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Abstract

This work presents a self-localization system suited for robots roaming in
everyday indoor environments such as offices or residential buildings. Thus,
it has to cope with environments that are typically not a priori modelled or
in any way specially prepared, but are places where people move around and
objects change position from time to time. The proposed localization system
utilizes a panoramic laser range finder with a viewing angle of nearly 360°
that provides planar range scans of the immediate surroundings in a fixed
height parallel to the floor. The sensory input is preprocessed by extracting
line segment features, which indicate the walls or other vertical boundaries
in the environment. The following step is a scan matching procedure: Two
preprocessed scans, which are in general taken from different positions in
the surroundings, are shifted and rotated against each other in such a way
that they optimally coincide. This is accomplished by employing a modi-
fied version of the so-called DP-Algorithm. This algorithm is wellknown in
the pattern recognition domain and provides the optimal assignment of line
segments solely on basis of the two scans without relying on any additional
source of information or a priori knowledge of the environment. Based on
this assignment of line segments, localization is realized by setting up and
solving an overdetermined equation system. A further result from this is an
estimate of the respective position uncertainty, which is to be propagated
through the successive localization steps. The position estimates together
with the sensory observations can be combined to build a map of the envi-
ronment. In this context the robust recognition of known places as performed
by the DP-Algorithm based scan matching is utilized to reduce accumulated
uncertainty. The constructed environmental map is an attributed graph,
which allows for different degrees of refinement and the use of topological
relations side by side with geometrical positions. The approach has been
implemented on a mobile robot and tested in a real world office environment
under varying conditions.
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Glossary

N Number of samples in a panoramic scan.

S Set of scan points forming a panoramic scan.

Su Scan point produced by the panoramic laser range finder (PLRF).

[T, Qu]T Specification of a scan point s, in polar coordinates with r, being
the range value and p, the angle value.

n Number of extracted line segments in a panoramic scan.

L Set of extracted line segments in a panoramic scan.

; Extracted line segment.

[a;, ou]" Hesse notation for the underlying straight line of line segment ¢;
with a; being the distance value and «; being the angle value.

Osi Angle value that defines the start point of line segment ¢; on the
underlying straight line.

Oci Angle value that defines the end point of line segment ¢; on the
underlying straight line.

dy Perpendicular distance of a scan point s, to the current line.

d | max Maximum perpendicular distance of a scan point s, to the current
line.

d; tn Maximum allowed perpendicular distance of a scan point s, to the
current line.

Ay(ut1) Euclidian distance between two scan points s, and s(,1).

|| u(u+1) Distance between two scan points s, and sy parallel to the
current line.

(s Y] Cartesian specification of a scan point s,.

M Number of scan points s,, for which a regression line is to be found.
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Aakl, AOéOp

Aagy

Qijkl (07 p)

Perpendicular distance of a scan point s, to its regression line.
Accumulated perpendicular distance.

Variance-covariance matrix.

Eigenvalues in 2D with A\ > .

Orthogonal eigenvectors in 2D with v; belonging to A; and v,
belonging to As.

Variances in 2D.

Covariances in 2D.

Mean value in 2D.

Set of extracted corners in a panoramic scan.
Corner extracted on basis of the line segments ¢; and £(;;1).

Successive line segments ¢; and /(; ;1) are intersected and a corner
is established, if the absolute value of the angle difference, i.e.
‘a(iﬂ) — ozi} exceeds this minimum threshold.

Specification of the intersection point of the line segments ¢; and
{(i+1) in polar coordinates.

Test scan consisting of m line segments with indices i, k and o.
Reference scan consisting of n line segments with indices j, [ and
p.

Initially chosen pair of line segments ¢;, ;. Needed to bind the
rotatory and one translatory degree of freedom.

Set of tuples identifying the pairs of line segments that are admit-
ted for matching, given that line segments ¢;, ¢; are aligned.

Pair of line segments chosen from P;;. Needed to bind the remain-
ing translatory degree of freedom.

Angle difference between line segments ¢;, ¢; before shift and turn.

Angle differences between line segments ¢, ¢; and ¢,, £,, respec-
tively, after shift and turn.

Distance differences between line segments ¢,, ¢, after shift and
turn.

Pairwise similarity measure between line segments ¢,, £, after hav-
ing bound all three degrees of freedom by “locking” line segment
pairs ¢;, {; and £y, ¢;.
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Cop
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Given tuple (k,[), locally optimal subset of P,;. Also denoted as
locally optimal path.

Locally optimal similarity measure accumulated along the path
Popt,ijkl-
Globally optimal path.

Globally optimal similarity measure accumulated along the path
Popt.

Variance-covariance matrix belonging to the scan points of ¢,, ¢,
respectively.

Overall distribution consisting of the union set of the scan points
of ¢, and £,. Also denoted as virtual line segment.

Mean vector of the overall distribution.

Weighted mean variance-covariance matrix of C, and C,,.
Variance-covariance matrix of the overall distribution.
Underlying straight line of the virtual line segmenet ¢,,.

Variances of ¢,, £, perpendicular to the straight line g.
Variances of ¢,, £, parallel to the straight line g.

Matrix of eigenvectors of C7, .
Distances between g and m,, m,, respectively.

Optimal displacement of the second shift operation between L;.q
and L.

Set of reference scans.

Number of reference scans in L.

Local distance measure.

Minimum accumulated distance measure.
Accumulated distance measure.

Accumulated distance measure at the end point of the DP forward
search.

Accumulated similarity measure.

Accumulated similarity measure at the end of the DP forward
search.

Lower left region of the search matrix.
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A Xy

Reference scan from L. that is the most similar to the cur-
rent test scan Liet.

Similarity measure calculated between Liegt and Lyef pest -

Displacement vector between two positions from where scans
have been shot.

Angle value of the straight line g,,, which is supposed to
represent the actual face of the originating object.

Distance component between m, and m, perpendicular to
gop'
Variance of A®.

System matrix.

Solution vector. In the present case the translatory compo-
nents of the displacement vector AX.

Right hand side vector. In the present case the coefficients
bop-

Residual vector.

Identity matrix.

Diagonal weighting matrix.
Weighting coefficients.

Weighted system matrix.
Weighted right hand side vector.

Variance-covariance matrix of the translatory components of
the displacement vector.

Exactly estimable translatory displacement component in
case of partial localization.

Position in the global coordinate system.

Variance-covariance matrix of the position in the global co-
ordinate system.

Jacobian matrix with submatrices.

Variance-covariance matrix of the displacement vector.

Set of nodes in the graph based map.



Chapter 1

Introduction

During the last decades it could be observed that robots increasingly and
successfully spread in almost all fields of manufacturing and production sce-
narios in order to assist or even completely replace the human operator in
difficult, tedious or dangerous jobs. Popular examples range from small scale
applications such as wire bonding in chip manufacturing or mounting the me-
chanical parts of a wristwatch movement up to large scale tasks like welding
or lacquering a car body or transportation of parts in a plant by automated
guided vehicles.

What all contemporary robots employed for applications as mentioned above
have in common is that on the one hand they perform fast and accurately,
but on the other hand heavily rely on strictly defined operating conditions.
This latter characteristic is due to the fact that the robots’ sensory skills are
still that sparsely developed that an actual perception of the environment
is limited. As a consequence, a typical nowadays robots’ environment is
often specifically designed and heavily prepared, e. g. with magnetic induction
loops, beacons or markers on the flooring or walls, or at least exactly (CAD-)
modelled. The robots’ task is to be precisely specified and the robot has
to be highly trained for the particular task. This requires a lot of human
intervention and engineering involving considerable effort, which has to be
spent over again if there is any change in the environment, the task or the
robot. A further consequence is that unforeseen events, e. g. a car body that
is offered in a different pose or people crossing the workspace, can only be
coped with by simply stopping the robot’s operation.

In manufacturing scenarios these shortcomings can be tolerated as preparing
the environment is an actual option, CAD models are mostly available and
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16 CHAPTER 1. INTRODUCTION

people can be banned from the respective areas. However, if a robot is to
roam in an office or a home environment, e.g. in order to fulfill delivery or
surveillance tasks, it is crucial not to rely on a priori models or environmen-
tal modifications as they are normally not at hand or cannot be installed,
respectively. Furthermore, it is essential that the mobile robot is able to get
along with people walking around in its workspace.

An immediate problem in this context is that on the one hand an environ-
mental model is a prerequisite for the robot’s task-oriented behaviour, on the
other hand the model is not a priori given. So the sensory skills of a mobile
robot employed in an office or home environment must be improved in such a
way as to be capable of exploring, i.e. mapping the environment on its own.
This means that during an exploration phase information gathered by the
robot’s sensory system has to be stored and arranged in a manner that the
robot is able to find its way, i.e. to navigate in its environment thereafter.

A key feature in order to accomplish both, mapping and navigation, is the
ability of self-localization: In the beginning of the exploration phase the
mobile robot is standing at some place in the unknown environment. The
sensory system wakes up and supplies an observation taken from the cur-
rent position. This initial observation represents the nucleus of the later
environmental model. In the following the robot begins to roam and the
sensory system successively provides observations of the surroundings. Self-
localization now renders the correct relation of the single sensory observations
to each other and along that way an environmental map can gradually be
constructed. When the map has been built, self-localization can be used for
navigation, as it indicates the robot’s current whereabouts within the given
map.

Naturally, the main requirement on the self-localization system is to supply
exact positional data. However, as in the present case self-localization is to
assist during the map building phase, additional qualifications are needed:
Firstly, the self-localization system has to be operable even if no a priori in-
formation about the environment is at hand. Furthermore, in order to obtain
a consistent environmental model the localization system should be able to
give a cue whether the current location has already been visited and mapped.
While this feature is not that important as long as small environments are
considered, it becomes essential when large cyclic environments are to be
mapped where positional data may suffer from error accumulation.

In this work a localization system is presented, which uses a panoramic laser
range finder providing planar scans of the surroundings as sensory input. The
approach not only meets the above mentioned criteria, but can also cope with
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the typical boundary conditions in indoor environments, i.e. no preparation
of the environment allowed and people moving in the workspace. Beyond
that, it can operate without any additional input from other sensors.

The presentation is organized as follows: Chapter 2 is a literature survey,
which is aimed at giving an overview of current localization and map build-
ing techniques. Chapter 3 introduces the employed laser range finder and
gives some details about its performance and measurement accuracy. Al-
though laser range finders are state of the art sensors, this chapter may be
interesting as not the commonly used 180° scanner, but a model featuring
a viewing angle of nearly 360° has been chosen. Chapter 4 presents and
discusses alternatives to preprocess the laser scanner’s raw data such that
the actual information is preserved and noise and clutter are reduced. In
this context the two different methods filtering and feature extraction are
addressed. After giving a detailed problem description chapter 5 reveals a
method how laser scans taken from different positions in the surroundings
can accurately and robustly be matched. The employed method utilizes a
modified version of an algorithm that is wellknown in the pattern matching
and recognition domain. Using the results from matching the actual local-
ization problem is tackled in chapter 6. The principal localization procedure
is developed and in the following expanded to the concept of position uncer-
tainty. The second part of this chapter focuses on how localization results
and sensory readings can be integrated into an effective environmental map.
The resulting map structure combines geometrical and topological aspects.
Chapter 7 presents several localization experiments conducted in a real-world
office environment. During the experiments the laser scanner is the only sen-
sory input. So the pure performance of the developed localization system
is presented in different locations and under varying conditions. Chapter 8
gives a summary of what has been accomplished in this work and points out
in which respects the present localization system can be improved.
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INTRODUCTION



Chapter 2

Related and Supplementary
Work

In the present chapter a literature survey of approaches that deal with the
robot localization problem in indoor environments will be given. Before de-
tailing on the different techniques that have been published in this context,
it is important to point out that the robot localization task cannot be viewed
independently: Localization provides a positional fix of the robot in its en-
vironment. However, this information is only actually useful if a reference
frame is given, i.e. if the positional fix is specified with respect to a geomet-
rical or topological map of the surroundings. Usually, such an environmental
map is not a priori given (cf. section 6.1). This is why the problem actually to
be solved is referred to as concurrent localization and map building [Ren93|
or simultaneous map building and localization [CTS97, HHO1].

Whenever the robot localization task comes up there always exists one very
simple and straightforward approach: Utilizing the robot’s odometry as po-
sitional sensor, i.e. evaluating the angular encoders attached to the vehicle’s
wheels (cf. section 7.1). Excelling by its simplicity and availability, odom-
etry suffers from two major sources of error: Firstly, the geometry of the
vehicle’s chassis and wheels is not exactly known. This is referred to as the
systematic odometry error. Secondly, there is an inevitable wheel slippage,
which results in a non-systematic error component. Both kinds of errors can
be reduced: The former by calibrating the odometric system [BF96], the
latter by e.g. using an encoder trailer as suggested in [Bor94]. However, as
odometry is an internal sensor that lacks the possibility to correct potential
inaccuracies by environment perception, positional error is accumulated and
increases without bounds. This means that odometry performs well if short-
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20 CHAPTER 2. RELATED AND SUPPLEMENTARY WORK

term or short-range localization is to be accomplished. Whenever long-term
or long-range localization is the task, odometry has to be at least supported,
if not even thoroughly replaced by a sensor system that actually perceives
its environment and is thus capable of correcting for positional error.

In the following several successful localization and map building strate-
gies found in literature will be outlined. Mostly, the presented techniques
are primarily based on range sensors, i.e. laser range finders or ultrasonic
transceivers. However, they sometimes also extend to image sensors such as
monocular or stereo vision systems using CCD cameras.

2.1 Kalman Filter Approach

To tackle the localization and map building problem, an approach pursued
by many researchers is to employ a Kalman filter. By its nature the Kalman
filter is an optimal state estimator based on a Gaussian error model. The
robot’s position as well as the positions of objects gained from sensory read-
ings are contained in a state vector. While the robot is roaming around
gathering sensory input, the state vector is successively updated, i.e. a new
estimate of the robot’s and the objects’ positions is calculated. The ap-
plied optimization criterion for the state vector update is the minimization
of the (co-)variances. The aimed objective of the Kalman filter approach is
to generate a geometrically exact, global environmental map, i. e. the robot’s
and the objects’ positions are referenced with respect to a global coordinate
system.

This procedure has several implications: Due to the Gaussian assumption,
the approach can only correctly handle data distributions that are adequately
represented by their first and second order moment, i.e. mean and variance.
However, in a real-world environment there are two common cases where this
requirement is not fulfilled: Firstly, outlying or spurious sensory data that do
not agree with the Gaussian model are inevitable. Secondly, and even more
important for practical application is that a typical indoor environment is
characterized by its dynamics due to people trespassing the viewing angle
of the sensor. Any moving object, however, severely violates the Gaussian
assumption: For example, supposing the robot is standing still, successive
range measurements of a moving object would certainly reveal a data dis-
tribution that is far off a Gaussian distribution. This is why it has to be
ensured that a Kalman filter is only provided with Gaussian data originating
from a (quasi-)static environment [LDWC90].
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In order to realize the optimization criterion of the Kalman filter, it is nec-
essary to establish correspondences between sensory readings taken from
different positions. In the case of a range sensor this means that raw
range readings [Cox91, WvP95, LM94, LM97, Gut99], clusters of range
readings (ellipses) [KL97] or extracted geometric features such as line seg-
ments [GOR94, LFW94, KL97, AS97], corners [VTGA94, LDWO1] or circles
[LDW91] have to be related to each other. This is a highly critical task, as
an incorrectly established correspondence will significantly distort the result
of a state vector update operation.

In [LDWC90, LDWO1] the geometric features line segments, corners and
circles are tracked to provide the Kalman filter with the respective input using
the control input to the robot vehicle as initial guess for the displacement
between two successive sensory readings. In [Cox91, LM94, LM97, Gut99,
GORY4, LFW94, K1.97] odometric data give the clue how raw range readings,
clusters of range readings or line segments may possibly mate, respectively.
As detailed above, odometry and likewise the control input to the robot
vehicle only provide an accurate position estimate if covered ranges are short.
This is why, in order to avoid an incorrect correspondence between sensory
readings, the above mentioned state vector update cycles will only cover short
ranges, either. So, Kalman filtering can be characterized as an incremental
approach, which has in turn, two consequences: If there is a serious failure,
e.g. due to an incorrect correspondence, which results in a completely wrong
position estimate, there is no chance of recovery, i. e. the wrong position will
be maintained [GWN99]. Secondly, Kalman filtering is not suited for an
initial localization of a robot in its environment, as in such a case an initial
guess of the approximate position is not at hand.

Finally, a further characteristic of the Kalman filter approach is that if
sensory data are not extremely sparse the state vector becomes very high-
dimensional. As a consequence, in order to neither giving a too optimistic
nor a too conservative state estimate, all coefficients of the resulting, very
high-dimensional variance-covariance matrix have to be considered [CTS97].
The SPmap (symmetries and perturbations map) [CT96, CMNT99] as well
as a modified filtering technique [HHO1] present possible solutions to this
problem.
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2.2 Probabilistic Approach

In recent years several researchers have focused on a probabilistic approach to
concurrent localization and map building. On basis of probabilistic models
of the robot’s motion and the robot’s perception, environmental maps are
built and updated from sensory readings and control input to the robot. The
optimization criterion in this case is finding the most likely map given the
sensory readings at different positions and the control input. According to
the probabilistic nature, the robot’s current position is given as a probability
density function (PDF) defined on the currently optimal map [TBF98]. This
procedure is also denoted as Markov localization and like the Kalman filter
aims at building an exact, geometrically consistent map of the environment
[SK95, SK97, FBTC98, BCF98, TBF00]. As detailed in [BCF*98], Markov
localization only applies if the robot’s pose is the only (variable) state in
the environment, i. e. again, a static environment is required. This is why in
[FBTCI8] an entropy and a novelty filter are suggested to provide Markov
localization only with those pieces of the environment that are actually static.

In contrast to the state vector of the Kalman filter, the PDF does not make
a definite statement about the robot’s position in its environment. This
becomes especially obvious if due to ambiguities the PDF is not a unimodal,
but a multimodal distribution featuring several peaks, thereby supporting
several position estimates, which might be far away from each other. In
the work of [TBF98] these ambiguities are explicitly allowed, as the robot’s
capabilities of accurate measurements and of recognizing places or landmarks
are very limited. Resolution of ambiguities is accomplished by a roaming
robot gathering sensory information, which is successively incorporated in
the map. Along that way, one peak of the PDF will gradually increase
whereas the others will drop. This means that after several map and robot’s
position updates, one position estimate will be preferred to the others.

From the above mentioned it becomes clear that the probabilistic approach
has a global view on the localization task. The advantages gained from this
are feasibility of global localization and ability to recover from erroneous
position estimates [BDFC98]. The major negative implication is the extreme
computational effort: In order to find the most likely map, all possible maps
have to be considered. According to [TBF98], this involves a search in a space
with typically 106 dimensions. Furthermore, for each map the PDF has to
be evaluated with reasonable resolution, involving an integration over 10°
independent variables. Although there are techniques to efficiently search
the likelihood space [DLR77] also in the present context of map building
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[SK97], the effort for a map and position update remains enormous and is
far away from being performed in real-time.

This is why a considerable amount of literature tries to alleviate this com-
putational burden: Monte Carlo localization as a version of Markov local-
ization is introduced in [FBDT99] and improved in [TFB00]; Condensation
is suggested in [JAWAOQO]. Generally, the Monte Carlo method as well as
Condensation belong to the class of so-called particle filters. The underly-
ing idea is to represent the PDF by a discrete, sample-based approximation,
i.e. weighted samples (particles) approximate the PDF. When performing
a robot position update, a new sample is generated by randomly drawing a
sample from the previously computed sample set with position and likelihood
accordingly determined. The fact that a new sample is always derived from
an existing sample has several implications: Whenever the robot’s position is
approximately known, i.e. when the existent sample set is rather dense, only
a small fraction of the PDF has to be actually considered. Secondly, com-
putational effort is only spent where it is really needed, namely around the
position where the robot is supposed to be. Furthermore, computational ef-
fort can be adjusted by the number of samples and can be weighed against the
desired accuracy. The capability of relocalization in case the robot loses its
track can be maintained by adding a small number of uniformly distributed,
random samples. However, the accuracy of relocalization is reduced accord-
ing to the reduced density of samples. Summarizing the above it is to say
that it is thanks to the particle filter methods that Markov localization with
fine spatial resolution is feasible at all. Plain Markov localization without
sample-based PDF approximation would be far too expensive due to its ex-
cessive computational and storage requirements.

2.3 Scan Matching Approach

Kalman filter as well as the probabilistic approaches can be used for any type
of sensor: As outlined above, Kalman filtering often uses odometry or the
vehicle control input besides some kind of environment perceiving sensor. As
well, in [TBBT99] a monocular video system pointed at the ceiling is em-
ployed to support the probabilistic map building approach. In contrast, the
techniques detailed in the following are limited to the range sensor domain.

The key idea of localization by scan matching is to determine a displacement
vector between two 2D range scans, which are taken from different positions,
by shifting and rotating the two scans against each other in such a way that
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the two scans optimally coincide (cf. chapter 5). From this shift and rotation
a displacement vector can be gained that provides (relative) localization.

The first technique in this context is a crosscorrelation approach presented in
[(WWvP94] and expanded to a map building method in [WvP95]: From the
original range scans so-called angle and distance histograms are extracted
and crosscorrelated. The maxima of the respective crosscorrelation functions
represent the rotation and the shift in x- and y-direction between the two
scans. Inherent problems are that the extracted histograms are extremely
noisy and that the procedure only allows for minor changes of the envi-
ronment. This means that even if odometry is used for an initial position
estimate, evaluation of the crosscorrelation functions might be ambiguous or
erroneous when the displacement between the two scans becomes larger.

A second, wellknown technique is the Cox algorithm presented in [Cox91]:
Here, the single scan points of a range scan are assigned to a rectilinear
line of the environmental map. To allow for a pairwise scan matching, a
line extraction procedure has to be applied to one of the scans, so that
this scan can then act as the environmental map. The choice of the line
extraction procedure and which of the two scans it is applied to of course
have an influence on the matching result. The Cox algorithm itself operates
iteratively and tries to minimize an error sum by shifting and rotating the two
respective scans against each other. Formally, it is a technique to calculate
a position correction vector, i.e. a rather accurate position estimate, e.g.
from odometry is necessary to avoid misassignments of scan points and to
guarantee that the algorithm converges to the global optimum. The final
output of the Cox algorithm is a position correction vector and a variance-
covariance matrix that rates the match between the two scans.

Whereas the previous approaches only apply to polygonal environments, the
IDC algorithm (Iterative Dual Correspondence) also performs well if sur-
roundings are arbitrarily shaped [LLM94]. This is accomplished by assigning
the scan points of both scans directly to each other without an intermediate
feature extraction step. By its nature, the IDC algorithm is like the Cox al-
gorithm an iterative procedure that aims to minimize an error sum. The core
of the algorithm are two heuristic scan point assignment rules: The closest-
point rule and the matching-range rule. Simply put, the matching-range rule
provides that the two scans are correctly rotated against each other, whereas
the closest-point rule is responsible for the proper shift between the two
scans. Again, an initial position estimate is mandatory to avoid erroneously
assigned scan points. Just as the Cox algorithm, IDC gives a correction
vector and a variance-covariance matrix.
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However, the variance-covariance matrix calculated by the IDC algorithm
proves to be too optimistic in polygonal environments. Furthermore, com-
putational effort of the IDC algorithm exceeds that of the Cox algorithm.
This is why [GS96] suggest a combined scan matching method, denoted as
CSM, which combines Cox and IDC algorithm in that way that the compu-
tationally cheaper and more accurate Cox algorithm is applied in polygonal
environments, whereas the IDC algorithm is only employed in non-polygonal
surroundings.

As expressed in [GBFK98|, localization using the IDC algorithm is more ac-
curate than Markov localization. On the other hand, Markov localization
proves to be more robust against noise induced by changes in the environ-
ment. In order to reduce noise sensitivity of IDC, [BB99] developed IDC-S,
Iterative Dual Correspondence — Sector. In this approach the scans are di-
vided into sectors, finally matching only those sectors between the two scans
that contain the parts of the environment that remained unchanged.

If it is to establish a geometrically accurate and consistent map in a spa-
cious environment, large cycles in the robot’s path are a significant problem.
Odometry is of course not suited to close these loops as the accumulated er-
ror will be prohibitive to correctly overlap the respective scans. This is why
scan matching techniques are employed to provide a solution: In [LM97] the
concept of consistent pose estimation is introduced, which, however, requires
topologically correct maps. In [GK99] the Local Registration and Global
Correlation (LRGC) method is presented that does not have such require-
ments: Within a certain search area not only one single scan, but several
scans that have been integrated into a map patch are matched against the
map built so far. Along that way, places that have already been visited and
mapped are reliably recognized and cycles can topologically be closed. How-
ever, in order to provide a geometrically correct overlap of all scans being
part of such a cycle, all poses of the cycle from which scans are taken have to
be accordingly updated, i.e. actually closing a large cycle induces significant
computational effort.

2.4 Topological Maps

In the approaches mentioned so far, the maps that were built and used for
mobile robot localization aimed to be geometrically exact images of the envi-
ronment. In the following, some alternative approaches will be outlined that
employ topological maps for this purpose.
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Following [KB91], a topological map consists of distinctive places, which are
relevant for the mission of the mobile robot, and arcs, which connect two
distinctive places in case they are adjacent. Thus, an appropriate represen-
tation for a topological map is a graph with nodes (distinctive places) and
edges (arcs). As only mission relevant places together with their respective
neighbourhood relations are maintained in a topological map, the amount
of data to be stored and processed can be significantly reduced compared
to a geometrically exact map where all parts of the environment have to be
considered (cf. section 6.4).

The price for these computational savings is that in general a pinpoint po-
sition estimate has to be abandoned, i.e. the robot’s whereabouts can only
be roughly given to somewhere in the vicinity of a distinctive place or when
an edge is followed to somewhere between two distinctive places. In [KB91]
this lack of precision is alleviated by a so-called hill climbing technique that
enables the robot to at least find the exact position from where the respective
distinctive place has initially been seen.

Several researchers seized this basic, topological technique and extended or
combined it with other methods: In [SK95] and [JK99] a topological map is a
priori given to support probabilistic navigation and localization, respectively.

[KWN99] present a method to autonomously acquire a graph based map.
Assuming a rectangular environment, the procedure suggested in this work
relies on odometric data and sonar readings in order to distinguish between
different places. Similarly, but employing a probabilistic approach [SK97]
also learn a topological map from odometry and sonar.

Finally, in [TGFT98] it is allowed that the distinctive places degrade to sig-
nificant places, which are still reliably detected, as this is done by a human
operator, but are actually indistinguishable. This leads to topological ambi-
guities, which are resolved utilizing the capability of Markov localization to
handle multimodal distributions, i.e. multiple position hypotheses (cf. sec-
tion 2.2). Furthermore, a metric mapper is added in order to also provide a
high-resolution geometric map.

2.5 Classification of the Present Work

The localization method presented in this work ranges in the category of scan
matching approaches. However, it differs from the work carried out so far
in several aspects: Firstly, the procedure employed for scan matching is an
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algorithm borrowed from the pattern matching and recognition domain (cf.
section 5.5) and is therefore completely self-contained. This means that for
a basic matching operation only the two range scans are required; additional
information e.g. in the form of an initial positional guess from the robot’s
odometry, is in no way necessary. On the other hand, if additional informa-
tion is reliably available, it can smoothly be integrated if desired in order to
reduce possible ambiguities.

As detailed above, the IDC algorithm is sensitive to changes in the envi-
ronment, i.e. occluding and disclosing of parts of the surroundings due to a
changing viewing angle while travelling. In contrast, the presented approach
can very well cope with this effect, i. e. the ability of recognizing places that
have been visited before [Zim95] is highly developed. This very crucial prop-
erty is demonstrated by means of several experiments presented in chapter 7.

The employed map building approach follows the concept of the above men-
tioned topological maps. As the suggested implementation is rather straight-
forward, it is principally sensitive to ambiguities. However, due to the so-
phisticated matching procedure paired with the fact that the employed sensor
system features a nearly 360° view in contrast to the commonly found 180°
devices, ambiguities are not very frequent and can generally be resolved tak-
ing into account rough odometric estimates.
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Chapter 3

Sensor System

3.1 General Description

The core of the sensor system used in this work is the AccuRange 4000-LV
manufactured by Acuity Research [Acu96]. It is a laser diode based distance
measurement sensor for ranges up to about 15m. The sampling rate of the
range sensor is adjustable and can be increased to a maximum of 50000 range
measurements per second. The sensor emits visible red light at a wavelength
of 670 nm and has an optical power of 5mW, rating the instrument as a class
[1Ta laser product which can be granted eye safeness in scanning applications.

To obtain a panoramic 2D line scan of the surroundings, the range sensor
is supplemented by a scanner consisting of an elliptical metal mirror and a
DC motor with position encoder. As can be seen from figure 3.1 the mirror
deflects the vertically outgoing beam by 90° into a flat planar scan. Fur-
ther, it collects diffusely reflected return light and directs it into the sensor’s
collection lens. The mirror’s rotary speed also is an adjustable parameter
and can be set up to 3000rpm. The scanning unit, designed to minimize
shadowed areas, allows an overall viewing angle of about 350° excluding only
two narrow sectors for the scanner’s rails.

The uplink of the panoramic laser range finder (PLRF) to the data process-
ing host computer is realized via a standard ISA interface board. Raw sensor
data consisting of uncalibrated range samples together with correction coef-
ficients and encoder readings are buffered on the interface and are segmented
into single scans. The host reads these data and provides the necessary
calibration, i.e. correction for target reflectivity, ambient light and sensor
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Figure 3.1: Panoramic Laser Range Finder (PLRF)

temperature. To issue commands from the host to the PLRF, there are two
communication channels. Commands concerning the range sensor itself, e. g.
switching the laser beam, are sent via a standard RS-232 serial port. Any

other commands, i.e. interface and scanning unit control, are addressed to
the ISA board.

The host computer in this setup is a standard PC running under the Linux
operating system. Due to the PLRF’s constant sampling rate and limited
memory on the interface, reading data from the interface is a time-critical
task. Therefore, this task is executed within a high priority interrupt service
routine under control of a driver programme running in Linux kernel mode.

In contrast to other commercially available sensor systems offered by the
manufacturers Sick, Leutze and Ibeo, the PLRF used in this work features
a combination of large viewing angle, high sampling rate and, particularly,
numerous accessible parameters for probing and testing: Sampling rate, mir-
ror’s rotary speed, maximum allowed range and laser power level can be
adjusted and experimented with. The correction coefficients, i.e. return sig-
nal amplitude, ambient light amplitude and sensor temperature attached to
every single range sample are not kept sensor internal, but are open to the
developer.

Figure 3.2 shows two typical panoramic scans from our PLRF acquired with
different parameter settings for sampling rate and mirror speed.
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Figure 3.2: Typical scans from our PLRF with (a) sampling rate
16667 samples/s and mirror speed 2190 rpm, leading to 456 range samples
per scan and (b) sampling rate 50000 samples/s and mirror speed 1280 rpm,
leading to 2344 range samples per scan.

3.2 Performance and Measurement Accuracy

This section is a general discussion of factors that affect the PLRF’s per-
formance and relies on the manufacturer’s specification given in the user’s
manual [Acu96] as well as own experiments.

The PLREF’s range sensor will detect diffuse reflections from objects of any
colour with greatest sensitivity falling at about 2.5m, although short dis-
tances right up to the front face of the sensor can be measured. It has
no trouble picking up walls, floors, carpets, and even surfaces such as CRT
screens from almost any angle. Shiny surfaces such as glossy plastic or paint
can be more difficult to detect, depending on the angle at which the beam hits
them. Completely invisible for the sensor are window panes and, naturally,
any kind of specular material.

There are three types of noise that will affect the measurement accuracy in
different ways. They are described below, but each has a range of sampling
rates at which it is the predominant source of noise. Figure 3.3 shows the
accuracy limit imposed by each type of noise for a given sampling rate. The
first type is detector thermal noise, which originates in the signal detection
photodiode, and is proportional to the square root of the sample rate. The
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second type is laser diode noise, and the third type of noise is the resolution
limitation imposed by the sampling method.
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Figure 3.3: Limitations on accuracy versus sampling rate, 85% diffusely re-
flecting target

The vertical scale in figure 3.3 is the attainable accuracy, while the horizontal
scale is the sampling rate. Each line represents a different constraint on accu-
racy due to noise or sampling resolution. For any sampling rate, the highest
line at that rate represents the limiting factor and the attainable accuracy.
At low sampling rates, i.e. below 10000 samples/s the limiting factor is the
laser diode noise, shown as the horizontal line. At higher sampling rates the
limiting factor becomes the detector’s thermal noise, shown as the curved
line proportional to the square root of the sampling rate. At the highest
sampling rates, the sampling resolution becomes a factor, and the diagonal
line shown in figure 3.3 represents the limitations of the sampling resolution
with a maximum range of 9m.

3.2.1 Detector Thermal Noise

Range measurement accuracy at high sampling rates is limited by thermal
noise in the sensor’s detector. Typically, a range measurement will be made
by timing a number of cycles of the output. The larger the number of cycles
timed, the better the averaging or filtering of this noise will be. According to
the theory of noise power and noise bandwidth, the effect is that the standard
deviation of the measurement error increases proportionally with the square
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root of the signal bandwidth, or in this case the sampling rate. The noise in
this sensor is 0.0127 mm/ v/Hz. Multiplying this value by the square root of
the sampling rate will give the root-mean-square noise value (approximately
the same as the standard deviation) for the measurement. Thus, a sampling
rate of 10000 Hz gives readings with a standard deviation of about 1.27 mm.

3.2.2 Laser Diode Noise

There is another source of measurement error that needs to be considered
when taking high accuracy measurements, caused by noise in the laser diode.
This noise is characterized by random changes in the range reading that tend
to increase with the time over which the readings are taken. This becomes
noticeable over times of about 0.3s or more, and increases up to times of
several hours. The standard deviation of this drift is about 0.25 mm at 1s,
and up to 2.5mm in 10 h.

3.2.3 Maximum Range Specification

One of the configuration parameters for the range sensor is the maximum
expected range. This is to allow the sensor to obtain readings with the best
possible resolution and accuracy. Internally, the time required to take a single
sample depends on the distance being measured and the resolution used to
take the measurement. If ranges are known to be short, better resolution and
accuracy at high sampling rates may be obtained by reducing the maximum
range.

3.2.4 Range Resolution

The diagonal line shown in figure 3.3 is an accuracy limit due to sampling
resolution, assuming that the ranges to be measured are 9m or less. This
becomes the limiting constraint above 15000 samples/s. For ranges up to
18 m, the limitation would be a similar line with twice the slope. This is due
to the fact that longer ranges take more time to resolve to the same precision.
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3.2.5 Angular Resolution

The angular resolution of the PLRF is primarily determined by the scanner’s
position encoder which, in our case, features 2000 position counts/revolution,
limiting angular resolution to 0.18°.

However, for high sampling rates together with lower rotary speeds this res-
olution may not be sufficient to guarantee that successively taken samples
actually obtain differing encoder readings. To work around this shortcoming,
the encoder additionally delivers an index pulse indicating a full revolution
of the mirror. This can be utilized to determine the number of samples taken
in the current scan N,. Assuming that the rotary motion of the mirror is
uniform, which is sufficiently granted when the mirror has completely accel-
erated and the rotary speed is not too low, the samples along the scan are
uniformly distributed as well. In this case, the angular resolution of the cur-
rent scan Ap, can be calculated independent of the encoder’s angle readings

according to:

360°
Aog, =

0 N,

The main benefit of this procedure is that angular resolution only relies on
the encoder’s index pulse and can therefore be almost arbitrarily refined (cf.
figure 3.2 b).

(3.1)

3.2.6 Other Factors Affecting Performance

In addition to noise, there are other factors that affect the indicated range
output. One is the already mentioned amplitude of the return signal or
reflectivity of the target. Indicated range can vary as much as 7.5 cm between
very weak signals and very strong ones. Therefore, for each range sample
the sensor produces an 8 bit signal strength output to take this effect into
account. Amplitude output can also be used to create gray scale images of
objects over which the beam is scanned, and to determine whether a sample
is valid or too weak to be reliable.

Sensor temperature and ambient light level also affect the measurement
slightly. Temperature and ambient light outputs allow these effects to be
compensated for in software. In this work, they are not considered signifi-
cant as these parameters do not vary widely in indoor environments.

An additional source of inaccuracy are the so-called outliers. These are spo-
radically occurring measurements that are wide off the right value bearing an
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error far above noise level. For our PLRF, there are two prevalent reasons for
outliers: The first are sudden range changes in the surroundings producing
an output lying between the two distances. This is due to the fact that the
range is averaged over the sampling duration, and also due to the fact that
for a period of time, the laser beam will fall partially on each surface. The
other reason are specular reflections that usually lead to measurements lying
too far away. Both forms of outliers can be found in the scans of figure 3.2.

If the PLRF is installed on a moving platform, one has to consider that scan
acquisition is in fact not a snapshot, but needs a certain period of time.
As a consequence, acquiring a scan while the PLRF is in motion leads to
a distortion of the scan affecting range as well as angular accuracy. This
distortion is dependent on mirror speed, which determines acquisition time,
and platform velocity. For example, assuming mirror speed to 3000 rpm
which equals an acquisition time of 20ms and platform velocities of 1m/s
and 180°/s, respectively, the worst case distortion for a range sample can
reach up to 2cm and 3.6°.
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Chapter 4

Sensor Data Preprocessing

From chapter 3 we learned that a panoramic scan from our PLRF has nearly
a 360° view and consists of numerous measurements being subject to dif-
ferent kinds of noise, perturbation and distortion. This chapter focuses on
different techniques of data reduction and analysis which are applied in order
to extract the relevant information from a scan. Hereby, emphasis is laid on
an algorithm being able to find 2D line segments.

4.1 Notation of a Scan

A panoramic scan is an ordered sequence of N measurements. Each measure-
ment, denoted in the following as scan point, defines in polar coordinates,
i.e. range r, and angle g,, where the laser beam hits an object in the sur-
roundings. Due to the scanning nature of the data acquisition process, it is
ensured that the angles p, occur in an ascending order within this sequence.
This is an important property that will be referred to later on. Thus, the
formal notation for a scan is given by

S:{su:[ru,gu]T‘O§u<N} with 0, < 0,;0<u<v <N (4.1)

4.2 Classification

Current preprocessing methods for scan data can be separated into two sub-
sections. Filtering techniques process a scan by modifying and/or removing
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scan points. Thereby, dependent on the applied filter characteristic, noise
can be smoothed, outliers are rejected and the number of scan points is
reduced; but the scan in its characteristic is left untouched and remains a
sequence of single measurements. Contrary to this, feature extraction tries
to fit a number of scan points to a predefined geometric primitive that can
be specified by parameters, e.g. line segments, corners or arcs. Again, noise
and perturbation elimination is achieved as well as a very significant data
reduction. However, in addition to that, the characteristic of the scan is
changed as it is no longer a sequence of scan points, but a sequence of the
respective geometric primitives. If a priori knowledge about the surroundings
is available, e. g. a polygonal environment, feature extraction usually shows
better results concerning clutter rejection than filtering. Furthermore, the
extracted features can directly be used as input for a higher level processing.
On the other hand, filtering performs better if there is no knowledge about
the environment or if the polymorphic nature of the surroundings forbids
any assumptions. Of course, filtering and feature extraction can be com-
bined, e.g. a filter for outlier rejection with a subsequent extraction of line
segments would be a possible approach. In the following, a few selected
techniques of both preprocessing methods are outlined.

4.3 Filtering of Scan Data

4.3.1 Median Filter

A median filter is mainly used to reject outlying scan points. In contrast
to low-pass or bandpass filters, this can be achieved with only marginally
smoothing or blurring the structures in the scan, as the median filter is based
on a nonlinear calculation: Considering a scan point u, a window containing
W scan points is centered over that scan point. Then, the scan points within
the window are sorted according to their range value, thereby permuting the
original order. In the general case, the center position of the window will
now bear another range value originating from somewhere in the window.
This new range value is denoted as the median for scan point u. Before
proceeding to the next scan point (u + 1), i.e. shifting the filter window by
one scan point, the effects of the sorting are discarded. To process a whole
scan this procedure has to be repeated for all N scan points, leading to a
complexity of O (N W). As large window widths are able to distort the scan,
i. e. rendering structures where there are none, typical values for W are rather
small.
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As can be seen from the algorithm, the estimation of the median is quite
robust, because it does not break down until half of the scan points within
the window are outliers.

Figure 4.1 shows the scan of figure 3.2 b in its original and its median filtered
version. Well noticeable is the significantly reduced number of outliers.
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Figure 4.1: Scan of figure 3.2 b in its original and median filtered version.
The width of the filter window was set to W = 5 scan points.

4.3.2 Reduction Filter

The approach of a reduction filter is to approximate a group of scan points by
one single new scan point, thereby reducing the overall number of points. A
group of scan points is specified by its radius defining a circle within which
all scan points that belong to that group must lie. The new scan point
substituting a group of scan points is simply calculated as the mean value of
the group members. Consequently, a large radius leads to widespread groups
and therefore to a strong reduction.

Another effect is that the filter equalizes spatial scan point density. In areas
close to the sensor, where density is high, groups contain numerous scan
points and therefore thinning is quite strong. Far away from the sensor,
where density is low, groups consist of only few scan points leading to a quite
moderate reduction. As a result from this, distances between successive scan
points become more equal throughout a scan.
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The main benefit of the filter is data reduction, saving subsequent modules
computational effort. A problem arising from this reduction is the possible
loss of important structural information. As well, the equalized scan point
density is not necessarily a gain, as a finer spatial resolution when being close
to an object is in fact helpful. That is why in practice the radius has to be
chosen very carefully, not exceeding values of a few centimeters. An O (N)
algorithm implementing the reduction filter can be found in [Gut99].

Figure 4.2 shows the thinning and equalizing effect of a reduction filter ap-
plied on the scan of figure 3.2 a.
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Figure 4.2: Scan of figure 3.2 a in its original and reduction filtered version
with only 156 scan points. For illustrative reasons, the radius of the groups
has been chosen to the very large value of R = 5cm.

4.3.3 Projection Filter

A projection filter is a sifting process, only preserving selected scan points
and discarding the others. The sifting considers the following perspective
criteria: Given a scan taken at position A and further given a new position
B, e.g. as a displacement vector emanating from the position A, only those
scan points are preserved that would be visible from the new position B.
Any other scan points that are not visible or shadowed will be removed from
the scan. So the actual procedure is a projection of the current scan onto
the new position B.
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To realize the filter, one utilizes the property that within a valid scan, suc-
cessive scan points feature monotonously growing angle readings. If this
rule is violated when projecting the scan points to the new position B, the
respective structures are seen “from behind”. This means that they are ac-
tually invisible from position B and that the scan points of the affected angle
sectors must be removed to render the scan valid again. Additionally, the
affected sectors screen other structures (grey areas in figure 4.3 a), which
were previously visible. So the scan points of these screened structures have
to be removed, too. The overall result of the projection filter is illustrated in
figure 4.3 b. The appropriate algorithm has complexity O (N?) and can also
be found in [Gut99].

Figure 4.3: Projection Filter: (a) Scan taken at position A with scan points
boxed that are invisible from position B. The resulting screened areas are
shaded in grey. (b) Result of filtering.

The value of this filter is twofold. First, it is again data reduction. This time
not by modifying scan points, but by focusing on the respectively visible parts
of a scan. Second, ambiguities that possibly arise when dealing with multiple
scans from different views can be avoided. A handicap of the projection
filter is that, in contrast to the median and the reduction filter, it is not self-
contained. As mentioned above, it relies on additional input in form of a new
position or a displacement vector. This information cannot be drawn from
the scan itself, but must be provided by another source. Thereby, the quality
of the filter result fundamentally depends on the accuracy of the estimate of
the new position on which the scan is projected.
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4.4 Feature Extraction

4.4.1 Extraction of Line Segments

If the surroundings can be assumed to be of polygonal shape, the extraction
of line segments will be an appropriate method. The basic concept is to
substitute a scan by an ordered sequence of n line segments approximating
the original run of the scan points. Each line segment /¢; is specified by four
parameters, which are in the present work chosen to be the Hesse normal
notation [a;, a;]” with distance a; and angle a; for the underlying line, and
two additional angles [o;, gei]T to define start and end point on the line,
respectively (cf. figure 4.4).
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/ //
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/ /\/ \
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Figure 4.4: Parametric specification of a line segment ;.

Consequently, the formal notation of a scan expressed by equation (4.1) is
changed to

L= {gz = [aivaia Osis Qei]T ‘ 0 S 1< n}
with 04 < 06 < 055;0<i<j<(n—1) (4.2)
As it is the case with the scan points, the angles oy, 0.; occur in increasing
order. Again, this property will be utilized.

In the literature several approaches are to be found that solve the problem
of extracting line segments from a sequence of points. The main differences
between them can be observed in performance and complexity. Histograms
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[WW+vP94] or the Hough transform [FLWA93] are applied, as well as a novel
solution called Adaptive Least Kth Order Squares (ALKS) that is highly
adapted to the statistical characteristics of the data points [LMP98]. Those
methods are able to reject outliers and join collinear segments, but all fea-
ture complexities of O (N?3) or even more. Clustering techniques operating
in (a,a)-feature space [VIGA94] require moderate effort, but are sensitive
to noise when spatial density of scan points is high. The algorithm preferred
in our case originates from image processing [PH74] and has a worst case
complexity of O (N?). Tt gets along with noise, but is sensitive to outliers,
i.e. line segments split when outliers occur. The algorithm is a recursive
two-stage procedure, which has successfully been applied on scan data in
[Gut99]. The actual realization proposed here preserves this two-stage na-
ture, but introduces a better adaption to data points provided by a scanner
with constant angular resolution.

Before going into the details, the algorithm will be roughly outlined. In the
first step, the scan points of a scan are divided into an arbitrary number
of groups consisting of consecutive scan points in their natural order. As a
result, every group features a dedicated start and end scan point. Reasonable
for the practice is any number of groups between 2 and 10. The reason for
grouping is to avoid that large parts of the scan are considered over and
over again having very little chance to belong to one line segment due to the
panoramic nature of a scan.

The second step contains the recursive part (cf. figure 4.5). Start and end
scan point of a group are connected by a straight line and for all scan points
lying between start and end scan point the distances d, , to this line are
calculated. If the maximum of these distances d | 1,ax €xceeds a given thresh-
old d; tn, the line is split at the scan point producing this maximum and
two new straight lines are established: The first leading from the start scan
point to the maximum distance scan point, the second emanating from the
maximum distance scan point to the end scan point. In the following, the
above procedure of maximum distance calculation, thresholding and possi-
ble splitting is recursively called until no more splitting takes place, i.e. the
whole group of scan points is approximated by lines. In order to improve
accuracy of the line parameters, an orthogonal linear regression is performed
for each subgroup of scan points that is associated with a straight line. As
start and end points of the extracted lines can easily be determined, a line
segment description as introduced above, which also regards the direction
of a segment, is provided. To avoid clutter, only line segments exceeding a
minimum number of associated scan points are eventually established. So far
the core of the algorithm. In the following, some aspects will be considered
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Figure 4.5: Line segment extraction within a group of scan points: (a), (b)
First iteration of a line extraction cycle with maximum distance calculation
and splitting. (c) Completed line segmentation. (d) After orthogonal linear
regression.

in detail.

Due to the presence of multiple groups with boundaries arbitrarily set, it
will happen that the end scan point of a group does not coincide with the
end point of a line segment, as the line segment exceeds the group’s end
point. Since additional splitting of line segments is undesirable, the following
proceeding is chosen(cf. figure 4.6). Before the last line segment within a
group is established, the current end scan point of the group is replaced by the
end scan point of the subsequent group. Afterwards, the iterative procedure
as detailed above is started all over with unaltered start scan point and the
new end scan point. In this way, all the groups of a scan are subsequently
processed, using the originally set boundaries only as a first clue. Obviously,
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Figure 4.6: Segment extraction when crossing a group boundary.

this results in a re-processing of a certain portion of the group’s scan points.
However, this procedure implicates a benefit that will be explained below.

So far, only the (perpendicular) distance d , of a scan point to the current
line was under consideration. Now the distance d|| ,(,+1) between two consec-
utive scan points u and (u 4+ 1) that is parallel to the current line segment
will also be used. If dj41) exceeds the threshold d,, the current line
segment will be split between the two scan points u and (u + 1). This means
that in contrast to [Gut99] where only the absolute value of the distance

2

du(ur1) = \/d||,u(u+1)2 + (i — diwsn)) (4.3)
is regarded (cf. figure 4.7), the proposed version of the algorithm treats the
two distance components dj u+1) and d, ., separately. The advantage is
evident: Due to the separate treatment, the two threshold values d; 1, and
d||sn can be chosen differently. d, 1, which is crucial to resolve fine structures
in the environment or to identify outlying scan points, is set to a rather small
value of typically 5cm. djn, however, which is mainly used to avoid that
a group of scattered scan points incidentally creates a line segment, can be
set to a much larger value of about 25 cm. Along that way, the algorithm is
on the one hand able to discern fine structures, and on the other hand it is
capable of producing line segments even when distances between scan points
grow larger, which is the case for long ranges.

In order to refine the parameter tuple |[a, a]T of the extracted line segments,
an orthogonal linear regression is suggested. Contrary to ordinary linear
regression, orthogonal linear regression assumes errors not only along the or-
dinate, but as well along the abscissa. This approach is also known as the
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current line segment

Figure 4.7: Distances considered when establishing a line segment.

errors-in-variables model or total least squares. As it is self-evident that er-
rors in scan point position will affect both coordinates, orthogonal regression
properly matches our case.

If (2, yu]T with 0 < u < M is the cartesian description of the scan points for
which a regression line is to be found, orthogonal linear regression realizes

the optimization

M-1 M-1
Eris = Z eTLS,UZ = Z (cosa -z, +sina -y, — a)2 = Min (4.4)
u=0 u=0

with error measure errg, denoting the perpendicular distance of a scan point
to the regression line (cf. figure 4.8).

Figure 4.8: Orthogonal linear regression.

From the literature, e.g. [RL87] it is known that the above optimization
problem can be equated with an eigenvalue problem. The matrix for which
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eigenvalues and eigenvectors have to be determined is the variance-covariance
matrix C set up by the distribution of scan points associated with the re-
spective line segment. As can be seen from figure 4.8, the eigenvectors vy, v
are aligned with the principal axes of the distribution, and the eigenvalues
A1, A9 are identical to the variances along these axes. In the present 2D case
the variance along the second principal axis, i.e. Ay becomes minimal. So
the accumulated error measure Erpg that can be expressed as:

Erps= (M —1)- X (4.5)
also reaches its minimum.

The actual formulae solving the optimization problem now read as follows:

Eigenvalues:

A =05 <sm + Syy + \/(sm — syy)2 + 4sxy2)

Az = 0.5 (‘SM Sy — \/<Szx - 5yy>2 + 43xy2> (4.6)
)\1 > )\2
with (co-)variances:
M-1
1
2 a2
Sgx = Sz _M_luzo (‘ru l’)
| M
Syy = 8y° = M—1 (Yu — ?3)2 (4.7)
u=0
| Ml
Sy = Syx = 3 (20 — %) (yu — 9)
u=0

o [sm sxy} _ [sxz sxg} (4.8)

and mean values:

N M-1
T=7 Ty

u=0

M-1
-1 (4.9)
Yy = Vi 2 Yu
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enable the calculation of eigenvectors:

v, = {UM} — {)‘2 o Sm} = [ Say }belonging to A\p

_ Vg o Sxy . Sex — )\1 ' (41())
R

'l)1T°’UQZO

which leads to the final formula for the refined tuple:

T
al V2
[a} o [arctan Zﬂ] (4.11)

2x

The eigenvalues Ay, Ao calculated for each line segment can be used as an
additional characterization: The larger Ay, i. e. the variance in direction of the
line segment, the longer the line segment is. The smaller Ao, i.e. the variance
perpendicular to the line segment, the more precisely the segment could be
extracted from the associated scan points. So one can resume that the larger
A1 and the smaller Ay, the more significant and reliable the extracted line
segment becomes. Later, we will refer to this qualitative statement and
transform it into quantitative formulae.

4.4.2 Extraction of Corners

Extracting corners is based on line extraction. Successive line segments ¢;
and £(;;1) are intersected and a corner is established, if the absolute value of
the angle difference, i.e. |o11) — ;| exceeds the minimum threshold Aayy,.
The position of the corner with respect to the PLRF is identified by the
intersection point, which is given as range 7;(;41) and angle g;;41). So the
parameter tuple specifying a corner reads as [ozi, Q(i41)5 Ti(i+1) gi(iﬂ)}T
Again, an ordered sequence with an additional monotony criterion represents
the corners within a scan:

T
C= {Ci(i—i-l) = [ai, A(i+1) Ti(i+1)5 Qi(i—i—l)} ‘
0<i<(n—1)A !a(iﬂ) — ai’ > Oéth}
with i1y < @i+ 0<i<j<(n—1) (4.12)

The algorithm implementing corner extraction is very similar to the line
extraction procedure. As for corner detection only straight lines are needed,
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indication of start and end angles is omitted. If the angle difference votes for
the creation of a corner, the intersection point [n-(iﬂ), gi(Hl)]T is calculated
according to:

1 2 2
sinlor ) a; + ag _2CL7;CLi CoSs |y — o
|:Ti(i+1):| _ sm(a<i+1)—o¢i) \/ 7 (i4+1) (i4+1) ( (i+1) )

Qi(i+1) arctan (a(w'COS(%)_”COS(O‘@#)))

a; -sin(a(i_H) ) —a(i4+1)-sin(a;)

(4.13)

As there is no complexity added compared to line extraction, the algorithm
for corner extraction has the same order of O (N?).

4.5 Discussion

As the present work focuses on indoor environments, it is legitimate to as-
sume that surroundings are of polygonal shape, i.e. walls and other vertical
boundaries are straight and smooth, and if these structures meet or intersect
a rather sharp (but not necessarily a 90°) angle will be formed. Small or large
scale round features are quite unusual, receiving only a small share in the
discernible structures. These assumptions can easily be validated by inspec-
tion when looking at the scans delivered by the PLRF. This implicates that
geometric primitives like line segments or corners are well suited to match the
surroundings and that these features are therefore qualified to approximate
the run of the scan points.

Due to the proper fit of features with surrounding structure, the data reduc-
tion achieved by feature extraction can easily reach two orders of magnitude,
e.g. 1000 scan points versus 10 extracted line segments. Comparing this
to filtering techniques, it becomes evident that median filtering provides no
data reduction at all, projection filtering being dependent on the view point
does not guarantee any reduction, but only reduction filtering assures an
actual decrease in the amount of data. However, feature extraction by far
exceeds the performance of a reduction filter, which only reaches about one
order of magnitude, e. g. 1000 scan points before versus 100 scan points after
applying. In addition, feature extraction achieves data reduction without a
significant loss of information: Whereas a reduction filter abolishes any kind
of fine structure, which was originally available in the scan, line segment
extraction is able to reproduce even the details.
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Nevertheless, the question arises if the already mentioned combination of
filtering and subsequent feature extraction will yield a benefit. The obvious
advantages would be twofold: When a reduction or a projection filter are
applied, the number of scan points will be reduced leading to a respective
shorter execution time for feature extraction. Applying a median filter will
eliminate outliers thereby avoiding additional splitting of line segments. This
effects that extracted line segments become longer and fewer.

Considering the shorter execution time, one has to take into account that
additional filters imply additional computational effort. A projection filter
with its insecure reduction performance and complexity O (N?), which is in
the same range as line extraction itself, is not worth the extra effort if only
applied due to speed-up reasons. In case of a reduction filter, where com-
plexity is only O (N), an overall gain remains. But as experiments revealed
also the reduction filter is arguable: If the radius R is chosen large, i.e. 5cm
or more, structural details will be irrecoverably lost. If R is small, details
may reasonably be preserved, but computational gain becomes marginal.

Assuming a fixed window width W, the median filter only adds compu-
tational complexity of O (V). However, it introduces nonlinear distortion,
which affects the parameters of the extracted lines especially when W is cho-
sen large, i.e. 7 or more scan points. This opposites to the fact that the
wider the window is, the better outliers will be rejected. So, also median
filtering is ambiguous and can in fact only be recommended for small W or
if one heavily relies on long line segments.

Finally, one can resume that median and reduction filtering prior to feature
extraction are only of benefit, if applied carefully. In the other case, loss
and error induced by the filters prevail and even worsen the result. The
profit of projection filtering only becomes evident when the view point or
the surroundings have essentially changed.



Chapter 5

Scan Matching

In the preceding chapter, filtering and feature extraction techniques were ap-
plied on the raw sensory data considering only one panoramic scan at a time.
Now the focus is set on how to shift and turn fwo panoramic scans against
each other so that they optimally coincide, thereby establishing correspon-
dences between the data of the two respective scans. Furthermore, we want
to gain a similarity measure in order to rate how well congruence between
the two scans could be achieved.

5.1 Problem Description

As already discussed in section 4.5, line segment extraction is a very promis-
ing preprocessing technique, primarily due to its significant data reduction
potential and its ability to reproduce even fine structures in a polygonally
shaped indoor environment. This is why in contrast to several other ap-
proaches [BCF198, TBB199, LM97, Gut99], the input data to the scan
matching problem are chosen to be preprocessed scans, each holding a se-
quence of line segments as expressed in equation (4.2).

In order to get a concept of the major problems and limitations of scan
matching, a practical example is employed: A mobile platform is approaching
a T-intersection of two corridors. After reaching the intersection, it executes
a right turn. To simplify considerations, it is assumed that the origin of the
platform coordinate system and the origin of the PLRF’s coordinate system
coincide.

Figure 5.1 shows the platform as a crosshair having one long leg indicating

o1
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the vehicle’s forward direction and the path of the platform sampled at
positions py through ps and plotted into a floor plan of the surroundings.
In contrast, figure 5.2 shows the PLRF images from the respective positions
after line segment extraction. The illustrated scans are idealized as at first
only geometrical aspects of scan matching are addressed. The effects of the
real sensor and the preprocessing procedure are left aside for the present and
will be attended to later.

Figure 5.1: Floor plan of surroundings with plotted positions py through ps.

5.1.1 Geometrical Aspects

When looking at the floor plan with the plotted positions, the human observer
may judge the task of scan matching an easy one. However, when viewing
the PLRF images in figure 5.2, problems become more evident:

As it is assumed that there is no initial information about the distance trav-
elled between the single positions, PLRF scans can only be represented with
respect to the moving coordinate system of the sensor or the platform, re-
spectively. Due to this lack of a global reference that would relate the scans
to each other, any difference in position and orientation of corresponding
segments is possible.

Although the environment chosen for this example is quite simply structured,
there is only one position (p;) from which all the walls can be seen and
extracted as line segments. In every other position walls are at least partially
occluded and the available information is reduced.
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Figure 5.2: Idealized PLRF images after line segment extraction seen from
positions pg through ps.
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Due to these occlusion effects a correspondence between the length of ex-
tracted line segments and the length of corresponding walls can only be
established in the way that a line segment can never be longer than the
underlying wall. Unfortunately, this already vague statement is rendered
completely meaningless when considering that scans are compared to each
other and that the length of the underlying wall is normally not known.

When comparing the scans taken from position py and ps3, the above men-
tioned effects become especially adverse: These two scans only have two line
segments in common, which differ in position, orientation and length.

The main problem manifesting itself here is that even if two line segments
from two different scans originate from the same wall and therefore actu-
ally do correspond, none of the four parameters by which a line segment is
specified proves to be invariant against position changes of the PLRF, i.e.
travelling of the platform. It is important to mention that this statement
holds true not only for the specification chosen in equation (4.2), but for any
parametric specification of line segments.

5.1.2 Ambiguity Problem

Depending on the surroundings, there are cases where scan matching has
more than one optimal solution, i.e. when there are several possible map-
pings between two scans that provide equally optimal matches. This always
happens when the PLRF image of the surroundings is ambiguous due to sym-
metries. For example, if a rectangular room is assumed where only the four
walls can be perceived, it is evident that there are always two possibilities
with an orientation difference of 180° that provide an optimal match between
two PLRF scans. If the room is perfectly square, the number of possibilities
even increases to four with an orientation difference of 90°. The ambiguity
problem is an inherent defect of scan matching and can therefore be consid-
ered an actual limitation, which can only be overcome by employing other
sources of information. Usually this is not too serious as the different possibil-
ities suggested by scan matching mostly feature large positional discrepancies
so that a rather rough plausibility cross-check against e. g. odometry data will
suffice to provide a unique solution.
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5.1.3 Effects of Actual Scan Data

Up to this point only idealized PLRF scans were considered. Figure 5.3 gives
a clue how an actual PLRF scan taken at position p; would presumably look
like. In grey still visible the extracted line segments of the ideal case, the
actual scan shows imperfections in position and orientation of the extracted
line segments due to noisy sensory data (cf. section 3.2).

-
-

P—

Figure 5.3: Actual PLRF scan from position p; after line segment extraction.

Beyond this, one observes that when surroundings form a concave or convex
corner, there usually will be a gap between the respective consecutive seg-
ments. This results from the fact that especially when considering concrete
walls, surfaces in corner regions often are uneven and jagged, which means
that sample points taken from there are poorly reflected or even completely
deflected (cf. figure 4.5).

The existence of seams or joints even in straight walls is another reason
for gaps between segments. Again, the essential property of the surface to
provide diffuse reflections may be lost in these areas, and invalid or outlying
sample points may be produced. As a consequence, it is well possible that
one long straight wall may disintegrate into several consecutive line segments
divided by gaps. This already undesired disintegration effect is even worsened
as it cannot be considered systematic: In one scan a seam in a straight
wall may be harmless, as reflectance is only slightly disturbed. In the next
scan, even if position and viewing angle are maintained, reflectance may be
seriously affected and the wall will divide into two line segments.

When the range limit of the PLRF is exceeded, poor reflections increasingly
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cause gaps and even whole dropout areas in preprocessed scans. Clearly this
effect is heavily dependent on the surface the laser beam hits: A smoothly
plastered, white painted wall will be recognized from much farther away than
a jagged, dark grey concrete face.

Finally, there are two additional, about 5° wide gaps, which are caused by a
systematic effect of the employed sensor: The rails supporting the scanning
unit of the PLRF produce two shadowed sectors where no information about
the surroundings can be gathered (cf. figure 5.3, dotted sectors).

5.1.4 Goals

The primary goal of scan matching is to identify the corresponding pairs of
line segments in two different scans, taking into account the above mentioned
geometrical aspects and the shortcomings of preprocessed PLRF scans. Sec-
ondly, a similarity measure is required that rates the quality of these cor-
respondences and thereby also rates the overall quality of the match. How
this is actually achieved and which methods are applied is the subject of the
following sections.

5.2 Matching Method

Before presenting an overview over the matching method, a few notations
concerning the participating scans are introduced. Without restriction of
generality, one of the two preprocessed scans, usually the most recently
recorded one, is denoted as test scan Lies, consisting of m line segments;
the other preprocessed scan, usually a previously recorded one, is denoted
as reference scan Ly, consisting of n line segments. The line segment in-
dices 7, k and o denote line segments in the test scan, whereas indices 7, [
and p denote line segments in the reference scan. Following the notation of
equation (4.2), this leads to:

Liess = {6 | 0<i<m}={l | 0<k<m}={l|0<0<m} (5.1
Le={{;|0<j<n}={6]|0<l<n}={0|0<p<n} .

The search for the corresponding pairs of line segments in two different scans
naturally relies on a pairwise comparison of segments ¢; against ¢;. However,
for such a comparison it is inevitable to have at hand at least one invariant
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feature for each segment, on which the actual comparison and computation
of a similarity measure between ¢; and ¢; can be based. Unfortunately, as
detailed in section 5.1.1, this prerequisite is not fulfilled in the present case.

However, by considering not only ¢;, ¢; alone, but also the context of these
segments, i. e. the remaining other line segments in Ly, and Ly, this prereq-
uisite can be satisfied and a method for matching two scans can be deduced:

1.
2.

Two segments ¢;, {; are randomly chosen.

Liest is shifted and turned against L, in that way that line segments
¢; and {; become perfectly aligned. Without going into the details of
the similarity measure between line segments, which will be discussed
in section 5.3, it can already be understood here that this perfect align-
ment will maximize the similarity measure between ¢; and ¢;. Further,
by this alignment two of the three degrees of freedom, which are pos-
sible in the plane, become bound.

. To bind the remaining translatory degree of freedom, thereby establish-

ing a common coordinate system between Lot and L, another pair
of line segments /¢y, ¢; is picked, so that

(k1) € Py \{(i,4)} (5.2)
holds true.

P;; is the set of tuples identifying the pairs of line segments that are
admitted given that line segments /¢;, ¢; were aligned. The restriction
applied here considers the fact that by choosing a tuple (i, j), the an-
gle difference between L. and L. before shift and turn is assumed
to Aa;; = (a; — ;). So it can be concluded that tuples (k,1) with
an angle difference Aoy = (ax — o) after shift and turn that signif-
icantly deviates from 0 cannot represent candidates for corresponding
line segment pairs and can therefore be ruled out from the outset.

Liest is shifted against L along the line established by the pair ¢;, ¢; so
that the similarity measure between ¢y, ¢; also reaches its maximum (cf.
section 5.3). Note that this shift does not affect the similarity measure
between segments ¢;, ¢;.

. After having bound all three degrees of freedom by “locking” line seg-

ment pairs ¢;, {; and fj, {;, a pairwise comparison of line segment
parameters and thus the computation of a pairwise similarity measure
between line segments /,, £, becomes possible:

qijkl (07p) 2 O Wlth (0,]7) € Pij (53)
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6. By summing up these pairwise similarity measures in a way that
e a maximum is reached and

e restrictions implied by the natural order of line segments (cf. sec-
tion 4.4.1) are respected,

a local accumulated similarity measure is provided:

Qmax,ijkl = Z Qijii (0,p)  with Py ijm € P (5.4)

(0,p)EPopt,ijkl
How the optimal subset P,y ;51 is found will be discussed in section 5.5.

7. Repeating steps (3) to (6) for all admitted tuples (k,[) and repeat-
ing steps (1) to (6) for all possible tuples (7, j) allows for the global
accumulated similarity measure between L and Ly

Qmax = Inax Qmax,ijkl (55)

From this, a globally optimal subset P, can easily be derived by

Popt = argmax Qmax,ijkl (56)

indicating all pairs of line segments ¢,, ¢, contributing to the best match
between Lies; and Lyer. Thus, the subset Py is likely to represent the
actually corresponding pairs of line segments, which have been searched
for.

A drawback of the above method is its inherent complexity of O (m? n?), still
leaving aside the complexity of step (6), which will be discussed later. Yet it
can be notified that the computational effort that has actually to be spent
is dramatically lower. Details on this issue are discussed in section 5.5.2.

Figures 5.4 through 5.6 illustrate the whole matching procedure employing
the PLRF scans from the above example with the scan taken from position

po being the reference scan L,.¢, and the scan from p, being the test scan
Ltest-
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Figure 5.5: Situation after step (2).
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Figure 5.6: Situation after step (4).

In figure 5.4 the two scans are drawn on top of each other using the origin
of the PLRF’s coordinate system as initial reference.

Figure 5.5 shows the result after step (2) given tuple (0,0) has been chosen
and the appropriate shift and turn operation to align segments and thus
maximizing the similarity measure has been performed.

Consequently, in the present case the first set P;; is Py writing as:

POO = {(070)7(1’1)7(371)} (57)

As can be seen, all other possible tuples show an angle difference of 90° or
more after the shift and turn operation. The large angle deviations indicate
that these tuples cannot represent candidates for corresponding line segment
pairs and are therefore ruled out.

Figure 5.6 shows the situation after step (4) given that tuple (1,1) has been
picked from Py, and the respective second shift operation has been finished.

As scans in the present example are idealized, the chosen pairs of line seg-
ments denoted by tuples (0,0) and (1, 1) provide a perfect lock. All three
degrees of freedom become bound and a common coordinate system between
Lies; and L. is established. Also note that the second shift operation did
in no way affect the alignment established in step (2). Now computation of
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the similarity measure o171 (0, p) with (o, p) € Py and thus computation of
a local accumulated similarity measure Qo117 according to step (6) becomes
possible.

Obviously, the chosen lock with (i, 7) = (0,0), (k,1) = (1,1) will not provide
the best match between L,¢; and Liegs, i.€. Qoo11 # @- In order to find out
the global accumulated similarity measure (), iterations over all admitted
tuples (k, 1) and over all possible tuples (i, j) have to be performed according
to step (7).

5.3 Similarity Measure Between Line Seg-
ments

After having picked two pairs of line segments denoted by tuples (4, j), (k,1)
and thus binding all three degrees of freedom in the plane, computation of
a pairwise similarity measure g,z (0, p) between the two segments identified
by the tuple (o, p) is possible. The following paragraphs will illuminate how
the similarity measure between line segments is actually computed.

First, there are a few basic requirements that make sense for an expression
that is denoted as similarity measure:

e Strictly positive, i.e. g;ju (0,p) > 0.

e Monotonically increasing, i. e. the more similar the segments, the larger
the similarity measure.

e Commutative, i.e. similarity of ¢, to ¢, is always the same as ¢, to /.

The term similarity between line segments can be equated with the similarity
of the descriptive parameters of the line segments. Based on this principle,
two different similarity measures will be evolved and discussed.

5.3.1 Similarity Measure Based on Geometrical Pa-
rameters

Given one common coordinate system, the similarity between two line seg-
ments ¢, ¢,, which are given in their geometrical, parametric description as:
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Eo = [am Qo Os0, Qeo]T

gp = [apa Qp, Ospy Oep

(5.8)

]T

can be rated by the following attributes:
e Differences in straight line parameters [a, a]T , 1. e.
— distance difference Aa,, = (a, — a,) and
— angular difference Aay, = (a, — ay).

e Differences in angle parameters o, and . defining start and end point
of a line segment on the underlying straight line.

Due to occlusion (cf. section 5.1.1) and non-systematic disintegration and
dropout effects (cf. section 5.1.3), the two angle parameters pg and g, are non-
deterministic and are therefore not qualified to make any statement about
the similarity of two line segments. The straight line parameters [a,a]”,
however, are invariant against these factors. A line segment being shorter
due to partial occlusion or a segment that has disintegrated e.g. into two
parts still maintains its straight line properties. That is why Aae,, Acg,
are the only attributes which are finally utilized for the geometrically based
similarity measure.

Figure 5.7: Similarity measure between two line segments based on geomet-
rical parameters.



5.3. SIMILARITY MEASURE BETWEEN LINE SEGMENTS 63

A straightforward notation of the similarity measure writes as:

1 .
Gijri (0,p) = 1T AT B with
A= co - Aag (5.9)
B =c, - Aayy

Cay Co € RT

If angular and distance differences are 0, the similarity measure reaches its
maximum value 1. When differences increase, the similarity measure drops
monotonically reaching 0 as asymptotic minimum. On the other hand, if
segments become shorter or longer or if a segment is shifted along its under-
lying straight line, i.e. if there are changes in o,, 9., the similarity measure
remains the same.

The above notation excels by its simplicity and also features invariance
against the unreliable angle parameters g, o, but it also holds several draw-

backs:

e Although there are four descriptive parameters for each line segment,
only two parameters prove to be reliable and can actually be employed
for the similarity measure.

e If a segment is far away from the origin of the coordinate system, a
slight change in angle o implicates a huge change in distance a. This
can be denoted as a leverage effect and means that the parameter tuple
a, a]T becomes ill conditioned when segments are far away.

e The coefficients c,, ¢, providing the weighting between the angular and
the distance difference can only be determined heuristically. This is due
to the fact that angles and distances, which are independent terms with
different units, have to be merged in one expression.

In order to overcome these problems an approach based on a different pa-
rameter set is considered next.

5.3.2 Similarity Measure Based on Statistical Param-
eters

Since an extracted line segment relies on a sequence of scan points, which can
also be considered a 2D distribution of scan points, not only the geometrical,
but also the statistical parameters, mean vector m and variance-covariance
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matrix C, are at hand. From C| in turn, eigenvalues \;, Ay and eigenvectors
v1, vy can be computed (cf. equations (4.6) through (4.10) in section 4.4.1).

From equations (4.10) and (4.11) it can be seen that the information con-
tained in the straight line parameters [a, a]T is likewise contained in m and
v1, vo. However, the eigenvalues \i, A, i. e. the variances along the principal
axes, actually provide additional information: If there is a large difference
between A\; and Ay with \; > Ag, the distribution is stretched and slim. This
means that the distribution complies well with a line segment and therefore
confidence of the segment can be rated high. Conversely, if A;, Ay show sim-
ilar values, the distribution of scan points resembles more a blob than a line
segment and accordingly confidence is low. This additional information may,
of course, also contribute to the similarity measure.

Figure 5.8: Similarity measure between two line segments based on statistical
parameters.

When looking at figure 5.8, it seems at first glance that the problem of
the similarity between line segments can be put down to the problem of
the similarity between two 2D distributions, i.e. the similarity of two 2D
probability density functions (PDFs). However, this approach would lead to
unsatisfying results: A similarity measure between two PDF's is based on a
comparison of the complete statistical parameter set of both participating
distributions, e.g. Student’s t-test considering mean values and variances.
Consequently, unreliable statistical parameters m and A would straightly
affect the similarity measure computed on such a basis.
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On the other hand, the unreliable angle parameters g, 0. inevitably lead to
an unreliable mean vector m and eigenvalue \; (illustrated as dashed ellipses
in figure 5.8). Along that way unreliability would be propagated from the
angle parameters o, g, right to the similarity measure. As this is, of course,
highly undesired, a novel similarity measure better adapted for the present
problem has to be found.

Although the direct comparison of statistical parameters fails due to the
inherent unreliability in m and A, these parameters are, however, not com-
pletely useless for the similarity measure: A closer look at the mean vector
m reveals that its unreliability solely manifests itself in a possible shift along
the underlying straight line, i.e. along the first principal axis v;. Taking
this characteristic into account, m could still be employed for the similarity
measure. As well, the ratio A;/\s definitely makes a statement about the
compliance of the 2D distribution with a line segment.

The basic concept of the similarity measure g;; (0,p) to be developed is
that the two distributions of scan points generating the line segments /,,
¢, are joined into one overall distribution, i.e. the union set of the scan
points of ¢,, ¢, (cf. figure 5.9). This procedure is allowed because a common
coordinate system is established and the two segments ¢,, £, may be supposed
to originate from the same object, e. g. the same wall. Thereby, the properties
of £,, £, are statistically combined in a virtual line segment ¢,,. The relevant
parameters of /,, are determined from the overall distribution, i.e. a mean
vector m,, and a variance-covariance matrix C, are computed. The crucial
point about these newly introduced parameters is that they can directly be
calculated from the existing parameters m,, m,, C,, C, without having to
re-handle the single scan points of ¢,, £,,.

The mean vector m,, simply is the mean vector of the overall distribution,
which computes as:

M, M,
op=———— "My + ——n— - 5.10
Moo =3, T L ar, ™ (5.10)
with M,, M, being the number of scan points belonging the line segments
ly, Uy

The matrix C7, is the weighted mean variance-covariance matrix of C, and
C,, which computes as:

M M,
) cC,+——">—.C
+M0+Mp P

*

=— 5.11
op Mo"’Mp ( )
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(b)

Figure 5.9: Statistical combination of line segments ¢,, ¢, based on C, with
unsatisfying result (a) and C7,, featuring the desired characteristic (b).

As figure 5.9 shows, C7, is not identical with the variance-covariance matrix
C,, of the overall distribution. The decisive difference can be seen from the
drawings, when the angles of the principal axes, i.e. the respective eigenvec-
tors are considered: As the virtual line segment ¢,, should be a combination
of properties of ¢, and ¢,, the angle of ¢,, is supposed to be somewhere in
between the angle of ¢, and ¢,. The eigenvectors of C,,, v1,p, U2,y do not
fulfill this prerequisite, as their angles also depend on the positions of the
mean vectors m,, m,, (cf. figure 5.9 a). The eigenvectors of C}, v} ,,, V3,
only rely on C,, C, and therefore feature the desired characteristic. The
underlying straight line of the virtual line segment ¢, is specified by v7 ,,
and m,, and will be denoted as straight line g (cf. figure 5.9 b).
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As a shift of the mean vectors m,, m, along the first principal axes v,
v, should ideally have no effect on the similarity measure, the portion of
the displacement between m,, m, parallel to g is not considered. What
actually determines the similarity measure ¢;;i (0,p) are the perpendicular
distances of m,, m, to the straight line g, i.e. by, b,p, together with the
variance-covariance matrices C,, C,.

90>

ap»

Figure 5.10: Calculation of the similarity measure g;;x (0, p).

Thus, the terms of interest are the variances s, %, s41 ,° of £, £, perpendic-
ular to the straight line g, as well as the variances s ,%, s> 0f £,, £, parallel
to g. Calculation of these terms involves principal axis transformation of C,
C), and application of the parallel axis theorem (cf. figure 5.10).

Based on the orientation of g, which is expressed by the eigenvectors of C7
: / 2 2 2 2 .
the variances s, %, Syllo > SaLlp > Sgllp of {,, ¢, with respect to m,, m, are

calculated by a principal axis transformation:

/ 2
[Sgn,o * 2} — Vv .C,- V!

/ op
* Sgl0

Sl * o .
7 s 2| = Vop -Cp- VOP (5.12)
gL,p

*
. *x * *
with Vop = [vl’op '0270[,]

Applying the parallel axis theorem (“Satz von Steiner”) the searched vari-
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ances are:
2 1 2
Sgllo = Sg||,o
SJ_Z_SI 2+—MO 'b2
glL,o T “gl.o go
M,—1
(5.13)
2 _ 1 2
Sglp = Sqlip
Sl 2 S/ 2 + Mp b 2
gLlp T “Zglp . gp
M, -1
with distances by, by, between g and m,, my,:
byo = V5 .0+ (M, — M)
go 2,0 o op
v (5.14)
_ *
bgp = V3 op (m, —m,)
In the following the ratios r, = Ssgﬁ and 1, = 222 are considered. The
gll,o g

smaller these ratios are, the better is the Complianceyof the line segments /,,
¢, with the virtual line segment /,, lying on g and the larger the similarity
measure should become.

This reasoning leads to the final notation of the similarity measure:

max (7, 1)

1— if max (r,,7r,) < r,
Qiji (0,p) = Tth (ro:7) ’
0 otherwise.
. S 5.15
with 7, = —222 (5.15)
Sgll,0
s
Ty = g-L.p
Sgll.p

Again, the theoretical maximum of the similarity measure is 1, although this
extremum can only be reached if /,, £, are exactly aligned and are perfect line
segments i.e. Ay, = A2, = 0. The minimum value of 0 is reached whenever
one of the two ratios exceeds the threshold value ry,.

The introduction of 7, together with the piecewise definition of the simi-
larity measure serves an additional purpose: Not only that g (0,p) = 0
means that the tuple (o,p) does not provide any contribution to the local
accumulated similarity measure @);;5;. Beyond this, it means that the tuple
(0,p) should be ruled out from the optimal path P,y as line segments ¢,, ¢,
are too different to get matched.
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5.4 Optimal Displacement Between Two
Scans

After having introduced a similarity measure between pairs of line segments,
the problem inherent in step (4) of the matching procedure has to be ad-
dressed: Whereas the initial shift and turn in step (2) between Lycy and Li.s
to perfectly align line segments ¢;, ¢; is a straightforward operation, the sec-
ond shift operation in step (4) to match line segments ¢y, ¢; and to provide a
common coordinate system for the subsequent steps involves an optimization
task. This is due to the fact that after the initial shift and turn ¢, and ¢,
cannot be assumed parallel in the general case. As a consequence, the dis-
placement &; of the second shift between Ly.s and L,y has to be determined
by maximizing the similarity measure ¢ (0, p) with (o,p) = (k, 1) or:

Skl = argmax qijig (0,p) (5.16)
(0,p)=(k,1)

The solution for this optimization problem is found by the classical approach:
First, the variable &, is introduced in equation (5.14) for by, by and along

that way in the equation for the similarity measure (5.15). Then the first

partial derivative g—g is calculated and equated with 0.

Omitting intermediate steps, the final solution for &; reads as:

A

2
6 = (a1 =) + = )+ | 5 +sn (8- [1+ ()

Wlth A = (Mk — 1) (Sa:x,k: — Snyk) + (Ml — 1) (wa,l — Sny)
B=-2. [(Mk - 1) Szy,k + (Ml - 1) Sry,l]

ol

C - {sm sxy]

Syz  Syy

(5.17)

The plausibility of the above equation can be verified by assuming a spe-
cial boundary condition: If my, m; only differ in the x-coordinate, i.e.
(x — 1) = 0, the displacement is always &, = (Zx — #;) independent of
the (co-)variances of £y, ¢;. In this case my, m; and my, coincide after the
shift. Consequently, by, b, are 0, i.e. the portion of s, k2, s,1,% that is
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attributed to the parallel axis theorem is eliminated. As s ijQ, s, Lf as well
as Sg|| k>, Sg|u° are invariant against a shift, the maximum of the similarity
measure is reached by employing this displacement.

The general graphical interpretation of equation (5.17) is that after the shift
my, m; (and then automatically my;) have to lie on the straight line g.
Only along that way the portions of the variances perpendicular to g that
are attributed to the parallel axis theorem can be eliminated. This, in fact,
realizes the whole optimization, as all other terms are invariant against a
shift (cf. figure 5.11).

Figure 5.11: Optimal displacement &;; between £y, ;.

The displacement &; as detailed in equation (5.17) also realizes another op-
timization: It can be shown that after the shift the second eigenvalue g j; of
the variance-covariance matrix of the overall distribution C'; also reaches its
minimum. This means that after this optimal shift the union set of the scan
points of ;. ¢, features its best possible compliance with a line segment, i. e. it
is optimally stretched and slim. Further, the eigenvectors of Cy;, v1 ki, V241,
are identical to the eigenvectors of the weighted mean variance-covariance
matrix Cy;, v] ,, V5, (cf. figure 5.12).

These two properties put together supply a subsequent justification that the
weighted mean variance-covariance matrix C}, (with (o,p) = (k,[) in this
case) and the derived straight line g do not only match a rather heuristically
set up characteristic, but in fact represent the mathematical optimum to
statistically combine two line segments /,, ¢, to the virtual line segment /,,
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\V )\Z,kl,min (\

Figure 5.12: Optimal displacement &, also realizes the minimum of the sec-
ond eigenvalue A, ;; of the variance-covariance matrix of the overall distribu-
tion C},;. The distributions used here are the same as those in figures 5.9
through 5.11.

under the conditions of the present case.

By the determination of &;; the remaining degree of freedom is bound and a
common coordinate system for the subsequent steps of the matching proce-
dure is at hand.

5.5 Assignment Of Line Segments

On the basis of a common coordinate system and a similarity measure that is
able to rate a match between two line segments, it is now to illuminate how
correspondences between line segments are actually established and how the
best possible combination of correspondences between line segments of Liegt
and L. can be found. Related to this topic, but going one step further, is
the question which reference scan is regarded the most similar to a given test
scan under the condition that not only one reference scan, but a whole set
of reference scans

Lot ={Lyety |0 <t < T} (5.18)

is given.
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In order to solve these tasks an algorithm originating from pattern recogni-
tion, known under the designation DP-Algorithm (“Dynamic Programming”)
is employed. The DP-Algorithm having its roots in the year 1962 [BD62| has
since then, together with its derivatives proven its capacity and efficiency
in a widespread field of pattern recognition applications, such as continuous
speech recognition [PEBR94, Ein93], recognition of (sub-)strings in genetic
code [GT93, GTI6|, object or silhouette or shape recognition in image pro-
cessing [BHEF98, TY85, Mae90, Mae90] etc. .

To get a notion of the functioning of the DP-Algorithm the following section
will give a general outline. The variables utilized in the formal notations
intentionally correspond with variables already known in the context of scans
and line segments. This analogy means no restriction of generality to the
description of the DP-Algorithm and on the other hand helps to illustrate how
the present problem of establishing correspondences between line segments
can be tackled using the DP-Algorithm.

5.5.1 The DP-Algorithm

In the simplest case the input data for the DP-Algorithm are two pattern
sequences L and L. of arbitrary length. The pattern sequences have to
be discretized into single symbols ¢,, £, so that each of the pattern sequences
consists of a certain finite number of symbols.

Ltest:{go’0§0<m}

(5.19)

Lref: {gp | O§p<n}
The symbols ¢,, ¢, may be scalar or vector terms adopting analog or digital
values. The only mandatory prerequisite for ¢,, ¢, is that a real-valued
distance function

d(o,p) =d({,,0,) with d(o,p) € Ry (5.20)

is defined between them.

Given the two sequences and the distance function d (o, p), the DP-Algorithm
performs two tasks: Firstly, it gives the minimum accumulated distance D,
between the sequences Lie; and Lo according to the distance function and
additional boundary conditions. Secondly, it supplies a set P, containing
those tuples (o, p) that contribute to Dyyy.
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These two results of the DP-Algorithm can be expressed by the equation

Dun= 3 d(o,p) (5.21)

(O,p) EPopt

and are illustrated in figure 5.13. Due to obvious reasons the set P, is often
denoted as the optimal path.

wn
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Figure 5.13: Comparing pattern sequences using the DP-Algorithm

Dyyin and P,y are found by a two-stage procedure: The first stage is called
the forward search. In the example of figure 5.13, the forward search starts in
the lower left corner (start) and ends in the upper right corner (end) of the
search matriz. This matrix is spanned by the (m - n) possible combinations
of symbols /,, ¢, of the pattern sequences Lies; and Lyer. The forward search
consecutively processes all elements of the search matrix from bottom to top
and from left to right.

The operation applied to each matrix element is denoted as local recom-
bination and is based on a local DP transition diagram and an associated
recursive DP equation. Typical appearances of these, valid for the example
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D(O_]-ap) D(Oap)
P oo
min
D(o—-1,p—1) ;D(o,p—l)
0

Figure 5.14: Typical local DP transition diagram

of figure 5.13 can be seen from figure 5.14 and equation (5.22).

D(o—1,p) + d(o,p)
D(o,p) =min{ D(o—1,p—1) + 2-d(o,p)
D (o,p—1) + d(o,p) (5.22)

with D (0,0) = d (0,0)

The purpose of the local recombination is to find for each matrix element,
i.e. tuple (o0,p), the minimum accumulated distance D (o, p) from the start
point to the current position (o, p) in the matrix. In addition, for each (o, p)
the current transition path that was chosen to fulfill the minimum condition
is memorized (in the present case this is the diagonal transition path).

After having finished the forward search, i.e. after having reached the end
point, Dy, is successfully determined as the following equation holds true:

Dyin = Deng = D (m — 1,n — 1) (5.23)

The second stage called backtracking is necessary to obtain the set Py.
Starting from the end point the memorized path transitions are traced back
until the start point is reached. While doing that, the respective transition
paths are one by one pieced together to finally make up the complete path
Pyt (cf. figure 5.13).

The previously mentioned boundary conditions are on the one hand the
choice of the local DP transition diagram together with the DP equation,
on the other hand the selection of start and end point for the forward search.
These boundary conditions are besides the distance function crucial for P,p:



5.5. ASSIGNMENT OF LINE SEGMENTS 75

The first condition affects the trace of the optimal path. As it will be shown,
this can be used to introduce topological restrictions. The second condition
pinpoints two tuples in the search matrix that will definitely be part of Fyy.

5.5.2 Actual Application Of The DP-Algorithm

After the introduction to the DP-Algorithm, the close relation between the
scan matching problem and the sort of problems the DP-Algorithm can solve
becomes evident. Nevertheless, some modifications to the basic algorithm are
necessary and boundary conditions have to be appropriately chosen to make
it applicable for scan matching. These problem specific adaptions will be
discussed in the present section.

Probably the most remarkable difference is that in the description of the DP-
Algorithm the distance functions d and D were introduced, whereas in the
specification of the scan matching problem the similarity measures ¢;j5; and
Qiji were used. To adapt for this difference one has just to exchange variable
names and to replace the min-decision by a max-decision in the DP-equation.

The reason for this modification is revealed when having a closer look at the
properties of the optimal path P,,: In case of a distance function, P, will
be as short as possible, i.e. it will contain as few tuples as possible, since
each additional tuple in the path adds an extra distance to the accumulated
distance D (o, p), which is to be minimized. Consequently, it easily happens
that a tuple (o, p) is ruled out from P, even if the associated distance d (o, p)
is small.

In contrast, if a similarity measure is used, Fypt ijx Will be as long as possible,
i. e. it will contain as many tuples as possible, since each additional tuple adds
an extra similarity to the local accumulated similarity measure Q;jx (0,p),
which is to be maximized. This consequences in the fact that a tuple (o, p)
may remain in Py ;i even if g;jx (0, p) is rather bad.

For the local DP transition diagram of figure 5.14 this would mean that if a
distance function d were employed, the diagonal transition would be preferred
in order to shorten the optimal path. In case of a similarity measure gz,
the horizontal and vertical transitions would preferably be chosen in order
to make the optimal path as long as possible.

Though one can try to compensate for this effect by adjusting the weighting
of the different transitions (cf. DP-equation (5.22)), the better choice is to
a-priori decide whether a long or a short optimal path is preferred for the
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present task. As in the case of scan matching the goal is to map as many line
segments as possible between Lot and Ly, the use of a similarity measure
gijr1 is chosen.

As a method to avoid the above mentioned effect that tuples (o, p) with bad
similarity measure g;;x; (0, p) are part of Py ik, it is possible to define a lower
bound for the similarity measure. If this bound is reached, the associated
tuple (o, p) is ruled out. The similarity measure proposed in equation (5.15)
features this characteristic, establishing 0 as threshold value.

Ruling out tuples (o, p) from the outset, be it due to the above mentioned
similarity measure restriction or due to the angular restriction detailed in
section 5.2 step (3), is in fact an intervention in the procedure of the DP-
Algorithm. Though this can be tolerated, it leads to dropouts in the search
matrix, i. e. matrix elements are missing on certain positions. The local DP-
transition diagram has to take these dropouts into account, in order to avoid
that the forward search comes to a premature termination due to a lack of
reachable matrix elements. Hence, the actually applied local DP transition
diagram (cf. figure 5.15) and associated DP equation look like the following:

search matrix

: Qijri (0,p)

start
Figure 5.15: Actually applied local DP transition diagram
Qijkt (0,p) = max {Qiju (0 — 7, p — 8) + Gijwt (0, D) ‘ 0<r<o,0<s<p}

with Qijkl (0, 0) = Qijki (07 O)
(5.24)

At first glance, the above procedure appears to be very costly, as all “pre-
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decessors” of a tuple (0, p) have to be considered. In practice, however, the
actual effort is much lower due to the numerous dropouts that occur and
list-based implementation that avoids any computational overhead for the
missing tuples.

Although the employed DP transition diagram has many degrees of freedom,
it implies the topological restriction of preserving the natural order of the line
segments ¢;, {; in Leg and L. This can be seen from the strictly positive
slope of the DP transition paths in figure 5.15.

The next issue to deal with are the start and end point for the forward search.
Here it becomes effective that the sequences under consideration, L. and
L., are not linear, but cyclic, i.e. they repeat with a modulus of m and n,
respectively.

gz‘ = E(i—&-um) and Ej = E(j+y.n) (525)

Since Liesy and Lyr can be arbitrarily turned against each other, the conse-
quence is that all (m - n) tuples (7, j) of the search matrix have to be tested
as start point for the forward search (cf. figure 5.16) inducing a respective
re-sorting of the search matrix.

The determination of the end point for the forward search also reveals a
difference to the basic algorithm, as a definite end point cannot a-priori be
identified. Instead of the end point, a second tuple (k,1) € P, \ {(4,7)}
(corresponding to the tuple (k,!) in section 5.2 step (3)) is provided as in-
termediate target that is defined to be part of the optimal path. Due to the
restrictions implied by the local DP transition diagram, which only allows
for positively sloped transition paths, only two subspaces

Ri={(o,p)|0<0o<k0<p<l} (5.26)
Ry={(o,p) | k<o<ml<p<n,(op)=(k)} '
of the search matrix touching each other in the tuple (k,[) turn out to be
relevant and have to be actually considered (cf. figure 5.16). The rest of the
matrix can be ignored, as the optimal path will in no case enter the other
regions (shaded areas in figure 5.16).

The actual end point is now determined online during forward search as that
tuple (o, p) in subspace R, having the highest accumulated similarity measure

Qijkl (Oap)a Le.

Qendijkl = Qmax,ijkl = Max {Qijkl (0,p) ‘ (0,p) € R2} (5.27)
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Figure 5.16: Applied forward search scheme

The final result, i.e. the pairs of line segments ¢,, ¢, contributing to the
best match between Ly and Lo can now be determined according to equa-
tions (5.5) and (5.6) in section 5.2 step (7).

As the DP-Algorithm is basically not intended for cyclic pattern sequences
and intermediate targets, the above mentioned results in (m - n) iterations of
the DP-Algorithm due to the unknown start point (7, j) and another (m — 1)-
(n — 1) iterations due to the varying intermediate target (k,l). This leads to
the O (m?n?) iterations already mentioned in section 5.2 for one complete
comparison between Lie and L.

During the DP-Algorithm itself (m - n) max-decisions inducing a maximum
of (m-n) tuple inspections each are performed. This means a complexity
of O (m?*n?) for the DP-Algorithm alone, under the condition that a tuple
inspection, is regarded as the basic operation. (Computational complexity
of the backtracking procedure can be neglected, as it is O (n).)

Consequently, the overall complexity of a scan matching procedure is given
by O (m*n?) tuple inspections with a tuple inspection being equal to one
calculation of the similarity measure g, (0, p) according to equation (5.15).

However, complexity considerations are worst case scenarios that do not nec-
essarily make a correct statement about the effort that has to be actually
spent. Fortunately, this is the case here, and the consequences of the tremen-
dous complexity for long pattern sequences Liet and L..s do not become
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effective.

The main reason for this is that especially large search matrices are sparsely
occupied, i.e. the number of dropouts increases faster than the number of
active matrix elements that have to be considered. In an extreme example
this could mean that there is only a narrow channel of active matrix elements,
while the predominant majority of matrix positions contains dropouts.

In addition, two effort saving measures are introduced: As illustrated in
figure 5.16 not the whole search matrix, but only the two subspaces Ry,
Ry have to be processed. It can easily be seen that the effectiveness of this
measure depends on the position of the tuple (k,[) and varies between saving
half of the effort and zero. Further, there is practically no difference between
Proptijer and Popg kiij, 1. €. (4, ) being the start point and (k, [) the intermediate
target or (k,() being the start point and (4, j) the intermediate target mostly
leads to the same optimal path. Due to this near-symmetry, another half of
the computational effort can be saved.

The final evidence that the statements made above hold true is supplied
by practical application: A complete comparison between two scans Lieg
and L, containing a rather large number of 20 line segments each can be
computed in about 100 ms on a commercial PC platform equipped with an
Intel Celeron processor operating at a clock rate of 400 MHz.

The existence of a whole set of reference scans L,f already mentioned in the
early stages of section 5.5 and the inherent problem which reference scan is
the most similar to a given test scan L. can now treated straightforwardly.

According to the size of L, T' comparisons between Lies; and Lyer; have
to be carried out. The most similar reference scan Lyerpest 1S the one that
reached the highest global accumulated similarity measure, i. e.

Lref,best = argmax Qmax,t (528)

5.6 Summary

Starting with the extracted line segments as they are supplied from PLRF
data preprocessing, the present chapter detailed on establishing pairwise cor-
respondences between the line segments of two scans in such a way that the
entire two scans optimally coincide.

As an approach to this task the characteristics of the extracted line segments
with the inherent problems were investigated and discussed. In the following,



80 CHAPTER 5. SCAN MATCHING

a matching method being able to cope with the lack of a global reference sys-
tem was proposed. As a prerequisite for the matching procedure, a pairwise
similarity measure between line segments was developed. In this context the
statistical parameters of the extracted line segments were employed and the
line segments are regarded as 2D probability distributions in order to realize
the concept of a similarity measure that is based on the similarity between
two 2D PDFs. Due to the characteristics of the distributions, standard tech-
niques to compare the PDF's turned out to be not applicable. This is why a
customized similarity measure was evolved, which is on the one hand intu-
itively derived from the statistical parameters and on the other hand respects
the special boundary conditions of the participating distributions.

In order to actually assign line segments to each other, the use of the DP-
Algorithm was suggested and several problem specific modifications to it were
illustrated.

The proposed matching method leads to the final result of a set of line seg-
ment pairs that are supposed to coincide, i.e. to originate from the same
object, e. g. the same wall. Considerations on the computational effort of the
procedure and a brief description how it can easily be extended to deal with
more than one reference scan conclude this chapter.



Chapter 6

Self-Localization and Map
Building

6.1 Background

Generally spoken, the task of self-localization asks the question: Where am I?
A typical answer to this question could be a geometric specification consisting
of numbers and units like: You are in position 48°08.917" N, 011°34.121" E.
Equivalent to this would be a topological description employing locations and
spatial relations like: You are in front of main entrance of the Technische
Universitat Miinchen, Germany.

From this example it already becomes evident that a definite positional fix
can only be gained from these answers, if additional information is at hand:
Firstly, for a geometric description a reference system specifying an origin
and units has to be defined. For a topological description a set of allowed
and understood locations and spatial relations has to be identified, respec-
tively. Secondly, the mere geometric or topological data strings cannot be
interpreted and are worthless if there is not a however natured image of the
real world being in accordance with the reference system. This image of
the world together with the reference system is commonly denoted as world
model or environmental map (cf. section 6.4).

In order to finally enable a system, be it human or technical, to perform self-
localization, it must be equipped with at least one appropriate sensor, an
at least rudimentary, i.e. in an extreme case empty map and the capability
to orientate. Orientation means the matching between current sensory data

81
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and map data with a subsequent interpretation that eventually provides a
positional fix in the map.

The result of self-localization may be the binding of all existing degrees of
freedom, i.e. six degrees of freedom in free space (three translations, three
rotations) or three degrees of freedom in the plane (two translations, one
rotation). This will be referred to as complete localization. If not all degrees
of freedom could be bound, e.g. if only one translatory and one rotatory
degree of freedom are bound in the plane, this is consequently denoted as
partial localization.

Further, it is to discern between two different modes of localization. Absolute
localization gives a positional fix in a global world model with respect to
one global coordinate system having a well defined origin. The problem is
that such a global coordinate system is normally a-priori not at hand and
costly to establish, as in a spacious environment distances to the origin of the
global coordinate system may become large and on the other hand should be
accurately measured. In addition, local changes in the environment induce
considerable effort to consistently incorporate into the global world model,
which makes it hard to maintain. The main advantage is that very accurate
position fixes even when a mobile system has travelled long distances in its
environment will be possible.

Relative localization gives a relative displacement vector between two con-
secutively taken sensory snapshots. Thus, a global world model with a fixed
coordinate system is not required. This characteristic is extremely well qual-
ified for the exploration scenario. Per definition, in this case a-priori infor-
mation about the environment is limited or even nonexisting and the goal
is to build an environmental map. A drawback of this localization mode
is that localization over long distances is accomplished by piecing together
consecutive relative displacement vectors, which leads to an accumulation of
positional errors. In practice this means that accuracy is good over short
distances, but degrades without bounds, if distances become longer, as a
reference to re-synchronize is missing.

A promising approach to merge these two localization modes in order to build
an environmental map will be detailed in section 6.4.1.

The following section is about identifying a quantitative displacement vector
between the two positions from where the two scans Lie; and Lo have been
taken. According to the above mentioned, this can be considered a geometric
relative self-localization.
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6.2 Geometric Relative Self-Localization

The result of the matching procedure, which is a set of corresponding line
segments P,y between Lieg, and Lyer, has now to be transformed into a dis-
placement vector AX = [AX,AY, A@]T between the two positions from
where these scans have been shot.

As an approach to this task, it is important to recall that an established cor-
respondence between two line segments ¢,, ¢, indicates that these two line
segments are supposed to originate from the same object. This statement
allows for a quantitative geometric interpretation: The angular difference
Aa,, = (a, — ) can directly be mapped to the rotatory displacement A®.
As well, from the distance difference Aa,, = (a, — a,) a quantitative state-
ment to determine the translatory displacements AX, AY can be gained.
Taking into account the geometrical relations illustrated in figure 6.1, this

originating
object

Lref

Figure 6.1: Determination of AX taking into account geometrical relations.

leads to a straightforward notation for the displacement vector AX, which
is given with respect to the coordinate system defined by L:

AD = (o) — a,) = —Aay, (6.1)
cosa, - AX +sina, - AY = (a, — a,) = —Aay, (6.2)
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Having a closer look at the originating object reveals that due to the effects of
actual scan data (cf. section 5.1.3) «,, o, will not exactly coincide although
A® is accordingly adjusted. This situation in conjunction with the fact that
l,, ¢, are regarded as probability distributions (cf. section 5.3.2) is depicted
in figure 6.2 .

originating
object

YGop

Lref

Figure 6.2: More precise determination of AX considering probability dis-
tributions.

Due to the concept of a virtual line segment ¢,,,, which combines the statistical
properties of ¢, and ¢,, the straight line g,, is supposed to represent the actual
face of the originating object. Consequently, the parameters of g,, will appear
in the notation. This results in a change of the second equation to:

. _ *T
o8 g, + AX +sinay, - AY = v

op * (mO - mp) = bOp

*
Y2,0p,y

v} (6.3)

27Op7x
*
’U* _ U2,0p,x
270p U;70p7y

As it is evident from equation (6.1), one pairing of line segments ¢,, ¢, is
sufficient to explicitly determine A®. In contrast, two equations of type

with g, = arctan
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(6.3), i.e. two pairings of line segments are needed to obtain a linear equation
system that can explicitly be solved for the variables AX, AY.

In general, the set P, provides not only one or two, but multiple pairings
(0,p) each contributing one equation of type (6.1) and one equation of type
(6.3). This implicates an overdetermined linear equation system for A® as
well as for AX, AY.

An appropriate method of resolution to an overdetermined linear equation
system is minimizing the sum of the squares of the residuals, also known
as least squares method. However, this approach only provides satisfying
results, if it is guaranteed that the input data is free from outliers. This
means that spurious angular differences as well as incorrect distance differ-
ence equations must be thoroughly eliminated since one single invalid data
point may already cause serious distortion. This is assured by the ruling
out of unqualified tuples (o, p) as detailed in section 5.2, step (3) and in sec-
tion 5.3.2 in context of the similarity measure. Hence the requirements for
the least squares approach are fulfilled and it will be applied in the following.

In case of the explicit variable A®, the least squares method is simply realized
by calculating the mean value, i. e.

A® = —Aa = > Aay, (6.4)
|P0pt|

(0,p) € Popt

thereby minimizing the variance

2 2
SA® = SAa

SR M CLOD BN

(Ozp) GPopt

with | Popt| being the number of tuples (o0, p) in Pyyt.

In case of the implicit variables AX, AY the following generally overdeter-
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mined linear equation system has to be solved:

COS (g, sin g, [ by ]
' . AX ’
oS g, sin g, Ay = b,
COS «v sin o
L g(‘Popt‘_l) g(‘Popt‘_l)_ —b(‘POPtI_l)—

using the abbreviation « for the tuple (o0, p),. € Popt

and having the format:  Ap, ,|x2) * AT@2x1) = by, |x1)
(6.6)

Formally, the solution to (6.6) is given by:
Ax=A"'-b (6.7)

However, due to its generally non-square format, A is not invertible, i.e. A~
does not exist. A straightforward solution to this problem is offered by the
so-called pseudo-inverse A" of matrix A.

Without detailing on the proof that the pseudo-inverse actually meets the
condition of minimizing the sum of the squares of the residuals [LH74], the
following gives an illustration how A" is found:

A Pope|x2) * AT = b
Al Py = Al Plx2) * AT = Al p )+ b
(A" A) Az = Al p,) - b
Az = (AT A),

2%x2
1

with (6.7): A%, p = (AT A) o - Abp

(6.8)
T
" APy *

A prerequisite for this approach is that the square matrix (AT . A) must
not be singular, i.e. the inverse matrix must exist. Although in practical
application exact singularity will be an unlikely event, the equally critical
case of near-singularity will definitely occur. This results from a numerical
ill condition of the matrix (AT . A), which consequences in an inaccurate or
even useless result for Ax. Although such an ill condition can be detected,
e.g. by checking if the determinant of (AT . A) ranges near zero, it cannot
be prevented or corrected for.
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This is why another procedure for solving (6.6) is preferred. It is less sensitive
against numerical ill condition by employing an augmented equation system:
This approach considers that the equation system of (6.6) cannot exactly be
solved and should therefore rather read as A-Ax =~ b. In order to re-establish
the equal sign the residual vector r is added to the original equation, i.e.

r+A-Azx=> (6.9)

The boundary condition that embodies the least squares method is that the
residual vector  must be orthogonal to the vector (A - Ax), i.e.
(A-Ax) -7 =0

6.10
Azl AT .r=0 ( )

In order to satisfy the above least squares condition, there are several possi-
bilities:

e (A-Ax)=0: This is generally not true, as A+ Axz ~ b and b # 0.

e r = 0: This is only possible if the original equation system (6.6) has
an exact solution, which is likewise generally not the case.

o Ax =0 or A =0: These are trivial solutions.

e Or
AT.r=0 (6.11)

This is the only general solution meeting the least squares condition.

From (6.9) and (6.11) the augmented equation system:

I A(|Popelx2) { r } H
T vt . = (6.12)
AP 0 (P25 (Poel2)) LT 0

is obtained, which can be solved with standard techniques for the position
vector Az = [AX,AY]" and the residual vector . Owing to its struc-
ture the above matrix is much less sensitive against numerical ill condition.
Furthermore, the residual vector r is calculated as a by-product.

6.2.1 Scaling

In an exactly determined linear equation system, i.e. A is square and not
rank deficient, multiplying the rows with constant values does not change
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the solution vector Ax. However, in the overdetermined case the solution
is affected by this operation. The effect can be used to realize a different
weighting of the single equations, in order to express that some equations in
the system are more significant than others. This means that the original
matrix A and vector b are transformed by the diagonal matrix W to:

Ay =W - A
by =W -b (6.13)
with W = diag (wo, ey Wy e ,w(|popt‘_1))

and w, being the weighting coefficients.

The actual result of weighting is that those rows receiving a large weighting
coefficient w, will show a small residual coefficient r, after solution of (6.12)
with A, b replaced by Ay, by .

Concerning the determination of w,, [LH74] and [GL93] suggest to use a
measure of the uncertainty inherent in b,. Applying this suggestion to the
present case means to employ the variances s,| .2, S,1,° as calculated in
equation (5.13), since they represent the measure for exactly this uncertainty.
Thus, the weighting coefficients w, are determined by:

1

max (g1 o, sng)K

(6.14)

Wy —

6.2.2 Position Uncertainty

Calculating the weighting coefficients as described above also offers the pos-
sibility to directly gain an estimate for the position uncertainty in Ax =
[AX,AY]". This is given in form of the variance-covariance matrix Caq,
which will be derived in the following.

Generally it is true that if
r=B-b (6.15)

and C', being the variance-covariance matrix of vector b, the variance-
covariance matrix C', of vector & computes as

C.=B-C,-B” (6.16)

Applying this to the present case, it becomes evident from equation (6.7)
that B = A~!. Further, assuming that there is no correlation among the
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coefficients of b, it is true that Cp = W2 With & = Az this leads to the
notation:

Cro=A"'-W2. (41 (6.17)

As A™! does generally not exist, a conversion of the above equation employ-
ing elementary matrix operations determines the final result for the variance-
covariance matrix C'a, to:

-1

Crr=(A"-W?. A) (6.18)

The verification that in the above equations the matrix dimensions agree and
that Cag is a symmetric (2 x 2)-matrix will be left to the reader.

It is evident that large coefficients in Ca, identify a large positional uncer-
tainty, which is of course highly undesired under the aspect of a geometrically
accurate self-localization.

The reason for substantial uncertainty is twofold: Firstly, the weighting co-
efficients of W may be extremely small, i.e. the variances s, ,?, s,1,° are
large, which will lead to large coefficients in C'a,. This can easily be avoided

by ruling out the according tuples (o, p).

Secondly and much more frequent in practical application, the matrix A may
suffer from rank deficiency in that way that the apparently overdetermined or
exactly determined equation system is in fact underdetermined or extremely
ill-conditioned, i.e. the matrix A becomes singular or near-singular, which
results in infinitely or enormously large coefficients in Ca,, respectively.
This situation cannot be avoided and at first glance it seems that under
these circumstances the result of a self-localization will be rendered worthless.
However, this is not true as some information can still be gained.

Of course, complete localization will no more be possible. Nonetheless, a
partial localization binding one translatory and the rotatory degree of free-
dom in the plane can be performed. This induces further examination of
C Az, which will be illustrated by means of a quantitative example. Unless
otherwise noticed, the units used are metres for distances and square metres
for (co-)variances and eigenvalues.
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—
Lyes \ | V200
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Figure 6.3: Example for a self-localization introducing a method for partial
localization.

Given that the following values have been acquired:
ag, = 240°
o, = 241°
(6.19)
by, = (3.50 — 5.50)
by, = (2.10 — 4.05)
which are illustrated in figure 6.3, and furthermore given the variances:
sg1.0° = (0.01)°
) 5 (6.20)
Sgl,1 = (005)
defining the weighting matrix:

W = [ﬁ i} (6.21)

0.05
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the resulting linear equation system reads as:

100 - cos (240°) 100 - sin (240°) 100 - (—2.00)
20 - cos (241°) 20 - sin (241°) Am = 20 - (—1.95) (6.22)
having the solution:
AX 3.47
Aw = { AY} - {0'31} (6.23)

According to equation (6.18), the variance-covariance matrix computes as:

6.41 —3.69
Caa = [—3.69 2.13 ] (6.24)
As the exact solution in the present case would be Az, = [3.17,0.48]T,

the above calculated solution Ax proves to be not very accurate. This be-
comes evident by the large coefficients of Ca,. (Note that the square root of
the coefficients expresses the respective standard deviation given in metres.)
Consequently, complete localization must be abandoned.

In the following, the eigenvalues A\ ag, A2 Az Of Caq are determined. This
can be achieved in a numerically stable way by taking the reciprocal values
of the eigenvalues of CZL = (AT -W?2. A). Similarly, the eigenvectors
V1 Az, V2az Of Cag are found by just adopting those of C;}E. Here the two
universally valid properties are utilized that the eigenvalues of a matrix and
its inverse matrix behave reciprocal to each other and that eigenvectors are
maintained if the matrix gets inverted.

In the present example, the above procedure leads to:

A Az = 8.54
Aopz = 9.62-107°

~ [-0.866 (6.25)
VLaz = | 499

~ [~0.499
Y202 = | _() 366

C Az is depicted in figure 6.3 by its uncertainty ellipse. This visualizes that
the uncertainty along v, o, is that large that a quantitative positional infor-
mation would be rather useless (standard deviation is /A1 Az = 2.92m). In
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contrast, along vy A, standard deviation is only /Ay ax = 9.81- 103 m (not
pictured according to actual scale in figure 6.3, as it would be too small). This
indicates that a displacement A X, along vs A, can be accurately calculated.

In order to obtain AXs, the following transformation is applied:
AXy =v]r, - Ax (6.26)

In the case of the present example this results in:

3.47

AX, =[-0.499 —0.866] - [o 31

] = —1.9981 (6.27)

So one can resume that although complete localization proved to induce
too much error and had to be abandoned, partial localization determining a
displacement AX, along va . is still possible.

Concerning accuracy, it is to say that in the present case the exact value
for the displacement along vy A, would be AXs, = —1.9983 m. This shows
that the above given standard deviation along vs A, appropriately reflects
the actual facts and that in general an accurate estimate for AXs can be
given.

Consequently, this kind of partial localization is an effective alternative when-
ever information from the surroundings becomes so sparse that the exact po-
sition is lost, e. g. while navigating through a long uniform corridor. Within
the given limits the gained positional information is accurate and due to the
small matrix dimensions of (2 x 2) the additional computational effort is very
small.

6.3 Concatenating Displacement Vectors

If complete relative self-localization is feasible, i.e. all three components of
the displacement vector AX = [AX, AY, A®]" can be determined with sat-
isfying accuracy, an up-to-date geometric position with respect to a global
coordinate system is maintained by concatenating the single displacement
vectors.

Taking into account the geometric relations from figure 6.4, the position in
the global coordinate system is iteratively calculated according to:

X X +AX -cos® —AY -sin®
X=|Y| =|Y+AX sin®+ AY -cos P (6.28)
o ¢+ AP
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Y I X,

X

Figure 6.4: Updating the position with respect to a global coordinate system
by concatenating displacement vectors.

The respective position uncertainty will again be given in form of a variance-
covariance matrix denoted as Cx. As the equation (6.28) is non-linear,
calculation of C'x requires the Jacobian matrix J of the right hand side
of the above equation, i.e. the matrix of partial derivatives of the position
vector with respect to the vector of variables. This means:

0X
[X,Y, D, AX,AY, AD]"

1 0 (—AX -sin® —AY -cos®) | cos® —sind® 0
J=10 1 (AX-cos®—-AY -sin®) | sin® cos® 0
0 0 1 | 0 0 1

(6.29)

J=1[J | J

The position vector X and the displacement vector AX are uncorrelated.
Furthermore, the translatory displacement Az = [AX,AY]" and the ro-
tatory displacement A® are uncorrelated, either. So the likewise iterative
notation of the variance-covariance matrix C'x can be simplified to:

SXX SXy SXxo
Cx = |syx Syy sye| =J1-Cx-J\' +Jy-Cax-Jy"
Sex  Soy Sod (630)

with Cax = {
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In the following a simple test case is applied to the above equation: Firstly,
it is assumed that the uncertainty inherent in the displacement vectors is
different from zero, i.e. Cax # 0. Secondly, the initial position is supposed
to be exact, i.e. Cx = 0 in the beginning. Furthermore, there shall be no
motion at all, i.e. AX = 0 will be measured over all times in the ideal case.
This consequences in J; = Jo = I. Looking at the result that is yielded
by equation (6.30), it becomes evident that the position uncertainty, i.e. the
coefficients of C' x will increase by accumulating the coefficients of C'a x with
each additional concatenation of displacement vectors. This is plausible due
to the fact that the error inherent in the displacement vectors propagates
and accumulates with each concatenation.

Summarizing it is to say that on the basis of complete relative self-localization
an up-to-date geometric position with respect to a global coordinate system
can be maintained. This is accomplished without establishing a complex
world model, but just by concatenating consecutive displacement vectors,
which on their part depend on the respective current scan and its immediate
predecessor scan as Lies; and L. The method excels by its simplicity, how-
ever, the gained position estimate suffers from unbound error accumulation,
i.e. over time the given position will become more and more inaccurate and
finally useless. In addition, position maintenance will unrecoverably break
down, when complete localization is lost.

After introducing a few major issues of map building, the following section
will detail on an approach that utilizes a self-creating environmental map
in order to maintain an accurate, robust long term position estimate. In
consideration of the above mentioned it will be respected that concatenation
chains of displacement vectors are to be kept short and that the possibility
to re-synchronize in order to reduce accumulated uncertainty is given. Fur-
thermore, the approach will be able to deal with temporarily lost complete
localization.

6.4 Map Building

In order to get a notion of the principal structure and problems of an environ-
mental map in the robotics field, a few major issues will be briefly presented.
The first question regards the format in which environmental data are to be
stored. As mentioned in section 6.1, the map contains reference data with
which current sensory data are matched. To render this procedure as effec-
tive as possible, environmental data are recorded in exactly that format that
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is supported by the employed sensor, e. g. line segments in case of a PLRF.
If one environmental map is to support multiple sensors, the non-trivial goal
is to store data in a form that can be converted to any sensor specific format
with moderate effort [Rufio4, HS96].

Another topic is the degree of refinement of the world model. Advantages
and drawbacks of the different realizations are evident: A coarse degree of
refinement means a small amount of data to be stored and to be processed.
As drawback, the result of e.g. a self-localization may be not very precise,
ambiguous or simply not possible, as detail information is missing. In con-
trast, a fine degree of refinement means substantial effort for data storing and
processing, but may on the other hand generate localization results that are
more precise. A desirable solution for this tradeoff would be a variable degree
of refinement, i. e. coarse where it is possible, fine where it is necessary.

A further issue is the structuring of the data in the world model, i.e. the
internal representation of the environmental data base. This is crucial in-
sofar as access latencies as well as easy maintenance and extensibility of
the world model are important matters that heavily depend on this internal
representation.

The last important point to mention here is accuracy and consistency of
the environmental map. These topics particularly become important if the
map is not an a priori given ground truth with absolute accuracy, but an
image of the environment that is successively acquired, updated and extended
by sensory input, i.e. if an unknown environment has to be explored and
the corresponding map has to be built by the mobile system on its own.
As there is an extensive literature addressing optimization of accuracy and
guaranteeing consistency of an explored map in a widespread environment
[BCFT98, TBBT99, LM97, Gut99], the present work will not deal with these
methods. Instead, it directs the focus on a particular map structure that,
even though it still depends on these methods if maximum accuracy has to
be reached, is capable of significantly reducing the thereby induced effort
by dividing up a spacious environment into several small areas, which can
independently considered.

In the following section the concept of a graph based map and its functioning
in order to support localization is presented. For these explanations it is
assumed that the graph based map is already existent, so localization is
performed in an a priori known world model. Subsequently, it will be shown
that the graph structure is also suited for the exploration scenario, i.e. a
graph based environmental map can easily be maintained, extended and,
with some restrictions, even built from the scratch by the mobile system on
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1ts own.

6.4.1 Graph Based Map

The basic idea of the present approach is to establish the world model as an
attributed, directed graph, i.e. the environmental map consists of attributed
nodes connected by directed edges. The nodes represent certain locations
in the environment, whereas the edges describe the paths between these
locations. This concept has already been suggested by [KB91] and is similarly
to [TGF 98] utilized here to maintain a robust localization of a mobile system
in its environment.

The attributes of a node are firstly a position estimate X together with
the variance-covariance matrix C'x expressing the respective position uncer-
tainty. Secondly, a node is attributed with the preprocessed PLRF scan L,
taken from exactly the given position. So, the set of nodes V' of the graph
comprises the set of reference scans L, introduced in equation (5.18).

In case of complete localization and if there is a direct path between two
nodes, the connecting edge needs no attributes at all. However, if the direct
path between two nodes is obstructed, the edge is to be attributed with
a list of consecutive intermediate positions that have to be accessed prior
to heading for the target node. Furthermore, in the event that only partial
localization is possible, e. g. while navigating through a long corridor, an edge
can be attributed with its approximate bearing in the coordinate system and
a topological directive like: Follow the wall until complete localization can
be re-established. Along that way, a target node can be accurately reached
although complete localization is temporarily lost.

An immediate consequence of involving the above mentioned topological di-
rectives is that the concept of a world model using one global coordinate
system has to be abandoned, as geometric information may sometimes be
incomplete. Instead, a novel concept is introduced that employs several local
coordinate systems interconnected by topological relations. This means that
one adheres to the present coordinate system as long as localization accu-
racy is rated precise enough. If this is no more ensured, a simple topological
directive like wall following has to take over until complete localization can
again be performed with satisfying accuracy. However, the catchment area
of the current coordinate system has been left, i.e. a geometrically exact
displacement vector with respect to the current coordinate system cannot be
given. This is why the re-established complete geometric localization will be
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done with respect to a new coordinate system, which is related to the current
coordinate system by the respective topological directive.

Figure 6.5 on page 98 shows an exemplary structure of the environmental
map.

The presented approach is operable as long as the employed topological di-
rectives are precise enough to guide the mobile vehicle into the catchment
area of the new coordinate system. There it must be possible to perform a
geometrically exact re-localization, so that a target node can be accurately
accessed. Furthermore, it must be accepted that while travelling between
two coordinate systems an exact geometric localization is not possible, as
the vehicle is usually outside the catchment area of any existing coordinate
system.

As the topological directives can only provide coarse directions, the above
mentioned re-localization is a crucial issue. This means, it is necessary to
robustly recognize a previously captured scene even if the view has changed
and, in a worst case scenario, no initial guess of the whereabouts is avail-
able. Subsequently, it is to perform a relative localization with respect to
the position where the captured scene has been taken. In the present case of
PLRF scans robust recognition is performed by the scan matching procedure
(cf. chapter 5) using the DP-Algorithm (cf. section 5.5). Here it becomes
crucial that the developed scan matching is able to find the best matching
reference scan Liefpest 10 @ given test scan Lieg, from a set of reference scans
L.t without relying on positional a priori information. However, in case an
initial guess of the position should be available, it is easy to integrate in the
scan matching procedure: Reference scans that are unplausible due to their
position can be excluded from the outset, rendering the matching process
faster and more reliable because of reduced ambiguity. After having found
Lietpest along that way, relative self-localization as described in section 6.2
provides the desired position estimate.

Figure 6.5 illustrates that the graph structure is able to support the above
mentioned concept of a variable degree of refinement of the environmental
map, i.e. if required, numerous nodes can be established in immediate geo-
metric vicinity, whereas other areas are modeled by one single node. Along
that way the different demands on accuracy and the differences in complexity
of the environmental structure can be considered. For example, when passing
a doorway, required accuracy is high as free space is limited. In addition, the
perceived scene rapidly changes over travelled distance, as one room is left
and a new room is entered. Consequently, this situation will require several
nodes within a small area. On the other hand, when passing a large room
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Figure 6.5: Exemplary structure of the graph based environmental map.
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with a lot of free space, one single node may be an adequate modelling. This
example illustrates that most of an environment can be modelled coarsely,
while only small areas require fine modelling. However, fine modelling is in-
evitable and so the variable degree of refinement is the only way to keep the
amount of data to be stored and processed in moderate bounds, especially if
widespread environments are to be covered by the map.

In order to provide an exact position estimate, be it as attribute to a node
or as a relative self-localization with respect to a node in the current co-
ordinate system, it is important to keep concatenation chains of displace-
ment vectors short. This is necessary since error accumulation as detailed in
equation (6.30) will deteriorate the localization result with each additional
concatenation. The graph based map with its several instead of one coor-
dinate systems complies well with this requirement: The uncertainty of the
first node of each coordinate system, i.e. the node that identifies the origin
(in the example of figure 6.5 these are the nodes 0, 3 and 4) is assumed to
be 0. This is justified as such an initial node represents the origin of a self-
contained and geometrically independent coordinate system and therefore it
can arbitrarily be set. Consequently, when travelling from the initial node of
the current coordinate system to the initial node of a new coordinate system,
uncertainty increases the larger the distance from the starting node becomes.
If finally the catchment area of the current coordinate system is left, uncer-
tainty increases towards infinity. At the moment when the catchment area of
the new coordinate system is entered, uncertainty is decreased again and will
be further reduced to a final value near zero the closer the vehicle approaches
the initial node of the new coordinate system. From this it can be seen that
the topological relations interconnecting the coordinate systems are able to
break up concatenation chains of displacement vectors and along that way
contribute to avoid that uncertainty is accumulated over a too long distance.

Of course, if one coordinate system comprises a larger area, concatenation
chains get longer, accuracy and consistency issues may become a matter and
the respective methods are to be applied. Nevertheless, if the suggested graph
based map structure is properly pursued, the area that has to be processed
will only be a small fraction of the overall area that is covered by the map.
Thus, a great deal of the computational effort can be saved.

Due to the involved topological relations, the graph based approach does not
support a geometrically exact CAD-drawing-like image of the overall map
area. However, this is not a drawback as even for localization purposes like
in the present case, it is not required either. Again, the corridor-example
will illustrate this: If a corridor is only to pass, it is rather irrelevant if its
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length is 4m or 6 m, as long as it is possible to e. g. reliably detect its end or
to recognize the crucial T-intersection where to turn right.

A definite advantage of the presented approach is that the environmental
map actually is a graph. This means that all the algorithms available in this
domain, e.g. searching the nodes or edges of a graph, adding or removing
nodes or edges, finding the shortest or an alternative path etc. , can without
any change be applied to the map. So the map does not only support local-
ization by storing positions, reference scans and paths, but is also capable of
assisting with navigation, i.e. finding an appropriate route and guiding the
vehicle from a start position to a target position.

Up to this point the environmental map was supposed to be already existent.
In the following section it is shown that a graph based map structure is also
suited for the exploration scenario. In order to illustrate this, it will be
roughly outlined how a graph based map could autonomously be explored
by the mobile system on its own.

6.4.2 Exploring the Map

If it is to autonomously explore a map, the mobile system has to be equipped
with an exploration strategy to provide a purposeful behaviour during the
exploration phase. As exploration strategies are out of the scope of this work,
only a very basic behaviour of the vehicle is considered in order to demon-
strate the suitability of the graph based map approach for the exploration
scenario: When only partial localization is feasible, the longest line segment
in the current scan is determined and the vehicle moves along it. When com-
plete localization is possible, the vehicle stops, turns around and leaves the
area using the same line segment along which it has come. This behaviour
does certainly not result in a thorough exploration of the environment, but
it provides a simple travelling back and forth in a corridor.

In order to built a model of this scene, the following procedure is pursued:
Whenever complete localization is possible, it is tried to recognize the area
by matching the current scan with the previously recorded scans stored in
the nodes of the already established graph. Now there are two cases:

1. If matching succeeds with a satisfying similarity measure, the respective
area has obviously already been visited and the associated scan has
been stored in a node of the map. Consequently, a new node will not
be needed and a new edge from the previous node to the current node
will only be established, if it does not already exist. Furthermore,
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complete localization can be performed with respect to the previously
recorded scan of that area.

2. If scan matching fails, the respective area is not yet registered in the
map. Thus, a new initial node making up a new coordinate system
is required. As well, a new edge connecting the new node with the
previous node is introduced.

Along that way, a floor plan of a corridor as given in figure 6.6 a results in a
graph based environmental map as illustrated in figure 6.6 b.
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Figure 6.6: Floor plan (a) and corresponding graph based environmental
map (b).

Node 0 and node 1 are both initial nodes of the respective coordinate systems.
The scans the nodes are attributed with are in case of node 0 the scan taken
from position py and for node 1 the scan taken from position p;. A similar
experiment conducted in a real world environment will be presented in the
following chapter.

6.4.3 Summary

Based on a particular assignment of line segments between two scans as it is
provided by the scan matching procedure, the present chapter introduced a
method to determine a displacement vector between the two respective scans.
As this method generally involves an overdetermined linear equation system,
numerical, scaling and accuracy issues were discussed in the following. In this
context special focus was laid on the aspect of partial localization, which
offers the possibility to still guide a vehicle even if an exact position can
no more be given because the associated linear equation system becomes
ill-conditioned or underdetermined.

In order to obtain an up-to-date position estimate it was illustrated how
to concatenate displacement vectors and it was also indicated that position
uncertainty accumulates without bounds with each additional concatenation.
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After discussing a few major topics of environmental maps in the field of
robotics, the concept and the working of a graph based map utilizing several
coordinate systems and topological directives were introduced. This was fol-
lowed by a consideration of the specific properties of the graph structure. In
this connection, it was pointed out that the structure heavily depends on the
robust recognition capabilities of scan matching in order to re-synchronize,
but, on the other hand, effectively supports the concept of short concatena-
tion chains of displacement vectors, thus successfully holding down position
uncertainty.

Finally, there was a brief excursion to illustrate that the graph based map is
well suited for the exploration scenario.



Chapter 7

Experimental Evaluation

The most critical touchstone for any novel development in the field of robotics
naturally is its performance in a real world environment. Consequently, the
localization system presented in this work has been implemented on a real
robot and tested in different, typical indoor scenarios. The following sections
describe these scenarios and document the experiments and their respective
results. Preceding to this, the general experimental setup, i. e. the robot used
in the experiments and several boundary conditions are introduced.

7.1 General Setup

The robot on which the localization system has been implemented and
tested is our experimental mobile platform MARVIN (cf. figure 7.1). In
the present case this quite popular name for a robotic system [AdaT79] is
an acronym for Mobile Autonomous Robot with VIsion based Navigation
[BBE198, BEH99].

MARVIN’s chassis is the commercially available LABMATE base [TRCI1],
which has a differential drive with two driven wheels and four supporting
castors (cf. figure 7.2). Though non-holonomic LABMATE is capable of
linear and rotational motions.

The sensory equipment of LABMATE are a front and a rear bumper that
issue an emergency stop to the driving motors if there is a mechanical contact.
Secondly, an odometry is available, i.e. attached to the driving wheels are
angular encoders that provide positional data by integrating encoder pulses.
However, due to inevitable slippage between the driving wheels and the floor,
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Figure 7.1: Experimental mobile platform MARVIN.
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Figure 7.2: Bottom view of LABMATE.

especially if the vehicle’s path is curved and the floor is not perfectly even,
the integrating measuring principle of the odometry will quickly accumulate
considerable error. So the odometric position estimate is quite unreliable
after only a few metres of travelling. Consequently, odometric data is in no
way qualified to provide a reference for the vehicle’s position.

On the other hand, a position reference is essential if an actual test of the
present localization system is to be carried out. As expensive geodetic mea-
suring equipment was not at hand, a much simpler approach, still guaran-
teeing adequate accuracy was pursued: Two pen holders are firmly screwed
to the LABMATE base. The spring mechanism of the pen holders allows for
pen marks on the floor that can be gauged via a tape measure. The achiev-
able accuracy of this method can be enhanced to about 1 to 2mm and 1° if
after a drive the vehicle is sent back to its exact starting position, i.e. the
initial pen marks on the floor. Along that way the accumulated positional
error can directly be revealed by comparing the actual (zero) position with
the position given by the localization system.

Mounted on top of LABMATE is a rack holding four IPCs running under
Linux, a TFT display, a stereo vision system, which is not in use here, and
the PLRF sensor as already pictured in figure 3.1.

The algorithms related to PLRF localization are running in one Linux pro-
cess. Visualization of the PLRF scans and the vehicle’s position is handled
in an extra process in order to provide decoupling between algorithms and
graphics. A possible inquiry of odometric data is done within a third process.

Furthermore, it is to mention that during the experiments the PLRF lo-
calization system is running completely self-contained, i.e. neither a priori
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knowledge of the environment nor of the vehicle’s kinematics is employed. In
addition, no initial positional guess, e. g. from the odometry, is utilized. So,
the PLRF is the only source of information and the presented results reflect
the pure performance of the PLRF localization system, in no way altered or
covered by the output of another sensor.

7.2 Scenario 1: Laboratory

In the first experimental scenario MARVIN is roaming in a typical laboratory
environment with white painted walls, a rather smooth linoleum flooring
and a large window front (cf. figure 7.3). The surroundings were in no way

back view side view

Figure 7.3: MARVIN standing in his zero position in the laboratory.

prepared for the experiments, i. e. all interior equipment remained in its place;
even some actually disturbing superstructures were not removed (cf. figure 7.3
back view: An antenna for wireless video signal transmission on the left
border. Side view: A miniature model of a high bay racking in the upper
right corner).

In order to get a feeling of what the PLRF is able to perceive in such an en-
vironment, figure 7.4 shows a typical preprocessed scan, shot from a position
that is defined to be the zero position for the following experiments. In the
figure MARVIN is visualized as a crosshair having one long leg which indi-
cates the vehicle’s forward direction. As can be seen there are several gaps
in the scan due to poor reflections. The widest gap is found on the right
hand side of MARVIN. This clearly results from the window front which is
actually invisible to the PLRF.
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Figure 7.4: Preprocessed PLRF scan taken from the zero position in the
laboratory.

7.2.1 Experiment 1: MARVIN Standing

During the first experiment MARVIN keeps standing totally still. The local-
ization system is running, i.e. scans are successively taken and displacement
vectors are determined. In the ideal case MARVIN’s crosshair would exactly
rest in the zero position and the single scans would properly superimpose
drawing one line segment right on top of the other. As can be seen from fig-
ures 7.5 a and 7.6 a this is not the case. The self-contained PLRF localization
system knowing nothing about the halted vehicle perceives some motion due
to noisy sensory data. This results in a jitter of MARVIN’s calculated posi-
tion around the actual zero position. Figures 7.5 b and 7.6 b show magnified
areas around the respective zero positions visualizing MARVIN’s apparent
motion during about 40 successively taken scans.

In the example of figure 7.5 the displacement vectors are determined between
the successively taken scans and are then concatenated to a simple chain as
detailed in section 6.3. As a consequence one outlying displacement vector
lastingly affects the vehicle’s position. This can be seen from figure 7.5 b
where two clustering areas are found: One around the actual zero position,
another around an outlying position about 5 cm away. Furthermore, chaining
displacement vectors means an accumulation of positional error, which can be
expressed by the positional variance-covariance matrix C'x. In the example
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Figure 7.5: Jitter of MARVIN’s calculated position around the actual zero

position in case of chained displacement vectors.

of figure 7.5 the final value for C'x calculates to:

Sxx SXxy Sxa& 55-107% 6.8-107° 1.6-107*
CX = |syx Syy Sye| = [6.8- 107° 1.1-107% 7.6-107* (71)
Sex Soy Sod 1.6-107* 7.6-107* 4.0-1072

with distances given in metres and angles in radians. So the according stan-
dard deviations derived from the above given variance-covariance matrix are:

SxX = \/Sxx = 2.4 1072111
sy = /syy = 3.4-107%m (7.2)
S — \V/Spp — 0.20 =11.4°

revealing moderate standard deviations of X and Y, whereas the deviation
of ® is not acceptable.

This is why in the example of figure 7.6 displacement vectors are not strin-
gently determined between two successive scans. Instead, the scans are
recorded and the displacement vector for the current scan is established with
respect to the best matching scan recorded so far. As the number of shot
scans linearly increases over time, this procedure implicates a linearly in-
creasing number of scan matches, which would make the computational effort
explode. To prevent this, the number of scans employed for scan matching
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Figure 7.6: Jitter of MARVIN’s calculated position around the actual zero
position in case of displacement vectors determined with respect to the best
matching recorded scan.

is bounded to a maximum of 7', which typically ranges from 10 to 20. What
is gained by this approach can be seen from figure 7.6 b: Although there
is a clearly discernible outlying displacement vector about 3.5 cm away, the
clustering around the actual zero position is not affected. In addition, as
the displacement vectors do not form one long chain, the positional variance-
covariance matrix C' x shows coefficients being about one order of magnitude
smaller than in (7.1).

A typical appearance of Cx would be:

31-107° 2.7-10%  9.0-107°
Cx=|27-10° 38-107° —15-107° (7.3)
9.0-10°¢ —1.5-10° 3.3-1073

with respective standard deviations:

sx =56-10""m
sy =6.2-107°m (7.4)
sp = 0.06 = 3.2°

which is quite a satisfying result.
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7.2.2 Experiment 2: MARVIN Moving

In the second experiment MARVIN is actually travelling the laboratory.
Start and end point of MARVIN’s C-shaped course is the already known zero
position. At first the vehicle is heading for the upper right turning point, then
is coming back, passing the zero position and continuing its journey to the
lower right turning point. From there it returns to the zero position, which
is guaranteed to be exactly reached. The total distance covered amounts to
about 26 m.

The following figures oppose the results of two experimental drives, which
involve about 50 PLRF scans each: Figure 7.7 shows a drive with chained
displacement vectors, whereas figure 7.8 depicts a drive with displacement
vectors determined with respect to the best matching recorded scan as de-
tailed in the previous section. Indicated are the superimposed scans together
with the vehicle’s respective position in its environment. This is achieved
by applying the scan matching and localization techniques as detailed in
chapters 5 and 6. Furthermore given are the positional variance-covariance
matrices and the respective standard deviations as well as the output of the
PLRF localization system and the output of MARVIN’s odometry when hav-
ing returned to the zero position. Thus, any deviation from the actual zero
position directly reveals the error of the respective localization system.

The drive of figure 7.8 excels by its extreme accuracy when returning to
the starting point. This clearly is a consequence of the localization mode,
which in the present case generates a minimally short concatenation chain of
length 1 (identifiable from the zeros in C'x). However, even in the worst case
scenario of figure 7.7, where all 50 displacement vectors get simply chained,
accuracy is still satisfying and significantly better than MARVIN’s odometry.
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Variance-covariance matrix when returned to the zero position:

020 0.5 —0.06
Cx=|015 066 —0.18 (7.5)
—0.06 —0.18 0.07

Respective standard deviations:

sx =0.45m
se = 0.27=15.4°

PLRF based position estimate when returned to the zero position:

X = —0.05m
Y = —0.09m (7.7)
O =1.4°

Odometry based position estimate when returned to the zero position:

XOdo = —0.05m
YOdo =—-0.33m (78)
Dogo = 8.6°

Figure 7.7: Experimental drive with chained displacement vectors.
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Variance-covariance matrix when returned to the zero position:

1.3-107° 1.6-107 0
Cx=|16-10"¢ 2.8.10° 0 (7.9)
0 0 1.0-1073

Respective standard deviations:

sy =3.6-103m
sy =5.3-10m (7.10)
s¢ = 0.03 = 1.8°

PLRF based position estimate when returned to the zero position:

X = —0.0004m
Y = —0.0007m (7.11)
®=—0.1°

Odometry based position estimate when returned to the zero position:

XOdo = —0.09m
YOdo =—0.42m (712)
Dpgo = 10.7°

Figure 7.8: Experimental drive with displacement vectors determined with
respect to the best matching recorded scan.
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7.2.3 Experiment 3: Low Scan Density

In the third experiment it is to illustrate that an additional feature of the
PLRF localization system is its ability to allow for large distances between
two successive localizations, i.e. a fairly accurate position estimate is still
possible even if spatial density of PLRF scans is extremely low.

An example for this is given in figure 7.9 where only four scans taken from
quite different positions could properly be superimposed.
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Figure 7.9: Experimental drive with only four scans taken from extremely
different positions.

In the present example the variance-covariance matrix Cx with the largest
coefficients is related to the lower right position and reads as:

3.0-1072 1.4-1072 1.0-1072
Cx=[14-10"2 24-102 7.6-1073 (7.13)
1.0-1072 7.6-1073 4.6-1073

with standard deviations:

sx =0.17Tm
sy =0.16m (7.14)
se = 0.07=3.9°

Although the concatenation chain of displacement vectors has only length
2, the above given standard deviations are rather large, which indicates an
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only moderate accuracy. An explanation for this is the heavily structured
environment in the laboratory that quickly changes its appearance during
roaming around.

7.3 Scenario 2: Elevator Hall

In the second experimental scenario MARVIN is wandering in an elevator
hall of a modern office building. Compared to the laboratory, conditions are
significantly worse: The walls are rough, dark grey concrete and the flooring
is a rather uneven screed. Besides, the surroundings are characterized by
steel and glass constructions and, notably, a number of heavily reflecting
vertical pipes (cf. figure 7.10).

back view front view

Figure 7.10: MARVIN standing in his zero position in the elevator hall.

Inevitably, these construction properties result in rather fragmentary PLRF
scans, which can be seen from figure 7.11 showing a single scan taken from
MARVIN’s zero position in the elevator hall.

In the following, the experiments 1 to 3 as conducted in the laboratory sce-
nario are now likewise repeated in the elevator hall. Boundary conditions of
the experiments are the same as in the previous section, so the results can
be given in a compact form. Furthermore, an additional fourth experiment
is presented in this section showing that PLRF localization alone is able to
cope with a typical doorway situation.
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Figure 7.11: Preprocessed panoramic scan taken from the zero position in
the elevator hall.

7.3.1 Experiment 1: MARVIN Standing

Figures 7.12 and 7.13 show the results of the PLRF localization system when
MARVIN is standing still in his zero position in the elevator hall. In addition
to the graphical visualization, the respective positional variance-covariance
matrices together with the standard deviations are given.

What catches the eye is that in the more hostile environment of the elevator
hall the already mentioned outlier sensitivity of simply chained displacement
vectors leads to an actual drift of MARVIN (cf. figure 7.12 b). In con-
trast, the approach of determining displacement vectors with respect to the
best matching recorded scan proves its stability even under worse conditions
(cf. figure 7.13 b). This is also reflected in the coefficients of the variance-
covariance matrices and the respective standard deviations. Most remarkable
is the deviation of ®, which is smaller by almost one order of magnitude in
the second case.
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Variance-covariance matrix after about 40 concatenations:

37-107%  44.107% —59.10*
Cx=|44-10% 32.10% —-26-107° (7.15)
~5.9-107* —2.6-107® 3.1-1072

Standard deviations:

sx =6.1-10"%*m
sy =5.7-10"?m (7.16)
sp = 0.18 = 10.0°

Figure 7.12: Jitter of MARVIN’s calculated position around the actual zero
position in case of chained displacement vectors.
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Typical variance-covariance matrix:

1.9-100* 1.1-107° —-58-10°°¢
Cx=|11-107° 16-100* 3.1-107°
-58-107% 31-107% 75-1074

Standard deviations:

sx =14-10"%2m
sy =1.3-102m
s¢ = 0.03 = 1.6°

0.1

(7.17)

(7.18)

Figure 7.13: Jitter of MARVIN’s calculated position around the actual zero
position in case of displacement vectors determined with respect to the best

matching recorded scan.
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7.3.2 Experiment 2: MARVIN Moving

The following figures show the results when MARVIN is doing a clockwise
O-shaped drive of about 8 m length in the elevator hall. Again, start and end
point are exactly the zero position. The number of scans involved is about
20 in this example.

The conclusions to draw are very similar to those of the analogue experiment
in the previous section. The drive of figure 7.15 features a very good accuracy
when returning to the starting point, which is once again a consequence of
the localization mode that minimizes the concatenation chain to length 1.
A very satisfying fact is that in case of chained displacement vectors PLRF
localization still performs better than MARVIN’s odometry, despite of the
unfavourable conditions in the elevator hall (cf. figure 7.14).
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Variance-covariance matrix when returned to the zero position:

82-1072 —8.0-1073 2.8-102
Cx=|-80-10"% 20-102 —1.5.10"2 (7.19)
281072 —15-10"2 2.7-1072

Respective standard deviations:

sx =0.29m
sy =0.14m (7.20)
se = 0.16 =9.4°

PLRF based position estimate when returned to the zero position:

X = —0.009m
Y = —0.059m (7.21)
=19

Odometry based position estimate when returned to the zero position:

XOdo = 0.096 m
YOdO = —0.087m (7.22)
DPpgo = 7.3°

Figure 7.14: Experimental drive with chained displacement vectors.
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Variance-covariance matrix when returned to the zero position:

1.9-107° 2.6-107 0
Cx=[26-10"° 3.6-107° 0 (7.23)
0 0 1.0- 10

Respective standard deviations:

sy =4.4-1073m
sy =6.0-10°m (7.24)
s¢ = 0.01 = 0.6°

PLRF based position estimate when returned to the zero position:

X =0.003m
Y = —0.008m (7.25)
® = 0.005°

Odometry based position estimate when returned to the zero position:

XOdo =0.152m
Yodo = —0.094m (7.26)
Dpgo = 9.3°

Figure 7.15: Experimental drive with displacement vectors determined with
respect to the best matching recorded scan.
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7.3.3 Experiment 3: Low Scan Density

Repeating this experiment in the elevator hall yields an interesting result.

Figure 7.16: Experimental drive with only three scans taken from extremely
different positions.

In this case the variance-covariance matrix C'x with the largest coefficients
is related to the upper position and reads as:

1.0-1072 —-2.1-10% —-3.7-10°3
Cx=1|-21-10% 79.10* 7.7-10* (7.27)
-3.7-107% 7.7-100* 2.1-1073

with standard deviations:

sx =0.10m
sy = 0.03m (7.28)
S = 0.05 =2.7°

Evidently, the coefficients of C'x are smaller than those of the analogue
experiment in the laboratory. The reason for this is that the elevator hall
is considerably less structured than the laboratory, i.e. as far as the PLRF
is concerned, the appearance of the hall mostly remains the same even if a
significant distance has been travelled.
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7.3.4 Experiment 4: Passing a Doorway

In this fourth experiment it is shown that the PLRF localization system is
able to cope with a typical doorway situation, i.e. a doorway is passed in
order to leave one room and to enter another room.

Due to the complete change of the surroundings within a very short distance,
the crucial point is to ensure a high scan density. Mostly, this demand can
easily be satisfied as in the critical moments the door frame shadows two large
sectors so that the number of line segments in a scan is reduced, rendering
scan matching and localization faster. Secondly, a mobile vehicle normally
slows down when approaching a narrow passage.

In the present experiment MARVIN starts from his zero position in the
elevator hall, does a left turn around the elevator shaft and then turns right
through a doorway-like passage into an adjacent small room. Displacement
vectors are determined with respect to the best matching recorded scan, so
ambiguities are well possible.

Figure 7.17 illustrates that during the experimental drive scans could prop-
erly be superimposed and localization was always correctly performed. The
drive involved a complete change of the scene, i.e. when standing in the
end position inside the small room no line segment of the elevator hall is
perceivable.

Figure 7.17: Passing a doorway.

The variance-covariance matrix in the end position and the respective stan-
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dard deviations read as follows:

581072  2.7-1072 —2.1-1072
Cx=|27-102 18-102 -8.0-1073
—2.1-1072 —8.0-1073 9.1-1073

(7.29)
Sx = 0.24m

sy = 0.13m
s = 0.10 = 5.5°

7.4 Scenario 3: Corridor

In the final experimental scenario MARVIN is passing a corridor as already
outlined in section 6.4.2. Conditions are similar to those in the elevator hall:
Walls made of rough, dark grey concrete and an uneven screed as flooring.
Nontypical for a corridor is that a wall is only on one side. Instead of the wall
on the other side there is a gallery with a window front, which is invisible to
the PLRF. Another remarkable anomaly of the corridor under consideration
is that it is not straight, but very slightly bent (cf. figure 7.18).

Figure 7.18: MARVIN passing the corridor.

Figure 7.19 shows the start of MARVIN’s journey along the corridor. The
proper superposition of two scans while standing in the start position shows
that complete localization is well possible.

Figure 7.20 shows MARVIN underway running along the corridor.
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Figure 7.19: MARVIN in start position for the corridor drive.

An attempt to perform complete localization generates the following
variance-covariance matrix and standard deviations:

2.7-107%  —46-1073 0
Cx=|-46-10"% 1.1-107" 0
0 0 1.3-107°

(7.30)
sx =17-10"2m
sy =0.33m
se = 0.004 = 0.2°

This reveals that in particular localization in Y will be erroneous, whereas
localization in X and ® could still be accurately performed. At any rate,
this indicates that complete localization has to be abandoned.

When MARVIN reaches the end of the corridor, which is illustrated in fig-
ure 7.21, complete localization is feasible again, i. e. superimposing scans can
be resumed. However, as complete localization was temporarily lost, the
catchment area of the original coordinate system has been left. This means
that a new coordinate system with a new initial node has to be established,
which results in a graph as depicted in figure 6.6 b.
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Figure 7.20: MARVIN running along the corridor.

‘ ‘ ‘ ‘ ;
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Figure 7.21: MARVIN at the end of the corridor.
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Chapter 8

Conclusion and Future Work

This work presents a localization system suited for robots roaming in every-
day indoor environments. This means the system can cope with environments
that are not carefully engineered and prepared, as this is the case in a man-
ufacturing scenario, but are typical office or residential buildings’ interiors
with people moving around and objects changing their place from time to
time.

The employed sensor system is a panoramic laser range finder with a viewing
angle of nearly 360° providing planar scans of the surroundings in a fixed
height parallel to the floor. At first, the resulting range images are pre-
processed by extracting straight line segments and their respective first and
second order statistical moments. This procedure assures a considerable data
reduction as well as an effective rejection of noisy and outlying scan points.
Furthermore, the statistical nature of the scan point acquisition process is
respected and preserved. Thus, the output of the preprocessing step is an
ordered and cyclic sequence of line segments augmented by their first and
second order moments.

The next milestone in the present approach is scan matching. In this step
two preprocessed scans referred to as the previously recorded reference scan
and the current test scan are considered. In general, the two scans are taken
from different positions in the environment and have to be related to each
other in such a way that the extracted line segments optimally coincide. The
required pairwise assignment of line segments is accomplished by employ-
ing a modified version of the DP-Algorithm, which is a procedure known
from the pattern matching and recognition domain. In order to make the
DP-Algorithm applicable, the sequence of line segments as given from pre-

127
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processing is interpreted as a cyclic pattern sequence. Furthermore, an ap-
propriate similarity measure between line segments taking into account the
geometrical and statistical properties of the line segments is defined. The
final outcome of the DP-procedure is an assignment on line segment level
and an overall measure rating the similarity of the two scans. This overall
similarity measure enables the approach to be easily extended from one to
several reference scans, i.e. by successively applying the DP-Algorithm it is
possible to choose from a whole set of reference scans the one or, if desired,
the ones that fit best to the given current scan. Another quality of this
similarity measure is its proportional response to changes in the surround-
ings, e.g. a short line segment still visible in the reference scan and having
eventually vanished in the test scan will only have little effect on the overall
similarity. The proposed procedure does not rely on a priori knowledge or
models of the environment: Starting with an initial scan, e. g. taken during
“wake-up” of the system, scan matching is operable and as soon as a current
scan is taken, assignment of line segments is provided without consulting any
other source of information. Finally, the DP-Algorithm based scan matching
procedure performs robust recognition of places that have been seen before
and accurate matching of line segments that belong together.

Based on the matching result localization is realized by setting up and solving
an overdetermined equation system, again taking into account the geometri-
cal and statistical properties of the participating line segments. An important
aspect addressed in this context is the uncertainty inherent in any position
estimate and its propagation in case of successive localization cycles. A spe-
cial case in this uncertainty discussion is that of partial localization, where
only a subset of the existing degrees of freedom can be bound. The sug-
gested map built from the localization result is an attributed graph, as this
structure is able to combine the accuracy of a detailed map with the storage
and processing efficiency of a map with a coarse degree of refinement. In
addition, the graph structure in conjunction with the ability to recognize
known places offers the possibility to use topological relations side by side
with geometrical position estimates.

The suggested approach has been implemented on a real robot and experi-
ments have been conducted in different, completely unprepared office envi-
ronments under varying conditions. The obtained results show the suitability
of the pursued method for navigational purposes: Even if surroundings are
heavily structured or if sensory information becomes sparse the scans taken
from different positions can properly be matched and superimposed. As can
be seen from the experiments, the results would not have been that encour-
aging if only simple concatenation of displacement vectors were performed.
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The crucial contribution to the actual performance of the approach is pro-
vided by the ability to recognize known places and to determine the current
displacement vector with respect to the best matching recorded scan. This
procedure offers the possibility to reduce already accumulated positional er-
ror, which otherwise increases without bounds. Another strength illustrated
in the experiments is that known places can be recognized even if the sensor
is located quite a distance away from the position where the original scan
has been taken. As a consequence, the above mentioned error reduction can
already become effective if the robot just approaches or passes by a known
place. This robustness of recognition impressively becomes apparent when
the robot passes a doorway into another room where a significant part of the
current surroundings is abruptly replaced by a completely new environment.

A possible limitation of the presented technique may be observed if an en-
vironment comprises several places that are indistinguishable for the laser
range finder and are beyond that located in immediate spatial vicinity such
that the arising ambiguities cannot definitely be resolved, e. g. with the help
of odometry. In such a case the localization system as presented in this work
may choose the wrong of the possibilities and may in a bad case not re-
cover from this erroneous decision. However, this problem can be overcome
if the concept of Markov localization is seized, where not only one but sev-
eral position estimates are allowed. This concept is well compatible with the
proposed procedure as the DP-Algorithm based scan matching can not only
render the best matching scan, but the best n matching scans to a given
current scan together with the respective similarity measures. Along that
way, in conjunction with repeating the actual localization step n times, n
different and rated position estimates can be maintained. According to the
technique of Markov localization the number of estimates may be reduced
and ambiguities may correctly be resolved after some further roaming of the
robot in its surroundings.
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