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ABSTRACT: This paper presents concepts for dealing with topological information in building informa-
tion models. On the one hand, it shows how to derive topological relationships from ``traditional'' building 
models consisting of  unconnected B-Rep bodies by means of geometric processing algorithms. On the other 
hand, it discusses the capabilities of topological building modeling based on relational complexes, an ap-
proach based on Algebraic Topology and the Relational Data Model. To make these complexes suitable for 
building modeling it was necessary to extend them by geometric properties. Finally, the paper depicts an ad-
vantageous application of cell complex-based modeling: the separation of the building model into an abstract 
specification of building entities (sketch), a collection of possible concrete realizations of such sketch entities 
(details) and a specification of the details used by sketch entities. Then a working drawing results from the 
spatial version of the relational operator inner equi-join, the so-called fiber product. 

1 INTRODUCTION 

In building and construction planning one often has 
to deal with information along the lines of “Which 
elements are connected together?” or “How are dif-
ferent parts separated?”. In floor plan layout, for ex-
ample, such connectivity information can describe 
the accessibility of rooms within an office or an 
apartment as well as describing which room lets in 
daylight, as this calls for connectivity between the 
room in question and the area outside the building. 
Structural analysis also requires information on the 
structural elements that are joined together and the 
joints employed in the process.  

Such connectivity information is a topological 
property of a building, and we will later see, that it 
may even be called the topology of a building. A 
topological space can informally be described as a 
set of elements together with a specification of 
which element is “close to” some other elements. 
Then a mapping from one such space to another is 
called continuous, if the image of a point “close to”' 
some set remains “close to” the image set and is ac-
cordingly not torn off the latter. Typical examples of 
such a continuous mapping are the affine transfor-
mations in the Euclidean space with its so-called 
natural topology. If such a continuous mapping has a 
continuous inverse, this mapping is called topologi-
cal isomorphism or homeomorphism, for short. A 
typical homeomorphism is an invertible affine 

transformation such as translation, rotation or shear. 
Note that under a homeomorphism the image of an 
element “not close to” some other elements is “not 
close to” their image either. The original space and 
the image space are then indistinguishable with 
respect to this “closeness” relation and is hence 
called topologically equivalent or homeomorphic. 

Topological relationships between building com-
ponents define the basic functionality of the building 
(e.g. its structural system, the connectivity of rooms) 
and knowledge about them can be used for a wide 
number of analytical tasks (evacuation simulation, 
building performance analysis, etc.). A dividing wall 
between two interior rooms, for example, has differ-
ent thermal requirements than a dividing wall 
between an interior room and the space outside the 
building. So there is a good reason for topological 
properties to show up in building product models 
and, indeed, every noteworthy such model like 
RATAS, COMBINE or IFC deals with this kind of 
information (Bjoerk 1992; Dubois et al. 1995; 
Adachi et al. 2003). It is, however, difficult to access 
topological information in building product models 
as, generally speaking, many different approaches 
towards modeling topology coexist within one 
model. 

With this heterogeneity of data types it is difficult 
to develop applications which have to navigate 
within this space of interconnected entities in order 
to perform thermal or structural analysis or other as-
pects of the building's performance (Romberg et al. 
2004; van Treeck and Rank 2007). There is yet an-

 



other topological structure within a building product 
model: the data structures used to describe the 
geometric representation of each building element. 
These structures are often defined by boundary 
representation (b-rep) techniques using primitive 
geometric entities like point, edge and face together 
with connectivity information between these 
primitives, hence a topology for them, too.  

This connectivity information, however, is only 
local to the specific geometric entity, which is 
therefore isolated from other entities in terms of b-
rep connectivity. So topological relationships be-
tween building elements must either be derived from 
their geometric shape or stored explicitly in the 
building model. The realization of these diverging 
approaches is discussed in the following sections. 

2 THE GEOMETRICAL APPROACH 

What we refer to here as the “geometrical approach” 
involves building models which considers a building 
a compilation of geometric objects located in 3D 
space. Each of these objects has a connected and 
compact geometrical shape which is described using 
established techniques from solid modeling such as 
constructive solid geometry (CSG), swept represen-
tations or the particularly interesting boundary rep-
resentation (b-rep) techniques (Mäntylä 1988). So 
far, our approach complies with how CAD systems 
and common product models such as IFC or CIS/2 
handle building geometry today. But, whereas in 
product models topological relationships between 
geometric objects are meant to be explicitly stored, 
we propose to derive them from the objects’ geome-
try and their relative position to each other. 

2.1 Specification 
In (Borrmann and Rank 2008) a method is presented 
that makes it possible to query pairs of building 
elements with regard to their topological relation-
ships. The topological relationships that are sup-
ported are within, contain, overlap, touch, equal and 
disjoint. Each of the predicates is formally defined 
by means of the 9-Intersection Model (9-IM), a 
model that was originally developed for 2D-GIS 
(Egenhofer 1991) but can easily be applied to 3D-
BIM. It records the intersection between the interior, 
the boundary and the exterior of both objects in a 
matrix. Let A and B be point sets that describe a 
spatial object in 3D. Then the 9-IM matrix reads  
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where A° denotes the interior, ∂A the boundary and 
A- the exterior of A. Permitted entries of the matrix 
are the empty set (Ø), the non-empty set (¬Ø) and 
the asterisk (*), the latter meaning that the respective 
place in the matrix is not decisive for assigning the 
topological predicate to a certain constellation. 
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Figure 1. Some topological predicates according  to the 9-
intersection model. 

 
Figure 1 shows the 9-IM matrices of all six de-

fined topological predicates. The predicates are 
mutually exclusive and complete in the sense that, 
for any conceivable constellation, precisely one of 
the predicates can be applied. This allows one to 
offer the function whichTopoPredicate that returns 
the respective predicate for any given constellation. 
This function and the individual predicates are pro-
vided as operators for use in theWHERE part of a 
SQL query (Borrmann 2007). 

By using the resulting Spatial Query Language it 
is possible to find all walls touching a certain slab, 
the heating equipment within a certain room or gas 
lines crossing a specific wall, for example. 

2.2 Implementation 
As stated above, the topological relationships 
between the building elements are not expected to be 
explicitly stored in the 3D building model. Instead, 
they are generated/tested on-the-fly during the proc-
essing of a spatial query on the basis of the explicit 
geometry of the respective building elements. 

For the implementation of these topological tests 
we developed two approaches: the first approach is 
based on octree representations of the operands 
which are generated on demand. The resulting 
octrees are traversed synchronously in a breadth-first 
manner. On each level pairs of octants are created 
with one octant originating from object A and one 
octant from object B, both basically covering the 
same sector of the 3D space. Each octant provides a 
color combination for which specific rules can be 
applied. These rules may lead to filling a 9-IM ma-
trix that is maintained to keep track of the 



knowledge gained by the algorithm about the topo-
logical constellation. 

In total, there are 12 positive and 9 negative rules. 
A positive rule can be applied when a certain color 
combination occurs, and a negative rule if certain 
color combinations do not occur over an entire level. 
Positive rules lead to non-empty set entries in the 
matrix, negative rules to empty set entries. The 9-IM 
matrix is successively filled by applying these rules 
for all octant pairs. Each time a new entry is made, 
the matrix is compared with the matrices of the for-
mal definitions (Figure 1). As soon as it corresponds 
completely to one of the pre-defined matrices, the 
recursion is aborted and the algorithm returns the 
respective predicate. If there is any divergence be-
tween the filled matrix and the matrix of a predicate, 
the respective predicate is precluded. If no un-
equivocal decision is possible for any of the predi-
cates, a further refinement is necessary. 

Our second approach for testing topological rela-
tionships works directly on the boundary represen-
tation of the building elements. To accelerate the 
processing of the tests, the facets describing the 
objects' boundaries are hierarchically managed by 
means of a so-called Axis Aligned Bounding Box 
(AABB) tree (van den Bergen 1997). The algorithm 
performs an initial intersection test to find out 
whether the objects overlap, or not. Using the 
AABB tree most of the facet pairs can be excluded 
from detailed investigation, meaning an exact inter-
section test only has to be performed for a limited 
set of final pairs. 

If the overlap test fails, additional tests have to be 
performed which are based on sending out rays from 
one object and counting the number of intersections 
of the ray and the second object. Due to the limited 
space available, we cannot discuss the algorithm in 
more detail here. 

Both approaches are able to retrieve topological 
information from purely geometrical models. While 
the b-rep-based algorithm is normally considerably 
faster, the octree approach allows for a fuzzy treat-
ment of topological relationships by choosing a suit-
able maximum refinement level. This is especially 
interesting as we have to be aware of impurely 
modeled building models where slight gaps between 
building elements occur without intention. 

3 THE TOPOLOGICAL APPROACH 

The topological approach, on the other hand, is 
based on the formal theory of Algebraic Topology 
which requires the digital building to be modeled 
according to what is known as a cw-complex, where 
the topology is explicitly stored and does not need to 
be computed. 

3.1 Related work 
Using the Algebraic Topology for modeling build-
ings has already been proposed by a number of re-
searchers, e.g. in (Huhnt and Gielsdorf 2006; 
Clemen and Gielsdorf 2008). However, the potential 
of this formal approach with respect to concrete ap-
plications has not been fully developed so far. In the 
context of 3D Geographic Information Systems 
(GIS), simplicial complexes have been employed to 
model soil layers, for example (Breunig et al. 1994; 
Pilouk 1996; Shi et al. 2003). Simplexes are a gen-
eralization of closed, filled triangles and are often 
used instead of cells to set up a so-called simplicial 
complex. These are, however, very restricted and 
demand a costly partitioning of building elements 
into tetrahedra. We therefore propose using cells, the 
more general version of a topological primitive. 

3.2 Cell complexes 
We start with the observation that a building resides 
in the Euclidean space, in such a way that the latter 
is somehow divided into a finite number of parts by 
the former. The difference with the topological ap-
proach is that these parts need not be compact and 
that they lead to a complete partitioning of the 
Euclidean space: every point in space belongs to 
exactly one unique building part, a room or the exte-
rior space. Note that hierarchically aggregated spa-
tial objects cannot be expressed with only one such 
partitioning. 

This partitioning immediately leads to a topology 
for the building elements, which is called final 
topology or quotient topology. This is the topology 
of a building mentioned above. 

3.2.1 Architectural Complexes. 
From a theoretical point of view, the statement that 
the Euclidean space is finitely partitioned by archi-
tecture is still too weak. We say that every building 
part can also be further subdivided into a finite 
number of cells which set up a special case of a 
topological space with interesting algebraic proper-
ties. It is the so-called cw-complex—a composition 
of cells frequently used in Algebraic Topology 
(Hatcher 2002). 

An n-cell (cell of dimension n) is a topological 
space which is homeomorphic to the interior of an n-
dimensional cube. For the special case of n=0 we 
say a 0-cell is a space with exactly one point. 

Low dimensional n-cells are often called topo-
logical primitives in volume modeling. A 0-cell is 
also called vertex, “1-cell” is a synonym for “edge”, 
2-cells are “faces” and 3-cells are also called 
“volumes”. Figure 2 shows the canonical cells found 
in a closed cube. It is important, however, that a 
cell's boundary is never part of the cell.  

 



 

 
 
Figure 2. The canonical cellular decomposition of a closed 
3d-cube 

 
Now these cells can be combined to form a 

topological space which is called cw-complex. This 
is a topological space partitioned into a set C of cells 
where the boundary of each cell is a union of a finite 
number of cells in C of strictly lower dimension than 
n. We always assume C be finite. 

Then for some integer number i, the set iX X⊆ , 
the union of iC  of cells of at most dimension i 
is called i-skeleton of X. This is also a cw-complex 
with partitioning C

C⊆

i. Each i+1-cell is also said to be 
attached to the i-skeleton. Note that i may even be 
negative, in which case Xi=Ø. 

The 0-skeleton is simply the discrete vertex set 
(or point cloud) and the 1-skeleton is a graph, where 
the edges are attached to the vertices. Attaching 
faces to the 1-skeleton can be done by either filling 
loops or by creating cavities and gives rise to the 
2-skeleton (a sponge-like structure) which is then 
completed to form the 3-skeleton by filling cavities 
with volumes. Theoretically, attaching a volume 
could also create hyper-cavities, but we will refrain 
from that. Note that, if one neglects the rooms of a 
building, it also displays a “sponge-like structure”. 
Note also that a single b-rep volume model is like-
wise a cw-complex. 

 
 

 
 
Figure 3. The skeletons of the canonical cw-complex of a 
three-dimensional closed cube, beginning with X3 on the left 
and ending with X0 to the right. Note that Xn = X3 for all n ≥ 3 
and Xn = Ø if i is a negative integer. 

 

3.2.2 Complex Based Modeling 
At the most detailed level, the building elements are 
cells which are basically the same objects used in 
b-rep volume modeling. Only the 3-cell as a “primi-

tive” is missing in some of these models which 
mostly identify a volume with its boundary instead 
of providing it as a separate primitive.  

We attach volumes to faces instead of such 
identification and will therefore model the connec-
tivity information in a different way. Later the no-
tion of a cell will be relaxed and walls or slabs can 
be con-sidered faces by simply disregarding their 
relatively small thickness.  

We will now proceed to describe a relational 
schema for an algebraic complex. It is a well-known 
fact that each cw-complex has an associated alge-
braic complex of this kind. 

3.3 Relational Complexes  
Cw-complexes are often defined by specifying an 
inductive procedure of starting with the 0-skeleton 
X0 and then attaching i+1-cells to the i-skeleton until 
the complex is finished (Hatcher 2002, p. 5). 

We will repeat this inductive procedure with an 
example volume element, a closed unit cube of di-
mension 3, and, in parallel, give a relational repre-
sentation of the associated algebraic complex to 
illustrate the notion of a relational complex (Paul 
2007). We only present here what we call the dy-
namic version of a relational complex, where all 
cells are stored in one single table together with an 
attribute to indicate the dimension.  

We start with our specimen cube's vertices and 
establish the 0-skeleton as a relation with the schema 
CELLS(id:Z , dim: ) Z
with primary key {id, dim}.The coordinates of 
these cells set up another relation of schema 
COORD(id:Z ,dim:{0}→ x,y,z: ) R
We indicate the primary key by an arrow pointing 
from the primary key attributes to all other 
attributes. The attribute COORD.dim is constantly 
the integer 0 and only used to establish a reference 
to CELLS. We call each entry in COORD a point and 
each entry in CELLS with dim=0 a vertex. Each 
point must reference a vertex.  

So by simply storing the eight vertices and points 
in the corresponding relations we obtain the 
0-skeleton of our specimen cube.  

Now we have to paste edges to vertices. This will 
be done by adding records with a dim-value of 1 to 
the cells table and calling these records edges or 
1-cells. To be able to attach these cells to vertices 
we finally define our last additional relational 
schema 
BD(a,dimA, b,dimB → alpha: ) Z



 

 
 
Figure 4: The 1-skeleton of a cube consists of vertices and 
edges. A label vi stands for cells tuple (i,0), ei for (i,1) and f1 
for (1,2). 

 
where (a,dimA) and (b,dimB) are references to 
CELLS. We will call this relation the boundary rela-
tion.We also insist on dimA>dimB for all entries in 
the boundary relation and, in addition, if these di-
mension attributes differ by more than one, the 
alpha value must be zero. 

Note that BD defines a partial integer matrix D, 
which maps some pairs (e,v) of cells to an integer 
D(e,v) and is undefined for others. To obtain a total 
matrix, all undefined entries can be regarded as zero 
entries. Each edge e of our cube running from vertex 
a to vertex b will now be stored as one record (e,1) 
in the cells relation and two additional records 
(e,1, a,0,-1) and (e,1, b,0,+1) in the boundary rela-
tion, indicating that edge e (of dimension 1) starts at 
vertex a (of dimension 0) and ends in b. The orien-
tation of each edge can be arbitrarily chosen and, in 
our example, we simply let an edge run from lower 
id to higher id. This produces a 1-skeleton, displayed 
in figure 4 with the following boundary relation 
(some entries have been omitted): 

 

CELL 
id dim 
1 0 
2 0 

… 
8 0 
1 1 
2 1 

… 
12 1  

BD 
a dimA b dimB alpha 

1 1 1 0 -1 
1 1 2 0 +1 
2 1 1 0 -1 
2 1 3 0 +1 

… 
12 1 7 0 -1 
12 1 8 0 +1  

 
This is simply the well-known incidence matrix 

of a graph, an approach which at first glance seems a 
verbose and inefficient way to store a directed 

graph. Note, however, that firstly the usual way of 
storing such a graph as a relation with schema 
EDGE(edgeId → origin, target) 

only changes the storage complexity by a constant 
factor and, secondly, the advantages of our approach 
will become evident in the following section. 

We will now paste faces to the 1-skeleton to 
achieve the 2-skeleton—the shell covering the cube's 
volume. Starting with the bottom face f1 of our ex-
ample in figure 4, we store it as a 2-dimensional 
cell—a record (1,2) consisting of cell number 1 and 
dimension 2. Then we observe that this cell is 
bounded by the edges e1, e4, e6 and e2, the orienta-
tion of which is, as we remember, arbitrarily chosen. 
As with the edges, we define an arbitrary orientation 
of the face, say counter-clockwise when seen from 
above, and then “correct” the orientation of the 
edges in relation to the face so that they are all 
pointing in a counter-clockwise direction. This is 
achieved by attaching a positive or negative sign to 
each edge indicating whether this edge has the de-
sired orientation of the faces or whether it is point-
ing in the opposite direction. This produces signed 
edges +e1, +e4, -e6 and -e2. We say the origin of a 
negative edge -e is the target of the positive edge +e 
and vice versa. The meaning of this sign is similar to 
the Orientation-attribute of an Ifc-
OrientedEdge: An Orientation value of 
true corresponds to the plus sign +1 and false to 
the minus sign -1. In our case, however, these signs 
are relative to the bounded face and therefore not a 
property of the edge itself but rather a property of 
the edge-face association.We accordingly get the 
following additional records for face 1:  

 

CELL 
id dim 

… 
1 2  

BD 
a dimA b dimB alpha 

… 
1 2 1 1 +1 
1 2 4 1 +1 
1 2 6 1 -1 
1 2 2 1 -1  

 
Note that these boundary entries are sometimes 

called half edges. 
In total we get six more entries in the cells 

table—one for each face—and twenty-four addi-
tional entries in the boundary table. The reader can 
verify that, if the boundary table is considered a 
sparse cells×cells-matrix where the rows are indexed 
by (a,dimA)-pairs, the column index is 
(b,dimB) and the entries are the associated 
alpha values, then it returns a sparse zero matrix if 
multiplied by itself. 

When the 2-skeleton is finished, we still do not 
have a valid volume model. Firstly, the volume itself 
is still missing; we only have an empty shell so far. 



Secondly, the faces do not have a consistent orienta-
tion, some are oriented counter-clockwise when seen 
from the inside to the outside and others then hace 
clockwise orientation. Now we want each face seen 
from “outside” the cube to have a counter-clockwise 
orientation. We will say a face points to a side if, 
seen from this side, its boundary has a counter-
clockwise orientation. Assuming the faces' orienta-
tions have been chosen in such a way that the hori-
zontal faces point upwards, the frontal faces point to 
the rear and the sagittal faces to the right, then some 
faces have to be turned over (flipped). This flipping 
is also relative to the volume object so we obtain an 
entry (1,3) in the cells table, meaning that we have 
cell number 1 of dimension 3 and six more entries in 
the boundary table, thus completing the relational 
complex: 

 

CELL 
id dim 

… 
1 3  

BD 
a dimA b dimB alpha 

… 
1 3 1 2 -1 
1 3 2 2 -1 
1 3 3 2 -1 
1 3 4 2 +1 
1 3 5 2 +1 
1 3 6 2 +1  

 
A boundary relation must always satisfy the fun-

damental property of homological algebra that, as a 
matrix, the product with itself must give a zero ma-
trix, hence the boundary of the boundary is zero, 
which algebraically expresses the spatial property 
that each cell is circumscribed by its boundary. Each 
edge is referenced twice by a volume: once in its 
original orientation and once flipped to face in the 
opposite direction, so the sum of the products of the 
alpha entries has to be zero. The same is true for a 
vertex, which has an incoming edge and an outgonig 
edge with respect to a face. 

 
This approach has many interesting properties: 
 

− The data model is very easy and based on the 
relational model. 

− Each “topological primitive” is of one common 
data type CELL and the dimension of such a cell 
is only indicated by an attribute. 

− The data model can hence be used for spatial 
instances of arbitrary dimension.  

− The key values of the boundary relation define 
the topology for the primitives. 

− Common cells can always be reused. 
− Every b-rep volume model can be represented as 

a relational complex.  
− The asymptotical storage complexity is not worse 

than other geometric modeling approaches. 
 

One property might be considered a drawback. 
As this model is based on homology, it cannot store 
a specific sequence in which edges encircle a face as 
some volume models do. Translating a volume 
model from IfcTopologyResource into a rela-
tional complex “abelianizes” every IfcEdgeLoop 
element (Hatcher 2002, p.99), hence every permuta-
tion of edges from such a loop is considered equal to 
the original sequence. Such a loss of information, 
however, is only of theoretical interest and we (still) 
see no practical relevance in it. 

3.4 Relational Operators 
Basing this model on the relational model offers an 
interesting perspective: If one takes a relational view 
of topological spaces, one might, conversely, ask 
how relational operators can be given a topological 
meaning. Indeed, except for the outer join, every 
operator in relational algebra has a counterpart in 
point set topology or such topological version of an 
operator in question can be easily constructed. 

The following table gives some example rela-
tional operators and their counterparts in point set 
topology.  

 
relational algebra point set topology 
selection subspace 
rename homeomorphism 
Cartesian product product space 
inner equi join fiber product 
disjoint union topological sum 

 
We will later present a topological version of the 
Cartesian product of two complexes, hence a coun-
terpart of Cartesian product in algebraic topology. 

3.5 Some Geometric Properties 
In topology, the geometry of cells and cw-com-
plexes is ignored. So it is necessary to extend the 
data model by geometric properties in order to make 
it suitable for geometric modeling. 

If we first consider solely planar objects with 
straight edges and plane surfaces, then it is sufficient 
to store the location of the vertices in the COORD ta-
ble because all other cells' geometries are then de-
fined by linear interpolation. This assumption is too 
restrictive for practical purposes, but the appropriate 
extension of the model presented here can be dis-
cussed independently. We will now describe some 
basic geometric properties. In (Breunig et al. 1994) a 
similar approach was presented for simplicial com-
plexes. 

 
Measures. Length, surface area, volume and maybe 
even their higher dimensional analogous are impor-
tant properties which must be derived from the given 
model. The surface of a planar polygonal surface f 



can be computed by first triangulating the polygon 
and then summing up the surfaces of each such tri-
angle. This triangulation, however, need not cover 
the surface exactly. It is also possible to fix an arbi-
trary point p in the supporting hyperplane and then 
for each edge (a,b) in the polygon's boundary com-
pute the cross product  

pa pb× . 

The sum of all such cross products is a vector, where 
its direction gives the face's orientation and its 
length is twice the area of the face if all edges (a,b) 
are aligned with the orientation of the face itself. 
The reference point p may even lie anywhere so the 
area of a face f is simply 

( , ) ( )
area( )

a b d f
f a b

∈

= ∑ ×  (2) 

where d(f) is the set of all edges in the boundary of f. 
This formula, however, does not take into account 
that the orientations of the edges are arbitrary. But 
then we can use the signs from our boundary relation 
and hence the sum in the above formula can be re-
placed by: 

β

β
∈ − + ⊆

×
⋅∑ ∑

( , , ) BD {( , , 1),( , , 1)} BD 2f e e a e b

a b . (3) 

The cross product a × b is first computed for the 
boundary points a, b of each edge e bounding f. This 
is then mutliplied by β, the flipping of the orienta-
tion of e relative to face f. 

A similar approach enables us to compute the 
volume of a 3-cell in our complex. We triangulate 
the surface (boundary) of the volume object and 
compute the volume of each cone (pyramid) atop 
such a triangle with an appropriate sign indicating 
whether the cone's volume is attached to the outside 
or the inside of the triangle. A natural choice for the 
cone's apex is the origin in . 3R

( , , ) surface( )

1vol( )
3∈

= ⋅∑
x y z

x y z
a b c v

x y z

a a a
v b

c c c
b b  (4) 

where surface(v) is a triangulation of v's boundary 
such that all triangles (a,b,c) have the same orienta-
tion when viewed from the outside. Note that there 
is a close relationship between the cross product 
used to compute the area and the determinant used 
here to compute the volume. 

he triangulation of a face, say f1 from our exam-
ple, can simply be done by fixing one boundary 
point p of f1 and then for each boundary edge e of f1 
using the triangle (p,a,b), where e runs from a to b. 
If p happens to be equal to a or b the triangle's vol-
ume is zero, and it can be left to the discretion of the 

implementor and his complexity considerations 
whether such volume is computed and added or 
whether it is discarded in advance. Hence for each 
face f we choose one arbitrary vertex vf and compute 
the triangles surface(v) as: 

{ ( , , ) | ( , , ), ( , , ),
( , , ),
( , , ) }

vf fe

vf fe

vf fe

a b v v f f e
e a
e b

α α
α α
α α
− ⋅
+ ⋅

BD BD

BD

BD

 

Note that most of the predicate in the above set 
builder expression is an inner equi join of copies of 
BD, hence ‘surface’ can also be generated by an 
SQL query. The arbitrarily chosen vf can be the one 
with the minimal identifier so it can be chosen by 
the min-operator with a ‘group by’ clause. The 
flipping of orientation is recognized by simply 
multiplying the corresponding alpha-value. 

3.6 Application: From Sketch to Working Drawing 
We have now presented a concept for storing an ar-
bitrary cell complex. A building, however, is com-
monly conceived as a union of building elements 
like doors, walls or columns which can be treated as 
if they were cells. A door, for example, somehow re-
sembles a 2-cell combining two volumes if we dis-
regard its relatively shallow thickness. The relational 
model presented above has the advantage that it is 
not restricted to cells and can store arbitrary com-
plexes. It clearly makes sense to store building ele-
ments and the spatial relationships among them as 
spatial entities and not the cells they are made of be-
cause, firstly, this represents the semantics of a 
building and, secondly, many such elements have 
repeated patterns, and the explicit storage of the cell 
decomposition of, say, a frequently used joint would 
lead to redundancies. 

To avoid such redundancies a topological version 
of relational decomposition and inner equi joins is 
needed and might also set up what can be called a 
“topological design theory”. Such topological inner 
joins are well known and are called fiber products. 
They will be illustrated here. This replaces cells by 
composite objects which resemble architectural ele-
ments in a natural way. 

 
A Simple Example. Figure 5 gives an introductory 
example. On the left-hand side of the figure there is 
a two-dimensional complex representing a (simple) 
floor plan. On the right-hand side we have another 
two-dimensional complex, which resembles this 
floor plan in a less detailed view where each wall 
and wall joint has collapsed to a cell. We will call 
the left-hand side complex a working drawing and 
the right-hand side complex a sketch to make the 
intention clear. So there is an obvious continuous 
mapping from the working drawing onto the sketch. 



The illustration between working drawing and 
sketch shows the parts of the working drawing 
which have collapsed to one common cell by this 
mapping, its so-called fibers. One observes that, in 
this example, each such fiber representing a wall is 
essentially the extrusion of the wall's profile along 
the cell that represents the wall in the sketch. Such 
extrusion is a special case of product space and, in 
fact, each fiber in the working drawing is essentially 
the Cartesian product of a cell in the sketch with 
some cw-complex, and this complex repeatedly oc-
curs as a factor. We accordingly have a set of prod-
uct spaces (a generalization of extrusion) where one 
factor is some subset from the sketch and the other 
factor is a complex, which we may call the detail or 
the profile of the sketch element. 

 
 

 
 
Figure 5: Two complexes representing a simplified floor plan 
and the fibers of the obvious mapping between these com-
plexes drawn in the middle. 

 
 

Formalization of the Example. Each detail can now 
be considered a subcomplex of a collection of de-
tails. If such subcomplex is given a unique name, 
then this designation is a mapping from the cells of 
the collection of details to the set of identifiers 
where each detail is a fiber of this mapping which 
we might call “belongsTo”. 

We can now assign a detail to a sketch element 
by assigning each cell such a detail identifier, thus 
producing another mapping, say “uses”, from the 
sketch to the set of detail identifiers. Figure 6 shows 
these two mappings. 

If we now take a detail identifier then, on the one 
hand, there is the set of cells in the details collection 
which belong to the identifier and, on the other 
hand, the set of cells in the sketch which use this 
detail, so we have two fibers. 

Our working drawing consists of the union of 
products of such pairs of fibers or, in short, the fiber 
product of the two mappings “belongsTo” and 
“uses”. If a cell d belongs to a detail i which is also 
used by a cell s from the sketch, then the pair (d,s) 
belongs to the fiber product. Then the obvious map-
ping from the working drawing to the sketch is sim-

ply the projection of the pair (d,s) to the second 
component s. 

Now we need a topology for the cells of the 
working drawing. We will proceed to show how the 
boundary matrix of the Cartesian product of two re-
lational complexes detail (D,M) and sketch (S,N) can 
be computed, according to the EILENBERG-ZILBER-
theorem (Eilenberg and Zilber 1953). 

First, of course, the dimension of a pair (d,s) in 
our Cartesian product is simply the sum of the di-
mensions of both components, hence 

dim( , ) dim( ) dim( )d s d s= +  (5) 

To obtain the boundary of a cell, we take the partial  
boundary matrix M for the complex which consists 
of the details and a partial boundary matrix N for our 
sketch. Then we define the partial product matrix 
P=M ⊗ N: First set 

dim( )( ) ( 1) ddσ = −  (6) 

to get a negative sign iff the dimension of a cell is 
odd and then set 

,
( , ),( , )

,

undefined : ( , ) ( , )
:

:
( ) :

undefined : otherwise

d e
d s e t

s t

d s e t
M s t

P
d M d eσ

=⎧
⎪ =⎪= ⎨ =⎪
⎪⎩

 (7) 

The reader may verify that the matrix product P·P 
then returns a partial zero matrix. 

Then our relational product complex is 

( ,  )  ( ,  ) :  ( ,  )D M S N D S M N× = × ⊗ , (8) 

a generalisation of the extrusion of an 
m-dimensional profile (D,M) along an n-dimensional 
axis (S,N) to obtain the n+m-dimensional product 
complex as the “extruded object”. 

If (D,M) is the collection of all details for build-
ing elements instead of just one detail and (S,N) the  

 
 

 
 
Figure 6: The floor plan sketch, the collection of details and 
the two mappings involved: “belongsTo” from left to middle 
and “uses” from right  to middle. 

 



entire sketch of the building, then the resulting 
product space gives a huge, complicated space 
where each detail is applied to each building ele-
ment, where most of them do not make sense. How-
ever, it contains the products of fibers we are inter-
ested in as subspaces. It consists of all pairs (s,d) 
where the detail identifiers of s and d are the same. 
This produces an inner equi join 

 [Join]D S D⊆ × S  (9) 

and so we can also restrict the huge product matrix 
M⊗N by removing all the rows and all the columns 
from M⊗N which are not in D[Join]S and end up 
with the much smaller matrix M⊗N |D[Join]S. We ac-
cordingly obtain the pair 

[Join]( [Join] , | )D SD S M N⊗  (10) 

which may or may not be a relational complex of 
our desired working drawing. Hence, additional con-
sistency rules need to be defined to guarantee that 
this, indeed, is the desired result. 

First, the resulting working drawing should also 
be a complex which amounts to testing whether 
D[Join]S is closed in D×S.  

Second, as we have an inner join, we must take 
care that no building element gets lost in the result. 
Therefore the mapping “belongsTo” must map detail 
cells onto the identifiers (i.e. be surjective) and each 
sketch element must use such a detail. It is not pos-
sible to simply use a right outer join instead (Paul 
2008, p.186). 

Third, the connectivity information within the 
sketch may get lost in the working drawing. We 
suppose that it is possible to define a topology on the 
details telling us if and how they can be connected to 
each other. The use of these details must then be 
consistent with this connectivity information. The 
assignment of identifiers, i.e. the map “belongsTo”, 
carries this topology over to the identifiers set such 
that “belongsTo” becomes continuous. This “image” 
of a topology is also called a final topology. The de-
sired consistency in the use of details is then nothing 
else than continuity of the mapping “uses”. This 
continuity of the mappings involved is also the for-
mal prerequisite that a union of products of fibers 
may be called fiber product.  

Fourth, the projection from our working drawing 
back to the sketch must be isomorphic to the original 
sketch. An important consistency rule to assure this 
is topological monotony of the mapping 
“belongsTo”, i.e. each connected set of detail identi-
fiers must have a connected pre-image. 

 
Building Models as Assemblies of Cell Complexes. 
The above concept separates a building model into 
three parts: a sketch of building elements, a specifi-
cation of possible details for these sketch elements 
and a specification determing which of the possible 

details is chosen for each element. To obtain a valid 
building model, additional topological consistency 
rules for the references between these elements must 
be observed. This separation is done in a similar way 
to the decomposition in relational database design. 

4 COMPARISON & CONCLUSIONS 

By “geometrical model” we refer to the traditional 
approach of developing product models by means of 
combining isolated geometric objects. For building 
models of this type, toplogical relationships can be 
computed using the algorithms presented in Sec-
tion 2. In the topological approach these spatial re-
lationships and the geometric objects can be inte-
grated into one entity, a complex. This integration 
can be done at several levels of detail which are 
connected by continuous mappings. 

The topological model is intended as a formal 
front-end for spatial data modeling and, similar to 
the relational model, it is based on a mathematical 
theory. Apart from this formality we see the follow-
ing advantages: 
− A relational complex is an extremely simple data 

model and so it promises that many different pro-
gramming tasks which involve spatial navigation 
and analysis can be accomplished in a similar 
manner. It is a well-known fact that the simplicity 
of the relational model is an important factor to-
wards improved quality of databases (Abiteboul 
et al. 1995, p.28) 

− The spatial structure and other semantic proper-
ties are kept strictly apart and many semantics 
can be dynamically modeled, keeping the static 
data model simple. An application can navigate 
across a joining edge whithout knowing if this 
joint is an IfcConnectionGeometry path 
between two walls or a door frame and, if it needs 
to know, can look it up in some standardized ex-
tension of the buildings parts library used. 
An overall advantage may lie in its formal foun-

dations: It is strictly based on the underlying 
mathematical theory. So every engineering question 
which might be of a topological nature can, in prin-
ciple, be found by analysing this model; every ade-
quate topologist's tool can be applied to the modeled 
object and every other (finite) topological data 
model can be translated from and to a relational 
complex with all its topological properties un-
changed. Indeed, the initial motivation to define this 
model was the wish to have a common reference 
model—a formal basis with which all other spatial 
modeling approaches can be compared. 



REFERENCES 

Abiteboul, S., R. Hull, and V. Vianu (1995). Foundations of 
databases. Addison-Wesley. 

Adachi, Y., J. Forester, J. Hyvarinen, K. Karstila, T. Liebich, 
and J. Wix (2003). Industry Foundation Classes IFC2x 
Edition 2. http://www.iai-international.org. 

Björk, B.-C. (1992). A conceptual model of spaces, space 
boundaries and enclosing structures. Automation in 
Construction 1(3), 193 –214. 

Borrmann, A. (2007). Computerunterstützung verteilt-
kooperativer Bauplanung durch Integration interaktiver 
Simulationen und räumlicher Datenbanken. Ph. D. thesis, 
Lehrstuhl für Bauinformatik, Technische Universität, 
München.  

Borrmann, A. and E. Rank (2008). Topological operators in a 
3D Spatial Query Language for Building Information 
Models. In Proc. of the 12th Int. Conf. on Computing in 
Civil and Building Engineering (ICCCBE).  

Breunig, M., T. Bode, and A. Cremers (1994). Implementation 
of elementary geometric database operations for a 3D-GIS. 
In Proc. of the 6th Int. Symp. on Spatial Data Handling.  

Clemen, C. and F. Gielsdorf (2008). Architectural Indoor 
Surveying. An Information Model for 3D Data Capture and 
Adjustment. In American Congress on Surveying and 
Mapping (ACSM), Spkoane, WA, USA.  

Dubois, A. M., J. Flynn, M. H. G. Verhoef, and G. L. M. 
Augenbroe (1995). Conceptual modelling approaches in the 
COMBINE project. In Proc. of the 1st Europ. Conf. on 
Product and Process Modeling in the Building Industry.  

Egenhofer, M. (1991). Reasoning about binary topological 
relations. In Proc. of the 2nd Symp. on Advances in Spatial 
Databases (SSD’91).  

Eilenberg, S. and J. A. Zilber (1953, Jan.). On products of 
complexes. American Journal of Mathematics 75(1), 200–
204.  

Hatcher, A. (2002). Algebraic Topology. Cambridge 
University Press. (also online) 
http:// www.math.cornell.edu/~hatcher/. 

Huhnt,W. and F. Gielsdorf (2006). Topological information as 
leading information in building product models. In Proc. of 
the 17th Int. Conf. on the Application of Computer Science 
in Architecture and Civil Engineering.  

Mäntylä,M. (1988). An Introduction to SolidModelling. 
Computer Science Press.  

Paul, N. (2007). A complex-based building information 
system. In Predicting the Future. eCAADe.  

Paul, N. (2008). Topologische Datenbanken für 
Architektonische Räume. Ph. D. thesis, Universität 
Karlsruhe (Fak. f. Architektur)  

Pilouk, M. (1996). Integrated modelling for 3 D GIS. Ph. D. 
thesis, Landbouwuniversiteit te Wageningen.  

Romberg, R., A. Niggl, C. van Treeck, and E. Rank (2004). 
Structural analysis based on the product model standard 
IFC. In Proc. of the 10th Int. Conf. on Comp. in Civil and 
Building Engineering (ICCCBE-X).  

Shi, W., B. Yang, and Q. Li (2003). An objectoriented data 
model for complex objects in three-dimensional 
geographical information systems. Int J. of Geographical 
Information Science 17(5), 411–430.  

van den Bergen, G. (1997). Efficient collision detection of 
complex deformable models using AABB trees. Journal of 
Graphics Tools 2(4), 1–13.  

van Treeck, C. and E. Rank (2007). Dimensional reduction of 
3D building models using graph theory and its application 
in building energy simulation. Engineering with Computers 
23(2), 109–122.  


	INTRODUCTION
	THE GEOMETRICAL APPROACH
	Specification
	Implementation

	THE TOPOLOGICAL APPROACH
	Related work
	Cell complexes
	Architectural Complexes.
	Complex Based Modeling

	Relational Complexes
	Relational Operators
	Some Geometric Properties
	Application: From Sketch to Working Drawing

	COMPARISON & CONCLUSIONS

