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Abstract—This work investigates the problem of low SNR
signal-source localization with an array of sensors. Keeping the
receive system simple, we focus on analog-to-digital converters
(ADC) with coarse resolution. In order to increase the localization
accuracy and minimize the size of the receiver, we discuss the
effect of analog filtering and antenna spacing on the Fisher
information measure. In particular, the beneficial influence of
temporal and spatial noise correlation produced by the analog
receive filter and antenna coupling is considered. Results for
the extreme case of 1-bit hard-limiting quantizers show that it
is possible to compensate the quantization-loss of the optimum
unbiased estimator through the correct choice of the analog front-
end and antenna design. Further, our investigation shows that
for array receivers high resolution parameter estimation is still
possible with antenna spacings far below λ/2.

Index Terms—1-bit hard-limiter, signal parameter estimation,
antenna mutual coupling, analog filtering

I. INTRODUCTION

In the field of signal parameter estimation, it is usually
assumed that the receiver has access to digital signals with
infinite resolution. While this assumption simplifies theo-
retic performance analysis, it implies the existence of high-
resolution analog-to-digital converters (ADC). Such devices
are expensive and power consuming in practice, especially
when high-speed processing is required. From a circuit design
perspective, hard-limiting 1-bit ADC allows to simplify the
analog receiver front-end significantly. Further, the resulting
binary output data makes it possible to implement digital
signal processing algorithms in a very efficient way. These
advantages make 1-bit ADC attractive for future signal pro-
cessing devices. However, benefits come with a performance
loss when comparing to receivers with higher ADC resolution.
On the other hand the trend toward increasing the number
of antennas makes it desirable to reduce the antenna spacing
below half of the wave-length. This leads to antenna mutual
coupling and spatial noise correlation. It is generally believed
that both effects, coarse quantization together with antenna
coupling significantly degrades the system performance. How-
ever a general analysis combining these two aspects is, to the
best of our knowledge, missing in literature.

II. RELATED WORK

The scientific discussion on signal parameter estimation
from quantized data starts with the early work [1]. For

low SNR signal processing applications it has been realized
that the system performance with a single sensor degrades
moderately by −1.96 dB [2] [3] while [4] verified that this
is also true when transmitting data over a white Gaussian
multiple-input multiple-output (MIMO) channel. [5] showed
that the quantization-loss can be reduced for AWGN channels
by oversampling the analog receive signal. Interestingly, by
investigating the output-SNR of a signal correlator behind a 1-
bit quantizer, [6] found that also adjusting the filter bandwidth
might lead to higher system performance. [7] strengthened
this inside by developing a systematic approach which allows
to optimize filter bandwidth, filter shape and sampling fre-
quency based on a Fisher information framework and attain
a direct performance gain when using the optimum estimator.
Recently, [8] has shown that the capacity bound of low SNR 1-
bit MIMO channels with spatial noise correlation can be higher
than for the case of white noise. In the context of multiple
antennas [9], studied the influence of antenna coupling by
setting up a circuit based model of MIMO communication
systems and showed that channel capacity and antenna gain
can even be higher when the antenna spacing is below λ/2. A
geometric interpretation for the potential of compact antenna
arrays in terms of angle-of-arrival estimation was given in [10].

III. CONTRIBUTION

We provide a general Fisher information based analysis
on quantized and unquantized multiple antenna systems. An
important aspect of our approach is that we take into account
the temporal noise correlation due to analog filtering as well
as the spatial noise correlation due to antenna coupling.
Following our previous work [7] [8], we derive the Fisher
information measure for the estimation performance under
this conditions. For a generic multi-sensor signal parameter
estimation problem, with applications to radar and satellite-
based navigation, we exploit the possibility of changing the
noise correlation through the filter bandwidth and the antenna
spacing and visualize possible performance improvements
through an appropriate choice of the analog front-end and an-
tenna design. Note, that adjusting analog parts of the receiver
is in general highly attractive as this requires no additional
computational effort during system operation.



IV. PROBLEM DESCRIPTION

Consider a receiver equipped with an array of M sensors
and a signal-source emitting a signal of known structure on a
fixed carrier-frequency fc. Receiver and source are assumed
to be synchronized. The receiver would like to determine
the position of the source in two dimensional space, i.e., the
source’s (x, y)-coordinate. To do so, the receiver measures the
time-delay τ between signal transmission and reception and
estimates the signal’s direction-of-arrival (DOA) ζ. Combining
these calculations and the knowledge on the velocity of the
signal through the propagation medium, the receiver finally
determines the position of the signal-source. While high pre-
cision is desirable for applications in radar or satellite-based
navigation, system complexity and power consumption should
be kept minimum. Therefore, this investigation assumes an
extreme case: In order to save energy, signal power at the
transmitter is low while the ADCs at the receiver are chosen
to be the most simplest devices, i.e., symmetric 1-bit hard-
limiting quantizers. Additionally the use of antenna arrays with
reduced antenna spacing is attractive, especially for arrays with
a large number of antennas or for small portable devices.

A. Signal Model

For the analysis an analog receive signal at M sensors

y(t) = s(t;θ) + n(t) = ejφa(ζ)c(t− τ) + n(t), (1)

in baseband representation is assumed with parameter vector

θ =
[
φ ζ τ

]T
, (2)

and steering vector a(ζ) ∈ CM . c(t − τ) ∈ C is a periodic
signal of known structure which arrives at the receiver with a
time-delay τ ∈ R. n(t) ∈ CM denotes additive noise arising
at the M sensors. Filtering the analog receive signal y(t) with
ideal low-pass filters of one-sided bandwidth B and sampling
N times at each sensor with a sampling rate of 1/Ts ≥ 2B
with infinite ADC resolution, the stacked observation vector

y = s(θ) + n = ejφc(τ)⊗ a(ζ) + n ∈ CMN , (3)

is obtained where the symbol ⊗ denotes the Kronecker prod-
uct. It is assumed that the covariance matrix of the circular
symmetric noise follows the structure

R = E
[
nnH

]
= RT ⊗RS , (4)

which allows to divide the matrix R into a temporal part RT

and a spatial part RS . For simplicity, we assume a real-valued
covariance matrix R = R∗. During the analysis c(t) is chosen
to be a GPS C/A (satellite 1) signal and 1

Ts
= 2.046 MHz.

B. Quantization Model

After sampling a symmetric hard-limiting 1-bit quantizer

q = Q(y), (5)

performs an element-wise operation on the observation y
defined by

Q(x) =


+1 + j if Re {x} ≥ 0, Im {x} ≥ 0

−1 + j if Re {x} < 0, Im {x} ≥ 0

−1− j if Re {x} < 0, Im {x} < 0

+1− j if Re {x} ≥ 0, Im {x} < 0.

(6)

Paper [8] showed that with the orthogonality principle [11,
p.177] and a low SNR assumption, the output q can be
approximated

q = Qy + e = Qs(θ) +Qn+ e = sq(θ) + nq, (7)

with the effective noise correlation matrix

Rq = E
[
nqn

H
q

]
=

2

π
arcsin

(
diag

(
R−

1
2

)
R diag

(
R−

1
2

))
, (8)

and the effective gain

Q =

√
2

π
diag (R)

− 1
2 . (9)

C. Pessimistic Equivalent System

Note that (8) only specifies the second moment of the un-
derlying density function of the effective additive noise behind
the quantization device. Nevertheless, it can be shown that
the worst-case estimation theoretical characterization [12] of
the parameterized probability density function (pdf) associated
with the digital receive signal q is given by a colored Gaussian
distribution

p(q;θ) =
1

πN detRq
exp

[
−(q − sq(θ))HR−1q (q − sq(θ))

]
,

with zero mean. Consequently, in order to guarantee robustness
of our results this pessimistic assumption is used.

V. NOISE CORRELATION

A. Temporal Noise Correlation

Assuming white Gaussian noise with constant power spec-
tral density N0, the temporal auto-correlation function of the
additive noise at the m-th sensor after low-pass filtering

rm(t) =

∫ ∞
−∞

nm(t)n?m(ν − t)dν, (10)

can be characterized by the inverse Fourier transform of the
auto-correlation function in the frequency domain

rm(t) =
1

2π

∫ ∞
−∞

N0 |H(ω)|2 e−jωtdω

= 2BN0 sinc (2Bt) , (11)

where

sinc (x) =
sin (πx)

πx
, (12)



and the transfer function of the ideal low-pass filter is

H(ω) =

{
1 if |ω| ≤ 2πB

0 else.
(13)

Consequently, the temporal covariance matrix RT of the noise
at each of the M sensors is given by

[RT ]ik = 2BN0 sinc (2BTs |i− k|) . (14)

It is observed that temporally white noise, i.e.,

RT = 2BN0IN , (15)

is only obtained if the equality Ts = 1
2B is satisfied exactly.

B. Spatial Noise Correlation

In interference free scenarios, it is usually assumed that the
noise is spatially white

RS = IM , (16)

while the array sensors are placed at a distance of d = 1
2 ,

normalize with respect to the wave-length λ. Assuming a uni-
form linear array (ULA) with isotropic dipoles and dominant
isotropic background radiation noise (in comparison to the
noise of the amplifiers), we obtain the following physically
consistent spatial correlation model [9]

RS = CM , (17)

with

CM =


1 sinc (2d) sinc (4d) . . .

sinc (2d) 1 sinc (2d)
. . .

sinc (4d) sinc (2d) 1
. . .

. . . . . . . . . . . .

 ∈ RM×M ,

(18)

which characterizes noise correlation in relation to the distance
d between the antenna elements.

VI. ESTIMATION PERFORMANCE

Given the parameterized pdf p(q;θ) and assuming deter-
ministic but unknown parameters θ, the optimum unbiased
estimator θ̂(q) is the maximum-likelihood estimator (MLE)

θ̂(q) = argmax
θ

p(q;θ), (19)

while the conditional mean square error (MSE) matrix

Rεε(θ) = Eq|θ

[
(θ̂(q)− θ)(θ̂(q)− θ)T

]
, (20)

characterizes the estimation errors of the MLE and their
mutual correlation.

A. Performance Bound

As a direct characterization of Rεε(θ) is in general difficult,
the error analysis is here based on theoretical performance
bounds of the individual estimation errors. The entries of
Rεε(θ) can be bounded through the Cramer-Rao lower bound
(CRLB) [13]

[Rεε(θ)]ik ≥ [F−1q (θ)]ik, (21)

which is attained by inverting the Fisher information matrix

[F q(θ)]ik = 2 · Re

{
∂sHq (θ)

∂θi
R−1q

∂sq(θ)

∂θk

}
(22)

= 2 · Re
{
∂sH(θ)

∂θi
QHR−1q Q

∂s(θ)

∂θk

}
(23)

= 2 · Re
{
∂sH(θ)

∂θi
QHR−1q Q

∂s(θ)

∂θk

}
. (24)

In the low SNR regime, the CRLB matches the real estimation
performance of the MLE if the observation length N is
chosen sufficiently large. For the considered system model the
following holds

[F q(θ)]11 = 2 · Re
{
∂sH(θ)

∂φ
QHR−1q Q

∂s(θ)

∂φ

}
[F q(θ)]12/21 = 2 · Re

{
∂sH(θ)

∂φ
QHR−1q Q

∂s(θ)

∂ζ

}
[F q(θ)]13/31 = 2 · Re

{
∂sH(θ)

∂φ
QHR−1q Q

∂s(θ)

∂τ

}
[F q(θ)]22 = 2 · Re

{
∂sH(θ)

∂ζ
QHR−1q Q

∂s(θ)

∂ζ

}
[F q(θ)]23/32 = 2 · Re

{
∂sH(θ)

∂ζ
QHR−1q Q

∂s(θ)

∂τ

}
[F q(θ)]33 = 2 · Re

{
∂sH(θ)

∂τ
QHR−1q Q

∂s(θ)

∂τ

}
, (25)

where
∂s(θ)

∂φ
= jejφ

(
c(τ)⊗ a(ζ)

)
∂s(θ)

∂ζ
= ejφ

(
c(τ)⊗ ∂a(ζ)

∂ζ

)
∂s(θ)

∂τ
= ejφ

(∂c(τ)
∂τ

⊗ a(ζ)
)
. (26)

With a large number of samples [7]

cH(τ)Rc(τ) = const.
∂cH(τ)

∂τ
R
∂c(τ)

∂τ
= const.

∂cH(τ)

∂τ
Rc(τ) = cH(τ)R

∂c(τ)

∂τ
= 0, (27)

for an arbitrary covariance matrixR such that in the following,
we use the simplistic notation

c(τ) = c

∂cH(τ)

∂τ
= ∂c. (28)



VII. PERFORMANCE ANALYSIS - TWO ANTENNAS

For a first performance discussion, we choose a two antenna
ULA receiver with a steering vector

a(ζ) =
[
1 e−j2πd cos (ζ)

]T
, (29)

thus

∂a(ζ)

∂ζ
=
[
0 j2πd sin (ζ)e−j2πd cos (ζ)

]T
, (30)

while the identities

aH(ζ)a(ζ) = 2

∂aH(ζ)

∂ζ

∂a(ζ)

∂ζ
= (2πd)2 sin2 (ζ)

aH(ζ)
∂a(ζ)

∂ζ
= j2πd sin (ζ)

∂aH(ζ)

∂ζ
a(ζ) = −j2πd sin (ζ), (31)

are verified easily. The time-space covariance matrix has in
general the structure

R =

[
R1 R2

R2 R1

]
, (32)

such that

R−1 =

[
(R1 −R2R

−1
1 R2)

−1 (R2 −R1R
−1
2 R1)

−1

(R2 −R1R
−1
2 R1)

−1 (R1 −R2R
−1
1 R2)

−1

]
.

(33)

In the following we define for brevity

R′ =

[
R′1 R′2
R′2 R′1

]
=

{
QHR−1q Q (1-bit receiver)
R−1 (unquantized receiver).

(34)

For the entries of F (θ), we calculate(
jejφc⊗ a(ζ)

)H
R′
(
jejφc⊗ a(ζ)

)
=

2 · cH
(
R′1 + cos

(
2πd cos (ζ)

)
R′2

)
c,

such that

[F (θ)]11 = 4 · cH
(
R′1 + cos

(
2πd cos (ζ)

)
R′2

)
c, (35)

and(
jejφc⊗ a(ζ)

)H
R′
(
ejφc⊗ ∂a(ζ)

∂ζ

)
=

2πd sin (ζ) · cH
(
R′1 + e−j2πd cos (ζ)R′2

)
c,

such that

[F (θ)]12 = 4πd sin (ζ) · cH
(
R′1 +Re

{
e−j2πd cos (ζ)

}
R′2

)
c

= 4πd sin (ζ) · cH
(
R′1 + cos (2πd cos (ζ))R′2

)
c

= [F (θ)]21, (36)

and (
jejφc⊗ a(ζ)

)H
R′
(
ejφ∂cH ⊗ a(ζ)

)
= 0,

giving

[F (θ)]13 = [F (θ)]31 = 0, (37)

and (
ejφc⊗ ∂a(ζ)

∂ζ

)H
R′
(
ejφ∂cH ⊗ a(ζ)

)
= 0,

leading to

[F (θ)]23 = [F (θ)]32 = 0, (38)

and (
ejφc⊗ ∂a(ζ)

∂ζ

)H
R′
(
ejφc⊗ ∂a(ζ)

∂ζ

)
=

= (2πd)2 sin2 (ζ) · cHR′1c,

resulting in

[F (θ)]22 = 2(2πd)2 sin2 (ζ) · cHR′1c, (39)

and finally(
ejφ

∂c

∂τ
⊗ a(ζ)

)H
R′
(
ejφ

∂c

∂τ
⊗ a(ζ)

)
=

= 2 · ∂cH
(
R′1 + cos

(
2πd cos (ζ)

)
R′2

)
∂c,

such that

[F (θ)]33 = 4 · ∂cH
(
R′1 + cos

(
2πd cos (ζ)

)
R′2

)
∂c. (40)

The CRLB for ζ and τ are given by

[F (θ)−1]22 =
[F (θ)]11

[F (θ)]11[F (θ)]22 − [F (θ)]212

=
1

(2πd)2 sin2 (ζ) · cH
(
R′1 − cos (2πd cos (ζ))R′2

)
c

[F (θ)−1]33 =
1

[F (θ)]33

=
1

4

1

∂cH
(
R′1 + cos

(
2πd cos (ζ)

)
R′2

)
∂c
. (41)

A. Ideal Receiver - Variable Antenna Spacing

Before turning our attention onto quantized receive systems,
we verify the impact of the antenna spacing on the estimation
performance. Therefore we fix B = 1

2Ts
and vary the antenna

spacing within 0 < d ≤ 1
2 . For this setting, we obtain

R′ = (RT ⊗RS)
−1 =

(
BN0IN ⊗CM

)−1
=

1

BN0

[
IN sinc (2d) IN

sinc (2d) IN IN

]−1
, (42)

such that

R′1 =
1

BN0

1

(1− sinc2 (2d))
IN

R′2 = − 1

BN0

sinc (2d)

(1− sinc2 (2d))
IN , (43)



and the CRLBs can be written as

[F∞(θ)−1]22 = =
BN0

(2πd)2 sin2 (ζ) cHc
f∞,ζ(d, ζ)

[F∞(θ)−1]33 =
1

4

BN0

∂cH∂c
f∞,τ (d, ζ), (44)

with

f∞,ζ(d, ζ) =
(1− sinc2 (2d))(

1 + cos (2πd cos (ζ)) sinc (2d)
)

f∞,τ (d, ζ) =
(1− sinc2 (2d))(

1− cos (2πd cos (ζ)) sinc (2d)
) . (45)

Comparing this system of infinite resolution to a system with
d = 1

2 the following performance measures can be defined

χ∞,ζ(θ) =
[F−1∞ (θ)]22

∣∣
d= 1

2

[F−1∞ (θ)]22
=

(2d)2

f∞,ζ(d, ζ)

χ∞,τ (θ) =
[F−1∞ (θ)]33

∣∣
d= 1

2

[F−1∞ (θ)]33
=

1

f∞,τ (d, ζ)
. (46)

Fig. 1 shows the performance for the estimation of ζ as
function of the antenna spacing. Interestingly, we observe only
a moderate degradation in the estimation performance when
the distance d goes to zero. This is in accordance with the
result of [10]. Remarkably, for estimating the delay τ even an
improvement (Fig. 2) in the performance for certain DOAs
(especially close to the end-fire direction) can be obtained
when decreasing the antenna spacing below λ/2. This is
explained by the increased antenna gain (super gain) [9].
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Fig. 1. Performance Ratio in ζ vs. Spacing

B. 1-bit Receiver - Variable Antenna Spacing

For a 1-bit receiver with fixed bandwidth B = 1
2Ts

and an
antenna spacing 0 < d ≤ 1

2 we obtain

R′ =
1

BN0
arcsin (IN ⊗CM )

−1
, (47)
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Fig. 2. Performance Ratio in τ vs. Spacing

such that

R′1 =
π
2

BN0

((
π
2

)2 − arcsin2 (sinc (2d))
)IN (48)

R′2 = − arcsin (sinc (2d))

BN0

((
π
2

)2 − arcsin2 (sinc (2d))
)IN . (49)

For this setting the CRLBs are

[F q(θ)
−1]22 =

BN0

(2πd)2 sin2 (ζ) cHc
fq,ζ(d, ζ)

[F q(θ)
−1]33 =

1

4

BN0

∂cH∂c
fq,τ (d, ζ), (50)

with

fq,ζ(d, ζ) =

((
π
2

)2 − arcsin2 (sinc (2d))
)

(
π
2 + cos (2πd cos (ζ)) arcsin (sinc (2d))

)
fq,τ (d, τ) =

((
π
2

)2 − arcsin2 (sinc (2d))
)

(
π
2 − cos (2πd cos (ζ)) arcsin (sinc (2d))

) .
(51)

Compared to an unquantized system with d = 1
2 , the relative

performance can be measures by

χq,ζ(θ) =
[F−1∞ (θ)]22

∣∣
d= 1

2

[F−1q (θ)]22
=

(2d)2

fq,ζ(d, ζ)

χq,τ (θ) =
[F−1∞ (θ)]33

∣∣
d= 1

2

[F−1q (θ)]33
=

1

fq,τ (d, ζ)
. (52)

Validating the performance at d = 1
2 the well-known

quantization-loss of factor 2
π can be verified

χq,ζ(θ)
∣∣
d= 1

2

= χq,τ (θ)
∣∣
d= 1

2

=
2

π
(−1.96 dB). (53)



Note that in this situation, the loss does not depend on
the parameter constellation θ, in particular ζ. In Fig. 3,
the performance ratio in terms of estimating ζ is depicted.
Contrary to the unquantized case, the performance degradation
becomes less sensitive to the specific DOA. In particular
a small decrease in the antenna spacing does not effect to
much the end-fire directions compared to the unquantized case.
However, in terms of time-delay estimation the behavior of
the estimation performance, by slightly decreasing the antenna
distance, is similar to the unquantized case, justified again
by the higher antenna gain. Nevertheless, a significant loss is
obtained when the spacing is decrease drastically.
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C. 1-bit Receiver - Variable Filter Bandwidth

Now we investigate the possibility of adapting the analog
filter bandwidth B = ρ

2Ts
with 0 ≤ ρ ≤ 1 [7] while the

antenna spacing is fixed to d = 1
2 . The space-time matrix is

given by

R′ =
1

ρBN0
arcsin

( 1

ρBN0
RT ⊗ IM

)−1
, (54)

such that

R′1 =
1

ρBN0
arcsin

( 1

ρBN0
RT

)−1
R′2 = 0N . (55)

Here the CRLBs attain the following form

[F q(θ)
−1]22 =

ρBN0

π2 sin2 (ζ) cHρ arcsin
(

1
ρBN0

RT

)−1
cρ

[F q(θ)
−1]33 =

1

4

ρBN0

∂cHρ arcsin
(

1
ρBN0

RT

)−1
∂cρ

, (56)

where cρ and ∂cρ are the signal and its derivative after filtering
by a low-pass filter with one-sided bandwidth B = ρ

2Ts
. The

relative performance with respect to an ideal system with
infinite resolution can be characterized by

χq,ζ(θ) =
1

ρ

cHρ arcsin
(

1
ρBN0

RT

)−1
cρ

cHc

χq,τ (θ) =
1

ρ

∂cHρ arcsin
(

1
ρBN0

RT

)−1
∂cρ

∂cH∂c
. (57)

In Fig. 5 the performance ratios in terms of the estimation of
ζ and τ are shown. In accordance with [7], a reduction of the
filter bandwidth B below the Nyquist rate can be beneficial.
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D. 1-bit Receiver - Variable Spacing and Bandwidth

Next, the case of a receiver with variable bandwidth B =
ρ

2Ts
, 0 ≤ ρ ≤ 1 and variable antenna spacing 0 < d ≤ 1

2 is



considered. Here

R′ =
1

ρBN0
arcsin

(
1

ρBN0
RT ⊗CM

)−1
, (58)

such that

R′1 =
1

ρBN0

(
R′A −R

′
BR
′−1
A R′B

)−1
=

1

ρBN0
R′′1

R′2 =
1

ρBN0

(
R′B −R

′
AR
′−1
B R′A

)−1
=

1

ρBN0
R′′2 , (59)

with

R′A = arcsin

(
1

ρBN0
RT

)
R′B = arcsin

(
sinc (2d)

ρBN0
RT

)
, (60)

such that the CRLBs are given by

[F q(θ)
−1]22 =

(2πd)−2ρBN0

sin2 (ζ) cHρ

(
R′′1 − cos (2πd cos (ζ))R′′2

)
cρ

[F q(θ)
−1]33 =

1

4

ρBN0

∂cHρ

(
R′′1 + cos

(
2πd cos (ζ)

)
R′′2

)
∂cρ

.

(61)

For this general setup the performance measures are given by

χζ(θ) =
(2d)2

ρ

cHρ

(
R′′1 − cos (2πd cos (ζ))R′′2

)
cρ

cHc

χτ (θ) =
1

ρ

∂cHρ

(
R′′1 + cos (2πd cos (ζ))R′′2

)
∂cρ

∂cH∂c
. (62)

In Fig. 6 the performance ratio of DOA estimation as function
of the distance d and bandwidth ρ is highlighted. It can be seen
that the gain which can be obtained by bandwidth reduction
is becoming more significant (≈ 1 dB) when decreasing the
antenna distance to d = 0.2. This means that the performance
loss for the estimation of ζ due to compact antenna elements,
can be partially recovered by reducing the bandwidth to
ρ = 0.58. When considering time-delay estimation (Fig. 7) the
importance of correctly choosing the analog filter bandwidth
together with the antenna spacing can be seen clearly. In
particular for a compact spacing of d = 0.275 and a reduced
bandwidth of ρ = 0.75 we obtain a quantization-loss of only
−0.5 dB at ζ = π/8. Compared with the gains obtained
separately in Fig. 4 for variable spacing and in Fig. 5 for
variable bandwidth, the gain from the joint adjustment of both
system parameters is more than additive.

VIII. PERFORMANCE ANALYSIS - MULTIPLE ANTENNAS

Finally, in order to investigate the performance behavior
when using larger antenna arrays, we consider a ULA receiver
with an odd number of antennas and steering vector

a(ζ) =
[
ej2πd

M−1
2 cos (ζ) . . . 1 . . . e−j2πd

M−1
2 cos (ζ)

]T
,

(63)
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giving

∂a(ζ)

∂ζ
=
[
− j2πd

M− 1

2
sin (ζ)ej2πd

M−1
2 cos (ζ) . . . 0

. . . j2πd
M− 1

2
sin (ζ)e−j2πd

M−1
2 cos (ζ)

]T
.

(64)

Assuming all parameters except ζ to be known, it is possible
to construct a simple lower bound on the estimation error of
any unbiased DOA estimator [13]

var(ζ̂) ≥ 1

Fq,ζ(θ)
, (65)

where

Fq,ζ(θ) = 2 · Re
{
∂sH(θ)

∂ζ
R′
∂s(θ)

∂ζ

}
, (66)

is the Fisher information measure for the quantized receiver
regarding ζ as function of the parameter constellation θ.
Assuming the noise to be temporally white, i.e., RT = BN0I ,
the comparison to an unquantized system with d = 1

2 takes



the simple form

χq,ζ(θ) =
Fq,ζ(θ)

F∞,ζ(θ)
∣∣
d= 1

2

=

∂aH(ζ)
∂ζ arcsin (CM )

−1 ∂a(ζ)
∂ζ(

∂aH(ζ)
∂ζ

∂a(ζ)
∂ζ

)∣∣∣
d= 1

2

.

(67)

This Fisher information ratio is given in Fig. 8 for different
numbers of antennas. Contrary to the two antenna case, It
can be observed that a significant performance improvement
in DOA estimation can be achieved by slightly decreasing
the antenna distance. In order to verify the effect of antenna
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spacing in the unquantized case, we use

χ∞,ζ(θ) =
Fq,ζ(θ)

F∞,ζ(θ)
∣∣
d= 1

2

=

∂aH(ζ)
∂ζ C−1M

∂a(ζ)
∂ζ(

∂aH(ζ)
∂ζ

∂a(ζ)
∂ζ

)∣∣∣
d= 1

2

. (68)

This performance benchmark is depicted in Fig. 9 for M = 13.
Surprisingly, a huge performance improvement is obtained
when decreasing the antenna spacing from d = 1

2 to d = 1
4

for DOAs close to the end-fire direction (ζ ≈ 0). This
contradicts the general belief that decreasing the antenna
distance degrades the DOA estimation performance.

IX. CONCLUSION

We have shown by means of a generic signal model, that
the well-known −1.96 dB loss due to 1-bit quantization in the
context of low-SNR array signal processing is not valid when
noise correlation is present. In this work, we have analyzed
this phenomenon under a general and physically consistent
system model [9] [10]. Additionally, we have investigated the
potential of jointly optimizing the analog receiver front-end,
in particular the analog filter [7] and the antenna design [9] in
order to create favorable noise correlation in a controlled way
prior to the quantization device. An interesting observation
of our analysis is the possible performance improvement
for estimating several parameters by decreasing the antenna
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spacing below λ/2 for the ideal as well as for the 1-bit receiver
case.
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