This is the author’s version of the work. The definitive work was published in Proceedings of Conference on
Parallel Problem Solving from Nature (PPSN 2008), pp. 919-928, 2008. The work is supported in part by
the German Science Foundation (DFG), SFB 694.

A Feasibility-preserving Crossover and Mutation
Operator for Constrained Combinatorial Problems

Martin Lukasiewycz, Michael GlaB, and Jiirgen Teich

Hardware-Software-Co-Design
Department of Computer Science 12
University of Erlangen-Nuremberg, Germany
{martin .lukasiewycz, glass, teich}@cs .fau.de

Abstract. This paper presents a feasibility-preserving crossover and mutation
operator for evolutionary algorithms for constrained combinatorial problems. This
novel operator is driven by an adapted Pseudo-Boolean solver that guarantees fea-
sible offspring solutions. Hence, this allows the evolutionary algorithm to focus
on the optimization of the objectives instead of searching for feasible solutions.
Based on a proposed scalable testsuite, six specific testcases are introduced that
allow a sound comparison of the feasibility-preserving operator to known meth-
ods. The experimental results show that the introduced approach is superior to
common methods and competitive to a recent state-of-the-art decoding technique.

1 Introduction and Related Work

Definition 1. A constrained combinatorial problem is defined as:

minimize f(x)
subject to x € Xy with Xy C {0,1}"

The objective function f allows multi-dimensional and non-linear calculations. The
search space X = {0,1}" is restricted to binary values, but allows integer values by
a binary encoding. The feasible search space Xy C X is restricted by a set of linear
constraints which are subsumed in the following matrix inequation:

Ax <b (1)

with A € Z™" and b € Z™. Thus, the constraints have to be linear or lineariz-
able!. Constraints that are not linearizable have to be handled by common methods like
penalty functions. However, many problems have linear constraints only [1] or are dom-
inated by the number of linear constraints [2]. In the following, this paper assumes that
all constraints are linear.

In the field of Evolutionary Computation different constraint-handling techniques
of constrained combinatorial problems as stated in Definition 1 exist. These constraint-
handling methods become necessary since a variation by crossover and mutation oper-
ators tends to deliver infeasible solutions. A straightforward approach is a penalty func-
tion that counts the violated constraints and deteriorates the objective function, cf. [3,

! linearization substitution rule: z; - zo < z3 withz; —x3 > 0Axy — 23 > 0A) + 22 — 23 < 2

4]. Moreover, a greedy repair algorithm as presented in [5] can be applied to minimize
the number of violated constraints. This repair algorithm delivers feasible solutions only
for specific problems like, e.g., the 0/1 Knapsack Problem [5], but it cannot guarantee
feasibility for linear constraints as stated in Equation (1). Since this problem is known
to be NP-complete in general [1], it cannot be solved by a greedy algorithm (assuming
P#NP).

If the search space is hard constrained, the common constraint-handling methods
fail, since they are more focused on the search for feasible solutions than optimizing the
objectives. In [2], a decoding strategy [6] known as SAT decoding is presented that over-
comes these drawbacks. By using a Pseudo-Boolean (PB) solver [7] as a decoder, this
method always obtains feasible solutions by mapping from a bounded search space to
feasible solutions. In combination with an Evolutionary Algorithm (EA), a good conver-
gence towards the optimal solutions also on large and complex real-world problems [8]
is reached.

Instead of using the PB solver for decoding feasible solutions, our novel approach
uses the PB solver within the crossover and mutation operator. Thus, only feasible solu-
tions are obtained already in the variation process of the EA and a decoding becomes un-
necessary. To compare this novel approach to common constraint-handling techniques
and the SAT decoding, we present a testsuite and six specific testcases. These testcases
represent random as well as structured real-world problems.

The remainder of the paper is outlined as follows: Section 2 introduces the scalable
testsuite and six specific testcases for the constrained combinatorial problem. In Sec-
tion 3, the novel feasibility-preserving crossover and mutation operator is presented.
Experimental results are given and discussed in Section 4 before the paper is concluded
in Section 5.

2 Testsuite

In the following, a scalable testsuite for constrained combinatorial problems is pre-
sented. This testsuite is based on the well known 3-SAT problem [1]. The 3-SAT prob-
lem is a special case of the Satisfiability Problem where each clause contains exactly
three literals. In a nutshell, the 3-SAT problem is to determine if there exists a satisfying
solution to a Boolean formula given as a conjunction of clauses. A clause is a disjunc-
tion of literals, which are variables or their negations. Each clause can be formulated
as a linear greater-or-equal-1 constraint by substituting the ORs by plus signs and the
negative literals T; by 1 — ;. For instance, the clause (1 V z2 V T3) is converted to
1+ a9+ (1 —x3) > lorxy + x9 — x3 > 0, respectively. Thus, a transformation to
the form in Equation (1) is straightforward.
The testsuite is configured by two parameters:

— n - number of binary variables
— k - number of constraints

In contrast to the original 3-SAT problem, the constructed constrained problem must
contain at least one feasible solution. This is ensured by first constructing a random

solution z € X with 7" | z; = 5 or the same number of 1s and 0s, respectively. Ran-
dom constraints are generated by constructing clauses with randomly chosen positive
(z;) or negative literals (Z;) of three randomly selected variables. This generated con-
straint is only added if it is satisfied by « to guarantee at least a single feasible solution.
The procedure is carried out until the desired number of constraints k is reached.

Since this paper deals with constraint-handling, for all following testcases, the ob-
jective function f is a simple single linear objective function

flx) = Zri X
i=1

with the r; values randomly distributed in Ryg 1.

T1 Testcase T1 is a random instance with n = 100 and & = 400. With % ~ 4.3, hard
solvable 3-SAT instances are generated, cf. [9]. The experience shows, % = 4 tends to
construct testcases that have enough feasible solutions for a meaningful optimization
but, on the other hand, obtaining a feasible solution is not trivial.

T2 Testcase T2 is a random instance with n = 150 and £ = 600. This testcase,
in combination with T1, reveals the scaling of the optimization method for random
instances.

T3 Testcase T3 represents a real-world problem with n = 1000 and k£ = 4000. For this
testcase, a structure is induced by a special scheme to select the variables for the clauses:
First, a random variable x; is selected. The other two variables x;,x}, are selected by
a Geometric Distribution with the inverse function F~!(u) = [In(1 — u)/In(1 — p)],
with u being a random number in R y), such that j = (i + F~*(u))%n + 1 and
k= (j + F~Y(u))%n + 1. A high value for p decreases the pairwise distance of the
variables that is in average . For testcase T3 the value p is set to 0.1. It is known that PB
solvers are performing much better on structured problems than on random generated
problems [10]. In fact, real-world problems are usually structured due to the problem
trait, like, e.g. the system structure, or the construction scheme like, e.g, a hierarchical
approach, cf. [9].

T4 Testcase T4 represents a real-world problem with n = 1000 and & = 4100. Unlike
the construction scheme used in T3, a structure is induced by a partitioning approach.
First, b constraints are randomly generated among all variables. Second, the variables
are uniformly distributed in a partitions such that for each partition £=2 random con-
straints are generated. For testcase T4, the parameters are set to a = 10 and b = 100
and, thus, 10 instances as in testcase T1 are created and interconnected by 100 con-
straints. These additional 100 constraints further reduce the rate of feasible solutions.

TS Testcase TS5 is constructed the same way as T4 with n = 2000, £ = 8100, a = 20
partitions, and b = 100. This testcase is used to illustrate the scaling of the optimization
methods on structured problems.

T6 Testcase T6 is constructed the same way as T3 with n = 3000 and k£ = 9000. With
% = 3 this testcase has a high rate of feasible solutions. This testcase shows the range
of applicability of the optimization methods for low constrained problems.

3 Feasibility-preserving Crossover and Mutation

The requirement for a feasibility-preserving crossover and mutation operator for con-
strained combinatorial problems is to always obtain a feasible offspring solution from
two feasible parent solutions. The proposed approach is based on a state-of-the-art
Pseudo-Boolean (PB) solver [7]. In the following, a specialized crossover and muta-
tion operator is presented that makes use of a PB solver to obtain feasible offspring
solutions from two feasible parent solutions. Moreover, a heuristic that aims to improve
the quality of the obtained offspring solution in terms of information preservation is
presented.

3.1 PB Solver

The task of a PB solver is to find an x € X that satisfies a set of linear constraints
as formulated in Equation (1). In fact, this NP-complete problem [1] is an ILP with
binary variables and an empty objective function and can be solved by a common ILP
solver. However, the specialized PB solvers tend to outrun common ILP solvers on these
Boolean-natured problems [11]. These PB solvers are extended SAT solvers that are ac-
tually used to solve the Satisfiability problem and are based on a backtracking strategy.
This strategy is known as the DPLL algorithm [12] and is outlined in Algorithm 1. The
algorithm efficiently searches for a solution « € X that fulfills all given constraints,
cf. [7]:

Algorithm 1 DPLL backtracking algorithm: solve
Require: p € R",0 € {0,1}"
Ensure: x € X

1: while true do

2: branch(p, o)
3 if CONFLICT then
4 backtrack()
5 else if SATISFIED then
6: return x
7
8:

end if
end while

Starting with completely unassigned variables, the operation branch(p, o) chooses
an unassigned variable and assigns it a value (line 2). The rule which variable is cho-
sen and which value is assigned is called branching strategy. The branching strategy
is guided by the two vectors p € R™ and o € {0, 1}". Unassigned variables z; with

the highest value p; are prioritized and are set to the value ;. After each variable as-
signment, conflicts are recognized (line 3). If any constraint is not satisfiable anymore,
the backtracking is triggered (line 4), i.e., variable assignments are reverted. In case
all variables have an assignment and there exists no conflict (line 5), this assignment
represents a feasible solution x which is returned (line 6).

3.2 Feasibility-preserving Operator

Algorithm 1 is able to find feasible solutions x € Xj. The backtracking is guided
by the branching strategy (p, o) and, thus, these two vectors have a high influence on
which solution in X is found. Thus, Algorithm 1 is used to generate a feasible initial
population by arbitrary random branching strategies.

In Algorithm 2, a feasibility-preserving crossover and mutation operator is pre-
sented: Based on the two feasible parent solutions, a branching strategy is derived to
obtain a feasible offspring solution using Algorithm 1.

Algorithm 2 Feasibility-preserving crossover and mutation operator

Require: z',z" € Xy; C C {1,...,n}; r € R 1] (mutation rate)
Ensure: z € X

1: fori e {1,...,n} do

2: if i € C then

3: =

4. else

5: o = xf

6: end if

7: pi = rand(0,1)

8: if rand(0,1) < r then
9: pi=pi+1

10: 0; = 04

11: end if

12: end for

13: = = solve(p, o)
14: return z

Algorithm 2 requires two feasible parent solutions 2/, 2" € X, the selection set
C C {1,...,n}, and the mutation rate r. A branching strategy (p, o) is generated as
follows: The prioritized phase o; of the corresponding variable x; is set to the corre-
sponding value of one of the parent solutions x, or x!/, respectively. This selection is
done based on the set C' that controls the binary crossover (line 2-6). The priority p;
of a variable z; is randomly chosen in R[O,l] (line 7). For each variable x; a mutation
is done with the probability r. The mutation increases the priority p; by 1 and flips the
prioritized phase value o; (line 8-11).

With the given branching strategy (p, o) the PB solver finds a feasible offspring
solution z € X (line 13). At this, preserving the information obtained by the parent

n |z, —0o|

solutions becomes important. Hence, the adaption diversity div(z,0) =), ==,

that measures the fraction of preserved information of o, should be kept as small as
possible.

Theorem 1. Given two feasible solutions x,T € Xy, a specific o, and a random p, the
probability P to obtain the solutions x in comparison to ¥ is

P(z = solve(p,0)) > P(Z = solve(p,0)))

div(z,0) < div(Z, o). 3)

Proof. Equation (3) implies that & compared to x has a higher count of variables
that are different to these corresponding variables of ¢. Thus, with a given random
p, Z is excluded with a higher probability earlier in the backtracking search algorithm
solve(p, o) compared to z. Hence, z is reached with a higher probability than & as
stated in Equation (2).

Thus, the PB solver tends to find a similar offspring solution = compared to o and
preserves the information passed along by the parent solutions z’ and z”. By setting C
to {1,...,n} or {}, respectively, Algorithm 2 decays to a feasibility-preserving mutation
only operator. This approach is applicable if the crossover rate is lower than 1.

3.3 Minimizing the Adaption Diversity

To preserve the information within the feasibility-preserving operator, the adaption
diversity has to be minimized. At this, the selection set C' that controls the binary
crossover has a high influence on this value. We propose a heuristic that finds selec-
tion sets based on a graph that represents the constraints of the problem. On the one
hand, this heuristic decreases the adaption diversity and, on the other hand, decays to
the well known one-point crossover for an unconstrained problem.

Consider the following definitions:

Definition 2 (Constraint-Graph). A constraint-graph G(V, E) is an undirected graph
that contains a vertex i for each variable x; from a problem defined in Equation (1).
A function w : 'V x V. — R defines the weight of the edges. For each constraint of
the problem an edge between each pair x;, x; of variables of the constraint® is added
between the vertices i and j. The weight of the added edge w(i, j) is the reciprocal
value of the count of the variables of the constraint. In case there exists already an edge
between the vertices i and j, the calculated weight is added to the weight of the existing
edge.

Definition 3 (Cut). Let G(V, E) denote a graph. A cut is a partition of the vertices V
in two disjunctive sets C' and C. Any edge e = (u,v) € E withu € C andv € C'isa
cut edge. A weight of a cut is the sum of the weights of the cut edges.

% Variables are said to be part of a constraint if their corresponding coefficient in C' from Equa-
tion (1) is non-zero.

A cut on a constraint-graph produces two partitions C and C. At this, C' can be used
as the selection set for Algorithm 2. A small cut weight should be aspired since it tends
to minimize the number of potentially conflicting constraints and, thus, also tends to
minimize the adaption diversity.

A min-cut algorithm that finds the minimal cut of an undirected graph is presented
in [13]. However, a reasonable crossover operator needs a sufficient number of cuts
instead of just a single minimal cut. Based on Algorithm 3, the following proposed
heuristic tends to generate n — 1 relatively small cuts.

Algorithm 3 Vertex ordering heuristic
Require: G(V, E), w
Ensure: P is an ordered set
1: while P # V do
2 Select z; € V\ P with szeP w(zi, ;) = maz{}_, cpw(@izk)|zr ¢ P}
3: P=PuU{x;}
4
5

: end while
: return P

Given the constraint-graph G(V, E) with the corresponding edge weight function
w, the algorithm fills a set P with the vertices V' and keeps track of the insertion order.
Until the set P contains all vertices from V' the algorithm continues (line 1). Each step
the most tightly connected vertex x; with respect to the set P is added to P (line 2-3).

Splitting the ordered set P at one point into two subsets C' and C' generates n — 1
cuts with relatively small weights. This is due to the fact that by using the presented
heuristic and adding at each step the most tightly connected edge, the weights of the
cuts are kept small along the order of P. Thus, we will uses these n — 1 C' subsets
for the selection set C' for Algorithm 2. In fact, this approach is similar to the common
one-point crossover and decays to it for unconstrained problems.

The time complexity of this algorithm is O(|E| + |V|log|V]), as stated in [13],
and with |[V| = n and a maximum value of |E| = n?, the aggregated worst-case
complexity is O(n?). However, this algorithm has to be performed only once for each
problem. As the experimental results validate, the costs of this heuristic are negligible
small compared to the overall runtime of one optimization.

4 Experimental Results

All experimental results were carried out on an Intel Pentium 4 3.20 GHz machine with
1 GB RAM. The implementation of the presented approach is based on the optimization
framework OpT4J [14].

4.1 Selection Set

Table 1 presents a comparison of the adaption diversity induced by the feasibility-
preserving operator for a completely random selection set C' and the selection sets that
were obtained by the presented heuristic in Section 3.3.

T1 | T2 | T3 | T4 | TS5 | T6
random |0.19|0.22(0.19{0.10|0.16|0.18
heuristic|{0.12|0.14|0.04(0.02|0.02|0.01

Table 1. Results for the adaption diversity on all testcases with a random selection set C' and
random selection set that was obtained by the presented heuristic.

In particular, the induced adaption diversity for the structured testcases T3-T6 is
significantly lower for the sets that are obtained by the proposed heuristic. These results
validate that the heuristic effectively preserves the information of the parents. Thus, for
following experimental results the novel feasibility-preserving technique is performed
in combination with the presented adaption diversity minimizing heuristic.

4.2 Optimization

The section compares different EA based constraint-handling strategies on the six test-
cases. The penalty function based approach (penalty) tries to minimize the following
function (cf. Equation (1)) that prioritizes feasible over infeasible solutions:

f'(z) = f(z) + p(x)

with p(x) = n-min{e; + ... + e, } such that Ax < b+ eande € Ny™

This approach is extended a by a greedy repair algorithm (greedy) [5] that flips each
variable trying to minimize p(x). In case of p(x) = 0, the greedy algorithm stops since
x is a feasible solution. The SAT decoding approach [2] is in the following denoted as
satdec. The feasibility-preserving approach proposed in this work is denoted as satop.
For all methods, an elitist EA is used with the population size of 100 individuals, gen-
erating 25 offspring from 25 random selected parent solutions. For all methods, the
mutation rate is set to r = % For the binary vectors, a binary crossover is used, fol-
lowed by a bit-flip with probability 7. For the satdec approach, the crossover for the real
vector is implemented by the SBX (v = 15) operator, followed by polynomial mutation
(n = 20) with probability p. For each testcase 10 instances were generated, and for
each instance 10 runs were carried out to allow a calculation of am overall meaningful
average.

The results of the optimization runs is given in Figure 1. The proposed feasibility-
preserving approach satop delivers the best solutions for all testcases except T4 where
satdec is slightly better. This is due to the fact, that satdec works best one problems
with very few feasible solutions. This is also apparent on testcase T6 with many feasible
solutions, where satdec is only slightly better than the greedy method. However, though
satop and satdec are both based on a PB solver and deliver feasible solutions only,
satop is about four times faster in average compared to satdec and even faster than the
greedy approach on the structured testcases T3-T6. Except for T4, the satop method
delivers remarkably better solutions on the testcases T3,T5, and T6 that represent real-
world problems. Note that the greedy approach becomes remarkably slow on the large
problem where obtaining a feasible solution is difficult and fails to find a single feasible

solution on the testcases T4 and TS. The method penalty is the fastest, but delivers bad
results and fails completely to find feasible solutions on the larger problems T3 to T6.

5 Conclusion

In this paper, a feasibility-preserving crossover and mutation operator for constrained
combinatorial problems is presented. This operator allows an Evolutionary Algorithm
to perform efficiently also on large and problems with few feasible solutions. The ex-
perimental results compare this novel approach to known methods based on a proposed
testsuite. The results show that the feasibility-preserving operator is superior to common
methods like penalty functions or a greedy repair algorithm. Compared to the state-of-
the-art SAT decoding, the novel approach is four times faster and delivers, except for
one testcase, better solutions.

References

1. Karp, R.M.: Reducibility among combinatorial problems. In Miller, R.E., Thatcher, J.W.,
eds.: Complexity of Computer Computations, Plenum Press (1972) 85-103
2. Lukasiewycz, M., Glal, M., Haubelt, C., Teich, J.: SAT-Decoding in Evolutionary Algo-
rithms for Discrete Constrained Optimization Problems. In: Proceedings of CEC ’07. (2007)
935-942
3. Coello, C.: Theoretical and numerical constraint handling techniques used with evolutionary
algorithms: A survey of the state of the art. Art. Computer Methods in Applied Mechanics
and Engineering 191(11-12) (2002) 1245-1287
4. Michalewicz, Z., Schoenauer, M.: Evolutionary algorithms for constrained parameter opti-
mization problems. Evolutionary Computation 4(1) (1996) 1-32
5. Zitzler, E., Thiele, L.: Multiobjective Evolutionary Algorithms: A Comparative Case Study
and the Strength Pareto Approach. IEEE Transactions on Evolutionary Computation 3(4)
(1999) 257-271
6. Koziel, S., Michalewicz, Z.: A decoder-based evolutionary algorithm for constrained param-
eter optimization problems. In: Proceedings of PPSN *98. (1998) 231-240
7. Chai, D., Kuehlmann, A.: A fast pseudo-boolean constraint solver. In: Proceedings of DAC
’03. (2003) 830-835
8. Lukasiewycz, M., Gla3, M., Haubelt, C., Teich, J.: Efficient symbolic multi-objective design
space exploration. In: Proceedings of the ASP-DAC ’08. (2008) 691-696
9. Aloul, FA., Ramani, A., Markov, L.L., Sakallah, K.A.: Solving difficult SAT instances in the
presence of symmetry. In: Proceedings of DAC *02. (2002) 731-736
10. Prasad, M.R., Chong, P., Keutzer, K.: Why is ATPG easy? In: Proceedings of DAC *99.
(1999) 22-28
11. Aloul, FA., Ramani, A., Markov, L.L., Sakallah, K.A.: Generic ILP versus specialized 0-1
ILP: an update. In: Proceedings of ICCAD *02. (2002) 450457
12. Davis, M., Logemann, G., Loveland, D.: A machine program for theorem-proving. Commun.
ACM 5(7) (1962) 394-397
13. Stoer, M., Wagner, F.: A simple min-cut algorithm. J. ACM 44(4) (1997) 585-591
14. Opt4]J: (Java Optimization Framework) http://www.opt4j.org/.

(aye4) Suonn|os ajqiseaul

f(x)I 5]

inf. rate =

31

30
29
28

(x)} 8zZIwuIW
(eye4) Suonn|os ajqiseaul

© © < o
o o o

—

fx) @

inf. rate =

19.5
19
18.5 -
18
175
17
16.5 -
16
155
15
145

(x)3 eZIWuIW

satdec greedy penalty

(b) Results for T2.

satop

satop satdec greedy penalty

(a) Results for T1.

(e1e4) Suonn|os a|qisesjul

® @ ¥ o
- © S S o

o

%]

f(x
inf. rate =

19
190 -

(x)4 ZIWIUIW
(e1e4) Suonn|os ajqiseajul

©Q © <% o
o o o o o

—

195

(x)} eZIWUIW

satop satdec greedy penalty

satdec greedy penalty

(¢) Results for T3.

satop

(d) Results for T4.

(aye4) Suonn|os ajqiseaul

©® @ ¥ o
o ©o S o o

inf. rate =

630

620
610
600
590
580 -
570
560

(x)4 8zZIWIUIW

(e1e4) Suonn|os ajgiseaul

© © < o
o o o o o

—

inf. rate m

1 1 1
0 o 0 o n
[} [} e} o ~
(<] (s} [sp] [sp] [sp}
(x)} eZIWuIW

satdec greedy penalty

(f) Results for T6.

satop

satdec greedy penalty

(e) Results for T5.

satop

T T
G SIR R IIIIK
KRR

OO0
X

satop &
satdec mm

5z
ol
mn
o8

1000

100

(unJ a|buis) swnpuns

10 ¢
1

(g) Runtimes for all testcases.

s on the presented testcases.

Fig. 1. 1(a) to 1(f) show the results of the four optimization method:

Given is the reached minimal value of f(x) as well as the rate of infeasible solutions that were

obtained throughout the optimization. In 1(g), the runtimes of the optimization methods on the

testcases are denoted. Note that these values are given in logarithmic scale.

10

