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Abstract—Proactive physical robotic assistance in the pres-
ence of human prediction uncertainty is a very challenging con-
trol problem. In this paper we propose a risk-sensitive optimal
feedback controller for physical assistance that autonomously
adapts the robot’s behavior even during unknown situations.
Using a probabilistic model to represent the cooperative task
execution behavior and modeling the human as a source of
process noise in the system, the proposed assistive controller
proactively contributes to the task anticipating the human
motion. Estimating online the current level of disagreement
and prediction uncertainty, the assistive controller consequently
calculates the optimal task contribution providing higher adapt-
ability. A psychological evaluation compares different assistive
control strategies in a virtual scenario using a two-Degree-of-
Freedom haptic experimental setup. Results show that consider-
ing the current level of disagreement enhances the performance
of the controller in terms of helpfulness and human effort
minimization.

I. INTRODUCTION

Physical interaction plays a key role for robotic assistants

coexisting with humans. Many daily life tasks include phys-

ical coupling between partners pursuing a common goal.

Rather than just passively follow the human partner, physical

robotic assistants should also proactively contribute to such

cooperative tasks anticipating human behavior. However, a

proactive contribution can disturb a smooth interaction if the

robot’s predicted human behavior is different from the true

human’s intentions resulting in a disagreement. In our view

the explicit consideration of both prediction uncertainties

and disagreement with the human partner are key aspects

for control design in order to enhance proactive physical

assistants.

While reactive physical robotic assistants can successfully

follow human partners [1], some situations require a proac-

tive contributor in order to reach a desired configuration [2].

Regarding the force input of the partners we distinguish be-

tween the non-redundant and redundant degrees of freedom

of the task. In this paper we focus on the physical assistance

in the redundant task directions, where an input from either

partner has the same effect on the motion, i.e. they share

the physical effort to solve the task. In such directions it

is desirable that the robotic partner anticipates the human

motion during the task execution and adapts its contribution

depending on the partner prediction’s uncertainty. It is known

that in physical assistance, human motion prediction reduces
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the human’s effort and increases the robot’s transparency [3].

Proactive robotic assistants following this principle can be

found in the literature for point to point movements [4], [5]

and more complex tasks [6], [7]. However, in these works

the robot’s proactive action does not directly consider the

uncertainty of the prediction model nor the disagreement

with the human partner.

Recently, we proposed a novel concept for the control of

physical robotic assistants [8] based on risk-sensitive opti-

mal feedback control [9]. Interestingly, human sensorimotor

behavior is found to follow risk-sensitivity principles [10].

Complex tasks such as object manipulation [11] and cooper-

ative transportation [12] exhibit improved performance com-

bining such principles with probabilistic learning techniques.

In our recent work [8], in order to explicitly consider the

variability of human behavior, we model the uncertain human

force contribution as process noise, which directly influences

the aggressiveness of control imposing a confidence-based

role allocation to the robot. The process noise intuitively

reflects the level of disagreement with the human partner.

A probabilistic dynamic model represents the human-robot

cooperative behavior and estimates both the expected task

execution behavior and the level of process noise. However,

this approach, being a model-based feedforward control,

considers only previous task executions, which prevents the

robot from reacting to any unexpected behavior not reflected

in the cooperative task model. Furthermore, its suitability

in real interaction with humans is yet to be proven as no

psychological evaluation is presented.

In this paper we introduce a risk-sensitive optimal feed-

back controller for physical assistance, estimating the current

level of disagreement in order to accommodate for unmod-

eled human execution variability. For the control design we

follow a Model Predictive Control (MPC)-type strategy [13]

providing continuous adaptation during the interaction. We

further investigate both human preferences and assistive

performance of different proactive controllers physically

interacting with humans in a psychological experiment. A

total of 19 participants interacted with a robot using seven

different controllers. Results show that our proposed method

outperforms both classical stochastic optimal control meth-

ods and our previous approach [8] in terms of perceived

helpfulness and human effort minimization.

The remainder of this paper is structured as follows. Sec-

tion II describes the architecture of the proposed controller.

The assistive control is explained in Section III. A human

behavior model is acquired as explained in Section IV. An

experimental user study is presented in Section V.

2012 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 7-12, 2012. Vilamoura, Algarve, Portugal

978-1-4673-1735-1/12/S31.00 ©2012 IEEE 3639



ξ

ξ̂d
Assistive
Control

uh
uhur

Robot Human

u

Process Noise
Estimation

+

ǫ̂

Σ̂u

Rendered
Robot

Admittance

Task Model
λ

Fig. 1. General control scheme. The assistive controller generates an active
task contribution added to the human force input for an admittance type
controller. A task model provides state dependent predictions, that, together
with the estimated process noise serve as input for the assistive control

II. GENERAL ARCHITECTURE

In this work we consider the class of physical human-

robot interaction tasks where the robot is physically coupled

to the human partner through an object. The goal is to

bring the object from an initial configuration to a goal

configuration. This prototypical task is representative for

many different assistive tasks such as mobility assistance

to humans, joint object transport/manipulation or physical

rehabilitation. Depending on the application, the interaction

can be through the object, as in cooperative manipulation

tasks, or at the endeffector as in movement assistance for

elderly or disabled or for exoskeletons. For simplicity, in

our derivations we consider a common interaction contact

point between the robot and its human partner at its end-

effector. The general architecture of the robot control is

depicted in Fig. 1. A compliant reactive behavior providing

an intuitive reaction to the human force input uh is achieved

implementing an admittance control scheme. In order to

generate an anticipatory proactive behavior, an assistive

input ur is added. The system dynamics are then given by

u = uh + ur = M rẍ+Drẋ , (1)

with rendered mass M r and rendered viscous friction Dr,

uh the applied force by the human, ur the assistive control

input of the robot, and ξ =

(
x

ẋ

)
the state of the system,

where x is the position of the dyad.

The focus of this work lies on the design of the assistive

control law that generates the assistive control input ur .

As the real human desired trajectory ξd is not known

to the robot, a probabilistic model of the task λ based

on previous task executions provides an estimation ξ̂d of

human motion as a trajectory of expected normal distribu-

tions ξ̂d = N (µξ̂,Σξ̂). Deviations from this reference pro-

duced by the human partner are interpreted as disagreement,

reflected as additive process noise ǫ in the system dynamics.

Due to the coupling with the human and the potential error of

the probabilistic approximation λ, a continuous reestimation

of ξ̂d and the estimated level of process noise ǫ̂ is needed.

Both variables define the problem setting for an optimal

feedback controller that consequently recalculates the opti-

mal robot contribution following an MPC strategy. However,

instead of optimizing a classical quadratic cost function,

we apply a risk-sensitive optimization due to the presence

of additive process noise, as explained in Section III. The

proposed process noise estimation considers both the ex-

pected disagreement, based on previous observations, and the

current disagreement, derived online from the current human

input uh. This allows the robot to adapt its behavior even on

previously unseen situations adding an additional feedback

adaptation, as explained in Section III-A.

III. ASSISTIVE CONTROL

The goal of the proposed physical robotic assistant is to

minimize the human force contribution while performing a

cooperative haptic task by proactively following the antici-

pated human trajectory. For a receding horizon optimization

problem, this implies minimizing a cost function in the form

Jk =

k+T∑

i=k

‖(ξ̂di − ξi)‖
2
Q + ‖uri‖

2
R, (2)

where k is the sample time, T is the time horizon, ‖x‖2Q
stands for the quadratic form xTQx and Q and R are

weighting factors that allow a trade-off between control

cost and tracking error minimization. This cost function

has the following interesting interpretation. Assumming that

nominally1 the human behaves as a PD-controller

uhk = Kh(ξdk − ξk),

where Kh is the tracking gain of the human and ξd is the

human desired trajectory that is unknown to the robot, we

can write the cost function (2) as

Jk =

k+T∑

i=k

‖uhi‖
2
Q̂
+ ‖uri‖

2
R,

where Q̂ = Kh
TQKh. This expression formally describes

the goal of an active robotic assistant with the intuitive con-

cepts of human contribution minimization and the trade-off

between two cooperative agents via the weighting factors Q̂

and R.

While, ideally, no human force is required to fulfill the

task as the robot anticipates the predicted human motion,

prediction errors may produce disagreement with the human.

Assuming no robot contribution to the task, the human

applies the force u = ud in order to track the desired

trajectory ξd. An assistive controller that minimizes the cost

function (2) generates an approximation ur = ũd of ud in

order to minimize the human contribution. However, a differ-

ence between both control inputs is expected mainly due to

the potential inherent error of the probabilistic estimation ξ̂d.

This discrepancy leads to a corrective human force given by

uhk = udk − ũdk. (3)

As ξd is not known to the robot and ud can not be com-

puted in advance, we consequently model the human control

input as process noise in the system dynamics from (1),

1Deviations from the nominal model are captured in noise terms.
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Fig. 2. Exemplary representation of both the expected process noise level

N (0, Σ̂u) for a binary path following decision problem and the current
process noise N (0,Σu).

i.e. uh = ǫ. Here we assume it normally distributed with

zero mean. It also represents the level of disagreement with

the human partner.

Due to the discrete time nature of the implementation,

we discretize the system from (1) with a sampling time

interval ∆t yielding a discretized plant dynamics in the

form ξk+1 = Aξk +Buk given by
(
xk+1

vk+1

)
=

(
1 ∆t

0 1−M−1
r Dr∆t

)(
xk

vk

)
+
(

0
M−1

r ∆t

)
(urk+ǫk) .

(4)

The assistive control input is calculated solving the mini-

mization problem with cost function (2) under the constraint

of the plant dynamics (4).

A. Process noise estimation

Solving a stochastic optimal control problem requires a

prior estimation of the process noise level present in the

plant dynamics. In our previous work [8], the task model λ

provided a prediction of ǫ, being normally distributed with

zero mean and variance Σ̂u . While this expected process

noise considers the previous task executions captured in

the task model λ, it does represent any current unmodeled

behavior from the human side. A human partner can always

behave in an unexpected manner and such variability should

be consequently reflected in the robot control.

From the assumption in (4), uh = ǫ is normally dis-

tributed with zero mean, i.e. the assistive controller expects

no force from the human side and any other behavior

deviating from this mean determines the covariance of the

process noise. We therefore estimate the current process

noise as normally distributed, with zero mean and covariance

given by the sample covariance of the last W observations

of uh

Σu =

k∑

i=k−W

(uhi − µuh
)(uhi − µuh

)T, (5)

where µuh
is the expected mean of the human which is

assumed to be 0. Due to the adopted MPC structure of the

controller, the current process noise is constantly reestimated

and works as an additional feedback that directly considers

the human input. This provides reaction capability to unex-

pected human behavior as it captures current deviations from

the human partner.

N (0,Σu)

N (0, Σ̂u)

N (0, Σ̂ǫ̂)

Fig. 3. Gaussian approximation to the max(N (0, Σ̂u),N (0,Σu)) in a
two-dimensional example. The dashed ellipse represents the Löwner-John
hyperellipsoid.

The expected and the current process noise are a measure

of the expected and current level of disagreement respec-

tively, as shown in Fig. 2. In order to consider both noise

sources in the optimization, we estimate the overall process

noise level ǫ̂ = N (0,Σǫ̂) as the density function given

by max(N (0, Σ̂u),N (0,Σu)). However, as the maximum

of two normal distributions is not normally distributed, we

perform a Gaussian approximation to this problemN (0, Σ̂ǫ̂),
being Σ̂ǫ̂ the Löwner-John hyperellipsoid [14]. This ap-

proximation calculates the minimum volume hyperellipsoid

around the set defined byN (0, Σ̂u) and N (0,Σu) as shown
in Fig. 3, allowing the controller to consider both process

noise sources in the optimization.

B. Linear Quadratic Regulator Solution

The minimization problem with cost function (2) and the

dynamics (4) can be represented in the classical Linear

Quadratic Control (LQR) framework. For simplicity, we

consider w.l.o.g. a constant starting sample time of k = 1.
Note that the following derivations can be straightforwardly

extended to the receding horizon case. As the reference

trajectory is given by ξ̂d, we can define zk as the tracking

error zk = ξk − ξ̂dk. However, in contrast to classical LQR

J(ur1...T ) = ‖z2
T ‖QT

+

T−1∑

i=1

(‖zi‖
2
Qi

+ ‖uri‖
2
Ri
) , (6)

the reference ξ̂d = N (µ̂ξ, Σ̂ξ) is a sequence of multivari-

ate normal distributions. In order to accordingly measure

the distance to such an uncertain reference, we choose the

(weighted) Mahalanobis distance as it considers the covari-

ance of the prediction into the distance metric. Defining

zk = ξk − µξ̂k
, the cost function becomes

J = z
T
T Σ̂

− 1

2

ξ,TQΣ̂
− 1

2

ξ,T zT +

T−1∑

i=1

(zTi Σ̂
− 1

2

ξ,i QΣ̂
− 1

2

ξ,i zi+ur
T
i Ruri) ,

(7)

where Σ̂ξ,i represents the covariance of the desired trajec-

tory.

Due to the process noise ǫ in the dynamics, the solution

to the control problem is calculated minimizing the expected

cost, E[J ]. The optimal feedback control law for a LQR

problem is given by

uri = −Kizi , (8)
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where Ki is the feedback matrix of the Ricatti recursion

Ki = −R−1B′(BR−1B′ +Π−1
i+1)

−1A (9)

and

Πi = Qi +A′(BR−1B′ +Π−1
i+1)

−1A , (10)

being ΠT = QT .

This assistive control strategy, shown in Fig. 4, tracks the

predicted trajectory considering its covariance.

C. Risk-Sensitive Solution

In contrast to the LQR solution where the process noise ǫ

has no influence on the feedback gain (8), a risk-sensitive

controller directly considers the process noise in the dy-

namics, adapting the feedback matrix depending on a risk-

sensitivity parameter θ. In this case the cost function takes

the form

γ(θ) = −2θ−1 lnE[exp
− 1

2
θJ ] . (11)

If θ = 0 the controller is risk-neutral and corresponds to the

LQR case explained in Sec. III-B. For θ < 0 and θ > 0 the

controller becomes risk-averse and risk-seeking, respectively.

Solving this optimization problem leads to a modified form

of the Ricatti recursion

Ki = −R−1B′(BR−1B′ + θǫ̂+Π−1
i+1)

−1A , (12)

and

Πi = Qi +A′(BR−1B′ + θǫ̂+Π−1
i+1)

−1A , (13)

with ΠT = QT .

This solution is the same as those from (9) and (10), except

for the term θǫ̂. Consequently, in the risk-averse case, θ < 0,
the feedback gain becomes higher interpreting the noise in a

pessimist manner as it if was directing the state in the wrong

direction. For the risk-seeking case, θ > 0, the feedback gain

becomes lower adopting an optimist attitude as it assumes

that the noise is already doing part of the job and therefore

directing the state in the right direction.

IV. HUMAN BEHAVIOR LEARNING AND PREDICTION

A model representing a pHRI task must reflect both the

human task execution preferences and the interaction with

the robotic partner. These requirements suggest the use

of learning by demonstration techniques. In our setting, a

preliminary model of the task can be acquired by initially

letting the human lead, i.e., ur = 0. With this first rough

representation, the robot actively assists and additionally

observes interaction patterns during further task trials. Mod-

eling state and control input trajectories, {ξ,u}, the robot

acquires a task model that represents both the human desired

state trajectory and the expected disagreement levels.

While many probabilistic approaches, such as HMMs and

Gaussian Mixture Models as dynamical systems or Gaussian

Process based models, can achieve a rich representation of

the encoded behavior, using sparse demonstration sets, the

predicted dynamics can be very far away from the real ones.

To ensure a safe interaction, we use a time based HMM,

applying regression on the time domain as explained in [15].

ur

ξ

N (µ̂ξ, Σ̂ξ)

LQR

ǫ

Plant

Fig. 4. Assistive control scheme for the standard stochastic optimal control
case. The controller generates the robot’s control input based on the control

law from (8) given the uncertain trajectory ξ̂ = N (µ̂ξ, Σ̂ξ).

ur

ξ

N (µ̂ξ, Σ̂ξ)
Risk-Sens.

Opt. Control

ǫ̂

Proc. Noise
Estimation

ǫ

Plant

Fig. 5. Assistive control scheme for the risk-sensitive optimal control case.
In addition to the scheme from Fig. 4, unexpected behavior of the human is
estimated as process noise ǫ̂ and directly considered in the optimal feedback
matrix calculation.

This provides a generalized trajectory of the task in terms

of means and heteroscedatic variances. While the predicted

dynamics are restricted to the generalized trajectory, predic-

tions will always be in previously experienced configurations

of the state space and therefore potentially safe in static

scenarios. Using the Viterbi Algorithm in a window over the

last observations and estimating the state in time domain, the

next state ξ̂d is predicted. See [7] for a detailed explanation

of the applied method.

V. EXPERIMENTS

To evaluate the proposed controllers and the preferences

of humans interacting with it, we designed an experiment in

which a human actor has to transport a virtual object from

an initial position towards a defined goal position.

A. Experimental Setup

The human actor applies forces to a haptic interface in

order to move the virtual object, as shown in Fig. 6. It

consists of a two degrees-of-freedom linear-actuated device

(ThrustTube) which has a free-spinning handle at the grasp-

ing point, i.e. x ∈ R2. Attached to the handle, a force/torque

sensor (JR3) measures the human force input. On top of the

interface, a virtual maze is presented, see Fig. 7. On the right

side the maze includes two obstacles moving horizontally

in order to potentially provoke disagreements between the

human and the robot. On the left side, a navigation task

requires high movement precision caused by a narrow folded

path.

The control scheme running at 1 kHz and implemented

in MATLAB/Simulink is executed on a personal computer

with Linux PREEMT Real-Time kernel using Matlab’s Real-

Time Workshop. The shared object is physically rendered

with a mass of M r = diag{m,m} with m = 90 kg and

damped by a viscous friction of Dr = diag{d, d} with

d = 200 Ns/m, emulating a heavy object. All virtual ob-

stacles and walls are haptically rendered in order to provide
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a haptic feedback of the environment to the user. The HMM

used to encode the observations has 40 states and predictions

are updated with a rate of 50Hz.

B. Task and Procedure

The experimental task was to carry the object represented

by a red dot from the upper right corner (start position) to the

upper left corner of the maze (green dot at target position)

without hitting any object or wall, see Fig. 7. Participants

were instructed to move at their comfortable speed and to

finish the task even if they might hit the wall or an object.

Overall the experiment was divided into 7 parts corre-

sponding to 7 different controllers of 3 trials each. In the first

trial, the human lead, ur = 0, and the resulting observations

were encoded into the task model used during the second

trial where the robot actively assisted its partner. This second

task execution behavior was also learned together with the

first one in order to acquire a model of the interaction.

The third trial was the only one considered for further

evaluations and it used the resulting learned model from the

two previous executions. We tested 7 different controllers for

each participant:

(a) No active assistance: ur = 0.
(b) LQR using the cost function from (6).

(c) Risk-neutral with Mahalanobis distance: θ = 0 and

using the cost function from (11) with J as in (7).

(d) Risk-averse with Mahalanobis distance: θ = −α, using

the cost function from (11) with J as in (7) and

ǫ̂ = N (0, Σ̂u).
(e) Risk-averse with Mahalanobis distance considering cur-

rent process noise : θ = −α, using the cost function

from (11) with J as in (7) and ǫ̂ = N (0, Σ̂ǫ̂).
(f) Risk-seeking with Mahalanobis distance: θ = β, using

the cost function from (11) with J as in (7) and

ǫ̂ = N (0, Σ̂u).
(g) Risk-seeking with Mahalanobis distance considering

current process noise: θ = β, using the cost function

from (11) with J as in (7) and ǫ̂ = N (0, Σ̂ǫ̂).

In our experiments β = 10−5 and α = 10−7,

R = I and Qk = QT = diag{ωp, ωv}, being ωp and ωv

the position and velocity weightings. For (b), we chose ωp =
1010 and ωv = 107. For (c)-(g) we set ωp = 105

and ωv = 10, due to the low variance values, in the

order of 10−5. The receding horizon for the optimization

Goal

0.04m

Left Right

Start

Moving

Obstacle

Fig. 7. Virtual environment (maze). With the handle of the 2-DOF haptic
interface participants were able to move the virtual object (red dot) to the
goal position (green dot).

Cont. Mh MPh
[W] M‖uD‖[N] M‖uh‖[N] M‖uc‖[s]

(a) 3.90 0.61 - 12.92 1.32
(b) 3.42 0.58 3.15 12.73 2.42
(c) 3.58 0.52 2.91 12.30 2.02
(d) 3.47 0.55 2.28 11.85 2.29
(e) 3.92 0.39 2.72 10.46 1.38
(f) 3.76 0.47 2.17 11.19 1.03
(g) 4.11 0.54 1.29 11.50 1.12

TABLE I

AVERAGE VALUES FOR PERCEIVED HELPFULNESS (Mh), HUMAN

POWER (MPh
), DISAGREEMENT (M‖uD‖), HUMAN FORCE (M‖uh‖)

AND COLLISION FORCES(M‖uc‖)

was T = 0.2s and to estimate the current noise we used a

window of W = 0.05s.

The experimental procedure was as follows: participants

were asked to face the haptic device and grasp the handle,

as shown in Fig. 6. Next, the experimenter initialized the

control algorithm and told the participant to start moving.

After reaching the green target, participants were asked

to free the handle which was moved back to the initial

position automatically. Before every third trial participants

were verbally informed that this was going to be the trial

they had to rate. Subsequently they had to rate the perceived

help through the system

• on the right side for passing the moving obstacle.

• on the left side for navigating through the narrow

channel.

Ratings were done on a 6-point scale from 1 (counter

productive) to 6 (helpful) and resulted in the explicit measure

perceived helpfulness. Every participant performed 3 x 7 =

21 trials of which 7 trials were rated.

Regarding implicit measures we evaluated:

• the mean power exerted by the human MPh
.

• the mean disagreement M‖uD‖ between both agents.

We calculate the disagreement between partners as:

uD =





−uh

‖uh‖
· ur, if − uh · ur > 0

∧ uh 6= 0

0, otherwise.

• the mean human applied force M‖uh‖.

3643



 

 

(a) (b) (c) (d) (e) (f) (g)
1

2

3

4

5
right
left

M
h

a

 

 

(a) (b) (c) (d) (e) (f) (g)

right
left

0

4

8

12

16

M
‖
u
h

‖
[N

]

b

 

 

(a) (b) (c) (d) (e) (f) (g)

right
left

M
‖
u
D

‖
[N

]

0

1

2

3

4

5

c

(a) (b) (c) (d) (e) (f) (g)
0

4

8

12

16

20

M
t
[s
]

d

 

 

(a) (b) (c) (d) (e) (f) (g)
0

0.2

0.4

0.6

0.8
right
left

M
P
h

[W
]

e

 

 

(a) (b) (c) (d) (e) (f) (g)
0

20

40

60

80

100

120 right
left

M
‖
u
c
‖
[N

]

f

Fig. 8. Experimental results. Each of the figures shows the mean and the standard error of the different evaluated measures for the seven controllers
(a)-(g). Fig. 8a shows the mean perceived helpfulness (Mh), Fig. 8b depicts the human exerted force (M‖uh‖), Fig. 8c reflects the disagreement (M‖uD‖),
Fig. 8d shows the execution times (Mt), Fig. 8e depicts the human power(MPh

) and Fig. 8f shows the collision forces (M‖uc‖).

Perceived Helpfulness(Mh) Power(MPh
[W]) Disagreement(M‖uD‖[N])

Comparison F (1, 18) p Comparison F (1, 18) p Comparison F (1, 18) p

(a)>(b) 7.15 < .05 (a)>(e) 11.35 < .01 - - -
(e)>(b) 5.90 < .05 (b)>(e) 4.54 < .05 (b)>(g) 32.47 < .001
(g)>(b) 7.08 < .05 (c)>(e) 2.58 n.s. (c)>(g) 16.86 < .01
(a)>(d) 5.00 < .05 (d)>(e) 2.91 n.s. (d)>(g) 11.37 < .01
(e)>(d) 5.50 < .05 (f)>(e) 2.23 n.s. (e)>(g) 10.26 < .01
(g)>(d) 7.21 < .05 (g)>(e) 4.46 < .05 (f)>(g) 6.08 < .05

TABLE II

OVERVIEW OF RESULTS ON PLANNED COMPARISONS FOR PERCEIVED HELPFULNESS, HUMAN POWER AND DISAGREEMENT

• the mean contact forces during collisions with the

virtual environment M‖uc‖.

• the mean execution time Mt.

Means were taken over all participants for the repective

controller. To gain knowledge on the human perception and

response during different kind of tasks the presented maze

was divided into two parts. For measures on the right side,

data was calculated until the participant was passing the

turning point indicated by the dashed line shown in Fig. 7,

placed at 0.04 m to the left of the origin. Data Analysis was

done in MS Excel (explicit measure) and Matlab (implicit

measures). Statistical Analysis was carried out with SPSS.

C. Results and Discussion

In total 19 persons (5 female) participated in the experi-

ment. They were between 23 and 31 years old (M = 26.84
years).

To access the rating of perceived helpfulness, see Fig. 8a,

a 2 x 7 repeated measures ANOVA was performed with

the between-subject factors maze side (left vs. right) and

control method (a-g). Marginal differences were observed

between maze sides, F (1, 18) = 3.95 , p = .062, which

shows equally perceived helpfulness of the systems response

on both sides. Numerically higher ratings for the left side

(M = 3.96) compared to the right side (M = 3.51) might

indicate a bigger need for support during navigation while

during a task which requires fast estimations for clearing a

moving obstacle one rather relies on one’s own capabilities.

Regarding the controllers there was a significant main effect,

F (6, 108) = 2.46, p < .05. Planned comparisons show that

controllers (a), (e) and (g) resulted in significantly higher

ratings compared to controllers (b) and (d), see Table I

and Table II. Taken together this shows that controllers

(e) and (g), both risk-sensitive and considering the current

process noise, were perceived as more helpful than method

(b), the classical LQR. It is remarkable, that numerically

all controllers considering the Mahalanobis distance (c)-(g)

were rated higher than the classical LQR (b). Furthermore,

only controllers considering the current process noise in the

dynamics, (e) and (g), were numerically rated higher than

the pure passive follower (a).

For all implicit measures 2x7 repeated measures ANOVAs

were carried out with the between-subject factors maze side
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(left vs. right) and control method (a-g). If the sphericity

criterion was not met, Greenhouse-Geisser correction was

applied.

Regarding maze side there was a higher human power

applied on the left side (M = 0.58W) compared to the right

side (M = 0.46W), F (1, 18) = 15.59, p < .01, see Fig. 8e.

After correction, the differences between applied power for

the control methods only marginally reached significance,

F (3.0, 54.8) = 2.44, p = .074. In this context, contrasts

might depict a tendency towards higher power applied in

controllers (a), (b) and (g) compared to controller (e), see

Table II. The risk-averse controller (e) becomes stiffer under

the presence of process noise and, as it also considers the

current disagreements with its partner, it is the most agressive

controller. The observed tendential differences suggest that

this control method reduces the power applied by the human

as the robot constantly takes a leading role.

Disagreement, Fig. 8c, was marginally higher on the right

side (M = 2.77 N) than on the left side (M = 1.86 N) ,

F (1, 18) = 4.22, p = .055, supporting the statement from

perceived helpfulness that participants rather accepted sup-

port through the system during navigation while they pre-

ferred to rely on their own estimations when a moving

obstacle has to be cleared. Looking at the results for con-

troller (g), a highly significant main effect was observed,

F (5, 90) = 5.97, p < .001. Planned comparisons show that

all control methods cause a higher disagreement than (g),

see Table II. As (g) is risk-seeking, it consequently tends

to reduce disagreement under the presence of process noise

adopting a more passive role. The fact that it also considers

the current process noise boosts this effect.

Applied forces, Fig. 8b, were higher on the left

side (M = 12.97N) than on the right side of the maze

(M = 10.74N), F (1, 18) = 15.76, p < .01. Although differ-

ences between control methods were not significant after cor-

rection, p > .1, the risk-averse with current noise estimation

controller (e) numerically required the lowest applied force.

On the left side, the contact force from collisions, see

Fig. 8f, was smaller (M = 0.65 N) compared to the right

side (M = 2.67 N), F (1, 18) = 28.73, p < .001.
No significant differences were found between move-

ment times of the different control methods, see Fig. 8d,

F (6, 108) = 0.46, p > .8.
In summary, depending on the situation and measure,

the proposed assistive controller performed better both in

the risk-seeking and the risk-averse case than our previous

approach and the classical LQR. In terms of disagreement,

the risk-seeking controller considering the current process

noise performs better as it adopts a more passive behavior

under disagreement with its partner. In terms of human

power, the opposite risk-averse policy achieves a better

assistance as it reduces the human effort. These results show,

on one side, that considering the current process noise for

the assistive controller greatly enhances its performance. On

the other side, they suggest that, depending on the situation,

an active robotic assistant should adapt its risk-sensitivity to

a risk-seeking or a risk-averse policy.

VI. CONCLUSIONS

In this paper we presented a risk-sensitive optimal feed-

back controller for proactive physical assistance that adapts

the robot’s task contribution depending on both the current

and the expected disagreement with the human partner. When

the human behavior deviates from the predictions given by

a probabilistic task model, the proposed controller conse-

quently adapts the controller gains in an online fashion. Our

psychological experiment shows that the proposed approach

provides better performance in terms of flexibility for the

risk-seeking case and in terms of human effort minimization

for the risk-averse one. The combination of such strategies

depending on environmental situations together with a larger

experiment in more complex tasks are the matter of our

future work.
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