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Abstract—Anticipatory behavior based on the human be-
havior prediction enables the robot to improve the quality
of its assistance in physical human-robot interaction (pHRI).
However, predictions are partly afflicted with high uncertainties
originating from the intrinsic variability in human behavior
and the influence of the environment which requires the
negotiation among the partners. In this paper, we propose a
novel control approach that dynamically adapts the robot’s role
to uncertainties in real time facilitating the negotiation between
the human and the robot. The approach is based on risk-
sensitive optimal feedback control. The negotiation between
the human and the robot is realized through a dynamical
changing risk-sensitivity parameter. The proposed approach is
experimentally validated in a cooperative transport scenario in
a two-dimensional visuo-haptic virtual environment.

I. INTRODUCTION

Robots of the future are expected to enter daily-life

such as domestic and medical/welfare environments. Physical

human-robot interaction is one of the major challenges

because of the physical coupling between the human and

the robot requiring real-time decision making capabilities of

the robot. For intuitive interaction with the human and an

effective contribution to the task, the robot should predict the

human’s behavior and assist the human proactively. However,

a robot’s active behavior based on an incorrect prediction

could be more of a hindrance than a help. Therefore, it

is very important to consider uncertainties arising from the

intrinsic variability in human behavior. An additional source

of uncertainty stems from the (dynamic) environment. Both

aspects, require the robot to interpret haptic disagreement

signals online and to negotiate the motion in a seamless and

intuitive way.

Physical human-robot interaction (pHRI) issues are stud-

ied for example in cooperative load transport [1]-[3]. The

robot’s anticipative assistance based on the prediction of

the human’s motion can reduce the human’s effort in the

task [4]. Active robotic contribution based on the prediction

of the human behavior is investigated in point to point

movements [5] , [6], and full-scale transport tasks in con-

strained environments as in our previous work [7]. In these

works, however, the prediction uncertainties are not taken

into account in the proactive assistance.

Following the conceptual idea that the robot should behave

less pro-active in situations where it is very uncertain about
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the human motion intention, we propose a novel interaction

control concept based on risk-sensitive optimal feedback con-

trol [8]. Within this control approach we consider the human

behavior being represented by a probabilistic model learned

in previous executions. Modeling the human’s unexpected

behavior as process noise, the proposed control makes the

human’s variability or disagreement directly influence the

robot’s behavior. Instrumental for that is the risk-sensitivity

parameter, which determines how strongly the disagreement

is considered in the robot control policy and therefore the

level of pro-activity in the robot behavior, synthesizing its

role w.r.t. the human. However, this model considers only

previous executions, i.e. the robot considers the expected

process noise in feedforward fashion. The control is not

adapted to any unexpected behavior not reflected in the

model. Therefore, we also propose an improved control

scheme to accommodate for unmodeled human execution

variability [9]. This approach estimates the current process

noise, which is derived from the current force input applied

by the human in a feedback fashion. Nevertheless, the risk-

sensitivity parameter is so far kept constant during the task

execution. Our psychological experiment in [9] shows that,

depending on the situation, an active robotic assistant should

dynamically adapt its risk-sensitivity, adopting a passive or

dominant role.

The contribution of this paper is a scheme to dynamically

change the risk-sensitivity parameter adapting the robot’s

role during the interaction. The continuous negotiation pro-

cess with the human partner reflected in a variable risk-

sensitivity is synthesized considering both the predicted

disagreement level and environmental constraints. In addi-

tion, the proposed approach is experimentally validated in

a human user study in a cooperative transport scenario in a

two-dimensional visuo-haptic virtual environment.

The remainder of this paper is organized as follows:

Section II describes the general architecture of the proposed

control scheme. The assistive control with the human behav-

ior learning and the process noise estimation is explained in

Section III. We propose the dynamic role adaptation through

dynamic risk-sensitivity in Section IV, and experiments

for evaluation of the proposed approach are presented and

discussed in Section V.

II. GENERAL ARCHITECTURE

In this paper, as an exemplary representation of pHRI,

we consider a joint object transport task: A human and a

robot move an object in cooperation from a start to a goal

configuration while being physically coupled. For simplicity,
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Fig. 1. General framework of the control scheme

in our derivations we assume that an interaction contact point

between the human and the robot is the representative control

point, i.e. we consider the object to be represented by a point

mass. The extension to arbitrary object geometries involving

geometrically distributed grasp points is straightforward us-

ing the formulation from [3]. Also for simplicity, we consider

the planar case. The general architecture of the robot control

is shown in Fig. 1. We implement an admittance control law

that considers human force input uh ∈ R
2×1 for a compliant

reactive behavior of the robot and an assistive control input

ur ∈ R
2×1 based on the human motion prediction. The

system, considering decoupled dynamics, can be expressed

by

M rẍ+Drẋ = uh + ur, (1)

where M r ∈ R
2×2 and Dr ∈ R

2×2 are the rendered

diagonal inertia matrix and damping coefficient matrix, re-

spectively, ξ = [x ẋ]T is the state of the system, where x ∈
R

2×1 is the position of the control point.

The assistive control input ur is generated by the as-

sistive control of risk-sensitive optimal feedback control,

as explained in Section III-A. A probabilistic model is

learned in previous executions, as explained in Section III-B.

Furthermore, the process noise estimation ε̂ considers both

the expected and the current process noise, as explained

in Section III-C, as shown in Fig. 2. The former is based

on previous observations and the latter is derived from the

current human input uh. In addition, the dynamic risk-

sensitivity θ is defined, as explained in Section IV. As a

result, the robot role is adapted to uncertainties in real-time.

We assume that the human has its own motion plan

represented by a desired trajectory ξd and generates the

required force input ud to track the desired trajectory ξd.

In order to track the predicted trajectory ξ̂d, the robot

generates an estimate ûd of ud. The discrepancy between

both generated control inputs leads to a corrective force

from the human side given by uh = ud − ûd. Hence,

we model the human force input as a process noise in the

system dynamics from (1), i.e. uh = ε. Here we assume it

normally distributed with zero mean as we assume that the

demonstrated trajectories estimated by ξ̂d reflect the way,

the human would like to perform the task. Therefore ûd is

considered as an unbiased estimate of ud. The discretized

version of the system dynamics (1) with a sampling time

interval ∆t in the form ξk+1 = Aξk + Buk is then
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where k stands for the time instance. The assistive control

input is generated based on the dynamics (2).

III. ASSISTIVE CONTROL DESIGN

The goal of the assistance control is to dynamically adapt

robot effort to solve the task depending on uncertainties

while tracking the predicted state ξ̂d until a given time

horizon T . The dynamic role adaptation enables the robot

to reduce the disagreement by negotiating with the human.

In order to address this issue we propose a risk-sensitive

optimal feedback control approach [8].

A. Risk-Sensitive Optimal Feedback Control

With the reference trajectory given by the proba-

bilistic approximation ξ̂d, we define the tracking er-

ror estimate as zk = ξ̂dk − ξk. However, the reference

state ξ̂d ≃ N (µ̂ξ, Σ̂ξ) is a sequence of multivariate normal

distributions. Therefore, the cost function in the minimization

problem with the dynamics expressed as (2) is represented

in the classical Linear Quadratic Control (LQR) framework

with the (weighted) Mahalanobis distance as follows

J = z
T
T Σ̂

− 1

2

ξ,TQΣ̂
− 1

2

ξ,T zT +

T−1
∑

k=1

(zTk Σ̂
− 1

2

ξ,kQΣ̂
− 1

2

ξ,k zk+ur
T
kRurk),

(3)

where Σ̂ξ,k represents the covariance of the desired trajec-

tory, and Q and R are positive definite weighting matrices

that allow a trade-off between control input cost and human

contribution minimization.

Next, in order to consider the process noise ε in the

optimal control law calculation, we adopt a risk-sensitive

optimization [10], [11]. In this case, the cost function is

defined by

γ(θ) = −2θ−1 lnE[exp
− 1

2
θJ ]. (4)

Due to the process noise ε in the dynamics, the solution to

the control problem is calculated minimizing the expected

cost, E[J ]. The optimal feedback control law is given by

urk = Kkzk = Kk(ξ̂dk − ξk), (5)

where Kk is the feedback matrix given by a modified form

of the Ricatti recursion [12] as follows

Kk = −R−1BT(BR−1BT + θε+Π−1
k+1)

−1A, (6)



and

Πk = Qk +AT(BR−1BT + θε+Π−1
k+1)

−1A, (7)

with ΠT = QT and the process noise ε is estimated as

normal distribution with zero mean and covariance given by

N (0, Σ̂u) in the task model λ. The term θε produces the

following effect in the robot behavior: If θ = 0 the controller

is risk-neutral and corresponds to the LQR case. For θ < 0
and θ > 0 the control becomes risk-averse and risk-seeking,

respectively.

B. Learning and Prediction of Human Behavior

In our approach, a preliminary model of the task is ac-

quired by an initial execution of the task without assistance,

i.e. ur = 0. Using this first rough representation, the robot

actively assists and incrementally observes interaction with

the human during additional task executions. Modeling the

state and control input, {ξ,u} ≃ {N (µξ,Σξ),N (u,Σu)},
the robot acquires a representation of the task that represents

both the desired state trajectory ξd of the human and the level

of expected disagreement between partners.

For realizing a safe interaction, we use a time based

HMM, applying regression in time domain as explained

in [13]. This provides a generalized trajectory of the task

in terms of means and heteroscedastic variances. Using the

Viterbi Algorithm in a window over the last observations and

estimating the current sample of the generalized trajectory,

the next state ξ̂d is predicted, see for details [7].

C. Process Noise Estimation

The expected and the current process noise are a mea-

sure of the expected and current level of disagreement

respectively, as shown in Fig. 2. They are estimated as the

variance of the human control input uh, i.e. a normally

distributed noise with zero mean and covariance matrix given

by Σ̂u and Σu, respectively. In order to consider both,

the current and the expected process noise in the optimiza-

tion, we approximate the process noise level ε̂ = N (0,Σε̂)
as max(N (0, Σ̂u),N (0,Σu)). Specifically, we perform a

Gaussian approximation N (0, Σ̂ε̂) for this problem, where

Σ̂ε̂ is defined by the Löwner-John hyperellipsoid [14]. This

approximation calculates the minimum volume hyperellip-

soid around the set defined by N (0, Σ̂u) and N (0,Σu), as
explained in detail in [9].

D. Relation between Robot Gains and Risk-Sensitivity

The aggressiveness of the robot behavior is strongly

related to the control gains, e.g. high gains mean more

aggressive behavior following the prediction. As mentioned

in Section III-A, the risk-sensitivity parameter influences the

control gain, i.e. K(ε̂, θ) from (6), in the sense of how

strongly a disagreement influences the gain. Therefore, the

proposed control changes its behavior depending on the

parameter even for the same noise. For θ > 0 the gains

become lower, i.e. the robot behaves more passively. On

the other hand, for θ < 0 higher gains make the robot

behave more dominantly. It should be noted that a different

selection of the matrices Qk and R in (6) and (7) may have

induce a similar behavior of the control. The concept of risk-

sensitivity provides a systematic approach to vary the control

gains based on the prediction uncertainty.

IV. DYNAMIC ROLE ADAPTATION IN PHRI

The benefit of continuously adapting roles of the robot in

pHRI is demonstrated in [5], where the robot role is changed

between the follower and leader behaviors learned in the

previous observations depending on the current human input.

In this work, we consider a dynamic role adaptation depend-

ing on both the disagreement level and the environmental

situation.

A. Dynamical Risk-Sensitivity Parameter

The proposed risk-sensitivity adaptation seeks a reduction

of human effort and an adaptive attitude design by combining

two intuitive concepts. On one side, the assumption that

the human agrees with the robot contribution when lower

disagreement levels are observed w.r.t expected ones. On

the other side, the imposition of a dominant or passive

role following a given attitude design law. In this work we

synthesize this concepts with the adaptation function and the

attitude function respectively.

1) Adaptation Function f : The adaptation function adapts

to lower levels of disagreement from the human side when

a higher levels are expected, understanding them as an

increased level of trust from the human side w.r.t previ-

ous experiences. The process noise estimation, explained

in Section III-C, considers both the expected and the

current disagreement. Under higher current disagreement,

the robot can adapt its behavior by updating the process

noise as ε̂ = N (0,Σε̂) even for the constant risk-sensitivity

parameter. However, under lower current disagreement,

i.e. N (0,Σε̂) = N (0, Σ̂u), the constant risk-sensitivity ex-

aggerates the robot’s behavior more than necessary because

the gains only adapt to the expected disagreement. From the

point of view of robot contribution to the task, the robot

should behave more dominantly as the human exhibits a

lower level of disagreement than the robot’s expectation.

Based on this, the adaptation function f lets the risk-

sensitivity parameter assign greater importance to the current

than the expected disagreement. Specifically, the function f

is defined as the proportion of the current to the expected

disagreement (0 ≤ f ≤ 1), i.e. how low the current one

is compared to the expected one, using the Mahalanobis

distance as follows

f =

{

√

uh
TΣ̂

−1

u uh (N (0,Σε̂) = N (0, Σ̂u))

1 (N (0,Σε̂) > N (0, Σ̂u))
. (8)

2) Attitude Function g: The attitude function defines the

disposition of the robot to act in a more passive or dominant

way (−1 ≤ g ≤ 1). In this work we define the attitude

function depending strictly on environmental constraints.

However, other higher level aspects such as artificial per-

sonality or dominance could be also modeled. We consider

two different cases



Control Policy Process Noise ǫ Parameter θ Gain

Dominant
N (0,Σε̂) > N (0, Σ̂u) −β րր

N (0,Σε̂) = N (0, Σ̂u) −β < θ < 0 ր

Neutral N (0,Σε̂) = N (0, Σ̂u) 0 −

Passive
N (0,Σε̂) = N (0, Σ̂u) 0 < θ < α ց

N (0,Σε̂) > N (0, Σ̂u) α ցց

Note: ր and ց show that the gains become higher and lower than the risk-neutral

one respectively, րր and ցց show much higher and much lower respectively,

and the approximation N (0,Σε̂) indicates the minimum volume hyperellipsoid

around the set defined by the expected N (0, Σ̂u) and the current N (0,Σu).

TABLE I

CONCEPT OF DYNAMIC ROLE ADAPTATION

• Following Role: defining the attitude function as g = 1
and assumming a pure passive behavior. In this work

this case is given by unconstrained and safe situations.

• Leading Role: changing the attitude function g from 1,
purely passive, to −1, purely dominant, in a continuous

manner following a certain condition. In this work, we

define it by evaluating the potential safety of the current

configuration.

Merging both functions f and g, we define the risk-

sensitivity parameter θ as

θ =

{

α · f · g (0 ≤ g ≤ 1)

β · f · g (−1 ≤ g ≤ 0)
, (9)

where α and β are positive constants, and θ is upper-

bounded by α in passive behavior or lower-bounded by −β

in dominant behavior. The bounded values for θ express how

strongly the process noise influences the gain. We distinguish

α from β from the fact that the order of the parameter

in passive behavior is different from the order in dominant

behavior.

As a result, the magnitude of θ changes depending on

the level of the current process noise and the sign changes

based following the given attitude law. This concept enables

the robot’s behavior to adapt to both the process noise and

the environmental constraint dynamically and continuously.

Table I shows the proposed dynamic role adaptation. Under

unconstrained situations g = 1 the robot follows a more or

less passive attitude depending on the adaptation function f .

However, if potentially unsafe situations are detected g ≤ 1,
the robot adopts a leading role as it assumes that the

previously learned trajectories are safe and tends to track

them in a more agreessive manner.

B. Negotiation Model in pHRI based on Game Theory

In the Section IV-A, while the robot role is usually a

complementary one adapting the human preference, it tries

to lead the human, i.e. to request his/her to perform a

complementary role in spite of his/her intention under the

environmental constraints. However, if the robot tries to lead

the human but the human still disagrees with its intention,

the robot might have to change its role policy to avoid

disagreement. In pHRI, both partners need to decide their

roles between passive and dominant manners negotiating

Bargaining Problem ⇔ Attitude Negotiation in pHRI

Two Players ⇔ Human and Robot
Mixed Strategies ⇔ Roles between leader and follower
Payoff Function ⇔ Role differences between two partners

TABLE II

RELATION BETWEEN GAME THEORY AND NEGOTIATION IN PHRI

with each other and consequently realize the cooperative

task without disagreement. Therefore, this is an attitude

negotiation issue in pHRI, which is considered as the next

step.

In this scenario, bargaining problem [15] based on Game

theory arises as a suitable modeling method of the attitude

negotiation between two partners in pHRI. The strategic form

of two-player game [16] consists of a set of players, a set

of strategy profiles based on a set of actions, and a set of

payoff functions. In the cooperative two-player bargaining

game [16], two players, i.e. the human and the robot, employ

certain mixed strategies, letting them choose a probability

distribution over possible actions in cooperation. In pHRI,

their roles, which express their infinitely intermediate roles

between passive and dominant roles, are interpreted as the

actions in the strategies. In addition, the role differences

between two partners depending on the situation are regarded

as the payoff functions. Based on their strategies and the

payoff functions, they negotiate and cooperate to optimize

their own payoffs following some bargaining solution. As

a result, their roles are decided as a result of the attitude

negotiation. Table II summarizes the relation between the

bargaining problem and the attitude negotiation in pHRI.

Defining the dynamical role differences during task ex-

ecution as the payoff functions and choosing the proper

optimization policy, the bargaining problem enables us to

decide the robot role for the attitude negotiation. We consider

that the combination of dynamic role adaptation with risk-

sensitive optimal feedback control and the attitude negotia-

tion model based on the bargaining game theory is a good

solution to realize the intuitive negotiation in pHRI as a

future work.

V. EXPERIMENTS

For evaluating the performance of the proposed approach,

we conducted two experiments. For simplicity, a human

operator transports a heavy virtual object from a starting

point to a goal point in cooperation with a haptic interface

in a two-dimensional virtual environment. First, we confirm

that the robot’s role dynamically changes depending on the

current disagreement with the human and the surrounding en-

vironment as a preliminary experiment. Second, we compare

the performance of the four different control approaches with

different risk-sensitivities in order to confirm the validity of

the proposed algorithm.

A. Experimental Setup

The virtual environment is designed as the experimental

setup as shown in Fig. 3. The human applies forces to a
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haptic interface in order to move the virtual object. This

haptic interface consists of two-degree-of-freedom linear-

actuated device (ThrustTube) that has a freely-jointed handle

at the grasping point. In addition, a force/torque (JR3) is

attached to the handle in order to measure the force input

applied by the human. A virtual maze is visually presented

on a display placed on top of the interface, as shown in

Fig. 4. On the right side of the maze, two horizontally

moving obstacles are set in order to intentionally induce

disagreements between the human and the robot. On the left

side, the maze includes a narrow path, where both partners

are required a high movement precision.

The control scheme implemented in MATLAB/Simulink is

executed on a personal computer with Linux PREEMT Real-

Time kernel using Matlab’s Real-Time Workshop. The shared

object is physically rendered with a mass of an inertia matrix

M r = diag(m,m) with m = 90kg and a damping coef-

ficient matrix Dr = diag(d, d) with d = 200Ns/m, which

imitates a heavy object. All rendered virtual obstacles and

walls provide a haptic feel of the environment to the user

via the handle. The control scheme runs at 1kHz. The HMM

used to encode the observations has 40 states and predictions

are updated with a rate of 50Hz.
With reference to the influence of the surrounding environ-

ment to the control policy, i.e. the attitude function g, we only

consider the distance between the shared object and the walls

of the maze for simplicity. In other words, we suppose that

the robot has the information of the map, without the moving

obstacles, and tries to behave more dominantly near the wall

in order to secure the human’s safety. Specifically, we define

the attitude function g based on the distance between the

shared object and the wall as follows

g =



















−1 (ρ(x) < ρo)

− cosπ
ρ(x)− ρo

ρ1 − ρo
(ρo ≤ ρ(x) ≤ ρ1)

1 (ρ1 < ρ(x))

, (10)

where ρ(x) is the shortest distance from the current posi-

tion of the shared object to the wall, ρo is the boundary

region within which the attitude function influences the risk-

sensitivity maximally, and ρ1 is the limit distance of the

attitude function influence, as shown by the pink area near

the wall in Fig. 4.
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Fig. 4. Virtual environment (maze) and path of shared object (exp.1)

B. Experimental Method

In these experiments, the human carried the object repre-

sented by the red point in cooperation with the robot from the

start point (upper right-hand corner) to the goal represented

by the green point (upper left-hand corner) without hitting

any object or wall. The following was the procedure of the

experiment. In the first trial, the human lead the task without

robot assistance, ur = 0, and the rough model of the task

was acquired from the resulting observation. This model

was used during the second trial where the robot actively

assisted the human partner. The observation of the second

trial, as well as the first one, was learned together. As a

result, we acquired the model of the task including a model

of the interaction between the human and the robot. The

third trial used the model learned from the two previous

executions, and the third execution of the task was only used

for the evaluation of the proposed control as following two

experiments.

1) Preliminary Experiment: In the first experiment, we

confirmed whether or not the risk-sensitivity parameter dy-

namically changed depending on the current disagreement

and the surrounding environment during the task. We also

confirmed the robot’s role also changed depending on the

process noise and the risk-sensitivity properly. In this exper-

iment, one participant performed 3 trials using the dynamic

risk-sensitivity. We set α = 5.0× 10−4 and β = 1.0× 10−5.

2) Evaluation of Proposed Approach: Second, we tested

the four different assistive control approaches depending on

its risk-sensitivity:

(a) No active assistance: ur = 0.
(b) Passive considering current process noise: θ = α.

(c) Dominant considering current process noise : θ = −β.

(d) Dynamic Risk-sensitivity considering current process

noise: θ as in (9)-(10).

In this experiment, each participant performed 3 (trials) ×
4 (approaches) = 12 trials in all. The order of 4 approaches

was selected randomly and the participants were not given

any information about it. Here, α = 5.0 × 10−5 and β =
5.0×10−7, R = I and Qk = QT = diag(ωp, ωv), being ωp

and ωv the position and velocity weightings. For (b)-(d),

we set ωp = 105 and ωv = 10. The receding horizon

for the optimization was T = 0.2s and we used a window
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of N = 0.05s for estimating the current noise. Moreover,

we chose ρo = 5.6 × 10−3m and ρ1 = 16.8 × 10−3m for

the environmental function H. Here, we determined all the

parameters empirically. Therefore, we need to evaluate how

they interact in more detail as future works.

The experimental procedure was as follows: before the

experiment participants were instructed to move at their

comfortable speed and complete the task even if they might

hit the object or the wall. Next, the participants were asked to

face the haptic device and grasp the handle. In addition, the

experimenter initialized the control algorithm and told the

participant to start moving. After reaching the green target,

participants were asked to free the handle which was moved

back to the initial position automatically.

C. Measures for Evaluation

For evaluation, we calculated the following measures:

• the mean force applied by the human M‖uh‖.

• the mean disagreement M‖uD‖ between both partners:

uD =







−
(uh)

‖uh‖
· ur,

(

uh · ur < 0
)

∧
(

uh 6= 0
)

0, otherwise

.

• the mean contact forces during collisions with the

virtual environment M‖uc‖.

The maze was divided into two parts in order to evaluate the

performance of the dynamically changing risk-sensitivity in

different situations. For measures on the right side, the data

was calculated until the participant passed the turning point

indicated by the dashed line shown in Fig. 4.

D. Experimental Results

1) Preliminary Experiment: The experimental results are

illustrated in Fig. 4-6. Figure 4 shows the path of the shared

object on x-y-plane. Figure 5 expresses the risk-sensitivity

parameter θ for the dynamical risk-sensitive and risk-neutral

control with respect to time. Figure 6 expresses the x-

component of the position gain Kx, as an example in the

feedback gain matrix shown in (5) with respect to time.

Especially, Figs. 5(b) and 6(b) show the results on the narrow

path of the maze’s left side.

From Figs. 4 and 5(a), on the right side and the second

half of the left side in the maze, the risk-sensitivity parameter
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Fig. 6. Position gain Kx (Exp. 1)

θ changes in positive way depending on the current noise.

In addition, from Fig. 6(a), the position gain Kx becomes

lower than the risk-neutral one based on the parameter θ.

On the other hand, from Figs. 5(b) and 6(b), the parameter

θ alters in negative way based on the distance between

the object’s position and the wall, and the gain becomes

higher. Therefore, it is obvious that the robot realizes the

dynamic change of the risk-sensitivity parameter and its own

role properly depending on both the process noise and the

environment.

2) Evaluation of Proposed Approach: In total, 9 persons,

including 4 females, participated in the experiment. They

were between 25 and 28 years old (M = 27.11 years). All

participants reported not to suffer any motorical restrictions

in their arms.

The calculated measures for evaluation are shown in Fig.

7. With regard to the results on the right side, from Fig.

7(b), the disagreement for dominant approach (c) is highest

because the approach (c) becomes stiffer despite the presence

of the high current noise induced by the moving obstacles.

Consequently, from Fig. 7(a), the force applied by the human

for (c) is almost the same as the passive approach (b)

although the dominant approach tries to contribute to the

task in more dominant manner. On the other hand, both

the disagreement and the human force for the approach (d)

become lower than (b) because, under low noise situation,

the approach (d) behaves more dominantly by decreasing the

risk-sensitivity to zero, θ → +0 and the human agrees with

it. In Fig. 7(c), the performance in the collision by approach

(d) is almost the same as by (b) and lower than (c). These

results indicate that the robot can assist the human more

effectively while adapting human’s current intention in the

presence of no environmental constraints.

Next, regarding the left side of the maze, from Fig. 7(b),

the disagreement for (d) is placed between (b) and (c)

because the robot’s behavior only changes from passively

to dominantly when the object approaches the wall. Figure

7(c) shows an important result that no collision between

the object and the wall for the approach (d) exists, i.e.

any participant did not hit the wall at all on the left side.

The reason is because: the approach (d) behaves more and

more dominantly depending on the wall approach causing

the feedback gains to increase gradually. On the other hand,
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Fig. 7. Experimental results (Exp. 2)

the human understands its role and intention by sensing the

change in the gains and agrees with the robot. Consequently,

it is considered that all participants can avoid hitting the wall.

Also, the human force in (d) became slightly lower than in

(b).

In conclusion, the proposed approach exhibits better per-

formance than the constant risk-sensitivity in both cases; left

and right side of the maze. Changing the risk-sensitivity

dynamically, the robot cannot only adapt human current

behavior more flexibly but also communicate its intention

with the human via the interaction force based on the

resulting feedback gains. However, if the human disagrees

with robot’s intention, the latter may have to change its policy

to avoid disagreement. This is a negotiation issue in pHRI

which is considered as future work.

VI. CONCLUSIONS

In this paper, we propose the dynamic role adaptation

using a risk-sensitive optimal feedback control in physi-

cal human-robot interaction. We define the dynamical risk-

sensitivity parameter based on the current process noise level,

i.e. the disagreement level, and environmental constraint

which requires the negotiation between the human and the

robot. Depending on the parameter, the robot can dynam-

ically change its role between a passive and a dominant

manner. As a result, the robot realizes the negotiation with

the human communicating its role with him/her via physical

interaction force which changes depending on the risk-

sensitivity. Finally, the proposed approach is experimentally

validated in a cooperative transport scenario in a two-

dimensional visuo-haptic virtual environment.

While results indicate a clear benefit of the robot’s adap-

tive role change, the tuning of the parameters is challenging.

A systematic approach for tuning the parameters is subject

to future work. In addition, we are planning to extend the

dynamic role adaptation to the negotiation in more complex

situations.
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