
Visual Determination of 3D Grasping Points on Unknown Objectswith a Binocular Camera SystemAlexa Hauck, Johanna R�uttinger, Michael Sorg, Georg F�arberLab. for Process Control and Real-Time SystemsTechnische Universit�at M�unchenMunich, GermanyEmail: fa.hauck,m.sorgg@ei.tum.deAbstractIn the �eld of hand-eye coordination, most state-of-the-art systems still require the user to select thegrasping points manually. We present a system whichautonomously determines 3D grasping points on un-known objects from a pair of greyscale images. Theobject to be grasped is segmented automatically whenput into the scene. Grasping points are searched onthe object silhouette; their stability is evaluated by aheuristic algorithm, primarily based on the skeleton ofthe region.The 3D grasping pose is estimated by triangulationusing a simpli�ed geometrical model of the camera sys-tem; the corresponding points in the second image aredetermined via dynamic programming. The whole sys-tem has been implemented and validated on the exper-imental hand-eye system MinERVA.1 IntroductionDespite the increasing popularity of the research�eld of visual control of robot manipulators, a systemthat is able to grasp arbitrary objects autonomouslystill seems to be a distant goal. This may be becauseup to now e�orts have mainly been directed at thequestion how to use visual information in a motioncontrol loop. The resulting methods for visual servo-ing1 have brought forward a number of impressive sys-tems (for a collection of articles see [10, 14, 23]). How-ever, many of these systems do not approach the prob-lem of visually guided grasping, but restrict themselvesto the problem of how to position the end-e�ector un-der visual guidance, leaving open the question whereto position it.1For an extensive survey see [6], for a tutorial [15].

Most of the systems which actually perform grasp-ing (e.g. Wunsch et al. [24], Tonko et al. [22],Allen et al. [1]) retrieve suitable grasping points froma geometric object model after estimating the poseof the object to grasp. This approach presents twomain di�culties for the usage in an autonomous sys-tem: First, it requires a precise geometric calibrationof at least some parts of the hand-eye system, de-pending on the hand-eye con�guration. To becomeas calibration-insensitive as possible, a visual servoingmethod should be employed in which the (visual) po-sition of the grasping points and that of the graspingdevice, e.g. the tips of a two-�nger gripper, are mea-sured in exactly the same way. Secondly, it requiresgeometric models of all objects to be grasped.Hollinghurst [13] presented a system which ful-�lls at least some of the criteria above: The posi-tion of grasp and gripper are both determined viaa�ne stereo; to extract the former, however, it is as-sumed that the object possesses parallel planar sur-faces, which can be seen as geometric model know-ledge.Without knowledge about the object and with onlyone view of the object, there is only one place tolook for grasping points: its silhouette, or apparentcontour. There already exist methods to determinegrasps, heuristic [16, 20] and analytical ones [21, 7](see Sec. 2.1), but they all operate on images from asingle camera, and therefore need additional contextknowledge to be applicable to 3D grasping.In order to overcome this problem, we developed asystem which determines grasps on the apparent con-tours in a pair of images from a stereo camera sys-tem. Sec. 2 describes the underlying heuristic algo-rithm and the corresponding image processing, includ-ing a method for the automatic detection of the objectto grasp. The reconstruction of 3D grasps is addressed



in Sec. 3; the main components are a matching algo-rithm based on dynamic programming followed by tri-angulation using a simpli�ed geometric model of thecamera system. The system is validated in Sec. 4 withexperiments on the hand-eye system MinERVA.2 Determining 2D graspsIn this section, we �rst review existing approachesand develop our own algorithm to determine grasps onan apparent contour (Sec. 2.1), then move on to de-scribe the developed image processing modules for thedetection of the object (Sec. 2.2) and the extraction ofgrasping points (Sec. 2.3). For image processing, theimage analysis system HALCON [8, 18] was employed.2.1 Finding grasping pointsHow to stably grasp an object is a research �eld ofits own; more information can be found e.g. in [4].Grasping unknown objects based on visual informa-tion only limits the �eld of applicable methods.Kamon et al [16] present a heuristic algorithm todetermine candidate pairs of contour points from asingle image of an overhead camera and to evaluatethe stability of the resulting grasp. The lack of 3D in-formation is compensated by a try-and-error scheme:Successful grasps are learned by executing them witha real robot and measuring the resulting stability vi-sually. As quite a number of the generated candidategrasps are not successful, this approach is not suitablefor on-line experiments.Another heuristic method using similar but morerestrictive criteria for the evaluation of grasp stabil-ity is described by Sanz et al [20]; it has been imple-mented in an eye-in-hand visual servoing system. The3D problem is not addressed.Taylor et al [21] present an analytic algorithm todetermine antipodal grasps on the apparent contour.By using this algorithm in an active vision system, therelative depth of the grasping points can be estimatedto check if the grasp is antipodal in 3D as well. For the2D case, this approach was extended by Davidson &Blake [7] to determine immobilising grasps (\caging").The development of \yet another" algorithm inthe presence of the described, successful methods wasprompted by the observation that they unnecessarilyrestrict the set of possible solutions: The analyticalalgorithms by looking for grasps that are stable evenwhen grasping with point-sized �ngers in the absenceof friction, and the heuristic ones by not using 3D in-formation. For example, Sanz et al. require that the

grasping points lie in the vicinity of the axis of maxi-mum (2D) inertia and as close as possible to the (area)centroid to minimize the e�ect of gravity and the needfor rotational friction. In the case of a object standingon a table, this restriction is unnecessary.Therefore, we start by classifying objects as lyingor standing, using the triangulation method describedin Sec. 3.3. Quasi-spherical objects make up a class oftheir own, as they could be termed lying and stand-ing at the same time. As in [5] and [20], the maincriterion of our algorithm is based on is the symmetryof the object silhouette. In contrast to [20], symme-try is evaluated using the skeleton or medial axis (seeSec. 2.3). Grasps are evaluated using the followingcriteria in addition to symmetry:1. the distance between the two points2. the angle between the line connecting the twopoints and the horizontal plane3. the distance of this line to the area centroidThe stability of a grasp is estimated as a weighted sumof these measures. The weights are speci�c for eachobject class: as already mentioned, criterion (3) forexample is meaningless for standing objects.The algorithm searches for grasping points until thestability estimate reaches a certain threshold, thus it�nds a probably successful grasp but not necessarilythe optimal one. The reason behind this is that with-out further knowledge about the object (e.g. densitydistribution or material) one cannot guarantee that agrasp is optimal, anyway.2.2 Object detectionThe main problem when working on the apparentcontour of an object is that a very precise segmenta-tion is required to prevent looking for grasping pointson a shadow. Robust segmentation is a problem in it-self, therefore researchers often resort to putting darkobjects on white tables. We are no real exeption tothis rule. However, as one of our scenarios sees therobot in front of a table on which the objects to graspare placed, we developed a module capable of detect-ing any change in the scene and thereby segmentingthe object to grasp.First, to reduce run-time computation, the scene isinitalized by de�ning a region of attention (see Fig. 1).This region is periodically checked for any changes intwo consecutive images. When placing an object intothe scene, the hand will �rst enter the region of at-tention, triggering a kind of alarm; only after it has
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Figure 1: Scene in front of the robot: (a) empty tablewith region of attention, (b) before placing the object,(c) after placing the object, (d) segmented object.left the region again, the inner region is checked forchanges. This is performed by a so-called dynamicthreshold operator provided by HALCON: This oper-ator segments an image using a local threshold. Smallchanges in the scene will be melt into the static back-ground, whereas larger changes will be signalled to theuser program. A detected object is then segmentedmore precisely using combinations of morphologicaloperations.2.3 Feature extractionAfter segmenting the region corresponding to theobject, features, in the form of grasping points, are tobe extracted. As mentioned in Sec. 2.1, the principalcriterion is the local symmetry of the region as the ob-ject is to be grasped using a two-�ngered gripper. Amorphological feature well suited for the descriptionof local symmetry is the skeleton or medial axis (seee.g. [9] and Fig. 2a). Each point on the skeleton corre-sponds to the center of a maximal-sized disk containedwithin the region. The main di�erence of our approachto the one of Blake [5] is that we do not search for sym-metrical or antisymmetrical pairs of contour tangents,but directly work on the skeleton, which can be ex-tracted e�ciently using a HALCON operator. First,it is partitioned into line segments. The longer sucha segment is, the higher is the probability of a stablegrasp, so that's where the algorithm starts looking forgrasping points. The contour is intersected with a lineperpendicular to the skeleton segment iteratively untilthe computed stability measure of the grasp meets agiven threshold (see Fig. 2).

a) b)Figure 2: (a) skeleton, (b) �nding grasping points.3 From 2D to 3DTo reconstruct a 3D grasp from a stereo image pair,�rst the corresponding grasping points in the two im-ages have to be found (Sec. 3.1). Based on a simpli-�ed geometric camera model (Sec. 3.2), a triangulationmethod can then be applied (Sec. 3.3).3.1 MatchingThe correspondence problem falls into two parts:The easier one is �nding points corresponding in 2D,so to say apparent correspondences. This can beachieved by matching the two apparent contours andestablishing point-to-point correspondences. For this,we employ an algorithm which was originally devel-oped for object recognition [2]. Here, silhouettes inform of centroidal pro�les are compared using dy-namic programming [3], which yields a distance mea-sure describing the similarity of the two shapes, andthe point-to-point correspondences.The second, much more di�cult part is to assurethat the points are projections of one and the same 3Dpoint. Without further knowledge about the object,this can be achieved via epipolar geometry (see e.g.[19]). The problem with this approach, again, is thatit is too restrictive: assuming a gripper with \real",i.e. not point-sized �ngers, many grasps are feasibleeven if the 2D points do not precisely correspond in3D, as e.g. on a rotationally symmetric object.However, the similarity measure yielded by thematching algorithm can be used to check if the twocameras get similar views of the object (see Fig. 3 forthe opposite case). As the camera baseline is smallin comparison with the average object distance, theremaining errors can be tolerated.



Figure 3: Left and right camera view of a polyhedralobject.3.2 Geometric model of the camera sys-temThe main disadvantage of directly using an esti-mated 3D position to control robot motion is that thegeometric models of the hand-eye system have to bevery precise to enable a successful grasping. We there-fore will integrate the method described in this pa-per into a position-based visual servoing system (seeSec. 4.2). This allows to use a simpli�ed model of thecamera system.The cameras are mounted on a standard pan-tilthead; one can therefore assume that the x- and z-axesof the cameras are co-planar, i.e. the y-componentof a grasping point is identical. Vergence is allowed.Fig. 4 shows the resulting, planar model.
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Figure 4: Simpli�ed model of the stereo camera sys-tem.Internal and external parameters have been iden-ti�ed using a multi-image calibration method basedon a 2D calibration object [17] which is provided byHALCON.

3.3 Triangulation algorithmUsing this camera model, the 3D position of a pointP relative to the left camera (xcL,ycL,zcL), given its 2Dpixel coordinates (XfL;Rg,YfL;Rg) in both images, canbe calculated via the equations for perspective projec-tion, based on the pinhole camera model:xcL = xiL � zcLfL ycL = yiL � zcLfL (1)xiL = (XL � Cx) � Sx yiL = (YL � Cy) � Sy (2)with (Cx; Cy) being the principal point and Sfx;yg thescaling factors. As we are using wide-angle cameras,it is useful to compensate for the radial distortion:x�iL = xiL1 + � � riL y�iR = yiR1 + � � riR (3)with rifL;Rg = x2ifL;Rg + y2ifL;Rg and � being a coef-�cient describing radial distortion, which is identi�edduring calibration.zcL is calculated using the trigonometric relationsof Fig. 4: zcL = dL � cos�L (4)�L = arctan xiLfL �R = arctan �xiRfR (5)with ffL;Rg being the respective focal lengths of thecameras. Using the tangential formula one can derive:tan  = B � sin LdL �B � cos R (6)with the baseline B, fL;Rg = 90�� �fL;Rg� �fL;Rg, = 180� � L � R, and solve it for dL:dL = B � cos(�L + �L)tan(�L + �L + �R + �R) +B � sin(�L + �L) (7)4 Experimental resultsThe algorithms were implemented and testedon our experimental hand-eye system MinERVA(Manipulating Experimental Robot with Visuallyguided Actions), which consists of a 6 DOF manip-ulator arm (amtec) and a stereo camera system on apan-tilt head (RWI) mounted in an anthropomorphicfashion (see Fig. 5). A variety of everyday objectswere placed on tables of di�erent height in front ofthe robot.



Figure 5: The experimental setup.
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Figure 6: Resulting grasping points in the stereo im-age pair for: (1) bottle, (2) �lm box, (3) zucchini,(4) pepper, (5) pen, (6) screwdriver, (7) white boardmarker, (8) onion, (9) walnut.4.1 Feature extractionIn almost all cases the object classi�cation was suc-cessful. Failures resulted from errors in the rough dis-tance estimation. However, this does not mean nec-essarily that no grasp will be computed, but that thestarting conditions are less than ideal.Fig. 6 shows the extracted grasping points in thetwo images.The extracted grasps were often very similar towhat a human would apply. That is to say, symme-tries are found and di�erent strategies are used for thethree di�erent object classes.In the case of standing objects (no. 1 & 2), thegrasps are always above the centroid of the segmentedregion to avoid toppling the object. Humans probablywould grasp such objects from aside and not frontally,implicitly assuming (rotational) symmetry. In con-

trast, our method extracts visible grasps.Lying objects (no. 3 - 7) are grasped from above,with variable orientation of the hand. Grasps in thevicinity of the area centroid are preferred, as they aremore stable, at least in the case of objects with analmost uniform distribution of mass, which has to beassumed in the absence of further knowledge.Spherical objects (no. 8 & 9) can be grasped fromabove or frontally. In the actual implementation, theyare grasped frontally since in this case the �ngers ofthe gripper are visible most of the time. This will fa-cilitate the integration into the visual servoing system.The obvious di�erences in the point-to-point corre-spondences are due to the fact that the contours weresub-sampled (factor 4) to speed up matching. The re-sulting errors are at the limit of what can be tolerated(see the following sections).4.2 ReconstructionThe triangulation algorithm was tested by placinga known object at a known distance relative to the leftcamera, selecting corresponding points manually, andestimating their 3D position. In the relevant workingspace (50cm�90cm from the head), the resulting errorwas well below 0:5cm in all dimensions. No specialpains have been taken regarding the calibration andthe manual selection. The average error of the latterwas 2 Pixel, which is similar to the error occurringduring the extraction of the grasping points or thematching process.In the case of a precise calibration of the head-armrelation, this error can be tolerated as the graspingarea of the �ngers is 1cm2 (see Fig. 7). Additional er-rors in the calibration of the hand-eye system will becompensated by using this method in a position-basedvisual servoing loop. The principal idea is that byusing the same method (here: the triangulation algo-rithm) to estimate the position of target and gripper,calibration errors cancel out. For more information onposition-based visual servoing see [15], for a detaileddescription of our motion control scheme [12].4.3 DiscussionTo evaluate the results, we will focus on crite-ria commonly used by researchers in computer vi-sion: scope (\For what kind of objects in what kindsof scenes grasps can be found?"), robustness (\Howmuch noise and occlusion can be tolerated?"), ef-�ciency (\How much computing power/time is re-quired?"), and correctness (\Will a detected grasp besuccessful?").



Figure 7: Camera view of the gripper at grasp posi-tion.As already mentioned, the scope had been focussedon objects for which geometrical models cannot easilybe constructed, i.e. non-polyhedral objects. In theother case, grasps can be modelled along with the ob-ject and then detected in the image by matching imagefeatures with model features as described for the taskof object recognition in [11]. As shown in this sec-tion, indeed a great variety of everyday objects can besuccessfully processed. Polyhedral objects usually willbe rejected during 2D matching. The main constrainton the kinds of scenes is that the object to grasp hasto di�er clearly from the background, in order to besegmented correctly. We will mitigate this problemby using active contours as proposed in [21] in thefuture. This will also enhance the robustness of thesystem, which is inuenced by the same problems asthe segmentation.Concerning e�ciency, it is worth noting that thefear expressed in [20] that 3D vision would be toocostly with respect to processing time is unfounded:On a Pentium 166, the yet unoptimized software de-termines a 3D grasp in less than 0:5s for an object ofaverage size including segmentation. As the visual ser-voing part has been designed speci�cally to work withasynchronous, de�nitely non-frame-rate feedback [12],this level of e�ciency will already su�ce. The mainbottle-neck is the 2D matching which is highly depen-dent on the number of contour points (order O(mn)).We plan to approach this problem by using a multi-scale algorithm.The correctness can be evaluated qualitatively(\Does the determined grasp appear to be graspableto a human observer?") and quantitatively (\Wouldthe robot successfully grasp the object when movingits gripper to the 3D grasp position?"). Qualitatively,it can be stated that with the used parameters the de-termined grasps always appeared to be correct; some-times, however, no grasp is found. The quantitativecorrectness is harder to determine, as the module is

part of a bigger system. The maximum error of the3D position relative to the head (0:5cm in all direc-tions) alone could be tolerated; this is not true in caseof additional errors in the head-to-arm calibration orthe model of the manipulator itself. Actually we haveintegrated this method with the motion control mod-ule described in [12] and thereby realized the visualservoing system. The results showed that for objectsplaced in the reachable area of the robot the methodwas precise enough for grasping di�erent objects (e.g.the neck of the bottle, see Fig. 5, 6).5 ConclusionWe presented a method that will determine 3Dgrasps on unknown, non-polyhedral objects from astereo pair of greyscale images. The method is re-liable and fast, without using any image processinghardware. Integrated into a position-based visual ser-voing system, this method will bridge a gap on the waytowards an autonomous hand-eye system by specify-ing the target position in the absence of a model ofthe object to grasp.The method itself will be further improved by usingactive contours for a more robust segmentation, andby speeding up the matching process.References[1] P. K. Allen, A. Timcenko, B. Yoshimi, andP. Michelman. Automated Tracking and Grasp-ing of a Moving Object with a Robotic Hand-EyeSystem. IEEE Trans. on Robotics and Automa-tion, 9(2):152{165, Apr. 1993.[2] T. Bandlow, A. Hauck, T. Einsele, and G. F�arber.Recognising Objects by their Silhouette. InIMACS Conf. on Comp. Eng. in Systems Appl.(CESA'98), pages 744{749, Apr. 1998.[3] R. E. Bellman and S. E. Dreyfus. Applied Dy-namic Programming. Princeton University Press,1962.[4] A. Bicchi, J. Burdick, and T. Yoshikawa, editors.Workshop on Grasping, Fixturing, and Manipu-lation: Towards a Common Language. In associ-ation with ICRA'98, May 1998.[5] A. Blake. A Symmetry Theory of Planar Grasp.Int. J. Robotics Research, 14(5):425{444, Oct.1995.
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