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Abstract—Multi-antenna systems can provide multi-streaming
and diversity operation even in the case where the antennas are
spaced electrically close to each other. This requires that a de-
coupling and matching network (dmn) is connected between the
antenna ports and the inputs of the low-noise ampli�ers (lna)
of the receiver. The job of the dmn is to electrically decouple the
ports which are connected to the lnas, and to provide the latter
with the optimum driving impedance such that their noise �gure is
minimum (noise matching). The value of the driving impedance to
achieve noise matching only depends on certain noise parameters
of the receiver. To our best knowledge, there is no measurement
equipment available to this date, which would allow to measure
these parameters. In this paper, we report on a simple scheme by
which these noise parameters can be estimated using the multi-
antenna receiver itself as the measurement equipment. The idea
is to connect the inputs of two lnas by a coax cable and estimate
the correlation coe�cient of the digitized outputs of the respective
receiver chains. From two such estimated correlation coe�cients
obtained for two di�erent lengths of the coax cable, all noise
parameters which are relevant for noise matching can be obtained.

I. Introduction

It has been observed by several authors that multiple receive
antennas can provide space diversity even in the case when the
antennas are placed electrically close to each other [1]–[3]. It
has also been pointed out by several researchers that the same
is true for providing multi-streaming [4]–[8]. In both cases, it
is essential that there be connected a decoupling and matching
network (dmn) between the ports of the antennas and the
ports of the low-noise ampli�ers (lna) of the receiver chains.
The dmn not only provides electrically uncoupled ports for
the connection of the lnas, but also ensures that the latter
see the correct driving impedance, Zopt, which makes their
noise-�gure minimum. This is referred to as noise matching
in contrast to other matching goals, like power matching. The
value of Zopt depends on certain noise parameters of the re-
ceiver chains (and only on them).
In this paper, we describe a simple scheme which can be

used to measure these relevant noise parameters by using the
receiver itself as the measurement device, requiring only two
coaxial cables as external hardware. For purpose of illustration,
consider the Figure 1 which shows, in its center, a 2-antenna
receiver with a dmn. Each of the two receiver chains consists
of an lna, followed by a down-converter (consisting of a mod-
ulator, local oscillator (lo) for the in-phase and the quadra-
ture components and a low-pass �lter (lpf)), 2 variable gain
ampli�ers (vga), and 2 analog to digital converters (adc),
one for the in-phase and one for the quadrature component.
A slowly operating adaptive gain control (agc) takes care that
the long-term root-mean-square voltage at the inputs of the
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Figure 1: Schematic diagram of a 2-antenna receiver with de-
coupling and matching network (center), simpli�ed diagram
of each receiver chain (bottom), and the equivalent circuit
for noise analysis (top).

adcs remains at a suitable value which ensures that the full
resolution of the adcs is actually used for conversion into the
digital outputs d1 and d2, respectively. The lnas have got an
input impedance which is real-valued and equal to R. While
it is not essential for the presented measurement scheme that
the input impedance be real-valued, it is usually the case in



practice (where frequently R = 50Ω) and it simpli�es the math-
ematics. We therefore assume the input impedance to be real-
valued in the following. The upper part of Figure 1 shows the
equivalent circuit that is used for noise analysis. Because of the
action of the dmn, the two receiver chains are driven by elec-
trically decoupled voltage sources with an internal impedance
Zopt , respectively. Moreover, the receiver chains being linear
can be modeled (see, e.g., [9]) by an equivalent circuit which
consists of a resistance R (to mimic the input impedance of
the lnas) and two noise sources (a noise voltage and a noise
current source). Across the resistances appear voltages with
the complex envelopes u1/G1 and u2/G2, respectively. Herein,
the real and imaginary parts of uk are the voltages at the in-
puts of the adc used for the in-phase and the quadrature
components of the k-th receiver chain (k ∈ {1, 2}), while Gk

is the voltage gain between the adc inputs and the inputs
of the lnas, respectively. Note that d1 and d2 are the quan-
tized digital representations of u1 and u2 . In the following, we
assume that the two receiver chains have the same stochastic
noise properties.
In the remaining of this paper, we show how to obtain the

relevant noise parameters of the receiver by observing the dig-
itized outputs d1 and d2 of the two receivers which inputs are
connected by a coaxial cable. We �rst present the theoretical
framework and then report on experimental evaluation.

II. Theory

A. Noise Matching

In the following, we consider the case of narrow-band linear
receivers. Narrow-band means that the receiver’s bandwidth is
small compared to the center frequency. More precisely,¿ÁÁÀ f1

f2
+ f2

f1
− 2 ≪ 1, (1)

must hold. Herein, f1 > 0 and f2 > 0 are the corner frequencies
of the receiver’s passband. Let us now develop a suitable noise-
model of such a receiver.
When a single linear receiver is connected to an antenna,

there are three noise sources to be considered. The �rst is
the equivalent antenna noise voltage. The other two are the
equivalent input noise voltage and the equivalent input noise
current of the receiver.1 The noise voltage which results is a
linear superposition of these three equivalent noise sources.
For optimum performance, it is usually necessary to connect
a lossless matching network between receiver and antenna. Its
job is to ensure that the three noise sources superimpose such
that the largest possible signal to noise ratio (snr) is obtained
at the receiver’s output.2 This is shown in the upper part of Fig-
ure 2. The port behavior (at center frequency) of the matching
network can then be described by the following relationship:

1The reason why it is enough to have one source to describe the antenna
noise but two noise sources are required for the receiver is that the antenna
is a one-port while the receiver is a two-port.

2It is important for the matching network to be lossless (i.e., to not dissipate
any energy), for otherwise its losses would generate additional noise of its own,
and also eat up some part of the desired signal energy. Clearly, both e�ects
are undesirable but usually cannot be avoided completely in practice.
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Figure 2: Lossless linear matching network connected between
antenna and receiver (top). The e�ect of the matching net-
work is to transform the impedance and open-circuit voltage
of the antenna to new values (bottom).
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uB
] = [ ja −c + jd

c + jd jb
] [ iA

iB
] , (2)

where uA , uB , iA and iB are de�ned in Figure 2, and a, b, c,
and d are real-valued, which ensures that the matching net-
work is lossless [10].3 Analyzing the circuit from the top of
Figure 2, shows that the e�ect of the lossless matching network
is to transform the antenna’s impedance ZA into a new value
Z′A, while, at the same time, transforming the antenna’s open-
circuit voltage with complex envelope u0, into a di�erent open-
circuit voltage with complex envelope u′0, according to:

u′0 = c + jd
ZA + jau0 , Z′A = jb + c2 + d2

ZA + ja . (3)

This is shown in the lower part of Figure 2. For the antenna’s
voltage comprises desired signal and noise, one can write:

u0 = uS + ũN , (4)

where uS and ũN are the complex envelopes of the desired
signal voltage, and the antenna noise voltage, respectively. It
is customary to quantify the antenna noise variance by the
so-called antenna noise temperature, TA , such that:

E [∣ũN ∣2] = 4kBTA∆f Re{ZA} , (5)

where kB and ∆f are Boltzmann’s constant and the receiver’s
bandwidth, respectively. From (3) follows the relationship:

E [∣u′0 ∣2] = Re{Z′A}
Re{ZA}E [∣u0∣2] . (6)

When the lossless matching network changes the real-part of
the antenna’s impedance, a corresponding change in the vari-
ance of the open-circuit voltage must take place. The snr is
now de�ned in the standard way as:

snr = E [∣u1 ∣2 ∣ ũN = uN = 0, iN = 0]
E [∣u1 ∣2 ∣ uS = 0] , (7)

3Any hybrid matrix (immitance matrix included) which describes a lossless
linear multiport must have the property that it equals its negative complex
conjugate transpose.



where u1 is the complex envelope of the receiver’s output volt-
age (see Figure 2). It is convenient to de�ne the so-called avail-
able snr as the snr that one would obtain if the receiver was
noiseless:

snrav = snr∣uN = 0, iN = 0 . (8)

The actual snr can then be written as:

snr = snrav

nf
, (9)

where nf denotes the so-called noise �gure of the receiver.
Using (4)–(9) and the circuit from the lower part of Figure 2, it
is easy to obtain for the noise �gure the following expression:

nf = 1 + E [∣iN∣2] R
2
N − 2RNRe{ρ∗Z′A} + ∣Z′A∣2

4kBTA ∆f Re{Z′A}
, (10)

where

RN =
¿
ÁÁÁÀE [∣uN ∣2]

E [∣iN∣2]
, (11)

is called noise resistance, and

ρ = E [uN i
∗
N]√

E [∣uN ∣2]E [∣iN∣2] , (12)

is the complex correlation coe�cient of the receiver’s equivalent
input noise current and noise voltage. In the derivation of (10)
the reasonable assumption is made that that the antenna noise
is uncorrelated with the receiver’s noise. As is obvious from
(10), the noise �gure depends on the transformed impedance
Z′A. This motivates the de�nition of the optimum impedance:

Zopt = arg min
Z′A

nf

= RN (
√
1 − (Im{ρ})2 + j Im{ρ}) . (13)

Designing the lossless matching such that Z′A = Zopt , ensures
minimum noise �gure, hence, maximum snr. This strategy
is referred to as noise matching. From (3), one can easily see
that the following set of parameters:

a = −Im{ZA} , b = Im{Zopt} , c = 0, d2 = Re{Zopt}Re{ZA} ,
leads to noise matching. Since setting c = 0 is possible, shows
that, without loss of generality, one can additionally require
that the matching network is reciprocal.
Generalizing noise matching for the case of antenna arrays

is straight forward, provided that the noises generated by dif-
ferent receivers are pairwise uncorrelated.4 All there is to do is
to replace ZA by the array impedance matrix ZA. The param-
eters a, b, c and d, then become real-valued matrices. The ef-
fect of the resulting matching network is to decouple the ports
which are connected to the multiple receivers, and providing
a source impedance of Zopt to each of them.

4This can be achieved by proper design of the rf hardware. It may require
housing the ampli�ers in separated metal enclosures and making sure that no
coupling occurs over the dc power supply.

d1 d2

coax cable

ZW = R
length l

rx–1 rx–2

u1

G1
R

iN,1

uN,1

R, l

uN,2

iN,2

R
u2

G2

Figure 3: Top: Measurement setup: the inputs of the receiver
chains are connected together by means of a coaxial cable.
Bottom: Equivalent electric circuit.

B. Measuring the relevant noise parameters

It is a remarkable fact from (13), that the optimum impedance
only depends on two real-valued noise parameters of the re-
ceiver: its noise resistance, and the imaginary part of its com-
plex noise correlation coe�cient. Thus, for the design of the
matching network for noise matching, the parameters RN and
Im{ρ} of the receiver have to be found out by measurement.
In the following, we derive a measurement method which uses
the receiver itself as the measuring device. The idea is shown
on the top of Figure 3. The inputs of the two receiver chains
are connected together by means of a coax cable and the cor-
relation coe�cient of the received digital data d1 and d2 is
computed. Recall that d1 and d2 are the quantized versions of
the voltages u1 and u2, respectively, which are de�ned in the
top of Figure 1. The bottom part of Figure 3 shows the equiva-
lent electric circuit, where it is assumed that the coaxial cable
is lossless and thus also noiseless.5 The voltage u1/G1 can be
computed as a linear superposition of two terms: a term due to
the near noise sources uN,1 and iN,1, and the far noise sources
uN,2 and iN,2. Because of this and the cable’s wave impedance
being equal to the input resistance R of the two receivers, the
analysis is greatly simpli�ed. The part due to the near noise
sources equals RiN,1/2 − uN,1/2 while the part due to the far
noise sources equals e−j2πl/λ (RiN,2/2 + uN,2/2), where l is the
length of the coaxial cable, and λ is the wavelength inside the
cable at center frequency. In total, we have:

u1 = G1

2
(RiN,1 − uN,1 + e−j2πl/λ (RiN,2 + uN,2)) , (14)

and similarly

u2 = G2

2
(RiN,2 − uN,2 + e−j2πl/λ (RiN,1 + uN,1)) . (15)

As we assume that the stochastic noise properties of the two
receiver chains are the same (in the wide sense), and that their
noises are uncorrelated, it follows from (14) and (15) that

E [∣uk ∣2] = β ∣Gk ∣2
2
(R2 + R2

N) , (16)

5In practice, some loss in the coaxial cable is usually unavoidable. Because
the amount of loss increases with the length of the cable, the assumption of
losslessness can be met with any given accuracy by not letting the cable be
excessively long. With state of the art cables less than a wavelength long, the
loss is usually negligible, as is the noise it causes with respect to the noise of
the ampli�ers.



where k ∈ {1, 2}, and β = E [∣iN,1∣2] = E [∣iN,2 ∣2], and RN is the

noise resistance of the receivers de�ned in (11).6 That E [∣uk ∣2]
does not depend on the cable length7 means that the adaptive
gain control will keep the same gain irrespective of the length
of the cable. Moreover

2E [u1u
∗

2 ]
βG1G∗2

= (R2−R2
N) cos(2πl/λ) + 2RRNIm{ρ} sin(2πl/λ),

(17)
where ρ is de�ned in (12). From (17) it is obvious that E [u1u

∗

2 ]
depends not only on RN but also on the Im{ρ}. Because it is
precisely these two quantities which the optimum impedance
(13) depends on, it follows that E [u1u

∗

2 ] is the key to the mea-
surement of the noise parameters which are relevant for noise
matching. However, since E [u1u

∗

2 ] also depends on the gains
G1 and G2 of the two receiver chains, which we assume are
unknown, it is better to base the measurement on

corr(u1 , u2) = E [u1u
∗

2 ]√
E [∣u1∣2] ⋅ E [∣u2 ∣2] . (18)

With the help of (16) and (17), it follows:

corr(u1 , u2) = e jϕ
cos(kl)(1 − R2

N

R2
) + 2RN

R
sin(kl)Im{ρ}

1 + R2
N/R2

,

(19)
where k = 2π/λ, and

ϕ = arg (G1) − arg (G2) , (20)

is the phase mismatch of the receiver chains. In the following,
we assume that the receiver chains have been calibrated such
that the phase imbalance can be considered essentially zero:

ϕ = 0. (21)

Note that for zero phase imbalance, the correlation coe�cient
from (19) becomes real-valued.8 Now for a given normalized
cable length l/λ and a given value of R, this correlation coe�-
cient depends on two real-valued parameters: RN and Im{ρ}.
Thus, we need at least two measurements of corr(u1 , u2) ob-
tained by connecting the receiver’s inputs with coaxial cables
of two di�erent lengths. To this end, let

ξ = corr(u1 , u2)∣l = l1 , (22)

µ = corr(u1 , u2)∣l = l2 . (23)

Substituting (19) into (22) and (23), and solving for RN and
Im{ρ}, we obtain:

RN

R
= +

¿ÁÁÀ sin(k(l2− l1)) − ξ sin(kl2) + µ sin(kl1)
sin(k(l2− l1)) + ξ sin(kl2) − µ sin(kl1) . (24)

6where E [∣uN ∣2] = E [∣uN,1 ∣2] = E [∣uN,2 ∣2].
7This is a consequence of the receivers’ noises being uncorrelated. Moreover,

the stochastic noise properties of the receivers being the same (in wide sense),
E [∣uk ∣2] also does not depend on the complex correlation coe�cient ρ.

8As a welcome by-product, this real-valuedness makes an easy test whether
the phases of the receiver chains have been calibrated correctly.

and similarly

Im{ρ} = sign( sin(k(l2− l1))) ⋅ (µ cos(kl1) − ξ cos(kl2))√
sin2(k(l2− l1)) − (ξ sin(kl2) − µ sin(kl1))2 .

(25)
Note that RN is, per de�nition, non-negative, while Im{ρ} can
take values within the real interval (−1;+1). For the special
case l2 = 2l1 = λ/2, the equations simplify to:

RN

R
=
√

1 + µ

1 − µ
, Im{ρ} = ξ√

1 − µ2
.

In practice, however, one may not have cables of precisely half
and quarter wavelength at hand. Therefore, the equations (24)
and (25) are the more useful ones. Notice that ∣l2− l1∣ is not
allowed to be an integer multiple of λ/2.9
The exact values of ξ and µ are usually unknown such that

estimates ξ̂ and µ̂ have to be found by observing a number
of samples of u1 and u2 . Because d1 and d2 are the digitized
versions of u1 and u2, respectively, ξ̂ and µ̂ can also be ob-
tained from the digitized samples.10 As mentioned earlier, the
assumed zero phase imbalance (ϕ = 0) makes corr(u1 , u2) real-
valued. In reality, however, even a well calibrated receiver will
have some small phase imbalance. Because of this and that
only �nitely many samples of u1 and u2 can be observed, the
estimated values ξ̂ and µ̂ will have a non-zero imaginary part.
It is, therefore, necessary to take care of this issue:

ξ̂ ← sign(Re{ξ̂}) ∣ξ̂ ∣, µ̂ ← sign(Re{µ̂}) ∣µ̂∣. (26)

This operation »rotates« ξ̂ and µ̂ back onto the real axis using
the smallest possible rotation angle.11 A�er having applied this
correction, one can replace in (24) and (25) ξ and µ by their
estimates ξ̂ and µ̂, respectively.
While taking just two measurements with cables of di�erent

lengths is the minimum, one can, of course, use more measure-
ments of corr(u1 , u2) with various cable lengths. This allows
for better accuracy, since, for example, a least-squares �tting of
the parameters can be obtained. Moreover, if more than two
measurements are made, the wavelength λ = 2π/k = v/ f0 may
also be treated as a parameter to estimate. This is important
in case that the propagation speed v, with which the electro-
magnetic waves travel along the cable at center frequency f0 ,
is not known accurately enough.

III. Experiment

The theory which is presented in the previous Section relies
on several assumptions. The bandwidth is small compared to
the center frequency. The stochastic noise properties are the
same for both receiver chains. Their input impedance is real-
valued positive and equal to the characteristic impedance of

9This would imply ξ = −µ and lead to »0/0« expressions in (24) and (25).
10If the resolution of the adcs is large enough so that quantization e�ects

can be neglected, this is straight forward. For low resolution adcs, one has
to apply a non-linear transformation to the estimates obtained from d1 and
d2 , which depends on the nature of the quantization intervals. Discussion of
such quantization e�ects, however, goes beyond the scope of this paper.
11For this to work out correctly, the phase imbalance must be less than 90○,

as otherwise a change of sign will occur.



Figure 4: Hardware setup: oscilloscope, ampli�ers, delay lines,
power supply.

the coaxial cables. The latter are lossless and, thus, noiseless.
It is also assumed that the noises of the two receiver chains
are uncorrelated and that the phases imbalance does not ex-
ceed 90○. In order to see whether these whole lot of simplify-
ing assumptions are acceptable in practice, an experiment is
performed and the obtained empirical data compared to the
predictions of the theory.

A. Measurement setup

In the experiment, two commercial radio frequency (rf) low
noise ampli�ers (by the rf component manufacturer Mini Cir-
cuits) are connected to a Rohde&Schwarz rto oscilloscope.
A number of �exible rf coaxial cables (rg316) with di�erent
lengths are prepared. They are used to connect the inputs of
the ampli�ers. This hardware setup is shown in the photo-
graph in Figure 4.

The inputs of the ampli�ers are connected to each other by
means of a coaxial cable of known length, while their outputs
are connected to the oscilloscope. The latter samples, digitizes
and displays their output voltages, as shown schematically in

Figure 5: Schematic diagram of measurement setup.

Figure 5. The digitized samples are downloaded into a laptop
computer for further processing in so�ware. The processing
includes band-pass �ltering, down-conversion, low-pass �lter-
ing and computation of the correlation coe�cient corr(u1 , u2)
in the complex baseband.

Figure 6: Measured ampli�er noise spectrum.

Before the experiment was started, we characterized the rf
properties of the ampli�ers by measuring their scattering pa-
rameters using a network analyzer. As we want to look at am-
pli�er noise, the noise of the oscilloscope must be small com-
pared to that of the ampli�ers. This means that the latter must
have enough ampli�cation, so that their output noise is at least
10dB above the input noise of the oscilloscope. The measured
∣S21∣ of 24dB over a wide range of frequencies indicates that
the ampli�ers might be suitable. To verify this assertion, the
output of one ampli�er is connected to a spectrum analyzer.
The ampli�er’s input is connected via a short cable to the in-
put of the second ampli�er, which output is terminated. The
resulting spectrum is shown in Figure 6. It indicates that noise
measurements could easily be performed around 500MHz be-
cause the ampli�er’s noise is dominant there (−122.5dBm/Hz
noise power density into a 50Ω load). Measurement of the
ampli�er’s ∣S11∣ also showed low values around 500MHz, so
that the ampli�er’s inputs also closely resemble 50Ω around
500MHz. Based on these features, we have chosen the corner
frequencies to be given as:

f1 = 490MHz, f2 = 510MHz.

The resulting bandwidth of 20MHz is also reasonably small

compared to the center frequency f0 =
√

f1 f2 = 499.9MHz.

B. Measurements

The two ampli�ers are now connected to the inputs of an rto
oscilloscope, which samples at a rate of 1010 samples per sec-
ond. A batch of 107 such samples is downloaded into a laptop
computer where all further signal processing is implemented
in MATLAB. The inputs of the ampli�ers are now connected
with suitable coaxial cables of varying lengths. We use sma
connectors and an rf cable which are speci�ed for frequencies
an order of magnitude greater than we are working at. �is is
necessary, because heat-loss and termination should not play
an important role. Silver-shielded rf cables with Te�on coat-
ing proved to perform well enough for our purposes.



meas
num

cable
length
cm

raw
corr(u1 , u2)

corrected
corr(u1 , u2)

1 29.0 0.1689 − j0.0407 0.1737
2 21.9 −0.6005 + j0.0909 −0.6073
3 14.7 −0.7487 + j0.1397 −0.7616
4 15.1 −0.7277 + j0.1384 −0.7407
5 10.6 −0.3597 + j0.0722 −0.3669
6 21.2 −0.6690 + j0.1045 −0.6771
7 31.8 0.3668 − j0.0777 0.3749
8 20.2 −0.7875 + j0.1246 −0.7973

Table I: Empirical correlation coe�cients.

The obtained measurement results for the correlation coef-
�cient corr(u1 , u2) for a number of 8 di�erent cable lengths
is displayed in Table I. The small imaginary parts of the esti-
mated correlation coe�cient indicate a slight phase imbalance.
Therefore, the operation from (26) is applied which corrects
this small phase imbalance by rotating the estimated values of
corr(u1 , u2) back to the real axis. The result is shown in the
right-most column of Table I.

C. Comparison with theoretical results

The �rst thing we like to do is to �nd out whether the mea-
sured results support the theoretical �ndings. Speci�cally, we
are interested how well the measured correlation coe�cient
(with corrected phase-imbalance) is modeled by the equation
(19), setting ϕ = 0 for zero phase imbalance. To this end, we
make a least-squares �t on the parameters RN/R, Im{ρ}, and
k = 2π/λ, considering all the measured data. From this least-
squares �t, it �rstly turns out that

λ =
k

2π
= 41.47cm

is the optimum wavelength to use in (19), such that its results
agree as well as possible with the measured data. Because the
speed of wave propagation is given by v = λ f0, it follows with
f0 = 499.9MHz that the cable has a delay per unit length of

4.824ns/m.

This result is closer than 1% within the speci�cation of the em-
ployed rg316 coaxial cable, which is 1.48ns/�, or 4.856ns/m.
The least-squares �t for the noise parameters yields:

RN = 0.4058R, Im{ρ} = −0.5228.

Now we substitute these obtained results for λ, RN and Im{ρ}
into (19), and compare this theoretical correlation coe�cient
with the measured data. The result is displayed in Figure 7.
Theory and experiment agree fairly well. This shows that (19)
is a reasonable theoretical model for the output noise correla-
tion of two ampli�ers with connected inputs. The simplifying
assumptions which were made in its derivation seem to be
justi�ed by experiment.
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Figure 7: Comparison of the measured results with the theo-
retical prediction of correlation coe�cient corr(u1 , u2).

IV. Conclusion

A simple method of measurement for noise parameters of
a multi-antenna receiver was presented. Hereby, the receiver
itself acts as the measurement device requiring only two coax-
ial cables as additional hardware. One connects the inputs of
the receivers with a coaxial cable and computes the correla-
tion coe�cient of the received noise from the digitized sam-
ples. From two such measurements, one can deduce all noise
parameters of the receiver which are relevant for designing
a noise matching network. The theoretical results have been
compared with experimental data obtained from actual mea-
surement and found to agree well.
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