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Abstract—Encoding schemes for broadcasting two nested mes-
sage sets are studied. We start with a simple class of deterministic
broadcast channels for which (variants of) linear superposition
coding are optimal in several cases [1], [2]. Such schemes are
sub-optimal in general, and we propose a block Markov encoding
scheme which achieves (for some deterministic channels) rates not
achievable by the previous schemes in [1], [2]. We adapt this block
Markov encoding scheme to general broadcast channels, and
show that it achieves a rate-region which includes the previously
known rate-regions1.

I. INTRODUCTION

Broadcast channels were formulated by Cover [3] as a

model for the simultaneous transmission of information to

multiple users. The problem of determining the capacity region

is still open; but, results are available for many special cases

(see [4] and the references therein).

One particular case of interest in broadcast scenarios is

when nested (prioritized) messages are communicated; i.e,

when a first message is destined for all users, a second message

is destined for a subset of the users, a third message is destined

for a subset of the subset of users, and so on. Such scenarios

have recently drawn attention mostly due to their applications

in video streaming for users with heterogeneous demands.

Within this class of problems, the capacity region of the

two-user broadcast channel was characterized in [5], where

superposition coding was shown to be optimal. The case of 2-

user multi-antenna Gaussian broadcast channel was explicitly

derived in [6]. In [7], inner and outer bounds were derived

for three receivers, and it was shown that the bounds match

for a class of 3-receiver broadcast channels with two nested

message sets. Also, the capacity region of linear deterministic

broadcast channels with three receivers was derived in [8] .

In this work, we study delivery of two nested messages

(a common and a private message) over channels with an

arbitrary number of receivers, where a subset of the receivers

(public receivers) demand only the common message and a

subset of the receivers (private receivers) demand both the

common and the private messages. We undertake a deter-

ministic approach to this problem. Deterministic models have

proved useful in finding approximate solutions and in giving
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146617. Vinod M. Prabhakaran’s work was supported in part by a Ramanujan
Fellowship from the Department of Science and Technology, Government of
India. The work of S. Diggavi was supported in part by NSF award 1136174
and MURI award AFOSR FA9550-09-064.

insight on the development of new encoding techniques. The

latter is the main focus of this paper. To this end, we start

with particular linear deterministic models where we develop

intuition together with new encoding techniques that may be

generalized to general broadcast channels.

In [1], we studied linear deterministic channels with two

public and any number of private receivers and gave a full

characterization of the capacity region. The achievability proof

in [1] uses techniques of rate splitting and linear superposition

coding (the private message is broken into independent pieces

and each piece is revealed to a subset of the public receivers

through linear coding). In [2], we investigated the problem

over combination networks [9] (which are a class of linear de-

terministic broadcast channels). In particular, [2] improves the

(linear superposition encoding) scheme in [1] by employing a

particular pre-encoding at the source. This scheme yields an

inner bound to the capacity region of combination networks,

which is tight for three (or fewer) public and any number of

private receivers. In this paper, we first show that the aforemen-

tioned inner bound [2] is not tight in general. We then develop

a new block Markov encoding scheme that (for some channels)

achieves rates not achievable by the previous schemes in [2].

We further adapt this scheme to general broadcast channels

and obtain a rate region that includes the previously known

rate-regions. We do not know if this inclusion is strict.

II. A LINEAR DETERMINISTIC MODEL

Linear deterministic broadcast channels form a special class

of broadcast channels where the output signals are linear

transformations of the input signal. This model is motivated

by the MIMO Gaussian broadcast channel in the high SNR

regime. The input to a linear deterministic broadcast channel

is a signal X (which lies in a d−dimensional vector space

F
d, where F is a fixed finite field), and each output signal

Yi, i = 1, . . . ,K , is a linear transformations of the sent

signal; i.e., Yi = HiX , where Hi denotes the channel matrix

whose elements are from a finite field F. When working

with linear deterministic channels, we express all rates in

terms of log2 |F|. Having all the channel matrices as row sub-

matrices of the identity matrix, we arrive at a simple, yet rich,

class of linear deterministic broadcast channels, combination-

network channels. Combination-network channels have each

of their outputs as a collection of the input symbols. This

class of channels model the broadcast channel via a set of
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Fig. 1: A combination-network channel and its equivalent

graphical description as a combination network.

resources that are shared among the receivers (see Figure 1); in

this regard, combination-network channels are (equivalently)

represented by combination networks (and hence the name).

The problem of broadcasting messages to receivers which

have (two) different demands over a shared media (such as

the combination-network channel) is, in a sense, finding an

optimal solution to a trade-off. This trade-off is imposed

because on the one hand, public receivers need only enough

information so that each can decode the common message. On

the other hand, private receivers need to be able to decode both

messages. It is, therefore, desirable from private receivers’

point of view to have these messages fully mixed (when the

number of private receivers is large) in contrast to the public

receivers’ decodability requirement. To optimally resolve this

tension, one might need to reveal some partial information

about the private message to the public receivers. One standard

approach to do so is through rate splitting and superposition

coding. This scheme essentially breaks the private information

into independent pieces and reveals each piece to a subset of

the public receivers. It turns out that one may, depending on the

structure of the resources, achieve a rate gain by introducing

dependency among the revealed partial (private) information.

One way of introducing such dependency is investigated

in [2] through a particular pre-encoder at the source, which

transforms the R2 symbols of the private message into a

larger number of dependent symbols through a random MDS

(Maximum Distance Separable) matrix. The encoder then uses

linear superposition coding to reveal pieces of this new pseudo

private message to the public receivers. This scheme is optimal

for three (or fewer) public and any number of private receivers.

In this section, we first show (through an example) that

the aforementioned scheme [2] is not optimal in general

and then develop a block Markov encoding scheme which

achieves higher rates. We adapt this encoding scheme to

general broadcast channels in the next section.

A. Notation

We index all receivers in a set I={1, . . ., K} where public

receivers are indexed by I1={1, . . .,m} and private receivers

are indexed by I2={m+1, . . . , K}. We refer to the outgoing
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Fig. 2: Rate pair (1, 3) is not within the rate-region of [2].

edges of the source as the resources of the combination

network and we denote them by a set E . We denote the set

of all resources that are connected to every public receiver in

S ⊆ I1 (and not connected to other public receivers) by ES⊆E .

Note that edges of set ES may or may not be connected to the

private receivers. We identify the subset of edges in ES that

are also connected to private receiver p, by Ep
S . We denote the

symbol carried over a resource edge e by xe, which is a scalar

from finite field F. For S ⊆ I1 and p∈ I2, we denote the set

of all symbols carried over ES (resp. Ep
S) by XS (resp. X

p
S) .

Finally, subset T ⊆ 2I1 is called superset saturated if

inclusion of set S in T implies inclusion of all its supersets

(see [2]). In notation, we abbreviate a subset T by its few sets

that are not implied by other sets in T . E.g., among subsets

of 2{1,2,3}, we denote {{1},{1, 2},{1, 3},{1, 2, 3}} by {{1}⋆}.

B. An example

Consider the combination network depicted in Figure 2,

where a source wishes to communicate messages W1 = [w1,1]
and W2 = [w2,1, w2,2, w2,3] (of rates R1 = 1 and R2 = 3,

respectively) to four public and three private receivers. It is

not difficult to verify that splitting the private message into

independent pieces and using linear superposition coding does

not achieve the desired rate-pair. The pre-encoding technique

of [2] does not make this communication possible either.

However, rate-pair (1, 3) is achievable by the following code

design. X{1,2} = w1,1 + w2,1, X{2,3} = w1,1 + w2,3,

X{1,3} = w1,1 + w2,2, X{2,4} = w1,1 + w2,1 + w2,3,

X{1,4} = w1,1+w2,1+w2,2, and X{3,4} = w1,1+w2,2−w2,3.

The proposed code ensures decodability of the common

and private messages at their intended receivers. Furthermore,

the private information that is revealed to subsets (of public

receivers) {1, 2, 3, 4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4} is

null, to {1, 2} is w2,1, to {1, 3} is w2,2, to {2, 3} is w2,3,

to {1, 4} is w2,1 + w2,2, to {2, 4} is w2,1 + w2,3, to {3, 4}
is w2,2 − w2,3, and finally to {1}, {2}, {3}, {4} is null. The

dependency structure that is imposed among the partial private

information is more involved than what the MDS pre-encoding

scheme in [2] can support (see [10, Example 2.3] for details).

In the rest of this section, we develop a simple block Markov

encoding scheme and characterize the rate-region it achieves.



C. A Block Markov Encoding Scheme

We start with the example in Figure 2, where rate-pair (1, 3)
is not achievable by linear superposition coding, even after

employing the pre-encoding technique of [2]. We show how

to achieve this rate-pair through a block Markov encoding

scheme, and hence, show that such a scheme could augment

the achievable rate-region. Finally, we derive a new inner-

bound to the capacity region for an arbitrary number of public

and private receivers using a simple block Markov encoding.

Example 1. Consider the combination network in Figure 2.

Let us first extend it by adding one resource to the set E{4}, and

connecting it to all private receivers (see Figure 3). One can

verify that rate pair (1, 4) is achievable over this extended

combination network, using linear superposition coding. An

example of such a code is given below, where [w1,1] is a

common message of rate R1 = 1 and [w′
2,1, w

′
2,2, w

′
2,3, w

′
2,4]

is a private message of rate R′
2 = 4. We assume that |F| > 2.

X{1,2} = w1,1 + w′
2,3 X{2,3} = w1,1 + 2w′

2,3

X{1,3} = 2w1,1 + w′
2,3 X{2,4} = w1,1 + w′

2,2

X{1,4} = w1,1 + w′
2,1 X{3,4} = w1,1 + w′

2,4

X{4} = w1,1 + w′
2,1 + w′

2,2 + w′
2,4

(1)

Since the resource edge in E{4} is a virtual resource, we aim

to emulate it through a block Markov encoding scheme. Using

the code design of (1), receiver 4 decodes, besides the common

message, three private information symbols (w′
2,1, w′

2,2, w′
2,4).

Since all three symbols are ensured to be decoded at receiver

4 and all private receivers, any of them could undertake the

role of the virtual resource in E{4}.

More precisely, consider communication over n transmis-

sion blocks, and let (W1[t],W
′
2[t]) be the message pair that

is being encoded in block t ∈ {1, . . . , n}. In the tth block,

encoding is done as suggested by the code in (1). Nevertheless,

to provide receiver 4 and the private receivers with the

information of X{4}[t] (as promised by the virtual resource

in E{4}), we use information symbol w′
2,4[t + 1] in the next

block, to convey X{4}[t]. Since this symbol is ensured to be

decoded at receiver 4 and the private receivers, it indeed

emulates E{4}. In the nth block, we simply encode X{4}[n−1]
and directly communicate it with receiver 4 and the private

receivers. Upon receiving all the n blocks at the receivers, we

perform backward decoding [11].

So in n transmissions, we send n − 1 symbols of W1 and

3(n−1)+1 new symbols of W2 over the original combination

network; i.e., for n → ∞, we achieve rate-pair (1, 3).

In Example 1, we constructed an achievable code with

the help of an extended combination network. Let us first

clarify what we mean by an extended combination network.

An extended combination network is formed from the original

combination network by adding some extra resource that we

call virtual resources. Each virtual resource is connected to

a subset of the receivers to which we refer as the end-

destinations of that virtual resource. This subset is chosen,

depending on the structure of the original combination network

S

W1[1], . . . , W1[t+1]=[w1,1[t+1]]

W ′
2
[1], . . . , W ′

2
[t+1]=[w′

2,1[t+1], w′
2,2[t+1], w′

2,3[t+1], w′t+1
2,4 [t+1]]

D1 D2 D3 D4 D5 D6 D7

X{1,
2}
[t]

X{1
,3
}
[t]

X
{1
,4
}
[t
] X

{2
,3} [t]

X
{2,4} [t]

X
{3,4}[t]

X
{4}[t]

Fig. 3: The extended combination network of Example 1. A

block Markov encoding scheme achieves rate pair (1, 3) over

the original combination network. At time t+1, information

symbol w′t+1
2,4 contains the information of symbol Xt

{4}.

and the target rate pair, through an optimization problem that

we will address later in this section.

The idea behind extending the combination network is as

follows. The encoding is such that to decode the common

and private messages in block t, each receiver needs the

information that it will decode in block t + 1 (recall that

receivers performed backward decoding). So, the source wants

to design the information that it is sending on the resources

of the combination network in block t together with the

information that the receiver will have in block t + 1 (and

will use in the decoding). This extra information is captured

through the virtual resources of the extended combination

network. In this regard, adding the virtual resources and

forming the extended combination network is arbitrary, as long

as the source can emulate them. More formally,

Definition 1 (Emulatable virtual resources). Given an ex-

tended combination network and a general broadcast code

over it, a virtual resource v is called emulatable if the

broadcast code allows reliable communication at a rate of

at least 1 to all end-destinations of that virtual resource (over

the extended combination network). We call a set of virtual

resources emulatable if they are all simultaneously emulatable.

We now outline the steps in devising a block Markov

encoding scheme for this problem.

1) Add a set of virtual resources to the original combination

network to form an extended combination network.

2) Design a general (as opposed to one for nested messages)

broadcast code over the extended combination network.

3) Use the broadcast code to make all virtual resources

emulatable. More precisely, use the information symbols

in block t+1 to also convey the content of the virtual re-

sources in block t. Use the remaining information symbols

to communicate the common and private messages.

An achievable rate-region could then be found by optimizing

over the virtual resources and the broadcast code. Yet, one im-

mediately spots the second step to be suspect, as it essentially



asks for the solution to a general broadcast problem.

Formulating this problem in its full generality is not the

goal of this section. We instead aim to take a simple block

Markov encoding scheme, show its advantages in optimal code

design, and characterize a region achievable by it. To this end,

we confine ourselves to the following two assumptions: (i)

the virtual resources that we introduce are connected to all

private receivers and different subsets of the public receivers,

and (ii) the broadcast code that we design over the extended

combination network is a basic linear superposition code.

In order to devise our simple block Markov scheme, we first

create an extended combination network by adding for every

S ⊆ I1, βS many virtual resources which are connected to all

private receivers and all the public receivers in S ⊆ I1 (and

only those). We denote this subset of virtual resources by VS .

Over this extended combination network, we then design a

(more general) broadcast code. We say that a broadcast code

achieves rate tuple (R1, α{1,...,m}, . . . , αφ) over the extended

combination network, if it reliably communicates a message

of rate R1 to all receivers, and independent messages of rates

αS , S ⊆ I1, to all public receivers in S and all private

receivers. To design such a broadcast code, we use a basic

linear superposition coding. Rate tuple (R1, α{1,...,m}, . . . , αφ)
is achievable if the following inequalities are satisfied [2].

Decodability constraints at public receiver i ∈ I1 (2)
∑

S⊆I1
S∋i

αS ≤
∑

S∈TαS+
∑

S∈T c

S∋i

(|ES |+ βS)
∀T ⊆{{i}⋆}

superset saturated

R1 +
∑

S⊆I1
S∋i

αS ≤
∑

S⊆I1
S∋i

(|ES |+ βS)

Decodability constraints at private receiver p ∈ I2 (3)

R′
2 ≤

∑
S∈TαS +

∑
S∈T c(|E

p
S |+ βS)

∀T ⊆2
I1

superset saturated

R1 +R′
2 ≤

∑
S⊆I1

(|Ep
S |+ βS)

Now, given such a broadcast code, Lemma 1 provides

conditions for the virtual resources to be emulatable. The proof

is deferred to [10, Lemma 2.6].

Lemma 1. Given an extended combination network with βS

virtual resources VS , S ⊆ I1, and a broadcast code design

that achieves rate tuple (R1, α{1,...,m}, . . . , αφ), all virtual

resources are emulatable provided that inequalities in (4) hold.
∑

S∈T

βS ≤
∑

S∈T

αS ∀T ⊆ 2I1superset saturated (4)

It remains to calculate the common and private rates that

are achievable (over the original combination network) when

we use our simple block Markov encoding scheme. To do

so, we disregard the information symbols that are assigned to

virtual resources, for they bring redundant information, and

characterize the remaining rate of the common and private

information symbols. In the above scheme, this is simply

(R1, R
′
2 −

∑
S⊆I1

βS), where R′
2 =

∑
S⊆I1

αS and the real

valued parameters αS , βS ≥ 0 satisfy inequalities (2)-(4).

We have therefore characterized an achievable rate-region.

To simplify the representation, we define γS = αS−βS , ∀S ⊆
I1, and then eliminate α’s and β’s from all inequalities

involved. We thus have the following theorem.

Theorem 1. Consider a combination network with m public

receivers (indexed within set I1 = {1, . . . ,m}) and an K−m

private receivers (indexed within set I2 = {m + 1, . . . ,K}).

The rate pair (R1, R2) is achievable if there exist parameters

γS , S ⊆ I1, such that they satisfy the following inequalities.

∑
S∈T γS ≥ 0 ∀T ⊆ 2I1 superset saturated (5)

R2 =
∑

S⊆I1
γS (6)

Decodability constraints at public receiver i ∈ I1 (7)
∑

S⊆I1
S∋i

γS ≤
∑

S∈T γS +
∑

S∈T c

S∋i

|ES |
∀T ⊆{{i}⋆}

superset saturated

R1 +
∑

S⊆I1
S∋i

γS ≤
∑

S⊆I1
S∋i

|ES |

Decodability constraints at private receiver p ∈ I2 (8)

R2 ≤
∑

S∈T γS +
∑

S∈T c |E
p
S |

∀T ⊆2
I1

superset saturated

R1 +R2 ≤
∑

S⊆I1
|Ep

S |.

Remark 1. Comparing the rate-region in Theorem 1 and that

derived in [2], one sees that the former has a more relaxed

set of inequalities in (6) while the latter is more relaxed in

inequalities (8). It turns out that for m ≤ 3, the two rate-

regions coincide and characterize the capacity region (See [10,

Chapter 2]). For m>3, the rate-region in Theorem 1 contains

rate-pairs that are not attainable by previous schemes in [2].

III. GENERAL BROADCAST CHANNELS

In the last section, we described a block Markov encoding

scheme which was built on top of a linear superposition

coding scheme. In terms of the achievable rate-region, this

scheme relaxed the non-negativity constraints on the rate-

split parameters, and allowed achievability of higher rates

of transmission. In this section, we follow a similar line

of arguments and investigate the potential of block Markov

encoding schemes over general channels.

Let us consider a broadcast channel p(y1, . . . , yK |x) with

input signal X , output signals Y1, . . . , YK where Yi, i ∈ I1,

is the signal available to public receiver i and Yp, p ∈ I2, is

the signal available to private receiver p.

In all cases where the optimal rates of communication

are known for broadcasting nested messages, the classical

techniques of rate splitting and superposition coding have

been optimal, and this motivates us, also, to start with such

encoding schemes. In particular, in the context of two message

broadcast, we split the private message into different pieces

WS
2 of rates αS , S ⊆ I1, where WS

2 is revealed to all

public receivers in S (as well as the private receivers). X

is then formed by superposition coding. For I1 = {1, 2}, for

instance, W
{1}
2 and W

{2}
2 are each independently superposed

on (W1,W
{1,2}
2 ), and W

φ
2 is superposed on all of them

to form the input signal X . The rate-region achievable by

superposition coding is given by a feasibility problem (a

straightforward generalization of [12, Theorem 8.1]). The rate

pair (R1, R2) is achievable if there exist parameters αS ,

S ⊆ I1, and auxiliary random variables UT , φ 6= T ⊆ 2I1 ,

such that inequalities in (9)-(12) hold for a joint probability
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distribution
∏K

k=1

∏
S⊆I1
|S|=k

p(uS |{uT}T∈{S⋆}
T 6=S

)p(x|{uS}S⊆I1
S 6=φ

).

αS ≥ 0 ∀S ⊆ I1 (9)

R2 =
∑

S⊆I1
αS (10)

Decodability constraints at public receiver i ∈ I1 (11)
∑

S⊆I1
S∋i

αS≤
∑

S∈T αS+I(∪S⊆I1
S∋i

US ;Yi|∪S∈T US)
∀T ⊆{{i}⋆}

superset saturated

R1 +
∑

S⊆I1
S∋i

αS ≤ I(∪S⊆I1,
S∋i

US ;Yi)

Decodability constraints at private receiver p ∈ I2 (12)

R2 ≤
∑

S∈T αS + I (X ;Yp| ∪S∈T US)
∀T ⊆2

I1

superset saturated

R1 +R2 ≤ I(X ;Yp).

It turns out that a simple block Markov encoding scheme

relaxes the constraints in (9) to the following set of constraints.
∑

S∈T αS ≥ 0 ∀T ⊆ 2I1 superset saturated (13)

We briefly outline this block Markov encoding scheme for the

case where we have two public and one private receiver (the

same arguments go through for the general case also). We

devise our block Markov encoding scheme in three steps.

1) We form an extended broadcast channel with input/output

signals X ′, Y ′
1 , Y

′
2 , Y

′
3 , as described in Figure 4. We have

X ′ = (X,V{1,2}, V{2}, V{1}, Vφ), Y ′
1 = (Y1, V{1,2}, V{1}),

Y ′
2 = (Y2, V{1,2}, V{2}), and Y ′

3 = (X,V{1,2}, V{2}, V{1}, Vφ),
where VS , S ⊆ {1, 2}, take their values in an alphabet set VS

of size 2βS . We call variables VS the virtual signals.

2) We design a general broadcast code over the extended

channel. We say that a broadcast code achieves rate tuple

(R1, α
′
{1,2}, α

′
{2}, α

′
{1}, α

′
φ), if it communicates a message of

rate R1 to all receivers and independent messages of rates α′
S ,

S ⊆ {1, 2}, to public receivers in S and all private receivers.

We design such a broadcast code, using superposition coding.

Conditions under which this encoding scheme achieves a rate

tuple (R1, α
′
{1,2}, α

′
{2}, α

′
{1}, α

′
φ) over the extended broadcast

channel are readily given by inequalities in (11)-(12) (for

parameters α′
S , auxiliary random variables U ′

T , φ 6= T ⊆ 2I1 ,

and input/output signals X ′, Y ′
1, Y

′
2,Y

′
3 ).

3) We emulate the virtual signals. An extension to Lemma

1 provides us with sufficient conditions.

We now use the information bits that are to be encoded in

block t+1, to also convey (the content of) the virtual signals

in block t. We use the remaining information bits, not as-

signed to the virtual signals, to communicate the common and

private messages. Putting together the constraints needed in

the above three steps (as in Subsection II-C) yields an achiev-

able rate region for each joint probability distribution of the

form p(u′
{1,2})p(u

′
{1}|u

′
{1,2})p(u{2}|u

′
{1,2})p(x

′|u′
{2}, u

′
{1}, u

′
{1,2}).

In particular, by a proper choice for the auxiliary random

variables, we show that the rate region defined in (10)-(13)

is achievable. More precisely, we have the following theorem

(details of the proof are deferred to [10, Theorem 4.3]).

Theorem 2. The rate pair (R1, R2) is achievable if there

exist parameters αS , S ⊆ I1, and auxiliary random vari-

ables UT , φ 6= T ⊆ 2I1 , such that they satisfy in-

equalities in (10)-(13) for a joint probability distribution∏K
k=1

∏
S⊆I1
|S|=k

p(uS|{uT }T∈{S⋆}
T 6=S

)p(x|{uS}S⊆I1
S 6=φ

).

Note that the rate-region in Theorem 2 looks similar to that

of superposition coding (see (9)-(12)). Clearly, the former rate-

region has a less constrained set of non-negativity constraints

on αS and includes the latter. It is interesting to ask if this

inclusion is strict, and it is non-trivial to answer this question

because of the union that is taken over all proper probability

distributions. For a fixed joint probability distribution, the

inclusion is strict. So it is possible that the proposed block

Markov scheme strictly enlarges the rate-region of superposi-

tion coding. However, this needs further investigation.

Remark 2. It is worthwhile to mention that one may design a

more general coding scheme by using Marton’s coding in the

second step (when devising a broadcast code for the extended

broadcast channel). Following similar steps as above (see [10,

Theorem 4.3]), one can relax the non-negativity constraints

from the more general rate-region (which is achievable by

rate-splitting, superposition coding, and Marton’s coding).
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