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Abstract— For safety in physical human-robot interac-
tion (pHRI) the robot motion must be restricted to an ad-
missible (safe) region. In this work, we propose a systematic
approach to guarantee the satisfaction of virtual workspace
constraints in 6D for arbitrary manipulator dynamics based
on an extended invariance control concept. Invariance control
yields a computationally efficient method to render multiple
virtual nonlinear workspace boundaries. In order to make
the scheme suitable for pHRI we present an approach to
reduce chattering by explicitly considering the discrete-time
Euler solver output. Orientation constraints are unambiguously
represented as unit quaternions. The theoretical results are
successfully validated in simulation and experiments on a 7-
DoF anthropomorphic manipulator.

I. INTRODUCTION

Many application domains for robots require the ability

to interact closely or even physically with humans. Among

them are mobility assistance for elderly people and coopera-

tive object manipulation in domestic and industrial settings,

see e.g. [1]. One crucial characteristic of pHRI is the physical

coupling of human and robot - direct or through an object.

It is well-known that the interplay of compliance, safety,

performance, and dependability under real-time conditions

is key to success in pHRI [2]. We aim to address these

fundamental prerequisites of pHRI within a single control

framework combining active compliance control [3] with the

enforcement of virtual workspace constraints restricting the

manipulator motion to a safe region.

The topic of virtual workspace constraints is related to

haptic virtual-wall rendering as addressed in the virtual

reality literature. In order to render a haptic virtual wall in

a virtual environment, the admittance characteristics of the

admittance-controlled haptic interface switches from free-

space (zero stiffness) to a very stiff characteristics at the vir-

tual wall boundary [4]. Also related is the topic of forbidden-

region virtual fixtures from telerobotics, which keep the

manipulator out of a certain workspace region [5]. Depending

on the impedance/admittance-type of the forbidden-region

virtual fixture either a high force proportional to the pen-

etration depth is generated similar to a virtual wall or any

motion command driving the teleoperator into a forbidden

region is rejected [6]. However, the approaches mentioned

above do not consider the dynamics of the robotic system

approaching the constraint and therefore cannot ensure to

avoid a penetration into the constraints.

In this paper we propose invariance control as a generic

and systematic scheme to enforce robot workspace con-

straints in 6D. Invariance control [7], overcomes the above

mentioned limitations of existing approaches by taking the

system’s (potentially nonlinear) dynamics and constraints

on the actuating variables explicitly into account [8]. Ad-

vantageously, it yields a computationally efficient method

to render multiple virtual nonlinear workspace boundaries;

within the admissible region the nominal control scheme

is active. To the best of our knowledge, invariance control

has not yet been considered to render workspace constraints

in autonomous robotics. Cooperative tasks may include

constraints on the position as well as on the orientation

in 3-dimensional space. This includes problems of colli-

sion avoidance and self-collision avoidance as addressed

by [9], and [10]. We investigate invariance control on poses

in R
3 × RP

3, which is not addressed in the literature.

Nevertheless, while ensuring the positive invariance prop-

erty of the admissible region, the approach suffers from chat-

tering effects at the boundaries of the admissible region. The

chattering induces stable oscillations close to the boundary,

which is particularly undesirable in pHRI as the vibration

effect is directly exerted on the human interaction partner.

The contribution of this paper is an invariance control

concept to enforce robot workspace constraints in 6D with

a particular focus on its application in physical human-

robot interaction. This is achieved by presenting orientation

constraints unambiguously as unit quaternions. An active

compliance control is embedded as a nominal control within

the admissible (safe) region of the workspace. The chat-

tering reduction method proposed in this work preserves

the properties of invariance control while enhancing the

quality of interaction close to the workspace boundaries

for physical human-robot interaction. Chattering reduction is

achieved by explicit consideration of the discrete-time Euler

solver output. Both contributions are successfully validated

in simulation and on an anthropomorphic manipulator with

7 degrees of freedom (DoF).

The remainder of this paper is organized as follows:

Section II gives the necessary background on invariance

control. The extension to 6D pose constraints is presented

in Section III and the novel chattering reduction method

is introduced in Section IV. Simulations are provided in

Section V, experiments in Section VI.



Notation: In the following, bold characters are used

for vectors and matrices. Low order time derivatives are

denoted by dots (ÿ := d2y
dt2

). Higher order derivatives are

denoted y(i) := diy
dti

. The directional derivative of the scalar

function h(x) in the direction of f is the Lie-Derivative

Lfh(x) =
∂h

∂x
f .

Lie-Derivatives (Li
f ) of higher order i are defined recursively.

The Euclidean norm (2-norm) of vector u is denoted ‖u‖2.

The Moore-Penrose generalized inverse of matrix A is

denoted by A+ = AT (AAT )−1 and AA+ = I .

II. INVARIANCE CONTROL

Due to space limitations, only a brief introduction to the

concept of invariance control is given in this section. We

kindly refer the reader to [11], [12] for a more complete

overview on the fundamentals of invariance control.

A. Basic Principles

The invariance controller supervises a nominal controller

and corrects the control output if and only if necessary to

ensure that the system state remains within a pre-defined

positive invariant set, independent of the future reference

applied to the nominal control. For the sake of simplic-

ity, we introduce the concept for the single-input single-

output (SISO) case first before the multi-input multi-output

(MIMO) case is treated in Section II-B. Any nonlinear,

control affine system

ẋ = f(x)+ g(x)u with x(t = 0) = x0, (1)

with a state vector x ∈ R
n, a scalar control in-

put u ∈ R and sufficiently smooth functions f : Rn → R
n

and g : Rn → R
n can be controlled using invariance control.

Invariance control makes the system (1) controlled invariant

with respect to a positively invariant set [13], defined by the

function Φ(x)

G = {x |Φ(x) ≤ 0}
∂G = {x |Φ(x) = 0}.

(2)

This invariance function Φ(x) needs to be decreasing on the

boundary ∂G for the region G to be invariant. The proof for

this condition can be found in [13].

The basic structure of a system with invariance control

is shown in Fig. 1. The nominal control is designed to

ensure the achievement of the over-all control goal without

considering the constraints. At times, when no constraint

is violated, this nominal control determines the dynamic

behavior and performance of the system. A switching policy

enables the corrective controller to prevent a violation of the

constraints.

In order to derive the invariance function, first the admissi-

ble set for the system state is defined by means of an output

function for each constraint

yi = hi(x) ≤ 0 for 1 ≤ i ≤ m, (3)

resulting in the admissible set

H = {x |h(x) ≤ 0}. (4)
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Fig. 1. Basic structure of an invariance controlled system

The invariance function also depends on the relative degree r

of the system (1), which is determined by input-output-

linearizing the system using the Lie-derivative

(r)
y = L

r
fh(x) +LgL

r−1
f h(x)u (5)

with LgL
i
fh(x) = 0 for 0 < i < r − 1

and LgL
r−1
f h(x) 6= 0.

The invariance function is then given by

r = 1 : Φ(x) = y

r = 2 : Φ(x) =

{

y if ẏ ≤ 0
− 1

2γ ẏ
2 + y if ẏ > 0.

(6)

As long as this invariance function has a value smaller than

zero, the system is not in danger of violating a constraint and

the nominal control can be applied.

B. Multi-Input Multi-Output Systems

Since there is more than one control input in Multi-Input

Multi-Output (MIMO) systems, compliance with multiple

constraints is possible [8]. For each constraint, an output

function needs to be defined and these functions can be

merged into a vector

y = h(x) ⇔















y1 = h1(x)
...

yl = hl(x).

(7)

The relative degree (5) has to be determined for each element

of this vector, which then defines the so-called pseudo input

zi =
(ri)
yi = ai

T (x)u+ bi(x) (8)

with aT
i (x) =

[

Lg1
Lri−1
f hi(x) · · · Lgm

Lri−1
f hi(x)

]

and bi(x) = L
r
fhi(x),

which can be compactly rewritten by combining the pseudo

inputs to a vector

z = b(x) +A(x)u (9)

with A(x) =







aT
1
...

aT
l






, b(x) =







Lr1
f h1(x)

...

Lrl
f hl(x),







and the parameter ai defined as in (8). Since the constraints

are used to bound the workspace in our setting, not all

constraints are about to be violated at all times. Therefore



the notion of an active constraint is introduced describing

those outputs, in which the system is about to leave the

admissible set. The set K(x) contains the indices of the

active constraints. It is assumed, that each pseudo input is

bounded, which must hold true for active constraints and can

be fulfilled by use of an input-output-linearizing control law.

zi ≤ γi ∀i ∈ K(x).

Using this constraint on the pseudo input, (8) can be rewritten

into the element-wise inequality

AK(x)u ≤ bK(x), (10)

where AK(x) is derived from the matrix A(x) by only

considering those lines that correspond to active constraints

and

bK(x) =







γi1 − bi1(x)
...

γik − bik(x)






.

Similarly, for the vector bK(x) only those elements

from b(x) corresponding to active constraints are used. More

details on invariance control in MIMO systems are found

in [8].

C. Corrective Control

It is desirable that the control u deviates least possible

from the nominal control input unom but keeps the system

controlled invariant. Therefore, we pose the search for the

control as minimization problem

min‖u− unom‖
2
2, (11)

which can be solved analytically if the number of active

constraints is limited to the number of degrees of freedom,

i.e. dim u ≥ dim y. Note that in case of workspace con-

straints this is a reasonable assumption. This results in a

side condition to the optimization problem [8]

min‖u− unom‖
2
2

s. t. A(x)(u − unom) − (z − b(x) − A(x)unom) = 0.
(12)

The constraint in the optimization problem ensures that

nominal control is used in directions where no constraint

is active. The value of the pseudo control input z depends

on the active constraints and is determined by

zi =































znom,i if















φi < 0

∨
(

ḣi < 0 ∧ znom,i ≤ 0
)

∨znom,i ≤ γi

0 if ḣi < 0 ∧ znom,i > 0

zcorr,i = γi otherwise

(13)

with znom determined as in (9). The control output is then

determined by

u = A+(x)(z − b(x)−A(x)unom) + unom. (14)

As zi switches at the boundary, chattering may occur and

cause undesirable oscillations. We propose an approach to

reduce chattering in Section IV.

III. MANIPULATOR INVARIANCE CONTROL WITH 6D

POSE CONSTRAINTS

In this Section we derive a invariance control scheme to

enforce robotic manipulator workspace constraints in 6D.

A. Nominal Control

The first step in setting up an invariance control law is the

design of the nominal control, that ensures the achievement

of the overall control goal. In order to render an active

compliance as desirable for pHRI we consider an admittance-

based control as the nominal one rendering the end-effector

dynamics in Cartesian space to

p̈d = M−1
p (f −Dpṗd −Kppd) (15)

with the vector pd ∈ R
3 describing the desired Cartesian

position, the inertia matrix Mp, viscous friction Dp, and

virtual spring Kp.

The orientation is unambiguously presented as unit quater-

nion

q = q0 + i · q1 + j · q2 + k · q3,

with the elements qi of the unit quaternion describing the

current orientation of the end effector. The dynamics of in

the rotational degrees of freedom is given by

ω̇d = M−1
o



τ −Doωd − 2QKo





q1
q2
q3







 , (16)

with the desired angular velocity ωd, torques τ at the end

effector, and

Q =





q0 −q3 q2
q3 q0 −q1

−q2 q1 q0



 ,

as introduced in [14]. Inertia Mo, rotational damp-

ing Do, and a rotational spring Ko represent the rotational

impedance parameters. The invariance controller with this

nominal controller determines a desired trajectory for the

robot that is compliant with the constraints even when force

or torque is applied to the end effector. Note that other

control schemes are also feasible for the nominal control.

B. Constraints in 6D

The invariance controller is supposed to constrain the

workspace of the robot to a specific region. In the context

of pHRI, typically pose constraints are required for safe

interaction or for the interactive task. In the following, it

is shown, how constraints and the corresponding output

functions are defined for both the Cartesian coordinates

and the orientation of the end effector. For simplicity of

presentation we consider box constraints in Cartesian coor-

dinates and simple angular constraints for the end effector.

The extension to more complicated workspace boundaries is

straightforward using (7).

Box constraints on the end effector’s Cartesian position p

in the robot’s coordinate system are defined by the output

function [8]

hp =

[

pmin − p

p− pmax

]

. (17)



Admittance and
Invariance Control

p
Inverse

Kinematics
PD Joint
Control

Robot

pdesired

u

External Force

qdesired

Reference Trajectory

q

Fig. 2. Control structure for evaluation of the approach in simulation and
experiments with an anthropomorphic manipulator

An angular constraint is defined to restrict the angle between

an axis of the end effector coordinate system and the corre-

sponding axis of the robot coordinate system to a predefined

maximum value αmax. The corresponding output function

hα = α− αmax (18)

is used to calculate the matrix A(x) and the vector b(x)
in (9). In order for the angular constraints to be unambiguous,

the angle α is expressed using unit quaternions. In case of

only one constraint, A(x) is a vector and b(x) a scalar value.

For multiple constraints, as for the Cartesian constraints, the

output functions have to be combined in a vector, so A(x)
will be a matrix and b(x) becomes a vector. The resulting

control law, which is determined using (13) and (14), ensures

that the robot’s end effector remains within the desired

boundaries at all times, follows a given reference trajectory

and is compliant to external forces. Its structure is depicted

in Fig. 2.

IV. CHATTERING REDUCTION

In real-time capable discrete-time implementations, invari-

ance control suffers from chattering [8]. Chattering occurs

during the motion along a boundary. A constant value of

the control parameter γ results in repeated switching in

the corrective control output. This is caused by alternating

switching of the control input between corrective control and

nominal control, depending on the invariance function value

at the current time step. This leads to undesired vibrations

adding discomfort and reduced interaction quality for the

human. Therefore, a method that reduces chattering will is

proposed that explicitly considers an Euler-type solver with

sampling time TA, which is used to evaluate control loop.

A movement along a boundary of the invariant set is

determined by the fixed value of the control parameter γ

according to (13). There are two cases to be considered:

1) The boundary is not yet violated, but the invariance

function has a value larger than zero.

2) The boundary is violated.

Figure 3(a) shows the behavior of an invariance controller

with a fixed value for γ in those two cases. The red line

depicts those values of h and ḣ for which the invariance

function is equal to zero. For all points that are to the right

of this curve, the invariance function is larger than zero and

corrective control is needed.

Corrective control decreases the change in the output

function in the following time step. In case 1), this might

dh
dt

dh
dt

hh

11

22

(a) (b)

Invariant
Region

Invariant
Region

Fig. 3. Comparison of the behavior of an invariance controller with (a) a
fixed parameter γ (b) an adapted parameter γ

already be enough for the invariance function to equal a

value larger than zero. In order to achieve sliding along the

boundary, it would, however, be necessary to end up exactly

on the red line, where the function is equal to zero. In case

2), a change in the rate of change of the output function

alone is not enough to return into the invariant set. If the

change is enough to result in a negative derivative of the

output function, the value of the output function will return

into the invariant set eventually, but again, it will not stop at

the point, where the invariance function is equal to zero.

A more desirable behavior of the invariance controller is

shown in Fig. 3(b). In case 1), the goal should be, to find a

control output that will change the derivative of the output

function in a way that the invariance function is reduced to

zero in the following time step, whereas in in case 2) it has to

be ensured, that the change in the output function is reduced

to zero as well, when the output function itself is reduced.

This motivates us to search for an appropriate modulation of

γ to achieve this behavior. In order to determine a convenient

value for the corrective output in the first case,

Φk+1 =
1

2γadapted

ḣ2
k+1 + hk+1 = 0

has to be solved. This can be done using hk+1 = hk+TAḣk

and ḣk+1 = ḣk + TA · γadapted. After solving the quadratic

equation for γ, this leads to the following two values:

γadapted,± =
h±

√

h2 − 4 · T 2
A · ḣ2

T 2
A

. (19)

The less conservative smaller value of the two will be used

for the invariance control. However, this solution cannot be

used if

h2 − 4 · T 2
A · ḣ2 < 0

holds true, which might happen close to a boundary, since

then the square root in (19) does not have a real value. In this

case or if a boundary is already violated, another approach

has to be taken. The main goal then should be, to return

to the boundary and to reduce the rate of change of the

corresponding output function to zero. In order to reduce

the required acceleration, this adjustment will be made not

in one time step TA but in a time interval nTA. The value



for γ that reduces the rate of change to zero in n time steps

is determined by

γadapted,vel = −
ḣ

nTA

. (20)

For the return to the boundary, the required control input

is only applied in the first time step but the boundary will

be reached in n time steps. So for the (n-1) following time

steps, the velocity is assumed to be constant. The required

value for γ can then be determined by solving

pk+n = pk+1 + (n− 1)TAṗk+1

= pk + TAṗk + (n− 1)TA(ṗk + TAγadapted,pos),

where p is the bounded coordinate. Since the goal is to

reach the boundary, pk+n = pmax has to hold and h =
pk − pmax, ḣ = ṗ can be substituted, which results in

γadapted,pos = −
h+ nTAḣ

(n− 1)T 2
A

. (21)

These two values for γ from (20) and (21) have to be com-

bined to achieve both goals. Therefore a convex combination

of the values of γ is used:

γadapted = g · γadapted,vel + (1− g) · γadapted,pos (22)

The pseudo control output from (13) can be replaced us-
ing (19) and (22).

zcorr,i =























































hi−
√

h2
i
−4T2

A
ḣ2
i

T2
A

if











ḣi>0 ∧ φi>0

∧hi≤0

∧h2
i −4T 2

Aḣ2
i ≥0

−gḣi
nTA

−
(1−g)(hi+nTAḣi)

(n−1)T2
A

if











ḣi>0

∧φi>0

∧hi>0

0 if ḣi<0 ∧ znom,i>0

znom,i otherwise

(23)

if zcorr,i < γmin then zcorr,i = γmin. (24)

Still, condition (24) must be satisfied for bounded control

inputs u as real motors are not able to create an arbitrary

acceleration. With the pseudo input from (23), chattering in

the movement along a boundary can be reduced significantly.

V. SIMULATION

The validity and performance of the proposed invariance

control concept with chattering reduction is evaluated in

simulations using MATLAB/Simulink of a robotic manip-

ulator with the control structure given in Fig. 2. The model

consists of the part, where invariance control influences

the admittance controller in a way such that the resulting

desired position and orientation of the end effector is con-

straint admissible and a model of a closed-loop controlled

robot manipulator. The admittance and invariance control

block combines the effects of external forces and torques

with the reference trajectory using the admittance controller

in (15) and (16) and checks the result for compliance with

the boundaries by using (23) or (13) and if necessary by

adjusting the input of the admittance controller with (14).

The closed loop ensures that an admissible trajectory is

followed. For simulation purposes, the robot is modelled

as PD-controlled, damped double integrator system. In the

TABLE I

SIMULATION PARAMETERS

Sampling time TA 0.001 s
Cartesian impedance Kp 600N/s · I3

Rotational impedance Ko 20N/rad · I3

Cartesian damping Dp 80Ns/m · I3

Rotational damping Do 7Ns/rad · I3

Lower position constraint xmin 0.57m
Upper position constraint xmax 0.7m
Upper orientation constraint αmax 9

◦

Cartesian control parameter γcart −18

Rotational control parameter γrot −12

simulation, only constraints on the x-position are used and

the controlled angle is the deviation of the y-axis in the robot

coordinate system from the end effector’s y-axis. Therefore,

the angle α in (18) is determined by

tan(α) =

√

q21,x + q23,x

q2,x
(25)

with qi,x as the elements of the quaternion rotation

qx = q · j · q−1.

The simulation parameters for the following results are

given in Table I. Figure 4 as well as Fig. 5 show the

results of the simulation with the conventional invariance

control. It is observed that there is an adherence to the

Cartesian workspace boundary and that the end effector

follows the admissible trajectory reasonably well. However,

at the Cartesian boundary oscillations occur, see Fig. 4. Also,

the angular constraint is violated due to a strong oscillation,

see Fig. 5. Successful chattering reduction with the novel
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Fig. 4. Chattering at the Cartesian x-boundary with conventional invariance
control without chattering reduction
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Fig. 5. Chattering at angular constraint with conventional invariance control

method is presented in Fig. 6 and Fig. 7 in contrast to

the same scenario and a conventional invariance control as

shown in Fig. 4 and Fig. 5. The chattering reducing approach

from (23) and (24) is used in simulation. The figures show

a significant reduction of the oscillations. Apart from an

overshoot and a resulting transient effect, the admissible

trajectory runs precisely along the boundary. In this case,

the adherence of the end effector’s position and orientation
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Fig. 6. Significantly reduced chattering at the Cartesian x-boundary with
novel invariance control with chattering reduction

7 8 9 10 11 12 13

8.8

9

9.2

Time t [s]

A
n

g
le

 [
°
]

 

 

Reference

Desired

Measured

Boundary

Fig. 7. Significantly reduced chattering at angular constraint with novel
invariance control with chattering reduction

to the constraints depends only on its ability to follow the

desired trajectory. The difference between a conventional

invariance control and the novel control approach with an

adaptive parameter γ can be observed by comparing Fig. 8

and Fig. 9. The figures show the pseudo control input that

is created at the approach of the boundary shown in Fig. 5

and 7. Figure 8 depicts the input created by the conventional

invariance controller. There, the pseudo input only takes two

values, either −12m
s2

or 1m
s2

, while the adapted invariance

controller also creates values in between as shown in Fig. 9.
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Fig. 8. Pseudo control input created by conventional invariance controller
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Fig. 9. Pseudo control input with adaption of γ

VI. EXPERIMENTAL EVALUATION

As shown in Section V, the effect of chattering is success-

fully reduced with our proposed approach in simulation and

the effectiveness on an actual electromechanical system in

interaction with a human partner is experimentally evaluated.

A. Experimental Setup

The experiment is carried out on an anthropomorphic

manipulator with seven degrees of freedom [15], [16] de-

picted in Fig. 10. The control algorithm is running on

Linux/PreemptRT using Matlab/Simulink’s Real-Time Work-

shop at a sampling rate of 1 kHz using a discrete-time Euler

7-DoF manipulator

Angular constraint

Cartesian constraints

Tool center point

Fig. 10. Anthropomorphic manipulator in interaction pushed to two
positional and one orientational virtual constraint

solver. The applied human force F is measured at the wrist

using a JR3 sensor. The end effector position is determined

through closed-loop differential inverse kinematics from joint

position encoders with 1024 ticks per motor revolution.

Harmonic Drive gears with transmission ratios of 1 : 100
in shoulder and elbow joints (J1 to J4) and 1 : 160 in the

wrist (J5 to J7) ensure backlash-free interaction. In addition

to the parameters and constraints given in Table I, two

additional cartesian box constraints are introduced in the

experiment: y ∈ [0.13m, 0.4m], and z ∈ [−0.5m,−0.35m].

B. Experimental Results

For the experiment, the constraints are chosen to be box

constraints in the Cartesian coordinates and maximum angu-

lar deviation of the y-axis of the end effector from the robot’s

y-axis. During the experiment, forces and torques of random

direction and magnitude are applied to the end effector. The

resulting trajectory in the Cartesian coordinates is shown in

Fig. 11. It can be observed that the green desired trajectory is

always compliant with the boundaries, whereas the position

of the end effector, depicted in black, is not. This happens

when the applied force, as shown in Fig. 12 reaches a value

which the actuators of the robot arm cannot compensate,

since they are not able to create arbitrary counterforces. As

soon as the force is reduced, however, the position of the end

effector is adjusted immediately. It can also be observed, that

when no force is applied, the end effector exactly follows

the desired trajectory. The orientation of the end effector

shows a similar behavior. Fig. 13 depicts the deviation of

the end effector’s y-axis from the robot’s y-axis, when the

torque from Fig. 14 is applied. In this case, the trajectory

is compliant with the boundary, since the applied torque is

small enough for the actuators to counteract. When no torque

is applied, the y-axis aligns itself with the system’s y-axis

and the angle is reduced to zero.
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Fig. 11. End effector trajectory in x, y and z coordinates, bounded in each
coordinate using invariance control
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Fig. 12. Human applied force causing a deviation from the reference
trajectory in the Cartesian coordinates

VII. CONCLUSION

In this work, we propose a novel control approach to

constrain the robot workspace in 6D with focus on applica-

tion in physical human-robot interaction based on invariance

control. The manipulator dynamics is explicitly considered to

avoid penetration of the boundaries at high speed. Arbitrary

smooth workspace constraints can be considered. We also

propose a chattering reduction approach to reduce disturbing

oscillations along the workspace boundaries. In experiments

and simulations the scheme is shown to be able to satisfy

6D workspace constraints while effectively preserving the

desired compliant behavior of the robot manipulator within

the admissible region. In conclusion, invariance control is a

very promising, compuationally efficient tool to execute (co-

operative) manipulation tasks involving compliant robot be-

havior while obeying safety- or task-relevant constraints. A

remaining challenge is the inclusion of constraints on joint-

level. Therefore, our future work targets the extension to

mixed joint- and work-space constraints in one framework.
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