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Abstract — A model of the environment is a manda- map.Correspondences between the features of both lists are
tory requirement for the autonomy of a mobilerobot. As establishedh the match process, where thrgges of results
theenvironment may change over time, methodsare nec- arepossible: features visible Ioth lists, features only vis
essary to update the model information, keeping pace ible in the synthetic picture, and features only visible in the
with the sensor frame rate. Our approach to cope with realpicture.

thisreal timeproblem isto predict virtual sensor images,
which are then compared against the real perceptions.
Two alternative methods are detailed: model based pre-

Thereis additional information from preprocessing telling
how difficult it was to extract a feature, e.g. signal to noise

diction and history based prediction. ratio, and feature specific inf(_)rma_ltion, e.g. contrast_, etc.
Match results and preprocessing informatiare then fil
Index Terms — sensor-specific environment model- teredover time to eliminate transient errors. This means, for
ling, spatial indexing, Z-buffer, feature tracking, match- example,a change in visibilityf a feature must occur in a
ing coupleof frames, before it is assumed permanent, and-there
foreintegrated irthe environment representation. After that,
1. Oveview modelbased feature prediction supplies the match with only

the”good” features, and makes the verification process more
_ robust.The match results can also be used to perform & local
Information flow isation of the robot. A position estimation is necessary to cal

— culatethe visible feature®r a sensor at the current position.
To ensure actualifyt is necessary to compare the sensor per

ceptionswith the internal representation continually (Fij. Environment Representation

Foreach sensor frame we generate a synthetic feature imagep« environment of thenobile robot is modeled three-di
bas_ed on thg current model of tne environment, whicn Iim.its mensionallyby several layers describing the geometry of the
theinformation to be processed in the real image. This prin 411 objects and their features. From the variety of ways to
cipleis also used in [7]. modelreal world objects [2] an attributed surface boundary

Feature.g. line segments or other natural landmacks, ~ 'ePresentatiofe.g. figure 2) was choosen.

easilybe extracted from the raw sensor dayeast prepro Therebythe geometry of the objects is approximateddry
cessingalgorithms with the help of the synthefieature vex polygons which are attributed with surface normal and
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Figure 1: Information Flow
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the features’ spatial uncertainty§Fig. 3 shows a distance

Figure 2: Manufacturing Scenario

material characteristics (e.qg. reflection factor). This geomet -
ric description of the environment is common forsahsor

systemsbesides specialities like glass doors which are seern
by some sensors sometimes.

U

Thefeature layers - one for each sensory system - contain the
correspondingfeatures. The representation scheme of the
featuresincludes spatial and temporal uncertainties. These
are dynamically modified by the matching results between
predictedand real images, so that the environment model

Figure 3: Real and Synthetic Laser Camera | mages

canalso be used in non-static environments. imageof a gangway scene shot with a laser range camera,
anda synthetic image of the same scene, based on medel in
Modelling of the Sensor Systems formation.

Madification during Collision Detection Process
Themodels of the sensor systems specify how the synthetic
sensorimage is generated frothe internal representation. Whenthe robot is moving, it must check whether the place
Thereis a trade-dfbetween quality of the predicted sensor aheads free to avoid a collision with unexpected obstacles.
images and the computation time needed. Experiments Therefore,the free space is queried from the environment
provedthat for this application field it is sfigient to model ~ model(Fig. 4). The sensors can now distinguish known from

thesensors as ideal systems, because the aim is to define re l l

gionsof interest rather than photorealistic images. In c&se
video sensor system a simple pinhole camera model with ra
dial distortions [4] is used. Resolution is 58512. Range
imagingsensors are alsnodelled as ideal systems, meaning

Mobile
System

. : h Obstacle
that multiple reflections and ray expansi@gnnot regarded.
A 3D-LaserRange-Camera [Mas modelled with a reselu /'] [ l
tion of 321(81) x 41 and a scan range of 10 m and a 3D-lmag| EXpectedrree
ing-Microwave-Radaf6] was modeled with a resolution of Space Boundary Modeled Ob
3600x 1 and a scan range of 50 m. jects
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Figure 4: Callision Avoidance

Thosedifferences detectable in moving phases are typically
slowly changing ones.ypical examples are shadanove newobstacles. Passing known obstacles is the responsibility
mentsand illumination changes. The results of the match of the robots navigator module, and not covered here. Once
processare used to update thavironment representation by an unexpected obstacle is detected, a seperate module tries
incorporatingthe new feature properties and by modifying to recognize it, using a-priori-knowledge of possible objects



in the environment. If this succeedise environment repre  areaor maximum objects pesubspace. The access time re

sentatiorcan be updated by inserting the new object. sulting for an environment consisting of 30.000 elements in
o anarea of 1.200 fafor a circular segmerghaped query re
3 Model Based Prediction gion with a radius of 10 m and an angle of @6 less than
30 ms.

Spatial Indexing Mechanism The selectivityof the spatial-kD-tree becomes better if k=3

A typical manufacturing environment consistshondreds insteadof k=2, so that the search space is divided into three

of objects whose geometry is described by a total number ofdimensions.As a drawback the access time increases
morethan 50.000 polygons. The area overlooked by the sen COmparedto k=2. In case of sensor systems like 2D-laser
sorsystems at a given point of view however containly rangescanners or microwave radar systems which cover the
about5% of the total number of polygons. Tbemputation ~ €nvironmenbonly in a parallel plane to the ground flptire

time for generating the synthetic sensor image can be de Intersectiontest between query region (spherisagment)
creasedsignificantly ifa spatial access mechanism is used to @hdsubspace (rectangular parallelepiped) bamealized as
retrieveonly locally relevant polygons fahe following per two intersection tests be_twegn circular segment and rectan
spectiveprojection process. Spatial geometric searching is 918 As a result access time is doubled oad overall the
similar to non-spatial multi-key searching although the used predlc_tu_)nof the sensor image is accelerated due to enhanced
index structuresmust be suitable for non-zero sized spatial Selectivity.

objects.The main requirement for a spatial indexing mecha Prediction of Sensor Images

nism for use inautonomous mobile robots is selectiyity
meaningthat the part of the environment information that is
overlookedby the sensor system should be retrievegras
ciseand fast as possible.

The prediction of the sensor image for a given point of view
is done in a two-stage procedure with the model information
retrieved via the indexing mechanism. The surface polygons
of the objects are used to determine the visible parts of the
Accessstructures for extended spatial objects are surveyedsensorspecific features of the objectsom an estimated

in [5]. The authors suggest a hierarchical structure — the spapoint of view. In the first stage hidden surface polygons are
tial-kD-tree (see figure S)with k=2 or 3 for indexing non-  removedwith the Z-bufer algorithm, which can easily be
implementedn hardware. In a second stage the daptge
resultingfrom the first stage is used to determinetséble
partsof the feature while keeping the symbolic information
of the feature, e.g. line from start point to end point.

[H

Thetime consuming Z-Biér algorithm for the hidden sur
faceremoval has been implemented onliatel i860 micre
processomhich hosts a special graphics unit @¥Buffer-

ing. Due to the factthat standard 'C’-compilers do not
supportthe integrated graphic unitiinor parts of the soft
ware— less than 20 instructions — have been coded in assem
— bler language. Figure 6ompares the computation time for

Figure 5: Distribution Function
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queryregion for the data base access is not a rectangle ora - ’ Programming
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the spatial-2D-search-tree has outperformed implementa [ms]

tions of two indexing mechanisms based on dynamic -hash Figure 6: Prediction of Video Images

ing techniques: equidistant grid file and piecewise linear or
der preserving hashing [3]. Thefiefent realization of the
algorithmthat determineshe subspaces overlapped by the The standard Z-Budér algorithm is originally designed for
gueryregion showed to be one maiBpect besides setting sensowsystems like video sensor systems which yslarsar
parameterfor the index mechanism like minimum subspace surfacefor projection in contrast to range imaging sensors

synthetic video images (resolution 512x512):



which typically use spherical surface for projection.- Be
causethe Z-Bufer is the range image of the scene, images y
for range imaging sensors can be predicted by 'distorting’ of
the video sensos Z-Buffer. Prerequisite is the correspon
denceof the discrete angular positions of the sensor beam tg
pixels of the video sensor for this uniform prediction @Fig
ure 7).

©4
- Figure 8: Dimensioning Regions of I nterest
- \\ Sensomwith equidistant h inef fth . . is that local
P X angular resolution The maineffect of t e regions o interest is that local proce
dures can be used insteaftglobal procedures when maitch

ing the synthetic and the real sensor image.

Mapping Real-Time Guarantee

In a moving robot the sensor images must be predicted within
a given time interval, typically 0.25 - 0.5 seconds. The
_ Camera-like Sensor amountof computation timégiy is determined as follows:

<
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‘ + nfeature'tfeature + npi><e| 'tpixd_feature
Figure 7: Uniform Prediction of Sensor Images in quantitative terms:
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To obtain an error less than k range sensor pixels for a range

imagingsensor with an equidistant angular resolutigRgd  After the data base traversale number of retrieved poly

the resolution Bigeo for the video image must be set as fol  gonsand featuresogether with statistical knowledge about

lows: the mean size of polygons arfidatures give a rough figure
of tota . If the expected computation time is above the real-
tan (%) time limit, the data base traversal is done again wighery
MNjdeo = 2° —F7— a: Viewing Angle regionreduced using assumption about the spdittibu
rl;r;? ) (Azimuth or tion of objects and features.
98 Elevation)

Thereis now a good chance to fulfill the real-time require
Experimentshowed that the drawbacks of the quantization ments,but no guaranteén critical moments. Therefore a
errorscaused by the Z-Bfdr algorithm can be reduced to a new prediction ofty is done after modelingansforma
negligibleextend by artificially increasing the resolutioh tion, clipping and rasterization with an error of thgtima

the sensor system. Experiments also showed thatdhe tion of tygrg Which is now less than a few percent. The resolu
putation of the sensor image is done in shorter time tion of thepredicted sensor image is now reduced according
comparedo ray shooting or object space algorithms despite to the linear relation between the resolution (number of pix

of the increased resolution. els)of the sensor systems apgly . Figure 9 shows an exam
Regions of Interest Distribution Function

10
The predicted sensor images consists of a list of visible fea 08 goeﬂdt_r?!led Uncontrolled
turesdefining regions of interest in the resnsor image to 06 rediction ¥ Prediction
accelerat@reprocessing of the sensor data. The sitleasie '
regionsis determined dynamically by the spatial uncertainty 041 X
of the current position and orientation,(¥o, Y) of the me 0,2+ ! Real-time Limit
bile robot, the spatial uncertainty of the position of the fea 0 ‘ ! .
ture (X, y1) and the relative position between robot and fea 0 05 10 15 Timze'O
ture. Figure 8 visualizes the basic idea forvertical line Maximum Time
featureassuming uncorrelated gaussidistribution of the Figure9: Real-time Guarantee

spatialuncertainties.




ple the combined &fct of the twamethods to meet the real-
time requirements.

4  History Based Prediction

Higherorder derivatives have not been found usefulheg

do not contribute significantly to the prediction process, but
addnoise. Speed and acceleratioradiature in frameis
calculatedas follows (see Fig.1] where only onendpoint

of an edge feature is shown):

It seems to be unnatural to spend computation time to ga

throughthe procedure of model access, projection, etc. for

everysingle sensor frame, as most of the produced feature

positionsdiffer only slightly from the results of the previous
frame.This is because the features danbve far between
successivdrames, if the time between the shots is not too
long. For instance, a translation of 5 cm into viewing direc
tion results in a displacement of 2 to 5 pixel for a standard
videocamera.

Soas an alternative we track the features to record a history

of movement, and then predict, wherach individual fea
turewill show up in the next frame. The initial positiordis
terminedby a model inquiry or full frame preprocessing.
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Q

Figure 10: Feature Movement

Establishing correspondences for a feature infefiént
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wherep is thefeature position. The frames are captured with
aconstant time interval, sét can be set equal to 1:

g = 6i -2 6i—l + 6i—2

A new feature position is predicted by:

—

p. +

Q|

Vi t+a = 36i - 36i—1 + 6i—2

" —
pi+1 -

This simple linear expression only contains the feature posi
tionsof the latest shots. Thefeft for evaluation is very low

Correspondence Establishment

Solving the correspondence problebetween features in
successivframes is essential for feature tracking. Similar to
the model based approach a region of interest is established
aroundthe predicted position ithe sensor image, in which
featureextraction takes place.

framesis a crucial task in the tracking process. The number Thesize of this window must be e enough to ensure cap

of candidates is limited by the featweurroundingegion
of interest, just like in the model based prediction.

Motion Estimation Algorithm

turing of a feature even when movement starts to change (be
ginning of a curve after a long straight movement). On the

otherhand, itmust be as small as possible to exclude eorre

spondencecandidates and toeduce preprocessing load.

As the movement of a feature in picture space is caused byHorizontal and vertical window size is determined the

the egomotion ofthe vehicle or a movement of an object in
the scene or both, and those movements follow physical
laws, movements of the features in the image plane follow
the same laws, which are based on Newton mechamcs,
speedacceleration, etcThere are exceptions, like blinking
lights, which can of course not be covered.

-1

Figure 11: Feature's Speed & Acceleration

maximumof the feature acceleration and a constant value:
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A, Cx and G depend on the maximum possible feature accel

erationand on the quality of preprocessing. A€3=C,=5

havebeen found useful values.
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Only the features founth this preprocessing window are
takenfor establishing a correspondence to the predicted fea
ture, so the number to be checked is usually smallfiid

Featurehistory consists of the speed and acceleration in thethe best match out of those, featyseoperties are consid

imageplane. Speed is determined by the positiofedhce
in successive frames, acceleration by thiedéhce of speed.

ered.Fora video senspwhose features are grey level edges,
featureproperties ar¢he direction of the edge, amount and



sign of grey levelgradient, properties of neighbour edges, 6  Conclusion
etc.

For now; only a local algorithm for feature correspondence Featurgorediction in real-time to support the update of an en
is used. It is sdicient in case of diierential feature move  vironment representation is possible. The two methods,
ments.If the time diference between shots becomes longer modelbased and historgased prediction, have been pres
or motion speed is increasing, a more sophisticated- algo ented,which have turned oub meet the real-time require
rithm might be necessary mentsof the sensor systems. The combination of bagith

Oncethe correspondends established, feature history is odsis subject of current researcicet.

updatedIn case no correspondence &dieature could be es
tablishedthe old history is extrapolated. After 3 successive 7  Remarks
frameswithout correspondence, this featurecansidered

lost. With this, temporal disturbances can be eliminated. . .
P The work presented isponsored by the German Science

After a coupleof frames, features disappear over the image Foundation (Deutsche Forschungsgemeinschaft), Bonn,
borders.in case the number of tracked features becomes toadGermanyaspart of the interdisciplinary research project”In
small, a new model inquiry or another full frame processing formationProcessing in Autonomous Mobile Robots”.
phases required.

REFERENCES

5 Model Update ] ) ] )
[1] C. Frohlich, F Freybeger, G. Schmidt: "A Three-dimensional Laser

RangeCamera for Sensing the Environment of a Mobile Robo8gin
sor and Actuators. Elsevier Sequoia 1991.

The presented concept of detecting changes in the environ[2] R.C.Jain, . Besl: "Three-Dimensional Object Recognition’l BEEE,
mentby the evaluation of dérences between predicted and Autonomous Mobile Robots, Vol. 1, pp. 241-31, 1991
detectedeatures is baseah incorporating minor changes in
the environment .g. caused by varying illumination - by
modifying attributes for spatial angmporal uncertainty of
theenvironmental moded’elements. This serves in a second

functionas a filter for transieritritations of the sensor sys [4] R. Lenz: "LinsenfehlerkorrigierendEichung von Halbleiterkameras
tems. mit Standardobjektiven fiir hochgenaue 3D-Messungen in Echireit”

Informatik Fachberichte Bd. 149. Springer \erlag, pp. 212-216, 1987.

Access Functions

[3] H. Kriegel, B. Seeger: "Multidimensional Order Preserving Linear
Hashingwith PartialExtensions”, inProceedings Int. Conf. on Data
Base Theory. pp. 203—-220, 1986.

The temporal integration of minor changes in the environ
ment resultsin major changes in the environmental model
executeddy insertion and deletion of objects and features.

Real-Time Update

B.C. Ooi:" Efficient Query Processing in Geographic Informatys
tems”. Springer \érlag, 1990.

[6] M. Rozmann, J. Detlefsen: "Environment Exploration basecdaon
Three-dimensionalmaging Radar Sensor”, irProceedings |EEE/

Modification of the attributes for spatial uncertainty of a line RS International Conference on Intelligent Robots and Systerms, Ra
featureusing Kalman filteringakes less than 3 ms in our-im leigh, 1992.
plementation(Base: 20 SpecMarks). The insertiondale [7] D. Dickmanns, R. BehringgV. v. Holt: "Road and Relative Ego-State

tion of anelement of the environmental model takes about Recognition”, inProc. Conference on Intelligent Vehicles' 92, Detroit,
0.2 ms. 1992



