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Abstract – A model of the environment is a manda-
tory requirement for the autonomy of a mobile robot. As
the environment may change over time, methods are nec-
essary to update the model information, keeping pace
with the sensor frame rate. Our approach to cope with
this real time problem is to predict virtual sensor images,
which are then compared against the real perceptions.
Two alternative methods are detailed: model based pre-
diction and history based prediction.

Index Terms – sensor-specific environment model-
ling, spatial indexing, Z-buffer, feature tracking, match-
ing

1. Overview

Information flow

To ensure actuality, it is necessary to compare the sensor per-
ceptions with the internal representation continually (Fig. 1).
For each sensor frame we generate a synthetic feature image
based on the current model of the environment, which limits
the information to be processed in the real image. This prin-
ciple is also used in [7].

Features e.g. line segments or other natural landmarks, can
easily be extracted from the raw sensor data by fast prepro-
cessing algorithms with the help of the synthetic feature

map. Correspondences between the features of both lists are
established in the match process, where three types of results
are possible: features visible in both lists, features only vis-
ible in the synthetic picture, and features only visible in the
real picture.

There is additional information from preprocessing telling
how difficult it was to extract a feature, e.g. signal to noise
ratio, and feature specific information, e.g. contrast, etc.
Match results and preprocessing information are then fil-
tered over time to eliminate transient errors. This means, for
example, a change in visibility of a feature must occur in a
couple of frames, before it is assumed  permanent, and there-
fore integrated in the environment representation. After that,
model based feature prediction supplies the match with only
the ”good” features, and makes the verification process more
robust. The match results can also be used to perform a local-
isation of the robot. A position estimation is necessary to cal-
culate the visible features for a sensor at the current position.

Environment Representation

The environment of the mobile robot is modeled three-di-
mensionally by several layers describing the geometry of the
world objects and their features. From the variety of ways to
model real world objects [2] an attributed surface boundary
representation (e.g. figure 2) was choosen.

Thereby the geometry of the objects is approximated by con-
vex polygons which are attributed with surface normal and
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Figure 1: Information Flow
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Figure 2: Manufacturing Scenario

material characteristics (e.g. reflection factor). This geomet-
ric description of the environment is common for all sensor
systems besides specialities like glass doors which are seen
by some sensors sometimes.

The feature layers - one for each sensory system - contain the
corresponding features. The representation scheme of the
features includes spatial and temporal uncertainties. These
are dynamically modified by the matching results between
predicted and real images, so that the environment model
can also be used in non-static environments.

Modelling of the Sensor Systems

The models of the sensor systems specify how the synthetic
sensor image is generated from the internal representation.
There is a trade-off between quality of the predicted sensor
images and the computation time needed. Experiments
proved that for this application field it is sufficient to model
the sensors as ideal systems, because the aim is to define re-
gions of interest rather than photorealistic images. In case of
video sensor system a simple pinhole camera model with ra-
dial distortions [4] is used. Resolution is 512 x 512. Range
imaging sensors are also modelled as ideal systems, meaning
that multiple reflections and ray expansion is not regarded.
A 3D-Laser-Range-Camera [1] was modelled with a resolu-
tion of 321(81) x 41 and a scan range of 10 m and a 3D-Imag-
ing-Microwave-Radar [6] was modeled with a resolution of
3600 x 1 and a scan range of 50 m.

2 Update Policies

Modification during Navigation Process

Those differences detectable in moving phases are typically
slowly changing ones. Typical examples are shadow move-
ments and illumination changes. The results of the match
process are used to update the environment representation by
incorporating the new feature properties and by modifying

the features’ spatial uncertainty. Fig. 3 shows a distance

Figure 3: Real and Synthetic Laser Camera Images

image of a gangway scene shot with a laser range camera,
and a synthetic image of the same scene, based on model in-
formation.

Modification during Collision Detection Process

When the robot is moving, it must check whether the place
ahead is free to avoid a collision with unexpected obstacles.
Therefore, the free space is queried from the environment
model (Fig. 4). The sensors can now distinguish known from
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Figure 4: Collision Avoidance
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new obstacles. Passing known obstacles is the responsibility
of the robot’s navigator module, and not covered here. Once
an unexpected obstacle is detected, a seperate module tries
to recognize it, using a-priori-knowledge of possible objects



in the environment. If this succeeds, the environment repre-
sentation can be updated by inserting the new object.

3 Model Based Prediction

Spatial Indexing Mechanism

A typical manufacturing environment consists of hundreds
of objects whose geometry is described by a total number of
more than 50.000 polygons. The area overlooked by the sen-
sor systems at a given point of view however contains only
about 5% of the total number of polygons. The computation
time for generating the synthetic sensor image can be de-
creased significantly if a spatial access mechanism is used to
retrieve only locally relevant polygons for the following per-
spective projection process. Spatial geometric searching is
similar to non-spatial multi-key searching although the used
index structures must be suitable for non-zero sized spatial
objects. The main requirement for a spatial indexing mecha-
nism for use in autonomous mobile robots is selectivity,
meaning that the part of the environment information that is
overlooked by the sensor system should be retrieved as pre-
cise and fast as possible.

Access structures for extended spatial objects are surveyed
in [5]. The authors suggest a hierarchical structure – the spa-
tial-kD-tree (see figure 5)  with k=2 or 3 for indexing non-

Figure 5:
Example for Subdivision by Spatial 2D-Tree

zero sized objects for geographic information systems. The
applications in mobile robots differ in that in most cases the
query region for the data base access is not a rectangle or a
cuboid but a circular or spherical segment and that the data
base is main memory resident – demanding low memory
usage.

For dynamically sized query regions an implementation of
the spatial-2D-search-tree has outperformed implementa-
tions of two indexing mechanisms based on dynamic hash-
ing techniques: equidistant grid file and piecewise linear or-
der preserving hashing [3]. The efficient realization of the
algorithm that determines the subspaces overlapped by the
query region showed to be one main aspect besides setting
parameters for the index mechanism like minimum subspace

area or maximum objects per subspace. The access time re-
sulting for an environment consisting of 30.000 elements in
an area of 1.200 m2 for a circular segment shaped query re-
gion with a radius of 10 m and an angle of 60� is less than
30 ms.

The selectivity of the spatial-kD-tree becomes better if k=3
instead of k=2, so that the search space is divided into three
dimensions. As a drawback the access time increases
compared to k=2. In case of sensor systems like 2D-laser
range scanners or microwave radar systems which cover the
environment only in a parallel plane to the ground floor, the
intersection test between query region (spherical segment)
and subspace (rectangular parallelepiped) can be realized as
two intersection tests between circular segment and rectan-
gle. As a result access time is doubled only and overall the
prediction of the sensor image is accelerated due to enhanced
selectivity.

Prediction of Sensor Images

The prediction of the sensor image for a given point of view
is done in a two-stage procedure with the model information
retrieved via the indexing mechanism. The surface polygons
of the objects are used to determine the visible parts of the
sensor specific features of the objects from an estimated
point of view. In the first stage hidden surface polygons are
removed with the Z-buffer algorithm, which can easily be
implemented in hardware. In a second stage the depth image
resulting from the first stage is used to determine the visible
parts of the feature while keeping the symbolic information
of the feature, e.g. line from start point to end point.

The time consuming Z-Buffer algorithm for the hidden sur-
face removal has been implemented on an Intel i860 micro-
processor which hosts a special graphics unit for Z–Buffer-
ing. Due to the fact, that standard ’C’-compilers do not
support the integrated graphic unit, minor parts of the soft-
ware – less than 20 instructions – have been coded in assem-
bler language. Figure 6 compares the computation time for
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Figure 6: Prediction of Video Images

synthetic video images (resolution 512x512):

The standard Z-Buffer algorithm is originally designed for
sensor systems like video sensor systems which use a planar
surface for  projection in contrast to range imaging sensors



which  typically use spherical surface for projection. Be-
cause the Z-Buffer is the range image of the scene, images
for range imaging sensors can be predicted by ’distorting’ of
the video sensor’s Z-Buffer. Prerequisite is the correspon-
dence of the discrete angular positions of the sensor beam to
pixels of the video sensor for this uniform prediction (Fig-
ure 7).
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Figure 7: Uniform Prediction of Sensor Images

To obtain an error less than k range sensor pixels for a range
imaging sensor with an equidistant angular resolution nrange
the resolution nvideo for the video image must be set as fol-
lows:

nvideo � 2�
tan � �2 �

tan� k��
nrange

� �: Viewing Angle
(Azimuth or
Elevation)

Experiments showed that the drawbacks of the quantization
errors caused by the Z-Buffer algorithm can be reduced to a
negligible extend by artificially increasing the resolution of
the sensor system. Experiments also showed that the com-
putation of the sensor image is done in shorter time
compared to ray shooting or object space algorithms despite
of the increased resolution.

Regions of Interest

The predicted sensor images consists of a list of visible fea-
tures defining regions of interest in the real sensor image to
accelerate preprocessing of the sensor data. The size of these
regions is determined dynamically by the spatial uncertainty
of the current position and orientation (x0, y0, �) of the mo-
bile robot, the spatial uncertainty of the position of the fea-
ture (x1, y1) and the relative position between robot and fea-
ture. Figure 8 visualizes the basic idea for a vertical line
feature assuming uncorrelated gaussian distribution of the
spatial uncertainties.

Figure 8: Dimensioning Regions of Interest
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The main effect of the regions of interest is that local proce-
dures can be used instead of global procedures when match-
ing the synthetic and the real sensor image.

Real-Time Guarantee

In a moving robot the sensor images must be predicted within
a given time interval, typically 0.25 - 0.5 seconds. The
amount of computation time ttotal is determined as follows:

t total � taccess �npolygon·tpolygon �npixel·tpixel_polygon

�nfeature·t feature �npixel·tpixel_feature

in quantitative terms:
t total � 45 ms�npolygon·28 �s �npixel·115 ns

�nfeature·4 �s �npixel·5 �s

After the data base traversal the number of retrieved poly-
gons and features together with statistical knowledge about
the mean size of polygons and features give a rough figure
of  ttotal. If the expected computation time is above the real-
time limit, the data base traversal is done again with a query
region reduced using assumption about the spatial distribu-
tion of objects and features.

There is now a good chance to fulfill the real-time require-
ments, but no guarantee in critical moments. Therefore a
new prediction of ttotal is done after modeling transforma-
tion, clipping and rasterization with an error of the estima-
tion of  ttotal which is now less than a few percent. The resolu-
tion of the predicted sensor image is now reduced according
to the linear relation between the resolution (number of pix-
els) of the sensor systems and ttotal. Figure 9 shows an exam-

Figure 9: Real-time Guarantee
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ple the combined effect of the two methods to meet the real-
time requirements.

4 History Based Prediction

It seems to be unnatural to spend computation time to go
through the procedure of model access, projection, etc. for
every single sensor frame, as most of the produced feature
positions differ only slightly from the results of the previous
frame. This is because the features don’t move far between
successive frames, if the time between the shots is not too
long. For instance, a translation of 5 cm into viewing direc-
tion results in a displacement of 2 to 5 pixel for a standard
video camera.

So as an alternative we track the features to record a history
of movement, and then predict, where each individual fea-
ture will show up in the next frame. The initial position is de-
termined by a model inquiry or full frame preprocessing.

Figure 10: Feature Movement
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Establishing correspondences for a feature in different
frames is a crucial task in the tracking process. The number
of candidates is limited by the feature’s surrounding region
of interest, just like in the model based prediction.

Motion Estimation Algorithm

As the movement of a feature in picture space is caused by
the egomotion of the vehicle or a movement of an object in
the scene or both, and those movements follow physical
laws, movements of the features in the image plane follow
the same laws, which are based on Newton mechanics, i.e.
speed, acceleration, etc. There are exceptions, like blinking
lights, which can of course not be covered.

Figure 11: Feature’s Speed & Acceleration
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Feature history consists of the speed and acceleration in the
image plane. Speed is determined by the position difference
in successive frames, acceleration by the difference of speed.

Higher order derivatives have not been found useful, as they
do not contribute significantly to the prediction process, but
add noise. Speed and acceleration of a feature in frame i is
calculated as follows (see Fig. 11, where only one endpoint
of an edge feature is shown):

v�i �
p�i � p�i�1

ti � t i�1
�

p�i � p�i�1

�t i

a�i �
v�i � v�i�1

�t i
�

p�i � p�i�1

�ti
2 �

p�i�1 � p�i�2

�t i �ti�1

where pi is the feature position. The frames are captured with
a constant time interval, so �tj can be set equal to 1:

a�i � p�i � 2 p�i�1 � p�i�2

A new feature position is predicted by:

p�i�1 � p�i � v�i � a�i � 3p�i � 3p�i�1 � p�i�2

This simple linear expression only contains the feature posi-
tions of the latest shots. The effort for evaluation is very low.

Correspondence Establishment

Solving the correspondence problem between features in
successive frames is essential for feature tracking. Similar to
the model based approach a region of interest is established
around the predicted position in the sensor image, in which
feature extraction takes place.

The size of this window must be large enough to ensure cap-
turing of a feature even when movement starts to change (be-
ginning of a curve after a long straight movement). On the
other hand, it must be as small as possible to exclude corre-
spondence candidates and to reduce preprocessing load.
Horizontal and vertical window size is determined by the
maximum of the feature acceleration and a constant value:

�dx

dy
� � max

�
�
�
	




A � � �px

py
�

i

� 2�px

py
�

i�1

� �px

py
�

i�2

�
�Cx

Cy
�

A, Cx and Cy depend on the maximum possible feature accel-
eration and on the quality of preprocessing. A=3, Cx=Cy=5
have been found useful values.

Only the features found in this preprocessing window are
taken for establishing a correspondence to the predicted fea-
ture, so the number to be checked is usually small. To find
the best match out of those, feature properties are consid-
ered. For a video sensor, whose features are grey level edges,
feature properties are the direction of the edge, amount and



sign of grey level gradient, properties of neighbour edges,
etc.

For now, only a local algorithm for feature correspondence
is used. It is sufficient in case of differential feature move-
ments. If the time difference between shots becomes longer,
or motion speed is increasing, a more sophisticated algo-
rithm might be necessary.

Once the correspondence is established, feature history is
updated. In case no correspondence for a feature could be es-
tablished, the old history is extrapolated. After 3 successive
frames without correspondence, this feature is considered
lost. With this, temporal disturbances can be eliminated.

After a couple of frames, features disappear over the image
borders. In case the number of tracked features becomes too
small, a new model inquiry or another full frame processing
phase is required.

5 Model Update

Access Functions

The presented concept of detecting changes in the environ-
ment by the evaluation of differences between predicted and
detected features is based on incorporating minor changes in
the environment - e.g. caused by varying illumination - by
modifying attributes for spatial and temporal uncertainty of
the environmental model’s elements. This serves in a second
function as a filter for transient irritations of the sensor sys-
tems.

The temporal integration of minor changes in the environ-
ment results in major changes in the environmental model
executed by insertion and deletion of objects and features.

Real-Time Update

Modification of the attributes for spatial uncertainty of a line
feature using Kalman filtering takes less than 3 ms in our im-
plementation (Base: 20 SpecMarks). The insertion or dele-
tion of an element of the environmental model takes about
0.2 ms.

6 Conclusion

Feature prediction in real-time to support the update of an en-
vironment representation is possible. The two methods,
model based and history based prediction, have been pres-
ented, which have turned out to meet the real-time require-
ments of the sensor systems. The combination of both meth-
ods is subject of current research effort.

7 Remarks

The work presented is sponsored by the German Science
Foundation (Deutsche Forschungsgemeinschaft), Bonn,
Germany as part of the interdisciplinary research project ”In-
formation Processing in Autonomous Mobile Robots”.
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