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Abstract— Aiming at the application in physical human-robot
interaction, this paper presents a novel adaptive admittance
control scheme for robotic manipulators. Special emphasis
is drawn on the avoidance of oscillatory behavior in the
presence of closed kinematic chains while keeping the rendered
impedance low. The approach uses an online fast Fourier
transform of the measured manipulator endeffector forces
in order to detect oscillations and to adapt the admittance
parameters dynamically. As a novel method towards human-
centered control design the adaptation strategy is determined
in a user study evaluated with a machine-learning algorithm.
Experiments conducted with ten human participants show
superiority over the non-adaptive admittance control scheme.

I. INTRODUCTION

Anthropomorphic robots designed to interact with humans
in unknown environments are an active field of research.
Unlike industrial robots, those robots are designed to operate
in close contact with humans. A common approach to
minimize internal and unintended collision forces during the
interaction are compliant control strategies like the admit-
tance control. Still, the control design for interaction with
rigid environments, closed kinematic chains, or cooperative
tasks involving humans is challenging. In these situations,
constant admittance parameters are not suitable.

Various adaptive admittance control approaches are pro-
posed in literature in order to improve the interaction of a
robotic manipulator with its environment. Focusing on stiff-
ness adjustment, the goal presented in [1] is to ensure a con-
stant interaction force during contact with the environment.
In [2], an adaptive controller is developed which varies the
desired admittance depending on the robot’s position tracking
error. Shown in [3] is an adaptive approach which uses a
variation of the admittance parameters to react dynamically
to environmental impedance changes by adjusting the robot’s
viscosity coefficient dynamically. Unlike software-based con-
trol strategies, there also exist hardware based approaches
like [4]–[6], where mechanical construction elements are
used to achieve variable link compliance.

Other approaches focusing on adaptive admittance control
consider a task-dependent human centered admittance adjust-
ment in order to improve the robot’s performance. In [7],
the human stiffness characteristics in a cooperative task
between two humans are analyzed. Based on the obtained
results a switching strategy between two human-like fixed
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admittance parameter sets is presented. The same authors
derive an optimal solution for computing the damping factor
by minimizing a cost function in [8]. In [9], a human-like
admittance parameter adaptation scheme for service tasks is
combined with an adaptation strategy depending on the type
of human-robot interaction. Similarly, the works presented in
[10], [11] rely on situation-triggered parameter adaptation.
In [10] the admittance parameter adaptation is based on
computing the angle between force and velocity vector, thus
making it possible to reason about the current interaction
scenario. Differentiation of the force as a natural measure
of the human intention is proposed in [11], allowing one to
modify the impedance parameters accordingly.

Summing up, existing literature focuses mainly on the
task-dependent admittance parameters adaptation, while the
human-specific preferences are disregarded. Little consid-
eration is given to the development of suitable admittance
control schemes tackling the problem of resonance oscil-
lations as particularly induced by closed kinematic chains.
Especially in tightly-coupled tasks involving one or more
robot manipulators and an interacting human, resonance
oscillations may occur for certain admittance control param-
eters, resulting in an unsuccessful task completion.

The contribution of this paper is the development of a
variable admittance control strategy that is able to adapt
dynamically to environmental changes in order to avoid
oscillative behaviour of the robotic manipulator. The adap-
tation strategy is designed to improve the haptic interaction
experience of the cooperating human partner by choosing
appropriate admittance parameters. For this purpose a novel
method to derive the adaptation strategy in a human user
study evaluated by a machine-learning algorithm is proposed.
More specifically, a trained frequency-domain classifier using
AdaBoost is considered. The oscillations are detected online
based on measured endeffector forces and canceled through
appropriate parameter adaptation. Evaluation of the entire
system is performed in a human user study with ten partici-
pants demonstrating the superiority of the resulting adaptive
control scheme over a non-adaptive counterpart.

The remainder of this paper is organized as follows: Sec. II
introduces the problem statement, which is tackled in detail
in Sec. III through a suitable adaptation scheme. In Sec. IV
the performance of the overall system is evaluated through
human user studies. Sec. V critically discusses the proposed
algorithm with regard to its potential and limitations. A
conclusion and proposals for further enhancement can be
found in Sec. VI.



II. PROBLEM STATEMENT AND GENERAL APPROACH

The example scenario considered in this paper consists of
an cooperative task between a human and two manipulators
holding a rigid object together.

In general, it is desired to keep the rendered inertia
and damping values of robotic manipulators in interactive
tasks as low as possible. However, in case of too small
values, admittance-controlled manipulators tend to oscillate
at their resonance frequencies depending on the set of
admittance parameters chosen, the type of coupling, the type
of interaction, and the natural dynamics of the manipulator.
While some frequencies may disturb the haptic experience
of the interacting human partner, others may not even be
perceivable. Therefore, the goal is to design the admittance
control scheme such that:

• inertia and damping are kept as low as possible
• oscillations disturbing the haptic experience are sup-

pressed.

Admittance
 Controller

C(Φc)

Coupling 
manipulator/

human
P(Θ*)

FFT-based
Estimator

of Θ*

Desired
Position
x

Adaptation
Φc=F(Θd,Θ)

Wrench

Modified
Desired
Position

x*

Classifier

Θ

w

Wrench
w

Desired
Classifier

Θd

Fig. 1. Adaptive control scheme

We employ a control approach which is inspired by
the direct adaptive control scheme [12] and depicted in
Fig. 1: Given a desired position x ∈ R6 in task space
and a measured wrench w ∈ R6, the admittance control
scheme of each manipulator creates an adequate modified
desired position x∗. During interaction, the human’s sub-
jective perception of the oscillation intensity is described
by a parameter Θ∗ ∈ R. In order to approximate the pa-
rameter Θ∗ as good as possible and derive an optimized
control scheme, human user studies in combination with a
boosting-based learning process for the oscillatory behav-
ior recognition are performed. During runtime the param-
eter Θ∗ is estimated online using an FFT in combination
with the obtained boosted classifiers. The result of the
classification process is denoted Θ ∈ R. By comparing Θ
and a desired classifier Θd ∈ R representing the optimal
interaction experience for the human, a suitable adaptation
scheme for the admittance control inertia, damping and
spring parameters Φc = {M,D,K} is found.

III. ADAPTIVE ADMITTANCE CONTROL

This section covers the approach of developing an adap-
tive admittance control scheme fulfilling the requirements
presented in Sec. II. It is first analyzed which admittance
control parameters are suitable for adaptation. Next, the
FFT-based boosting process is presented allowing one to
develop a suitable classifier offline considering specific user
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Fig. 2. Model of two coupled admittance-controlled manipulators used for
numerical oscillation evaluation.

preferences. Finally, an adaptive control scheme is proposed
based on the obtained results.

A. Adaptation parameter selection

Given the scheme in Fig. 1, the influence of varied
admittance parameters and the selection of a suitable set of
adaptive parameters Φc is covered in this section. For this
purpose, a model of two coupled manipulators as displayed
in Fig. 2 is used. The model consists of two blocks for
the admittance control loops of the left and right robot
manipulator (called arm) described by

∆xR/L = (Mas
2 +Das+Ka)−1FR/L. (1)

For reasons of simplicity the blocks are equally parame-
terized with arm inertia Ma, arm damping Da and arm
spring constant Ka. The variables ∆xR and ∆xL denote
the resulting positional offset for the right respectively left
arm depending on the applied external force FR and FL.
The variable s stands for the Laplace transform variable. In
case both arms are coupled through an object being grasped,
the coupling is modeled as a spring-mass-damper system
connecting the endeffectors according to

F = (Mis
2 +Dis+Ki)∆x, (2)

with coupling mass Mi, coupling damping Di and coupling
spring constant Ki, F as the coupling force and ∆x as
the positional offset between the left and the right arm.
The coupling spring constant determines the stiffness of the
coupling link. Any delay or time constant in the overall
model is represented with a concentrated delay td according
to

FR = −FL = F · e−std , (3)

where the inverse relation between the external forces acting
at the left and the right endeffectors is caused by the
coupling.
Implicitly, the following simplifications are made:

• The underlying position controller of each arm is high
gain, i.e. the position error is negligible.

• The human impedance is included in the coupling
impedance and represented by a suitable set of coupling
parameters Mi, Di and Ki.

• Only one translational dimension is considered. Thus
the wrench w in Fig. 1 becomes a force F in Fig. 2.



• All delays and time constants due to delays in the
control loop, a finite sampling time, filtering of the
wrench values FR and FL, mechanical and electrical
time constants are encoded in td.

The effect of varied parameters is evaluated through nume-
rical simulations using a bisection algorithm and shown in
Fig. 3. Simulation results are obtained through running the
simulation for 100s after displacing both arms 0.5m from
their desired position to excite all frequencies. The system
is said to be oscillatory whenever {|∆xR|, |∆xL|} > 1
during the simulation or ∆xR or ∆xL do not converge
to a fixed position at the end of the simulation. Shown
on the left side of Fig. 3 is the effect of a varied arm
inertia and damping depending on the overall time delay td.
Increasing the arm inertia Ma leads to a less oscillatory effect
whereas increasing the arm damping Da only helps reducing
scillations for Da < 2 · 103Ns

m . The right side displays the
effect of a varied coupling inertia Mi and damping Di. With
a given admittance parameterization of Ma, Da, there exists
an upper boundary for the coupling impedance parameters
which should not be exceeded to avoid oscillatory behavior.

Under the given conditions the coupling stiffness and
arm stiffness have only a minor influence on the system
oscillatory boundary.
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Fig. 3. Simulated system oscillatory boundaries depending on manipulator
admittance inertia and damping (left side) and on coupling inertia and
damping (right side) for varying time delay. Left side: Mi = 1.5 kg,
Di = 1000 Ns/m, Ki = 10000 N/m, Ka = 250 N/m. Right side:
Ma = 5.5 kg, Da = 200 Ns/m, Ka = 250 N/m, Ki = 10000 N/m.
Both sides: Fixed step sampling time of 1ms, Euler-Integration (similar to
the used robotic system)

The simulations indicate that increasing the arm inertia
Ma is the primary method in avoiding oscillatory behaviour.
The same accounts for the arm damping Da within the
range Da < 2 · 103Ns

m , so this parameter has to be adapted
more carefully. The arm spring value Ka is not considered
as dynamically adapting this value leads to a bad haptic
experience for the human even in the static case if the arms
are displaced from their desired position. Consequently, it
is Φc = {Ma, Da}.

B. FFT-based estimator of Θ∗

Taking user-specific preferences into account how “os-
cillatory” the current haptic experience during interaction
is, one has to approximate the possibly nonlinear human
preference Θ∗ with a suitable descriptor. For this purpose, an
online FFT of the endeffector wrench in combination with
a boosting-derived estimator of Θ∗ is proposed. This way,

oscillations are detected in the frequency domain providing
both information about their intensity and frequency.

For the boosting process, four different types of classifiers
are used to measure both the current state and the temporal
development of the system by considering characteristic
properties of multiple frequency spectra.

Let a single discrete spectrum be represented by an in-
dexed set of equidistant frequencies fi, i = 1, . . . , b with
corresponding amplitude Ai. Then the statistical parameters
of each spectrum are represented with the mean amplitude µ
and the standard deviation σ as

µ =
1

b

b∑
i=1

Ai (4)

σ =

√√√√ 1

b− 1

b∑
i=1

(Ai − µ)2 (5)

We define the threshold peak amplitude Ap in the spectrum
as

Ap > α · (µ+ σ), (6)

with the adjustable scalar parameter α. For taking the
temporal development into account, a finite set of the ml

respectively nl most recent spectra is considered. Thus the
following four different types of classifiers - called weak
classifiers - are proposed, see Fig. 4.

• Type 1 classifier detect an oscillation whenever a spec-
trum contains peaks of a base- and at least g ≥ 1
harmonic frequencies.

• Type 2 classifier detect an oscillation whenever the same
lowest peak frequency is detected at least m times
during the last ml timesteps.

• Type 3 classifier detect an oscillation whenever the same
peak frequency with the maximum amplitude is detected
at least n times during the last nl timesteps.

• Type 4 classifier detect an oscillation whenever the
maximum amplitude of the spectrum exceeds a fixed
threshold p.

The motivation behind weak classifiers of type 1 and 4 is
to classify the user-specific preferences by only processing
the current spectrum. For type 1 classifiers, even only one
harmonic peak frequency is a strong hint for an oscillation.
The same accounts for type 4 classifiers and the fixed
threshold. Type 2 and 3 weak classifiers are considered if the
requirements for type 1 are not fulfilled (missing harmonics)
but an oscillation at a certain frequency is present over a
longer period of time.

The defined classifiers with varying parameters are com-
bined to strong classifiers employing AdaBoost [13] to
represent the possibly nonlinear user-specific preferences.

Since AdaBoost is only capable of learning binary classi-
fiers, multiple datasets have to be used as an input to obtain
strong classifiers for different levels of how “oscillatory” the
situation feels for the human. To distinguish between k dif-
ferent levels, representative sample data are required for each
level to be classified. After applying AdaBoost to all datasets,
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Fig. 4. Visualization of the different classifiers and their functionality.

this results in k strong classifiers H1 . . . Hk = {0, 1} with 0
for a “non-oscillatory” behavior and 1 for an “oscillatory”
behaviour of intensity 1, . . . , k. As it is not necessarily Hi a
subset of Hi+1 due to the human-subjective perception, the
sum of all individual classifiers is calculated to obtain the
final classifier Θ according to

Θ =

k∑
i=1

Hi, (7)

as depicted in Fig. 1.

C. Adaptation strategy

Given the final classifier Θ(Φc) and the desired classi-
fier Θd, let e be the error Θ−Θd. Then the loss function is
defined similar to [12] as

J(Θ,Θd) = |e|. (8)

The loss function is usually minimized by a gradient descent
approach according to

dΦc
dt

= −γ ∂e

∂Φc
sign(e). (9)

Under the condition of Θd = 0, i.e. the desired classifier
being the one providing the most “pleasant” interaction
experience and Θ ≥ 0, Eq. 9 can be simplified to

dΦc
dt

= −γ ∂Θ

∂Φc
. (10)

A problem occurs in calculating δΘ
δΦc

, as Θ consists of
discrete values Θ = {0, 1, . . . , k}. To resolve this issue,
the desired admittance parameters Φc,des and the alteration
rate dΦc

dt are defined as a discrete function of Θ. These values
are obtained through experiments under consideration of the
simulation results in III-A and are accessed through a lookup
table.

IV. EXPERIMENTAL VALIDATION

Presented in this section is the application of the method
described in Sec. III. To to ensure a proper fitting of the
resulting AdaBoost classifier, re- and cross-classification re-
sults are presented. Human user studies with ten participants

TABLE I
RESULTING WEAK CLASSIFIER TYPES AND CORRESPONDING WEIGHTS

H1: Type 4 4 2 4 1 2 4
Weight 2,83 2,71 1,02 0,91 0,73 0,53 0,64

H2: Type 4 2 4 4 1 3 3
Weight 0,77 0,91 0,49 0,53 0,34 0,28 0,24

H3: Type 4 1 4 3 1 4 1
Weight 1,50 0,74 0,52 0,69 0,42 0,52 0,44

H4: Type 4 1 3 1 4 1 3
Weight 0,86 0,98 0,56 0,43 0,60 0,34 0,50

validate the superiority of the adaptive admittance controller
over its non-adaptive counterpart.

A. Classifier boosting

In order to obtain realistic sample data for the boosting
process, a mobile robot with two 7-DoF anthropomorphic
arms holding an aluminium bar is used, see Fig. 5. Repre-
sentative oscillations of different amplitudes were caused and
classified by two experienced subjects on a scale from 1 for
“low intensity” to 4 for “high intensity”. Frequency spectra
are obtained through an FFT of the last 512 force data sets
at a sampling rate of 1kHz, resulting in spectra of 0−500Hz
at a frequency resolution of 1000

512 ≈ 1.95Hz.

Fig. 5. Experimental setup

Results of the AdaBoost training process over
a total of 16200 frequency spectra for the four
strong classifiers H1, . . . ,H4 are shown in Tab. I. Listed
along the vertical axis are the the different strong classifiers,
whereas the horizontal axis displays the weight and type
of the weak classifiers after 7 iterations of AdaBoost that
constitute every strong classifier. As one can see in Tab. I,
classifiers of type 4 are assigned the highest weights. Hence
it is possible to use only this type for classification to reduce
classifier implementation efforts.

In order to evaluate the performance of the AdaBoost
trained classifier, re-classification of the same sample set and



TABLE II
CLASSIFICATION RATES WITH BOOSTED TYPE 1-4 CLASSIFIERS

Intensity Re-classification Cross-classification
to classify rate rate

1 99,99% 99,86%
2 92,4% 87,7%
3 97,5% 95,3%
4 97,8% 80,9%

TABLE III
CLASSIFICATION RATES WITH BOOSTED TYPE 4 CLASSIFIERS

Intrensity Re-classification Cross-classification
to classify rate rate

1 99,65% 99,62%
2 82,3% 83,3%
3 95,2% 94,6%
4 87,0% 85,4%

cross-classification tests for a new sample set of the same
size are performed as shown in Tab. II.

Tab. III provides classification rates using only classifiers
of type 4. When being compared to Tab. II in which
classifiers of type 1-4 are used, the decrease in the correct
classification rate is visible.

B. Adaptive controller evaluation

For experimental purposes the adaptive controller is
tested on the existing admittance controlled setup pictured
in Fig. 5. A heuristic static admittance parameterisation
of Ma > 5.5 kg, Da > 200 Ns/m, Ka = 250 N/m
ensures a safe accomplishment of all relevant tasks. The
lowest admittance parameters boundary is determined
as Ma = 3 kg, Da = 100 Ns/m and Ka = 250 N/m.
A further decrease of admittance mass and damping allows
no safe task accomplishment anymore. The classifier-
dependent lookup-table for the admittance parameters is
defined in Tab. IV.

TABLE IV
LOOK-UP TABLE FOR PARAMETERS ASSIGNMENT

Detected Desired admittance
intensity Ma [kg] Da [Ns/m]

0 3 100
1 4 120
2 5 140
3 5.5 160
4 15 300

An exemplary sequence of recorded admittance parameters
is shown in Fig. 6. Visible are the dynamic, time-dependent
detection and classification of oscillations with different
intensities and the adaptation of the mass and damping
parameters.
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Fig. 6. Adaptive control scheme during a human user study.

In the human user studies the adaptive controller is
compared against static controller parameterizations in an
experiment with ten participants. Each participant is asked
to compare the adaptive controlled setup against four static
parameterizations. Three iterations are conducted per par-
ticipant in which the participants apply either a “light”,
“medium” or “heavier” contact force. The definition of the
contact force levels is left to the subjects. Subsequently
the participants rate how “heavy” and “oscillatory” each
controller feels on a scale from 1 to 5. If a statically parame-
terized, non-adaptive strategy produces oscillatory behaviour
causing an abort of the built-in security system of the robot,
it is neither rated nor involved in the following iterations
due to the guaranteed abort observed in a previous human
user study. Strategies involving smaller static admittance
parameters are excluded as well in the next iterations for
the same reason.

Evaluation results are presented in Tab. V. All individual
comparisons for “heavy” and “oscillatory” have been reduced
to three cases depending on whether the adaptive controller,
none or the static controller feels less “heavy/oscillatory”.
The column “abort” indicates how often the built-in robot
security system shut down for the constant parametrized
setup. The adaptive controlled setup never aborts during the
experiments.

The goal of the subsequent statistical test is to find out
whether there is a reciprocal correlation between “heavy”
and “oscillatory” for the two compared controllers, i.e. if
controller A is found to be less “heavy”, then controller B
is found to be less “oscillatory”. For this purpose, p-values
are evaluated for three null hypotheses

• Ha
0 : There is no difference between a static controller



TABLE V
RESULTS OF COMPARATIVE EXPERIMENTS

Adaptive controller versus static parameterization 1:
Ma = 5.5kg, Da = 160Ns/m, Ka = 250N/m

adaptive none static abort
Less heavy 67% 33% 0% -Less oscillatory 7% 23% 70%
p-value (Ha

0 |Hb
0 |Hc

0 ) (0) 0.17 0.43

Adaptive controller versus static parameterization 2:
Ma = 5kg, Da = 140Ns/m, Ka = 250N/m

adaptive none static abort
Less heavy 27% 53% 20% -Less oscillatory 20% 40% 40%
p-value (Ha

0 |Hb
0 |Hc

0 ) 0.57 0.10 0.08

Adaptive controller versus static parameterization 3:
Ma = 4kg, Da = 120Ns/m, Ka = 250N/m

adaptive none static abort
Less heavy 20% 57% 10% 13%Less oscillatory 57% 17% 13%
p-value (Ha

0 |Hb
0 |Hc

0 ) <0.01 <0.01 0.25

Adaptive controller versus static parameterization 4:
Ma = 3kg, Da = 100Ns/m, Ka = 250N/m

adaptive none static abort
Less heavy 0% 7% 0% 93%Less oscillatory 7% 0% 0%
p-value (Ha

0 |Hb
0 |Hc

0 ) (0) (0) (1)

being less “heavy” and an adaptive controller being less
“oscillatory”

• Hb
0 : Both controllers are perceived equally “heavy” and

“oscillatory”
• Hc

0 : There is no difference between an adaptive con-
troller being less “heavy” and a static controller being
less “oscillatory”

Whereas the p-values for the comparison between the
adaptive and static controller with parameterization 1, 2 and 4
do not allow a distinctive statement because both controllers
were either parameterized too differently or the static con-
troller aborted too often, significant (α = 0.01) more persons
found the adaptive controller to be less “oscillatory” than the
static parameterization 3 to be less “heavy”.

V. DISCUSSION

The human user studies show that the presented adaptive
admittance approach provides a robust way of suiting an ad-
mittance controller to human-specific preferences. Whereas
the controllers with static parameterization 3 and 4 abort dur-
ing some/most trials, the adaptive controller works reliable
during all experiments.

Parameterization of the slew rate for the dynamic para-
meter adaptation is a crucial part of the method, compare
the rising/falling rates of the Damping Da and Inertia Ma in
Fig. 6: Whereas a small slew rate is unable to react properly
to fast environmental changes causing oscillative behaviour,
a large slew rate results in an noticeable oscillating behaviour

between different mass and damping parameters. For the
experiments, values between ± 5− 20 kg/s for the arm iner-
tia Ma and ± 50− 100 N/m for the arm damping Da have
proven to work well.

VI. CONCLUSION AND FUTURE WORK

This paper presents an adaptive admittance control scheme
which dynamically varies the admittance parameters to
prevent oscillative behaviour of robotic manipulators dur-
ing human-robot-interaction for tightly-coupled scenarios.
A method is proposed to include human preferences into
the control design based on a human user study and their
evaluation using machine-learning schemes. To model human
preferences properly, boosting is proposed for finding a suit-
able adaptive control scheme. Conducted experiments with
ten participants show that the presented approach provides
better haptic experience than a fixed-parameter approach.

Ongiong work focuses on the stability proof for the
presented adaptive control scheme.

VII. ACKNOWLEDGEMENT

This work is supported in part within the DFG excellence
research cluster Cognition for Technical Systems - CoTeSys
(www.cotesys.org).

REFERENCES

[1] G. The, S. Stramigioli, A. van der Ham, and G. Honderd, “An adaptive
admittance or force control for robotic manipulators,” Control, pp.
417–421, 1995.

[2] L. Huang, S. S. Ge, and T. H. Lee, “An adaptive impedance control
scheme for constrained robots,” IJCSS, vol. 5, no. 2, pp. 17–26, 2004.

[3] T. Tsumugiwa, R. Yokogawa, and K. Hara, “Variable impedance
control based on estimation of human arm stiffness for human-robot
cooperative calligraphic task,” in ICRA, 2002, pp. 644–650.

[4] S. Kajikawa, “Variable compliance mechanism for human-care robot
arm,” in IECON, Nov. 2007, pp. 2736 –2741.

[5] C. Mitsantisuk, K. Ohishi, and S. Katsura, “Variable mechanical
stiffness control based on human stiffness estimation,” in ICM, April
2011, pp. 731 –736.

[6] S. Wolf and G. Hirzinger, “A new variable stiffness design: Matching
requirements of the next robot generation,” in ICRA, May 2008, pp.
1741 –1746.

[7] R. Ikeura and H. Inooka, “Variable impedance control of a robot for
cooperation with a human.” in ICRA, 1995, pp. 3097–3102.

[8] R. Ikeura, T. Moriguchi, and K. Mizutani, “Optimal variable
impedance control for a robot and its application to lifting an object
with a human,” in RO-MAN, 2002, pp. 500–505.

[9] D. Tsetserukou, R. Tadakuma, H. Kajimoto, N. Kawakami, and
S. Tachi, “Intelligent variable joint impedance control and development
of a new whole-sensitive anthropomorphic robot arm,” in CIRA, 2007,
pp. 338–343.

[10] R. Dubey, T. F. Chan, and S. Everett, “Variable damping impedance
control of a bilateral telerobotic system,” CS, vol. 17, no. 1, pp. 37
–45, 1997.

[11] V. Duchaine and C. M. Gosselin, “General model of human-robot
cooperation using a novel velocity based variable impedance control,”
in WHC, 2007, pp. 446–451.

[12] K. J. Astrom and B. Wittenmark, Adaptive Control, 2nd ed. Addison-
Wesley Longman Publishing Co., Inc., 1994.

[13] Y. Freund and R. E. Schapire, “A decision-theoretic generalization of
on-line learning and an application to boosting,” in EuroCOLT, 1995,
pp. 23–37.


