint
based algorithm AOL [137]. All three algorithms employed the same training set and used
the same initial operator. The parameters of all three algorithms have been tuned manually
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to achieve the best possible operator recovery performance. I set the number of iterations
to 300 for both GOAL and AK-SVD, and to 8 000 for AOL, without employing any further
convergence criterion.

Figures 5.2(a)-(c) show the measure 𝐶1 with respect to the level of co-sparsity obtained
from all 72 training sets for the three compared algorithms. The corresponding results
regarding 𝐶2 are given in Table 5.1. For the generating operators 𝜴RAND, GOAL always
achieves the best recovery performance regarding both 𝐶1 and 𝐶2, independent of the level
of co-sparsity. when the generating operator was an UNTF, AOL has better recovering per-
formance then AK-SVD and approximately the same performance as GOAL for high-levels
of co-sparsity while being worse than GOAL for moderate to low levels of co-sparsity. Re-
garding 𝜴DIFF, AK-SVD performs best for high levels of co-sparsity, while GOAL achieves
the best performance for the majority of the training sets. It can be further seen that the
performance of all algorithms decreases the lower the level of co-sparsity of the respec-
tive training set is. Note that GOAL only fails completely for the lowest possible level of
co-sparsity 𝑛 − 𝑟 = 1.

Another important performance criterion, especially for real world applications, is the
computational complexity of an analysis operator learning algorithm. To quantify that, I
measured the computation time required by each algorithm to learn an analysis operator
using the test setup as above. Unoptimized Matlab implementations were used and ex-
ecuted on a standard desktop PC with a 3.2 GHz Intel i7 six core CPU and 16 Gb RAM.
In this test, GOAL required around 0.04 seconds per iteration independent of the level of
co-sparsity of the underlying training set. AK-SVD required between 2 and 60 seconds per
iteration depending on the level of co-sparsity with the higher the level of co-sparsity is, the
more computation time it required. This is due to the computationally demanding Back-
ward Greedy (BG) algorithm used for solving the analysis sparse coding problem, whose
number of iterations is equal to the targeted level of co-sparsity, see 2.2.1 for a more de-
tailed description of the BG algorithm. AOL only needed around 0.02 seconds per iteration;
however, it has to perform far more iterations compared to the two other methods. Note
that in all my experiments after around 75 iterations the operator found by GOAL did not
change anymore, which shows the good convergence property of GOAL. This behavior is
visualized in Figures 5.3(a)-(c), which for the three compared methods present the respec-
tive evolution of 𝐶2 with respect to the iteration number for recovering an UNTF analysis
operator from a training set with level of co-sparsity 𝑛 − 𝑟 = 21.

From these experiments, I conclude that the UNTF based method AOL is too restrictive to
reliably find an optimal analysis operator, and that AK-SVD only performs well for signals
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(a) Ground truth operator 𭜴RAND.
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(b) Ground truth operator 𭜴UNTF.
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(c) Ground truth operator 𭜴DIFF.

Figure 5.2: This figure shows the measure 𭐶1 for all three methods with respect to the level of co-sparsity of
the respective training set.
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Figure 5.3: This figure shows the evolution of 𭐶2 over the iteration number for the three compared learning
techniques GOAL, AK-SVD, and AOL to recover a UNTF from a training set with signal co-sparsity of 𭑛−𭑟 = 21.

with high level of co-sparsity. In contrast, GOAL always achieves decent results almost
independent of the level of co-sparsity of the training set and the underlying generating
operator. Furthermore, GOAL only requires a few iterations until it converges and only has
to perform some basic algebraic operations to update the operator. Interestingly, choosing
𝜅 and 𝜇 such that GOAL achieves the best recovery performance only depends on the level
of co-sparsity but not on the generating ground truth analysis operator.

In the remainder of this chapter, I evaluate how GOAL performs in real image processing
applications. To that end, in the next section I explain how the patch based operator can be
applied to achieve global image reconstruction results.

5.5 Analysis Operator Based Image Reconstruction

In this section I explain how the patch based analysis operator 𝜴⋆ ∈ ℝ𭑎×𭑛 is utilized to
reconstruct an unknown image 𝒔 ∈ ℝ𭑁 from some given measurements 𝒚 ∈ ℝ𭑚 following
the analysis approach (5.5). Here, the vector 𝒔 ∈ ℝ𭑁 denotes a vectorized image of dimen-
sion 𝑁 = 𝑤ℎ, with 𝑤 being the width and ℎ being the height of the image, respectively,
obtained by stacking the columns of the image above each other. In the following, I will
loosely speak of 𝒔 as the image. Remember, that the size of 𝜴⋆ is very small compared to
the size of the image, and it has to be applied locally to small image-patches rather than
globally to the entire image.

To globally reconstruct the image, the simplest way is to partition the image into non-
overlapping patches, reconstruct each patch individually, and stick the reconstructed
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Table 5.1: This table presents the quality measure 𭐶2, i.e. the Euclidean distance between a learned operator
and the corresponding ground truth operator for the three generating operators 𭜴RAND, 𭜴UNTF, 𭜴DIFF with
respect to the co-sparsities of the training sets for the three compared learning methods GOAL, AK-SVD, and
AOL. For each set, bold-faced digits highlight the best result.

𝜴RAND 𝜴UNTF 𝜴DIFF
Co-sparsity GOAL AK-SVD AOL GOAL AK-SVD AOL GOAL AK-SVD AOL

1 6.38 7.32 7.08 6.81 7.28 6.91 6.32 7.20 6.99
2 3.68 7.34 6.85 4.98 7.29 6.78 3.31 7.22 6.79
3 0.76 7.30 6.70 0.21 7.29 6.54 1.03 7.18 6.10
4 0.15 7.29 6.59 0.15 7.29 6.52 0.28 7.19 5.09
5 0.14 7.22 6.16 0.13 7.25 5.40 0.20 7.11 3.72
6 0.12 7.03 5.18 0.15 7.16 4.55 0.14 7.02 3.58
7 0.12 6.93 4.87 0.13 7.18 0.01 0.14 6.92 3.65
8 0.12 6.55 4.44 0.12 7.20 0.02 0.14 6.70 3.22
9 0.13 6.34 4.44 0.08 7.11 0.02 0.14 5.98 3.34
10 0.15 5.76 4.16 0.09 6.83 0.02 0.18 5.56 3.31
11 0.15 4.86 4.27 0.09 6.06 0.02 0.16 4.46 3.31
12 0.17 4.29 4.16 0.09 5.51 0.02 0.16 3.86 3.52
13 0.17 3.85 4.12 0.08 4.95 0.02 1.00 2.63 3.60
14 0.19 3.31 4.24 0.09 3.99 0.03 0.18 1.73 3.80
15 0.21 3.52 3.95 0.08 3.72 0.03 1.00 1.99 3.77
16 0.23 3.02 4.22 0.09 3.12 0.03 1.00 1.73 3.60
17 0.25 3.00 4.13 0.10 2.86 0.03 1.01 1.40 3.63
18 0.28 2.80 3.99 0.07 2.48 0.03 1.00 1.96 3.84
19 0.30 2.68 3.97 0.07 2.22 0.03 1.01 1.72 4.09
20 0.33 3.03 3.94 0.08 1.95 0.04 1.39 1.96 4.23
21 0.40 2.86 3.87 0.07 1.72 0.04 1.69 2.32 4.36
22 0.42 2.66 3.92 0.07 1.57 0.04 2.41 2.19 4.32
23 0.46 2.45 3.93 0.08 1.58 0.04 2.86 1.70 4.41
24 0.49 2.22 4.01 0.08 1.06 0.04 3.21 1.93 4.55

patches together to form the final image. However, the quality of this approach highly
depends on the chosen partitioning of the image. Furthermore, this naïve approach leads
to spurious artifacts at patch boundaries, and fails for example in inpainting tasks where
large holes compared to the patch size have to be filled up. To reduce such artifacts, a
common approach is to work with overlapping patches, where each patch is reconstructed
individually and the entire image is formed by averaging over the reconstructed overlap-
ping regions in a final step. However, this method still misses global support during the
reconstruction process, and consequently leads to poor inpainting results and is not ap-
plicable for e.g. Compressive Sensing tasks. To overcome these drawbacks, I use a method
related to the patch based synthesis approach from [43] and the FoE algorithm [107], which
provides global support from local information. In words, instead of optimizing over each
patch individually and combining them in a final step, I optimize over the entire image de-
manding that a pixel is reconstructed such that the average sparsity of all patches it belongs
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to is minimized. When all possible patch positions are taken into account, this procedure is
entirely partitioning-invariant. For legibility and without loss of generality, in the following
I assume square patches of size (√𝑛 × √𝑛), with √𝑛 being a positive integer.

Formally, let 𝒓 ⊆ {1, … , ℎ} and 𝒄 ⊆ {1, … , 𝑤} denote sets of indices with 𝑟𭑖+1 − 𝑟𭑖 = 𝑑𭑣,
𝑐𭑖+1 − 𝑐𭑖 = 𝑑ℎ and 1 ≤ 𝑑𭑣, 𝑑ℎ ≤ √𝑛. Therein, 𝑑𭑣 and 𝑑ℎ denote the degree of overlap be-
tween two adjacent patches in vertical, and horizontal direction, respectively. In my image
reconstruction task, I consider all image-patches whose center positions are an element of
the Cartesian product set 𝒓 × 𝒄. Hence, with | ⋅ | denoting the cardinality of a set, the total
number of patches being considered is equal to |𝒓 × 𝒄| = |𝒓||𝒄|. Now, let 𝑷𭑟𭑐 be a binary
(𝑛 × 𝑁) matrix that extracts the patch centered at position (𝑟, 𝑐). With this notation, the
(global) sparsity promoting function is formulated as

∑
𭑟∈𝒓

∑
𭑐∈𝒄

𭑎
∑
𭑖=1

((𝜴⋆𝑷𭑟𭑐𝒔)2
𭑖 + 𝜈)

𭑝
2 , (5.34)

which measures the overall approximated ℓ𭑝-pseudo-norm of all considered analyzed
image-patches. To use the same notation as in the standard analysis model formulation
(5.5), I compactly rewrite Equation (5.34) as

𝑔(𝜴𭐹𝒔) ∶=
𭐾

∑
𭑖=1

((𝜴𭐹𝒔)2
𭑖 + 𝜈)

𭑝
2 , (5.35)

with 𝐾 = 𝑎|𝒓||𝒄| and

𝜴𭐹 ∶=

⎡
⎢⎢⎢⎢⎢
⎣

𝜴⋆𝑷𭑟1𭑐1

𝜴⋆𝑷𭑟1𭑐2

⋮
𝜴⋆𝑷𭑟|𝒓|𭑐|𝒄|

⎤
⎥⎥⎥⎥⎥
⎦

∈ ℝ𭐾×𭑁 (5.36)

being the global analysis operator that expands the patch based one to the entire image.
Problems that arise at image boundaries are treated by employing constant padding, i.e.
replicating the values at the image boundaries for ⌊√𭑛

2 ⌋ times. Certainly, for image pro-
cessing applications 𝜴𭐹 is too large to be stored explicitly and applied in terms of a matrix
vector multiplication. Fortunately, applying 𝜴𭐹 and its transposed can be implemented
efficiently using sliding window techniques, and the matrix vector notation is solely used
for legibility.

In addition to enforcing the reconstructed image to follow the co-sparse analysis model,
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according to [63], one can exploit the fact that the range of pixel intensities is limited by a
lower bound 𝑏𭑙 and an upper bound 𝑏𭑢. A simple way to enforce this bounding constraint

is to minimize the differentiable function 𝐵(𝒔) ∶=
𭑁
∑
𭑖=1

𝑏(𝑠𭑖), where 𝑏 is a penalty term given
as

𝑏(𝑠) =
⎧{{
⎨{{⎩

|𝑠 − 𝑏𭑢|2 if 𝑠 ≥ 𝑏𭑢

|𝑠 − 𝑏𭑙|2 if 𝑠 ≤ 𝑏𭑙

0 otherwise
. (5.37)

Finally, combining the two penalty terms (5.35) and (5.37) with the data fidelity term, the
analysis based image reconstruction problem employed here reads as

𝒔⋆ ∈ arg min𝒔
1
2‖𝑨𝒔 − 𝒚‖2

2 + 𝐵(𝒔) + 𝜆𝑔(𝜴𭐹𝒔). (5.38)

Therein, 𝜆 ∈ ℝ+ balances between the sparsity of the solution's analysis coefficients and
the solution's fidelity to the measurements. The measurement matrix 𝑨 ∈ ℝ𭑚×𭑁 and the
measurements 𝒚 ∈ ℝ𭑚 depend on the application. In the next section, I evaluate how an
operator learned by GOAL performs in image reconstruction applications.

5.6 Evaluation and Experiments on Real Image Data

The first part of this section aims at finding an answer towards the question of what is a
good analysis operator for solving image reconstruction problems. Here, I try to answer this
question by relating the image reconstruction quality of an analysis operator with its mu-
tual coherence and its condition number. This in turn permits to select the optimal weight-
ing parameters 𝜅 and 𝜇 for GOAL. Using the determined parameters, I learn one general
analysis operator 𝜴⋆ by GOAL, and compare its image denoising performance with other
analysis based approaches. In the second part, I utilize this operator 𝜴⋆ as a regularizer
for solving the two classical image reconstruction problems of image inpainting and single
image superresolution. For these two tasks, I compare the achieved results with employing
the currently best performing analysis approach FoE [107], the best sparse synthesis based
approach for the respective task, and some state-of-the-art methods specifically designed
for each application. Note that here, I limit the evaluation to gray scale images, but the
approach can be straightforwardly extended to color images.
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5.6.1 Global Parameters Selection and Image Reconstruction

To quantify the reconstruction quality, as commonly done in the literature, I use the peak
signal-to-noise ratio (PSNR) between the ground truth image and the recovered image,
which is computed as given in Equation (4.39). Moreover, I measure the reconstruction
quality using the Mean Structural SIMilarity Index (MSSIM) [130], with the same set of
parameters as originally suggested in [130]. Compared to PSNR, the MSSIM better reflects
a human observer's visual impression of quality. It ranges between zero and one, with one
meaning perfect image reconstruction.

Throughout all experiments, I fixed the size of the image-patches to (8 × 8), i.e. 𝑛 = 64.
This is in accordance to the patch-sizes commonly used in the literature and yields a good
trade-off between reconstruction quality and numerical burden. For all applications, an
image is reconstructed by solving the minimization problem (5.38) via the conjugate gra-
dient method proposed in [63]. Considering the pixel intensity bounds, I used 𝑏𭑙 = 0 and
𝑏𭑢 = 255, which is the common intensity range in 8-bit gray-scale image formats. The spar-
sity promoting function (5.35) with 𝑝 = 0.4 and 𝜈 = 10−6 is used for both learning the anal-
ysis operator by GOAL, and for reconstructing the images. The patch based reconstruction
algorithm as explained in Section 5.5 achieves the best results for the maximum possible
overlap 𝑑ℎ = 𝑑𭑣 = 1, which consequently is employed here. The Lagrange multiplier 𝜆 and
the measurements matrix 𝑨 depend on the respective application, and are briefly discussed
in the corresponding subsections.

5.6.2 Analysis Operator Evaluation and Learning Parameter Selection

To compare the quality of distinctively learned analysis operators and to select appropriate
parameters for GOAL, I chose the task of image denoising as a baseline experiment. The
images to be denoised have artificially been corrupted by additive white Gaussian noise
(AWGN) of varying standard deviation 𝜎noise. Besides helping to select the learning pa-
rameters, this baseline experiment is further used to compare GOAL with other analysis
operator learning methods. I would like to emphasize that the choice of image denoising
as a baseline experiment is not crucial, neither for selecting the learning parameters, nor for
ranking the learning approaches. In fact, any other reconstruction task as discussed below
leads to the same parameters and the same ranking of the different learning algorithms.

Considering the problem of image denoising, the measurement matrix 𝑨 in Equation
(5.38) is simply the identity matrix 𝑰𭑁. As it is common in the denoising literature, the noise
level 𝜎noise is assumed to be known and 𝜆 is adjusted accordingly; the larger it is chosen, the
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more noise is expected to be present. From my experiments, I found that 𝜆 = 𭜎noise
16 is a good

choice. The reconstruction algorithm is terminated after 6−30 CG-iterations depending on
the noise level, i.e. the higher the noise level is the more iterations are performed. To find the
best performing analysis operator, I learned several operators with varying values for 𝜇, 𝜅,
and 𝑎 with all other parameters being set according to Subsection 5.6.1. Then, I evaluated
the performance of each resulting operator for the baseline experiment, which consists of
denoising the five test images, each corrupted with the five noise levels as given in Table
5.2. This in total leads to 25 reconstruction results per operator. As the final performance
measure, I use the average PSNR of the 25 results.

To train the operator, a set of 𝑀 = 200 000 image-patches was employed, with each patch
normalized to have zero mean and unit Euclidean norm. These patches have randomly
been extracted from the five training images shown in Figure 5.4. Certainly, these images
are not considered within any of the following performance evaluations. All operators have
been learned from the same training set. Each time, GOAL was initialized with a random
matrix with normalized rows. Tests with other initializations like the overcomplete discrete
cosine transform did not show remarkable influence on the final operator's performance.

Figure 5.4: This figure shows the five training images used for learning an analysis operator with GOAL.

From the achieved results I can conclude that image reconstruction tasks based on the
analysis model clearly benefit from overcompleteness of the employed operator. The larger
𝑎 is chosen, the better the operator performs with saturation starting at 𝑎 = 2𝑛. Therefore,
I fixed the number of analysis atoms for all further experiments to 𝑎 = 2𝑛.

Regarding 𝜅 and 𝜇, note that by Lemma 5.3 and Lemma 5.4 these parameters influence the
condition number and the mutual coherence of a learned operator. Towards answering the
question of what is a good and appropriate condition number and mutual coherence for an
analysis operator, Figure 5.5(a) shows the relative denoising performance of 400 operators
learned by GOAL in relation to their respective mutual coherence and condition number.
It can be seen that operators with low condition number ∼ 1.8 and moderate mutual co-
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herence ∼ 0.65 achieve the best performance. I would like to mention that according to my
experiments, this relation is mostly independent from the degree of overcompleteness. As
already expected from the synthetic experiments conducted in Section 5.4, the best learned
analysis operator is not a uniformly normalized tight frame, as this constraint is too restric-
tive and prevents the operator from sufficiently sparsifying the training data. The concrete
values, which led to the best performing analysis operator 𝜴⋆ ∈ ℝ128×64 are 𝜅 = 9000 and
𝜇 = 0.01. The singular values of this operator are shown in Figure 5.5(b) and its atoms
are visualized in Figure 5.6. This operator 𝜴⋆ remains unaltered throughout all following
image processing experiments in Subsections 5.6.3 - 5.6.5.
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(b) Singular Values of 𭜴⋆.

Figure 5.5: This figure presents (a) the relative average denoising performance of 400 analysis operators
learned by GOAL in relation to their mutual coherence and their condition number. Color ranges from dark
blue (worst) to dark red (best), indicating the denoising performance. The green dot corresponds to the best
performing operator 𭜴⋆. (b) Singular values of 𭜴⋆.

5.6.3 Image Denoising and Comparison with Related Analysis Operator
Learning Methods

The purpose of this subsection is to rank GOAL among other analysis operator learning
methods, and to compare its performance with state-of-the-art denoising algorithms. Con-
cretely, I compare the denoising performance using 𝜴⋆ learned by GOAL with the finite
difference operator for computing the total-variation (TV) [24] which is the currently best
known analysis operator, with an operator learned by the recently proposed method AOL
[139], and with the currently best performing analysis approach FoE [107]. Note that I used
the same training set and the same level of overcompleteness for learning the operator by
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Figure 5.6: This figure shows analysis atoms of the learned analysis operator 𭜴⋆ ∈ ℝ128×64. Each of the 128
analysis atoms is represented as an 8 × 8 square, where black corresponds to the smallest negative entry, gray
is a zero entry, and white corresponds to the largest positive entry.

AOL as for GOAL. For FoE, I employed the setup as originally suggested by the authors.
Concerning the required computation time for learning an analysis operator, for this set-
ting GOAL needs about 4-minutes on an Intel i7 3.2 GHz six core CPU and 16 GB RAM.
In contrast, AOL is approximately 40 times slower, and FoE is the computationally most
expensive method requiring several hours. All three learning techniques were tested using
unoptimized Matlab code.

The achieved results for the five test images and the five noise levels are given in Table
5.2. Employing the operator learned by GOAL achieves the best results among the analysis
based methods both regarding PSNR and MSSIM. For a visual assessment, Figure 5.7 ex-
emplarily shows four denoising results achieved by employing the four compared analysis
operators. Visually, the operator learned by GOAL creates the most natural looking result.

To judge the denoising performances of the compared analysis methods globally, I addi-
tionally give the results achieved by the current state-of-the-art denoising method BM3D
[23], and the synthesis model based K-SVD Denoising algorithm [43], which are specifically
designed for the purpose of image denoising. In most of the cases my method performs
slightly better than the K-SVD approach, especially for higher noise levels, and besides of
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Table 5.2: This table presents the achieved PSNR in decibels (dB) and MSSIM for denoising five test images,
each corrupted with five noise levels. Each cell contains the achieved results for the respective image with six
different algorithms, which are: Top left GOAL, top right AOL [138], middle left TV [24], middle right FoE
[107], bottom left K-SVD denoising [43], and bottom right BM3D [23].

lena barbara man boat couple
𝜎noise / PSNR PSNR MSSIM PSNR MSSIM PSNR MSSIM PSNR MSSIM PSNR MSSIM

5 / 34.15 38.65 36.51 0.945 0.924 37.96 35.95 0.962 0.944 37.77 35.91 0.954 0.932 37.09 35.77 0.938 0.926 37.43 35.55 0.951 0.932
37.65 38.19 0.936 0.938 35.56 37.25 0.948 0.958 36.79 37.45 0.944 0.949 36.17 36.33 0.925 0.917 36.26 37.06 0.940 0.944
38.48 38.45 0.944 0.942 38.12 38.27 0.964 0.964 37.51 37.79 0.952 0.954 37.14 37.25 0.939 0.938 37.24 37.14 0.950 0.951

10 / 28.13 35.58 32.20 0.910 0.856 33.98 31.27 0.930 0.883 33.88 31.33 0.907 0.851 33.72 31.24 0.883 0.842 33.75 30.87 0.903 0.844
34.24 35.12 0.890 0.901 30.84 32.91 0.886 0.923 32.90 33.44 0.884 0.893 32.54 33.23 0.863 0.868 32.32 33.37 0.878 0.889
35.52 35.79 0.910 0.915 34.56 34.96 0.936 0.942 33.64 33.97 0.901 0.907 33.68 33.91 0.883 0.887 33.62 33.86 0.901 0.909

20 / 22.11 32.63 28.50 0.869 0.772 30.17 27.26 0.880 0.791 30.44 27.33 0.831 0.720 30.62 27.16 0.819 0.711 30.39 26.95 0.833 0.727
31.09 31.97 0.827 0.856 26.79 28.39 0.773 0.849 29.63 29.75 0.795 0.801 29.30 29.96 0.778 0.793 28.87 29.77 0.783 0.807
32.39 32.98 0.861 0.875 30.87 31.78 0.881 0.905 30.17 30.59 0.814 0.833 30.44 30.89 0.805 0.825 30.08 30.68 0.817 0.847

25 / 20.17 31.65 27.47 0.854 0.742 29.05 26.08 0.856 0.750 29.43 26.28 0.801 0.677 29.61 26.08 0.792 0.671 29.32 25.81 0.802 0.679
30.05 30.87 0.796 0.836 25.73 27.05 0.724 0.813 28.66 28.62 0.759 0.761 28.32 28.87 0.744 0.758 27.87 28.57 0.746 0.767
31.33 32.02 0.842 0.859 29.59 30.72 0.850 0.887 29.14 29.62 0.780 0.804 29.36 29.92 0.772 0.801 28.92 29.65 0.780 0.820

30 / 18.59 30.86 26.50 0.839 0.717 27.93 24.95 0.818 0.706 28.64 25.30 0.774 0.638 28.80 25.07 0.769 0.630 28.46 24.79 0.780 0.633
29.40 30.00 0.786 0.823 24.91 25.97 0.690 0.787 27.95 27.85 0.736 0.740 27.56 28.01 0.720 0.737 27.09 27.70 0.715 0.743
30.44 31.22 0.823 0.843 28.56 29.82 0.821 0.868 28.30 28.87 0.750 0.780 28.48 29.13 0.744 0.779 27.95 28.81 0.746 0.795

the "barabara" image it is at most ∼ 0.5dB worse than BM3D. This relatively bad perfor-
mance on the "barbara" image can be explained by the very special structure of this image
that rarely occurs in natural images, and that is smoothed by the learned operator. To over-
come this drawback, a more sophisticated training set selection could help.

5.6.4 Image Inpainting

In image inpainting as originally proposed in [10], the goal is to fill up a set of damaged
or disturbing pixels such that the resulting image is visually appealing. This is necessary
for example to restore damaged photographs, for removing disturbances caused by e.g.
defective hardware, or for deleting unwanted objects. Typically, the positions of the pixels
to be filled up are given a priori. In the present formulation, when 𝑁 − 𝑚 pixels must
be inpainted, this leads to a binary (𝑚 × 𝑁) dimensional measurements matrix 𝑨, where
each row contains exactly one entry equal to one and all other are zero. The position of
the non-zero entry corresponds to the position of a pixel with known intensity. Hence, 𝑨
reflects the available image information. Regarding 𝜆, it can be utilized in a way that my
method simultaneously inpaints missing pixels and denoises the remaining ones.

As an image inpainting example, I disturbed some ground truth images artificially by
removing 𝑁 − 𝑚 pixels randomly distributed over the entire image as exemplary shown
in Figure 5.8(a). In that way, the reconstruction quality can be judged both visually and
quantitatively. The data is assumed to be free of noise, and I empirically selected 𝜆 = 10−2.
Figures 5.8(b)-(d) show three exemplary results for reconstructing the "lena" image, given
10% of all pixels using the operator learned by GOAL, FoE, and the recently proposed syn-
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Table 5.3: This table shows the achieved results for inpainting five test images with varying number of missing
pixels using three different methods. In each cell, the PSNR in dB and the MSSIM are given for GOAL (top),
FoE [107](middle), and method [144] (bottom).

% of missing pixels lena barbara boat man house
PSNR MSSIM PSNR MSSIM PSNR MSSIM PSNR MSSIM PSNR MSSIM

90% 28.57 0.840 22.61 0.696 25.61 0.743 26.35 0.755 28.35 0.828
28.06 0.822 22.45 0.682 25.14 0.719 26.23 0.747 28.18 0.828
27.63 0.804 22.49 0.658 24.80 0.683 25.56 0.715 26.62 0.784

80% 31.82 0.895 24.90 0.814 28.55 0.833 28.93 0.847 32.00 0.887
31.09 0.880 23.48 0.762 27.76 0.804 28.51 0.836 31.36 0.880
30.95 0.878 24.72 0.780 27.80 0.804 28.24 0.821 30.20 0.874

50% 37.75 0.956 34.51 0.965 34.47 0.936 34.12 0.947 38.89 0.961
36.70 0.947 28.64 0.919 33.17 0.907 33.49 0.940 37.72 0.957
36.75 0.943 33.21 0.953 33.77 0.918 33.27 0.934 38.11 0.960

20% 43.53 0.985 42.12 0.991 41.04 0.982 40.15 0.985 45.43 0.990
42.29 0.981 36.03 0.981 38.45 0.963 39.15 0.982 44.21 0.989
40.77 0.965 40.63 0.983 39.45 0.966 39.06 0.977 42.95 0.978

thesis model based method [144]. In table 5.3 the results for inpainting further images from
varying numbers of missing pixels is given. It can be seen that the proposed methods per-
forms best among the compared approaches, independent of the respective configuration.

5.6.5 Single Image Superresolution

In single image superresolution (SR), the goal is to reconstruct a high-resolution image 𝒔 ∈
ℝ𭑁 from an observed low-resolution image 𝒚 ∈ ℝ𭑚, where 𝑁 > 𝑚. The low-resolution
image 𝒚 is assumed to be a low-pass filtered, i.e. blured, and downsampled version of 𝒔.
Mathematically, this process can be formulated as 𝒚 = 𝑸𝑩𝒔 + 𝝐, where 𝑸 ∈ ℝ𭑚×𭑁 is a
decimation operator and 𝑩 ∈ ℝ𭑁×𭑁 is a low-pass or blur operator. Hence, the associated
measurement matrix is given by 𝑨 = 𝑸𝑩. In the ideal case, the exact blur kernel is known
or an estimate is given. Here, I consider the more realistic case of an unknown kernel and
employ a general blur model. Concretely, to apply my approach for magnifying an image
by a factor of 𝑠 in both vertical and horizontal dimension, I model the blur via a Gaussian
kernel of dimension ((2𝑠 − 1) × (2𝑠 − 1)) with standard deviation 𝜎blur = 𭑠

3 .
For the conducted experiments, I first artificially created a low-resolution image by down-

sampling a ground truth image by a factor of 𝑠 using bicubic interpolation. Then, I em-
ployed the five different methods Bicubic interpolation, FoE [107], the method from [140],
and the analysis model with 𝜴⋆ to magnify each artificially created low-resolution image
by the same factor 𝑠. This upsampled version is then again compared with the original
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Table 5.4: This table presents the results in terms of PSNR and MSSIM for upsampling the seven test images
by a factor of 𭑠 = 3 using four different algorithms GOAL, FoE [107], method [140], and Bicubic interpolation.

Method face august barbara lena man boat couple
PSNR MSSIM PSNR MSSIM PSNR MSSIM PSNR MSSIM PSNR MSSIM PSNR MSSIM PSNR MSSIM

GOAL 32.37 0.801 23.28 0.791 24.42 0.731 32.36 0.889 29.48 0.837 28.25 0.800 27.79 0.786
FoE 32.19 0.797 22.95 0.782 24.30 0.727 31.82 0.885 29.17 0.832 28.00 0.797 27.64 0.782

Method [140] 32.16 0.795 22.90 0.771 24.25 0.719 32.00 0.881 29.29 0.829 28.04 0.793 27.56 0.778
Bicubic 31.57 0.771 22.07 0.724 24.13 0.703 30.81 0.863 28.39 0.796 27.18 0.759 26.92 0.743

image in terms of PSNR and MSSIM in order to judge the reconstruction quality. Table 5.4
presents the achieved results for upsampling the respective images by a factor of 𝑠 = 3. The
presented results show that the analysis based image reconstruction employing an opera-
tor learned by GOAL outperforms the current state-of-the-art. I want to emphasize again
that the blur kernel used for downsampling is different from the blur kernel used within
the upsampling procedure.

Note that many single image superresolution algorithms rely on clean noise free input
data, whereas the general analysis approach as formulated in Problem (5.38) naturally han-
dles noisy data and is able to simultaneously upsample and denoise an image. In Figure
5.9, I present the result for simultaneously denoising and upsampling a low-resolution ver-
sion of the image "august" by a factor of 𝑠 = 3, which has been corrupted by AWGN with
𝜎noise = 8. As it can be seen, employing the analysis operator learned by GOAL produces
the best results both visually and quantitatively, especially regarding the MSSIM. Due to
high texture, this image is challenging to upscale even when no noise is present, which can
be seen from the second column of Table 5.4.

5.7 Summary

This chapter dealt with the topic of learning an analysis operator from example signals and
introduced how to apply a patch based operator for solving inverse problems in image pro-
cessing. To learn the operator, I developed the novel algorithm GOAL, which is based on
a ℓ𭑝-minimization on the set of full-rank matrices with normalized columns. A geometric
conjugate gradient method on the oblique manifold was suggested to efficiently solve the
associated optimization problem. Furthermore, I proposed a partitioning invariant method
for employing a local patch based analysis operator such that globally consistent image re-
construction results are achieved. A series of synthetic experiments revealed that GOAL
outperforms all existing analysis operator learning techniques in terms of computational
complexity, ability to find a generating ground truth operator, and generality. To answer
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the question of what characterizes a well performing analysis operator in image processing
applications, I related the mutual coherence and the condition number of an operator with
its performance when employed for the task of image denoising. From this I concluded
that a good operator should be well-conditioned and have moderate mutual coherence.
Besides that, I compared an operator learned by the proposed method with several opera-
tors learned by state-of-the-art analysis operator learning algorithms for the task of image
denoising. In these experiments, the operator learned by GOAL consistently outperforms
all others. For the classical image processing tasks of image inpainting and single image
superresolution, I provided promising results that are competitive with, and even outper-
form current state-of-the-art techniques. Similar as for the synthesis signal reconstruction
model with dictionaries, I expect that the performance of the analysis approach can be fur-
ther increased by learning the particular operator with regards to the specific problem at
hand, or by employing a specialized training set. This assumption is already supported by
a publication of my colleagues and me that investigates the topic of Analysis Based Blind
Compressive Sensing [131].
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(a) GOAL, PSNR 30.44dB MSSIM 0.831. (b) AOL [137], PSNR 27.33dB MSSIM 0.720.

(c) TV [24], PSNR 29.63dB MSSIM 0.795. (d) FoE [107], PSNR 29.75dB MSSIM 0.801.

Figure 5.7: This figure presents four images that exemplarily show the artifacts typically created by denoising
an image using the four compared analysis operators. The image shown here is the "man" image, which has
been degraded by 𭜎noise = 20. A close up is provided for each image for a better visualization.

94



5.7 Summary

(a) Masked 90% missing pixels. (b) Inpainted image GOAL, PSNR 28.57dB
MSSIM 0.840.

(c) Inpainted image FoE, PSNR 28.06dB
MSSIM 0.822.

(d) Inpainted image [144], PSNR 27.63dB
MSSIM 0.804.

Figure 5.8: This figure shows the achieved results for filling up missing pixels of the "lena" image from 10% of
all pixels using 𭜴⋆ learned by GOAL (b), FoE (c), and [144] (d).
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(a) Original image "august". (b) Noisy low-resolution image.

(c) Bicubic Interpolation, PSNR 21.63dB
MSSIM 0.653.

(d) Method [140], PSNR 22.07dB MSSIM 0.663.

(e) FoE [107], PSNR 22.17dB MSSIM 0.711. (f) GOAL, PSNR 22.45dB MSSIM 0.726.

Figure 5.9: This figure shows single image superresolution results on noisy data of four algorithms that are (c)
Bicubic interpolation (d) method [140] (e) FoE [107], and (f) GOAL, for magnifying a low-resolution version of
the "august" image by a factor of three. In the captions of each image, the corresponding PSNR and MSSIM are
given. The low-resolution image has been corrupted by AWGN with 𭜎noise = 8.
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Chapter 6

Multimodal Co-Sparse Analysis Model

This chapter is partially based on the submitted work:

Joint Intensity and Depth Analysis Operator Learning for Depth Map Superres-
olution. Submitted to IEEE International Conference on Computer Vision, 2013.

S. Hawe, M. Kleinsteuber, and K. Diepold. Analysis Operator Learning and Its
Application to Image Reconstruction. In IEEE Transactions on Image Processing,
22(6), pp. 2138--2150. 2013.

This chapter introduces the Multimodal Co-Sparse Analysis Model, which is able to capture
and describe the interdependencies between diverse measurements from the same scene
or object that have been acquired in different modalities. The underlying assumption of
this model is that such related measurements share a common co-support with respect to a
suitable set of analysis operators. This set of operators is called the multimodal analysis op-
erator, which forms the core of the proposed data model. For this operator, no analytic form
exists; consequently, it must be learned from aligned multimodal example signals. To that
end, I propose an efficient conjugate gradient method for minimizing a smooth cost func-
tion on the oblique manifold, which is basically an adaptation of GOAL to the mutlimodal
signal setting. This learning process can be done off-line, and returns an application in-
dependent multimodal analysis operator. This operator allows exploiting the multimodal
co-sparse analysis model as a prior for solving diverse linear inverse problems.

As a driving application example, I use the two modalities image intensity and scene
depth and explain how the proposed model can be exploited to infer a high-resolution
depth map from low-resolution depth measurements given a corresponding and registered
high-resolution intensity image. By a set of numerical examples I show that the arising
algorithm achieves state-of-the-art performance for the task of depth map superresolution.
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Finally, note that the proposed data model is not limited to this special bi-modal applica-
tion, but is generally applicable to any combination of signal modalities as for example in
the field of medical image processing, where a patient's treatment is often based on infor-
mation gained from several measurements acquired with different imaging technologies
like computer tomography, X-ray, or ultrasound.

6.1 Introduction

Measurements that have been acquired simultaneously from diverse modalities such as
sound, temperature, or light all carry different information about the same scene or object.
Even though the information itself contained in the measurements is different, the mea-
surements might share statistical dependencies. Knowing these dependencies can help to
combine the measurements in order to gain a more complete and thorough understanding
and description of the underlying scene.

One very prominent example of such related modalities that I cover intensively here is
the pair of intensity images and depth measurements. Combing these measurements per-
mits to create texturized 3D scene models. The need for having such 3D models with high
quality can be seen from the vast amount of technical applications in fields like robotics, 3D
video rendering, or human computer interaction that are built upon them. While the vi-
sual information is gathered in high quality by standard cameras, the 3D scene information
is typically acquired in rather low or moderate quality either via passive or active range
sensors, which both have different strengths an weaknesses.

Passive range sensing, i.e. 3D from stereo intensity images, is based on essentially three
steps. First, ambient light that is reflected from the same object surface is captured at mul-
tiple displaced views. Second, the disparities of corresponding light intensity samples be-
tween the different views are determined. Third, the distance to the sensor is obtained using
the computed disparities together with the knowledge of the relative positions between all
views. Despite very active research in this area and significant improvements regarding the
quality of the depth maps over the past years, stereo methods still have difficulties to cope
with noise, texture-less regions, repetitive texture, and occluded areas. For an overview of
stereo methods, I refer the reader to [116].

Active range sensors, on the other hand, emit light and either measure the time-of-flight
of a modulated ray, e.g. LIDAR or PMD, or capture the reflection pattern of a structured light
source to infer the distance to objects, as it is done for example by the well-known Microsoft
Kinect. Because active sensors acquire reliable depth measurements independent of the
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(a) Ground truth. (b) Nearest-neighbor
interpolation.

(c) Bicubic interpolation. (d) Proposed method.

Figure 6.1: This figure presents a visual comparison of different upscaling methods on a close up of the test
image Tsukuba from [113], which has been downsampled and then remagnified by a factor of eight in both
vertical and horizontal direction.

occurring texture, and due to their real-time capability, they are becoming more and more
popular in both industrial and academical applications. However, the main drawbacks
are that the resulting depth maps are of low-resolution (LR) and that they are relatively
noisy. To overcome these limitations, different methods for upsampling, inpainting, and
denoising LR depth maps from range sensors have been proposed through the last years,
see Section 6.3.3.

The fact that both ambient and artificially emitted light is reflected by the same object
surface naturally suggests a co-occurrence of signal patterns in both the depth map obtained
by an active range sensor as well as in a corresponding registered camera intensity image.
Indeed, some of the most successful methods for reconstructing and refining depth maps
aim at exploiting this statistical dependency.

Inspired by the success of signal reconstruction based on sparse data representations as
detailed in the previous chapters, I introduce the multimodal co-sparse analysis model
that is able to reveal dependencies between different but related signal modalities. The as-
sumption that underlies the proposed model is that measurements, which originate from
the same scene, share a common co-support with respect to a suitable set of analysis op-
erators. For this set or operators, no analytic form exists and it must be determined from
aligned training data. Therefore, I propose a Riemannian conjugate gradient algorithm on
the oblique manifold, which basically is an extension of the algorithm GOAL proposed in
Chapter 5 to the mutimodal signal scenario. The introduced data model can be exploited
in several signal processing tasks in a way that information obtained from different modal-
ities can support each other. To show its performance in applications, I present a depth
map reconstruction task. To that end, an operator is learned once off-line and is then used
in conjunction with a high-resolution (HR) intensity image to reconstruct a correspond-
ing HR depth map from low resolution depth measurements. The numerical experiments
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show that the proposed approach outperforms state-of-the-art methods both visually and
quantitatively, and they underpin the validity of this novel data model.

6.2 Multimodal Co-Sparse Analysis Model

6.2.1 Model Assumption

The problem I want to tackle here is the following. Given 𝑐 measurements {𝒚𭑖 ∈ ℝ𭑚𭑖}𭑐
𭑖=1

of an object, which have been acquired in different modalities and that might by corrupted
or incomplete, how can the corresponding high quality signals {𝒔𭑖 ∈ ℝ𭑛𭑖}𭑐

𭑖=1 of probably
different dimensions 𝑛𭑖 be accurately reconstructed using the available measurements? By
incomplete, I mean that the measurements are of smaller dimensions than corresponding
signals, i.e. 𝑚𭑖 < 𝑛𭑖. Formally, the relation between 𝒔𭑖 and 𝒚𭑖 is given by

𝒚𭑖 = 𝑨𭑖𝒔𭑖 + 𝝐𭑖, (6.1)

with 𝑨𭑖 ∈ ℝ𭑚𭑖×𭑛𭑖 being the measurement matrix modeling the sampling process for the 𝑖-th
signal modality, and 𝝐𭑖 ∈ ℝ𭑚𭑖 being the corresponding error vector modeling noise and
potential sampling errors. Since the measurements are noisy and/or incomplete, inverting
Equation (6.1) to reconstruct 𝒔𭑖 is a highly ill-posed problem. Again, using additional infor-
mation about the structure of the signal helps to regularize this linear inverse problem and
to determine a feasible solution. Here, my goal is to exploit the geometry of the previously
introduced co-sparse analysis model [85] to solve this signal reconstruction task.

Recall that the idea which underlies the co-sparse analysis model is that a signal 𝒔 multi-
plied by an analysis operator 𝜴 ∈ ℝ𭑎×𭑛 with 𝑎 ≥ 𝑛 results in a sparse vector 𝜶 = 𝜴𝒔 ∈ ℝ𭑎.
If 𝑔 ∶ ℝ𭑎 → ℝ again denotes a sparsity-inducing function, the analysis model assumption
can be utilized to recover a single signal via

𝒔⋆ ∈ arg min𝒔 𝑔(𝜴𝒔) subject to 𝑓 (𝑨𝒔 − 𝒚) ≤ 𝜖, (6.2)

with 𝑓 ∶ ℝ𭑚 → ℝ being a function that reflects the assumed noise characteristics and
𝜖 ∈ ℝ+

0 being an estimate of how strongly the measurements are corrupted.
Now, remember that the original problem stated at the beginning of the section was not

to recover a single signal, but 𝑐 different signals in different modalities. A straightforward
approach for achieving this is to solve Problem (6.2) for each signal modality independently.
However, this approach completely discards the fact that the signal modalities represent the
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same object, and thus, might be statistically dependent. To that end, I want to find an answer
to the question, how these statistical dependencies can be revealed and consequently how
they can be exploited to achieve better signal reconstruction results when related modalities
are processed jointly rather than individually.

In order to establish a notion of statistical dependency, remember that in the co-sparse
analysis model the zero entries of the analyzed vector 𝜶 determine the structure of a signal
[85]. Geometrically, 𝒔 lies in the intersection of all hyperplanes whose normal vectors are
given by the rows of 𝜴 indexed by the zero entries of 𝜶. This index set is called the co-support
of 𝒔, and it is formally given by

co-supp(𝜴𝒔) ∶= {𝑗 | (𝜴𝒔)𭑗 = 0}. (6.3)

Next, assume that all 𝑐 signal modalities {𝒔𭑖 ∈ ℝ𭑛𭑖}𭑐
𭑖=1 allow a co-sparse representation

with an appropriate set of corresponding analysis operators {𝜴𭑖 ∈ ℝ𭑎×𭑛𭑖}𭑐
𭑖=1. Based on the

knowledge that the structure of a signal is encoded in its co-support (6.3), I postulate that
a suitable set of analysis operators can be found such that the co-supports of {𝜴𭑖𝒔𭑖 ∈ ℝ𭑎}𭑐

𭑖=1 are
statistically dependent, if all analyzed signal modalities originate from the same object. Formally,
the multimodal co-sparse analysis model assumes that the conditional probability that in-
dex 𝑗 belongs to the co-supports of 𝒔𭑖, ∀𝑖 ≠ 𝑟 given that 𝑗 belongs to the co-support of 𝒔𭑟 is
significantly higher than the unconditional probabilities, i.e.

𝑃𝑟 (𝑗 ∈ co-supp(𝜴𭑖𝒔𭑖) | 𝑗 ∈ co-supp(𝜴𭑟𝒔𭑟)) ≫ 𝑃𝑟 (𝑗 ∈ co-supp(𝜴𭑟𝒔𭑟)) , ∀𝑖 ≠ 𝑟. (6.4)

Figure 6.2 visualizes the described multimodal signal model assumption. Note that even
if the dimensions of the signals are distinctive, the operators must map them into analysis
spaces of equal dimension 𝑎, otherwise my model assumption would not be applicable.

Clearly, this model is idealized since in practice the entries of the analyzed vectors are not
exactly equal to zero but rather small in magnitude. Taking all that into account, condition
(6.4) can be implemented through minimizing a function that enforces both all 𝑐 analyzed
signals 𝜴𭑖𝒔𭑖, ∀𝑖 = 1, … , 𝑐 to be sparse as well as that the zeros or small entries of all corre-
sponding analyzed signals occur at the same positions. With the general sparsity promoting
function

𝒙 ↦
𭑎

∑
𭑘=1

ln(1 + 𝜈𝑥2
𭑘), (6.5)

where 𝜈 ∈ ℝ+ is a positive smoothing parameter, the function I suggest here for measuring
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Figure 6.2: This figure depicts the coupled co-support assumption that underlies the multimodal co-sparse
analysis model introduced in this chapter. The coupled co-support of the analyzed signals is highlighted in
yellow.

and enforcing the co-support coupling reads as

𝑔𭐶𭑜({𝜴𭑖𝒔𭑖}𭑐
𭑖=1) ∶=

𭑎
∑
𭑘=1

ln (1 + 𝜈
𭑐

∑
𭑖=1

(𝜴𭑖𝒔𭑖)2
𭑘). (6.6)

Basically, Equation (6.6) simply measures the sparsity of a vector whose 𝑖-th entry is equal
to the sum of the squares of the 𝑖-th entries of all 𝑐 considered analyzed vectors. Note that
any smooth sparsity measure other than (6.5) could also be employed here. Finally, using
Equation (6.6) together with the standard single modal analysis model (6.2), the multimodal
analysis signal model is given as

{𝒔⋆
𭑖 }𭑐

𭑖=1 ∈ arg min
{𝒔𭑖}𭑐

𭑖=1
𝑔𭐶𭑜({𝜴𭑖𝒔𭑖}𭑐

𭑖=1) subject to 𝑓 (𝑨𭑖𝒔𭑖 − 𝒚𭑖) ≤ 𝜖𭑖, ∀𝑖 = 1, … , 𝑐, (6.7)

with one pair of measurement matrix and measurements 𝑨𭑖 ∈ ℝ𭑚𭑖×𭑛𭑖, 𝒚𭑖 ∈ ℝ𭑚𭑖 associated
with each signal modality 𝒔𭑖.

Most important for the multimodal co-sparse analysis model is the set of multimodal
analysis operators that yields analyzed vectors with a coupled co-support. In the next sec-
tion, I explain how this set can be jointly learned from training data, such that aligned
signals analyzed by these operators adhere to the introduced model.

6.2.2 Multimodal Analysis Operator Learning

Regarding the choice of the multimodal analysis operator, it is not possible to simply choose
a set of analytic operators or operators that have been learned independently on the basis
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of example signals of each modality, as those operators will most certainly not result in an-
alyzed vectors whose co-supports are correlated. Due to this, it is necessary to learn the
operators jointly such that the correlated co-support assumption is fulfilled. Among exist-
ing analysis operator learning algorithms such as [109, 139], only the method GOAL pro-
posed here in Chapter 5 can straightforwardly be extended to the consider setting, since
it is based on a standard conjugate gradient method on manifolds that directly allows to
integrate any further smooth regularization term. For this reason, I again follow this ap-
proach here, and extend it such that a jointly co-sparse representation of related signals can
be found according to the suggested multimodal co-sparse analysis model.

To learn the multimodal analysis operator {𝜴𭑖 ∈ ℝ𭑎×𭑛𭑖}𭑐
𭑖=1, I employ a set of 𝑀 training

sets {{𝒔𭑖,𭑗 ∈ ℝ𭑛𭑖}𭑐
𭑖=1}

𭑀

𭑗=1
, where the 𝑐 elements of the 𝑗-th set correspond to measurements

of the same object but acquired in 𝑐 different modalities. For the subsequently considered
application of intensity and depth processing, these measurements are couples of HR in-
tensity and HR depth patches representing the same excerpt of a scene. Now, my goal is as
follows: Given the 𝑀 training sets, find the 𝑐 operators such that 𝑔𭐶𭑜({𝜴𭑖𝒔𭑖,𭑗}𭑐

𭑖=1) is maxi-
mally sparse for all 𝑀 sets. Naturally, this can be achieved by minimizing the expectation of
Function (6.6) over the entire training set. However, based on the arguments provided Sec-
tion 5.2.2, I instead employ the sum of squares of Equation (6.6), which can be interpreted
as a balanced optimization over both the expectation and the variance. This avoids the op-
erator from being overfitted to a possibly dominant subset of training samples that shows
similar structure, and also results in increased performance when the operator is employed
in real world applications. With this, I end up with

𝐺({𝜴𭑖}𭑐
𭑖=1) ∶= 1

𭑀

𭑀
∑
𭑗=1

𝑔𭐶𭑜({𝜴𭑖𝒔𭑖,𭑗}𭑐
𭑖=1)2, (6.8)

as the coupled sparsifying function to be minimized for the complete training set.
To regularize the training process as in the algorithm GOAL introduced in Chapter 5,

I restrict the set of possible solutions of the transposed of a single analysis operator to the
oblique manifold OB(𝑛, 𝑎), which allows an efficient formulation of the multimodal analy-
sis operator learning task as a constrained optimization problem that directly exploits the
underlying matrix manifold's geometry. To adhere to the rank constraint of OB, I again em-
ploy the penalty function ℎ ∶ ℝ𭑎×𭑛 → ℝ+ as given in Equation (5.25). Furthermore, I utilize
the penalty function 𝑟 ∶ ℝ𭑎×𭑛 → ℝ+ as given in Equation (5.17) to enforce the resulting
operators to have distinctive rows and to control their mutual coherence. Now putting all
collected ingredients together, the problem of jointly learning the set of multimodal analy-
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sis operators is given by

{𝜴⊤
𭑖 }𭑐

𭑖=1 ∈ arg min
{𝑿𭑖∈OB(𭑛𭑖,𭑎)}𭑐

𭑖=1

𝐺({𝑿⊤
𭑖 }𭑐

𭑖=1) +
𭑐

∑
𭑖=1

𝜅ℎ(𝑿⊤
𭑖 ) + 𝜇𝑟(𝑿⊤

𭑖 ), (6.9)

with 𝜅, 𝜇 ∈ ℝ+ being positive weighting factors. Regarding the influence of the employed
penalty terms and the weighting factors on the resulting analysis operators, refer to Section
5.2.2. The arising optimization problem is solved using the geometric conjugate gradient
method with the hybrid CG-update parameter formula (4.32) and standard backtracking
line search as explained in Section 5.3.

6.3 Joint Intensity and Depth Processing

In this section, I explain how a pair of patch based multimodal analysis operators 𝜴𭐼 ∈
ℝ𭑎×𭑛𭐼 , 𝜴𭐷 ∈ ℝ𭑎×𭑛𭐷 learned via the procedure introduced in the previous section can be
used to jointly reconstruct an aligned pair of intensity and depth signals 𝒔𭐼 ∈ ℝ𭑁𭐼 , 𝒔𭐷 ∈
ℝ𭑁𭐷 from corresponding measurements 𝒚𭐼 ∈ ℝ𭑚𭐼 , 𝒚𭐷 ∈ ℝ𭑚𭐷. Furthermore, I present a
method for selecting an informative training set for learning the pair of operators. This so-
phisticated selection scheme is necessary due to the special nature of depth maps where a
simple training set selection based on randomly drawing patches from ground truth depth
maps results in a suboptimal optimal set of operators. Through a large number of experi-
ments, I found that the proposed selection scheme improves the overall reconstruction per-
formance of the operators. For legibility reasons, in the remainder of this chapter I assume
that both operators are applied on signals of equal dimension and that both HR signals
have the same dimensions, i.e. 𝑛𭐷 = 𝑛𭐼 ∶= 𝑛 and 𝑁𭐷 = 𝑁𭐼 ∶= 𝑁.

6.3.1 Reconstruction Algorithm

First, note that 𝒔𭐼 and 𝒔𭐷 are the vectorized versions of a full HR intensity image and a
full HR depth map, respectively, obtained by ordering their entries lexicographically, with
𝑁 = 𝑤ℎ where 𝑤 and ℎ denote the height and width of both HR signals. Now, recall that an
analysis operator has to be applied locally to 𝑛-dimensional patches rather than globally to
the complete 𝑁-dimensional signal. Instead of reconstructing each patch individually and
combining the patches in a final step to form the signal, the complete 𝑁-dimensional signal
is reconstructed such that neighboring patches support each other during the optimization
process. Concretely, I require that each entry of a signal is reconstructed such that the
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average sparsity of all analyzed patches it belongs to is minimal. To that end, I employ
the same procedure as introduced in Section 5.5 based on a global analysis operator 𝜴𭐹

created from a patch based one as given in Equation (5.36). To deal with signal boundary
problems, I follow the well-known reflective boundary conditions. It should be mentioned
that applying 𝜴𭐹 can be efficiently implemented using image filtering techniques.

With two global operators 𝜴𭐹
𭐼 and 𝜴𭐹

𭐷 constructed from the corresponding patch based
operators 𝜴𭐼 and 𝜴𭐷 as in Equation (5.36), I reformulate the multimodal co-sparse analysis
model (6.7) for the special case of joint intensity and depth reconstruction in unconstrained
Lagrangian form as

{𝒔⋆
𭐼 , 𝒔⋆

𭐷} ∈ arg min𝒔𭐼,𝒔𭐷

1
2‖𝑨𭐼𝒔𭐼 − 𝒚𭐼‖2

2 + 1
2‖𝑨𭐷𝒔𭐷 − 𝒚𭐷‖2

2 + 𝜆𝑔𭐶𭑜(𝜴𭐹
𭐼 𝒔𭐼, 𝜴𭐹

𭐷𝒔𭐷). (6.10)

Therein, I employed a quadratic error term 𝑓 (⋅) = ‖⋅‖2
2, i.e. the error is assumed to be additive

and normally distributed. The sparsifying function 𝑔𭐶𭑜 is the same as the one used for
learning the operators, see Equation (6.6). Consequently, it enforces the analyzed versions
of both modalities to have a correlated co-support and hence couples the reconstruction
results of the two signals. The measurement matrices 𝑨𭐼 ∈ ℝ𭑚𭐼×𭑁 and 𝑨𭐷 ∈ ℝ𭑚𭐷×𭑁

model the sampling process of each modality. The Lagrangian multiplier 𝜆 ∈ ℝ+ balances
the impact of the sparsity prior and the impact of the data fidelity terms. Therefore, it is
used to control how closely the determined signal estimates approximate the corresponding
measurements.

Depending on the measurement matrices, several inverse problems such as denoising,
inpainting, or upsampling can be tackled via solving Problem (6.10). This can be accom-
plished either jointly for both signals, or by fixing one and optimizing over the other. Here,
the focus lies on enhancing the quality of depth measurements 𝒚𭐷, given a fixed high qual-
ity intensity signal, i.e. 𝒚𭐼 = 𝒔𭐼. In this case, 𝑨𭐼 is the identity operator 𝑰𭑁 ∈ ℝ𭑁×𭑁 and
‖𝑨𭐼𝒔𭐼 − 𝒚𭐼‖2

2 = 0. Furthermore, the analyzed intensity signal is constant during the op-
timization process, i.e. 𝜴𭐹

𭐼 𝒔𭐼 = 𝒄 = constant and consequently Problem (6.10) simplifies
to

𝒔⋆
𭐷 ∈ arg min𝒔𭐷

1
2‖𝑨𭐷𝒔𭐷 − 𝒚𭐷‖2

2 + 𝜆𝑔𭐶𭑜(𝒄, 𝜴𭐹
𭐷𝒔𭐷), (6.11)

for the considered depth map enhancement task. Through this formulation, information
about the structure of an observed scene that has been extracted from an intensity im-
age and its co-support helps to determine the corresponding depth map with aligned co-
support. The above optimization problem (6.11) is solved with a standard Euclidean conju-
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gate gradient method using the Hestenes-Stiefel update formula and employing an Armijo
step size selection.

6.3.2 Training Set Selection

Like all example based learning methods, the way the training samples are selected im-
pacts the properties of the resulting operators and consequently affects their overall perfor-
mance when applied in signal processing tasks. Due to the special characteristics of depth
maps, selecting corresponding intensity and depth pairs at random positions, as for exam-
ple done for GOAL, is a suboptimal procedure for two reasons. First, the majority of small
depth patches are smooth homogeneous regions that do not carry important structural in-
formation and thus are useless for the training process, see Figure 6.4. Second, many depth
patches simply show horizontal and vertical edges. Though the penalty term (6.8) used for
learning the operators helps to prevent the result from overfitting to a specific subset of the
training data such patches bias the learning process if no other structures are present in
the training set. Therefore, one needs to ensure the training set to be sufficiently diverse in
order to find a generally applicable multimodal analysis operator.

To overcome these two drawbacks, viable training pairs are selected according to two
simple criteria. First, the gradient of the depth map is computed and all corresponding
patch pairs where the energy of the depth gradient is low are discarded. In this way, use-
less smooth regions are removed. Second, to find a diverse training set the final patches
are selected according to their dominant gradient orientation. For a single patch, its domi-
nant orientation is found by composing a histogram of gradient orientations with 𝑏 equally
spaced bins and selecting the orientation that corresponds to the largest bin as the domi-
nant orientation. In that way, one out of 𝑏 possible orientations is assigned to each patch.
Here, I only consider orientations in the range of [0, 𝜋]1 and utilized 𝑏 = 18. Next, the
patches are grouped according to their dominant orientation, which in total results in 𝑐 ≤ 𝑏
groups, with 𝑐 being the number of actually occurring orientations. Finally, from each of
these 𝑐 groups all, or maximally ⌈𭑀

𭑐 ⌉ patches of highest depth gradient energy are added
to the training set. An example of accepted and rejected sample patch pairs is illustrated in
Figure 6.3.

1All orientations 𭑜 in the range of [−𭜋, 0[ are set to 𭑜 = 𭑜 + 𭜋.
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(a) Intensity image. (b) Depth map.

(c) Accepted patch pair (left intensity patch, right
depth patch).

(d) Discarded patch pair (left intensity patch,
right depth patch).

Figure 6.3: This figure exemplifies the training set selection process. A pair of corresponding intensity
image and depth map are given in (a) and (b), respectively, where 2000 used patches are marked green
and discarded regions are marked lite red. In (c) a close up of an accepted patch pair is given, and a close
up of an unwanted and discarded pair is shown in (d).

6.3.3 Prior Art on Depth Map Superresolution

Increasing the resolution of depth maps obtained from range sensors has become an im-
portant research topic, and diverse approaches treating this problem have been proposed
throughout the past years. Many of these methods originate from the closely related prob-
lem of intensity image superresolution. However, those methods mostly aim at produc-
ing pleasantly looking results, which is different from the goal of achieving geometrically
sound scene depth maps. Straightforward upsamling methods like nearest-neighbor, bi-
linear, or bicubic interpolation produce undesirable staircasing or blurring artifacts, see
Figure 6.1. Here, I shortly review more sophisticated methods for depth map SR that aim
at reducing these artifacts.

In a first attempt, methods have been proposed that use smoothing priors from edge
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statistics [48] or local self-similarities [52]. These methods only require the LR depth map
without a corresponding intensity image, but, either have difficulties in textured areas, or
only work well for small upscaling factors.

A different approach, which also solely requires depth information, is based on fusing
multiple LR depth maps of a scene obtained from slightly displaced range sensors into a
single HR depth map. To that end, Schuon et al. [115] developed a global energy optimiza-
tion framework employing data fidelity and geometry priors. This idea has been extended
for better edge-preservation by Bhavsar et al. in [11].

A number of recently introduced methods aim at exploiting co-aligned discontinuities
in corresponding intensity and depth images of the same scene. They fuse the HR and LR
data utilizing Markov Random Fields (MRF). Depth map refinement based on MRFs has
been first explored in [30], extended in [76] with a depth specific data term, and combined
with depth from passive stereo in [145]. In order to better preserve local structures and
to remove outliers, Park et al. [95] add a non-local means term to their MRF formulation.
Aodha et al. [4] treat depth SR as a MRF labeling problem that matches LR depth patches
to HR depth patches from a predefined database.

Inspired by successful stereo matching algorithms, Yang et al. [141] proposed an algo-
rithm that iteratively employs a bilateral filter to improve depth map superresolution using
an additional HR intensity image. Chan et al. [19] extended this approach by incorporating
a noise model specific to depth data. Xiang et al. [133] included sub-pixel accuracy, and
Dolson et al. [32] addressed temporal coherence across a depth data stream from LIDAR
scanners by combining a bilateral filter with a Gaussian framework.

Finally, methods exist that exploit dependencies between sparse representations of inten-
sity and depth signals over appropriate dictionaries. In [62], the complex wavelet transform
is used as the dictionary and both the HR intensity image and the LR depth map are trans-
formed into this domain. After that, the resulting detail and approximation coefficients
are fused using a dual tree to obtain the final HR depth map. Instead of employing prede-
fined bases or dictionaries, approaches that utilize learned dictionaries are known to lead
to state-of-the-art performance in diverse classical image reconstruction tasks, cf. [44, 80].
Surprisingly, specific depth map enhancement techniques based on sparse representations
learned from depth data are rare and this topic has only recently started to be explored.
Mahmoudi et al. [77] proposed a method based on first learning a depth dictionary from
noisy samples, then refining and denoising these samples, and finally learning a new dic-
tionary from the denoised samples to inpaint, denoise, and super-resolve projected depth
maps from 3D models. Closest to the presented approach are the recent efforts of [75] and
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Figure 6.4: This figure shows the five pairs of aligned intensity images and depth maps from [113] used for
learning the multimodal co-sparse analysis operator. Top row: intensity images, bottom row: registered depth
maps.

[125]. In both methods, dictionaries are learned independently from depth and intensity
samples, and the two modalities are coupled based on their sparse representations dur-
ing the depth map reconstruction phase. In [75], three dictionaries are composed from LR
depth, HR depth, and HR color samples to learn a respective mapping function based on
edge features. In contrast to this, in [125] only two dictionaries one for intensity patches and
one for depth patches are learned, and the similarity of the support of corresponding sparse
representations with respect to the learned dictionaries is used to model the coupling.

6.4 Experimental Evaluation

This section presents a set of experiments to evaluate the performance of my multimodal
analysis operator applied for the task of depth map enhancement. To that end, I use the
well-known Middlebury stereo dataset [113], which provides aligned intensity images and
depth maps for a number of different test scenes.

The five intensity and depth image pairs presented in Figure 6.4 have been chosen for
learning the multimodal analysis operator. From these images, a total number of 𝑀 = 10000
sample patches out of all possible patches of square size with √𝑛 = 5 have been gathered
according to the criterion described in Section 6.3.2. As it is common in dictionary and con-
ventional analysis operator learning methods, all training patches have been normalized to
have zero-mean and unit ℓ2-norm. To account for the zero-mean learning samples during
the reconstruction process, the two learned analysis operators 𝜴⋆

𭐼 and 𝜴⋆
𭐷 were both mul-
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(a) Intensity analysis atoms. (b) Depth analysis atoms.

Figure 6.5: This figure presents the analysis atoms of a multimodal analysis operator learned from aligned in-
tensity images and depth maps. The intensity analysis atoms are shown in (a) and the depth analysis atomes
are given in (b). Black pixels correspond to the smallest negative values, gray pixels are zeros and white corre-
spond to the largest positive values.

tiplied from the left by 𝑵 = (𝑰𭑛 − 1
𭑛𝑱), where 𝑱 ∈ ℝ𭑛×𭑛 denotes the identity matrix, i.e the

final operators are given as 𝜴𭐼 = 𝜴⋆
𭐼 𝑵 and 𝜴𭐷 = 𝜴⋆

𭐷𝑵 . Regarding the number of analysis
atoms 𝑎, I chose four times overcompleteness, i.e. 𝑎 = 4𝑛, which for the concrete dimen-
sions used here results in two (100 × 25)-dimensional operators. The smoothing parameter
in the sparsifying function (6.6) was set to 𝜈 = 103 and the remaining parameters were set
to 𝜅 = 9 ⋅ 104 and 𝜇 = 102. I determined these numbers empirically regarding the criteria
explained in 5.6.2, i.e. the two learned analysis operators should have low condition num-
ber and moderate mutual coherence. Figure 6.5 shows the analysis atoms of the learned
operators.

Using the learned operators, a depth map is reconstructed by solving Problem (6.11).
Concerning the required Lagrangian multiplier 𝜆, larger values lead to faster convergence
of the optimization process but may large differences between the measurements and the
reconstructed depth map. As explained below, the LR depth maps used in the experiments
here are quasi noise-free, thus, 𝜆 could be set to a small value in order to maintain high data
fidelity. However, small values for 𝜆 lead to a higher number of necessary iterations until
the algorithm stops. To achieve descend results with few iterations, a common approach
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is to run the optimization process 𝐼 times, with continuously reduced values of 𝜆, cf. [63].
At each restart the algorithm is initialized with the reconstruction result determined at the
previous iteration. Here, I repeated the optimization process ten times, i.e. 𝐼 = 10, starting
with 𝜆(1) = 50 and reducing it to a final value of 𝜆(𭐼) = 1. Concretely, at the 𝑖-th iteration
the Lagrangian multiplier for the next iteration 𝑖 + 1 is computed by 𝜆(𭑖+1) = 𝜆(𭑖)( 𭜆(𭐼)

𭜆(1) )
𭐼−1.

To compare my method with the current state-of-the-art, I performed artificial tests on
the four standard test images 'Tsukuba', 'Venus', 'Teddy', and 'Cones' that are part of the
well-known stereo Middlebury dataset. From these depth maps, I generated synthetic LR
depth maps by downscaling the ground truth depth maps by a factor of 𝑠 in both vertical
and horizontal dimension. For that purpose, the available HR depth maps were first blurred
with a Gaussian kernel of size ((2𝑠 − 1) × (2𝑠 − 1)) and standard deviation 𝜎 = 𭑠

3 before
downsampling. I used the resulting LR depth map and the corresponding HR intensity
image as the input for the proposed depth map SR algorithm. These artificial tests permit
to quantitatively compare the considered algorithms.

Following the methodology described in the work of comparable depth map SR ap-
proaches, I used the Middlebury stereo matching online evaluation tool2 to assess the ac-
curacy of the achieved results with respect to the ground truth data. The measure used
by this tool is the percentage of badly recovered depth values, where a depth values is de-
clared bad whenever the difference between the ground truth pixel and the recovered pixel
is greater than one. Additionally, I measured the root-mean-squared error (RMSE) based
on 8-bit result depth maps. To show the advantage of the multimodal co-sparse analysis
model compared to its single modal counterpart, I performed all superresolution depth
map experiments based on the standard analysis model formulation. To that end, I em-
ployed an operator learned by the algorithm GOAL from the depth samples of the training
set used for learning the multimodal operator. All parameters were empirically found such
that the resulting operator achieves the best possible results.

Table 6.1 and Table 6.2 present the numerical results regarding the two employed mea-
sures for upsampling the four test images by factors of 𝑠 = 2, 𝑠 = 4, and 𝑠 = 8. The quantita-
tive comparison with other depth map SR methods demonstrates the superior performance
of the multimodal analysis operator across all test sets. It reaches near perfect results for
small upscaling factors, and numerically the improvements over state-of-the-art methods
is of particular significance for larger magnification factors.

Visually, as it can be seen from Figure 6.1, the suggested approach improves depth map
SR considerably over simple interpolation approaches. Particularly in the most important

2http://vision.middlebury.edu/stereo/eval/
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𝑠 Method Tsukuba Venus Teddy Cones

2×

Nearest-Neighbor 1.24 0.37 4.97 2.51
Yang et al. [141] 1.16 0.25 2.43 2.39

GOAL 1.03 0.22 2.95 3.56
Proposed method 0.47 0.09 1.41 1.81

4×

Nearest-Neighbor 3.53 0.81 6.71 5.44
Yang et al. 2.56 0.42 5.95 4.76

GOAL 2.95 0.65 4.80 6.54
Proposed method 1.73 0.25 3.54 5.16

8×

Nearest-Neighbor 3.56 1.90 10.9 10.4
Yang et al. 6.95 1.19 11.50 11.00

Lu et al. [76] 5.09 1.00 9.87 11.30
GOAL 5.59 1.24 11.40 12.30

Proposed method 3.53 0.33 6.49 9.22

Table 6.1: This table gives a numerical comparison of my achieved experimental results to other depth map SR
approaches for different upscaling factors 𭑠. The numbers represent the percentage of bad pixels with respect
to all pixels of the ground truth data and an error threshold of 𭛿 = 1.

𝑠 Method Tsukuba Venus Teddy Cones

2×

Nearest-Neighbor 0.612 0.288 1.543 1.531
Chan et al. [19] n/a 0.216 1.023 1.353
Aodha et al. [4] 0.601 0.296 0.977 1.227

GOAL 0.278 0.105 0.996 0.939
Proposed method 0.255 0.075 0.702 0.680

4×

Nearest-Neighbor 1.189 0.408 1.943 2.470
Chan et al. n/a 0.273 1.125 1.450

Aodha et al. 0.833 0.395 1.184 1.779
GOAL 0.450 0.179 1.389 1.398

Proposed method 0.346 0.129 1.347 1.383

8×

Nearest-Neighbor 1.135 0.546 2.614 3.260
Chan et al. n/a 0.369 1.410 1.635

GOAL 0.713 0.249 1.743 1.883
Proposed method 0.675 0.156 1.662 1.871

Table 6.2: This table presents a numerical comparison of my achieved experimental results to other depth map
SR approaches. The numbers represent the RMSE in comparison with the ground truth depth map.
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areas that show discontinuities, neither staircasing nor substantial blurring artifacts occur.
Even if SR is conducted using large upscaling factors, edges can be preserved with great
detail due to the additional knowledge provided by the intensity image. For a further visual
assessment, the 12 depth maps created by the proposed algorithm and that correspond to
the results given in the tables are shown in Figure 6.7.

Considering the computational complexity of the algorithm, in my current unoptimized
Matlab implementation, reconstructing a HR depth map with 500 CG-iterations takes up
to three minutes on a standard desktop PC with a 3.2 GHz Intel i7 six core CPU and 16 Gb
RAM. Since most of the processing time is dedicated to parallelizable filtering operations, I
expect a considerably lower computation time with a better software implementation and
processing on a GPU. Furthermore, the number of CG-iterations in the reconstruction may
be reduced significantly. As shown in Figure 6.6, the last 400 iterations only reduce the
relative RMSE by about 0.2% and descent recovery results are already achieved with only
50 CG steps.

0 100 200 300 400 500
0

0.5

1

Iterations

Relative RMSE

Tsukuba
Venus
Teddy
Cones

Figure 6.6: This figure shows the relative RMSE over the CG-iterations for upscaling the synthetic test images
by a factor of 𭑠 = 8.

6.5 Summary

In this chapter I proposed the new concept of multimodal co-sparse analysis modeling,
and how this model can be exploited in signal reconstructing tasks. One necessity for this
model is to have an appropriate set of multimodal analysis operators, which allow enforc-
ing the proposed assumption of related signal modalities having a statistically dependent
co-support. To that end, I introduced an efficient learning scheme based on conjugate gra-
dient descent on the oblique manifold, that allows to jointly infer these operators from a
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(a) Ground truth. (b) 𭑠 = 2. (c) 𭑠 = 4. (d) 𭑠 = 8.

Figure 6.7: This figure presents the depth map superresolution results achieved with my proposed method.
From top to bottom: Tsukuba, Venus, Teddy, and Cones. Columns (a) through (d) depict: ground truth (a),
upscaling factor 𭑠 = 2 (b), 𭑠 = 4 (c), and 𭑠 = 8 (d). For a better visual assessment, for each depth map a close
up of an interesting region is provided. Notice how fine details and clear edges can be preserved even with
large upscaling factors.
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set of aligned training signals. As an example application, I showed how the model can
be used to infer high-resolution depth maps from low-resolution depth samples given an
additional high-resolution intensity image of the same scene. The presented numerical re-
sults show its excellent performance with improvements over the current state-of-the-art,
and underpin the validity of the proposed model.

Other applications that can benefit from the proposed model can be found for example in
the field of medical image processing. Therein, often various registered measurements are
acquired from one patient in diverse modalities such as X-ray, magnetic resonance tomogra-
phy, photon emission computed tomography, or ultrasound. Jointly extracting information
out of all these modalities, or enhancing the respective signals is highly valuable to sim-
plify and improve medical diagnostics. Furthermore, the model could be incorporated as a
regularizer into variational methods for estimating depth maps or optical flow fields from
stereo images. Currently, these methods are based on total-variation minimization which
employs the finite difference operator, but, as also shown in this thesis, learned analysis
operators outperform this analytic operator. Besides using a learned operator, additionally
exploiting the dependencies between the two modalities as presented here is a promising
path to follow.
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Conclusion

In this thesis, I investigated the problem of learning sparse data models from example data,
regarding both the sparse synthesis and the co-sparse analysis point of view with emphasis
on their applications to image processing tasks. In the first part, I introduced two new al-
gorithms called Separable Dictionary Learning (SeDiL) and Geometric Analysis Operator
Learning (GOAL) that are based on geometric conjugate gradient optimization on suitable
matrix manifolds. Although the two approaches are designed to be signal independent
in general, here, I mainly focused on applying the models to regularize classical inverse
problems arising in the field of image processing. In the second part of this thesis, I pre-
sented the new multimodal co-sparse analysis model, which permits to model statistical
dependencies of different modalities representing the same physical object.

Though a large number of dictionary learning approaches have been already introduced,
the topic of finding structured dictionaries that enable fast implementations as well as en-
forcing specific internal properties on the dictionary during the learning process is still an
open research issue. For those reasons, I introduced SeDiL, a novel learning approach that
enforces a dictionary to have a separable matrix structure. This structure permits to learn
dictionaries of high dimensions and reduces the computational complexity for both learn-
ing the dictionary and employing it in applications. Additionally, SeDiL is a new algorithm
for learning unstructured conventional dictionaries, and enables controlling the mutual co-
herence of a learned dictionary. Note that this approach is straightforwardly extendable to
data of more than two dimensions like volumetric medical images using the notion of mul-
tilinear algebra. In that realm, efficiently applicable dictionaries are even more relevant due
to the exponentially growing dimensions of the signals and the associated dictionaries.

For the co-sparse analysis model, learning comprehensive signal representations from
training data is a comparatively unexplored topic and only few methods are available. Here,
I introduced the new analysis operator learning approach GOAL, which finds an operator
by a non-convex optimization procedure with the feasible set of solutions restricted to the
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oblique manifold. With the imposed constraint set, the trivial solution is avoided and inter-
nal properties of the resulting analysis operator are controlled directly during the learning
process. By a series of synthetic experiments, I showed that GOAL outperforms all existing
analysis operator learning techniques in terms of computational complexity, ability to find
a generating ground truth operator, and generality. Additionally, I employed an operator
learned by GOAL for solving the classical inverse problems of image denoising, inpaint-
ing, and superresolution. The obtained results reveal the state-of-the-art performance of
GOAL for these image processing tasks. As for dictionaries in the synthesis case, analysis
operators that come along with an efficient implementation are important for a successful
application in real world problems. To that end, adapting the separable dictionary learn-
ing technique such that a separable analysis operator can be learned is a valuable task for
future work.

Based on the standard co-sparse analysis model, I introduced a novel concept called mul-
timodal co-sparse analysis model that permits to model statistical dependencies of diverse
measurements from the same object that have been acquired in different modalities. Be-
cause those measurements originate from the same object, the assumption that underlies
the proposed model is that they share a common co-support with respect to a suitable set
of multimodal analysis operators. For this set of operators, no analytic form exists and it
must be learned from aligned and corresponding training signals. To that end, I proposed
an extension of GOAL that uses a suitable sparsifying function to enforce the coupled co-
support assumption. I evaluated the performance of the model for the task of depth map
superresolution. Here, my method achieves state-of-the-art performance. Other applica-
tions that could benefit from the proposed model can be found for example in the field of
medical image processing, where a patient's treatment is often based on information gained
from several measurements acquired with diverse imaging technologies such as computer
tomography, x-ray, or ultrasound. The computational bottleneck of processing such high
dimensional data could be handled by combining the multimodal co-sparse analysis model
with the separability constraint in future work.
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