Multiscope optimization

of metal cased EV pouch cell stack

<u>Ch. Huber^a, A. Jossen^b, R. Kuhn^a,</u>

^aTUM CREATE Ltd., 62 Nanyang Drive Block N1.2 #01-28, Singapore 637459 ^bTechnische Universität München (TUM), Institute for Electrical Energy Storage Technology Christian.Huber@tum-create.edu.sg

Scope and optimization setup

Centre for Electromobility

Singapore

Optimization target:

Achieve optimal battery pack temperature and even temperature distribution

 $min[\alpha_1(T_{max} - T_{opt}) + \alpha_2(T_{max} - T_{min})]$

Boundary conditions:

Satisfying mitigation of single cell failure (2nd load case) Fixed coolant mass flow, inlet temperature and coolant temperature rise

Constraints: Variables of design: Simplifying assumptions:

Simulation setup:

Basic thermal energy balance:

Space and weight limitations, min/max material thickness Geometric layout/thickness of casing and thermoelastomer Uniform cell material, uniform ohmic heat generation only, heat dissipation solely by coolant, isotropic heat transfer

ANSYS 14, 2M nodes, CFD simulation for coolant channels

 $\int_{T_0}^{T_1} mc_p dT = \int_{t_0}^{t_1} \dot{Q}_{gen} dt - \int_{t_0}^{t_1} \dot{Q}_{diss} dt \qquad \dot{Q}_{gen} = I^2 R$

Liquid cooled side plates Alloy casing (for 2 cells) 60 Ah pouch cell (12x) Thermoelastomer (mechanical buffer)

Heat generation assumptions				
Volumetric hea	at generation (reg. cell)	[kW/m ³]	20.0	
Total heat generation in stack (reg. operation)		[kW]	0.085	
Assumed volumetric heat generation (damaged cell)		[kW/m ³]	300.0	
Total heat generation in stack (distressed)		[kW]	0.283	

Cooling system specifications				
Coolant medium	water			
Fixed coolant mass flow rate	[kg/s]	0.05		
Fixed coolant inlet temperature	[K]	293		
Max ΔT coolant (boundary condition)	[K]	0.7		

Material data assumptions					
Thermal conductivity cell-material (uniform)	[W/mK]	2.2			
Specific heat capacity cell material (uniform)	[kJ/kgK]	1.2			
Thermal conductivity thermoelastomer	[W/mK]	1.25			
Specific heat capacity thermoelastomer	[kJ/kgK]	0.8			

Results: Transient temperature distribution and geometry

Geometry variation

Regular operation, 20 minutes 180A charge

Temperature profile in cross section after 1200s

Conclusion and outlook

- Evaluation of 1,800 parameter combinations and creation of response surface
 - Significantly reduced temperature spread of 2.1 K (- 64 %) achieved by modified geometry and slightly higher material thickness (weight: + 3.8%)

Profound positive effects on current distribution and therefore aging effects

Accelerated occurrence of thermal steady state condition

Outlook : - Build-up of physical prototype and validation of results by experiments

- Scale-up to battery pack level

- Further optimizations incl. additional variables and more detailed 3D heat gen. model