Exploiting Data-Redundancy in Reliability-Aware
Networked Embedded System Design -

Martin Lukasiewycz, Michael Glaf3, and Jurgen Teich
University of Erlangen-Nuremberg, Germany

{martin.lukasiewycz,glass,teich}@cs.fau.de

ABSTRACT

This paper presents a system-level design methodology for net-
worked embedded systems that exploits existing data-redundancy
to increase their reliability. The presented approach not only sup-
ports a reliability-aware embedded system design from scratch, but
also enables the redesign of existing systems to increase the re-
liability with a minimal communication overhead. The proposed
approach contributes (a) algorithms to automatically identify inher-
ent data-redundancy and (b) an automatic design space exploration
that is capable of exploiting the revealed data-redundancy. A sym-
bolic analysis is presented that quantifies the reliability of a system,
enabling the usage of reliability as one of multiple conflicting op-
timization objectives. The proposed approach is applied to a real-
world case study from the automotive area, showing a significantly
increased reliability with a negligible communication overhead.

Categories and Subject Descriptors

C.4 [PERFORMANCE OF SYSTEMS]:
Modeling techniques, Fault tolerance

General Terms
Reliability

1. INTRODUCTION

Modern networked embedded systems as found in the automo-
tive or avionics area consist of up to a hundred computational units,
interconnected via arbitrary communication resources like buses
and gateways. A large number of distributed functions are exe-
cuted on the computational units, inducing a high data volume on
the communication resources. In general, these distributed func-
tions are designed and implemented separately, resulting in a cer-
tain degree of redundancy in terms of the communication data. This
existing data-redundancy can be used to increase the reliability of
a system. Consider some functions from the automotive area like,
e.g., X-by-wire [19] or advanced driver assistance functions: These

*Supported in part by the German Science Foundation (DFG), SFB
694

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

CODES+I1SSS’09, October 11-16, 2009, Grenoble, France.

Copyright 2009 ACM 978-1-60558-628-1/09/10 ...$5.00.

g
g
O
function Sfunction Sfunction
\ B /

(a) identify data-redundancy

Y

application

N

(b) design space exploration
resource allocation
process binding
communication routing

architecture

implementation

Figure 1: Proposed design flow: Several functions are com-
bined to an application that includes the inherent data-
redundancy. Given the application and a target architecture,
the design space exploration that includes the resource allo-
cation, process binding, and communication routing is used
to find a high quality implementation, utilizing the data-
redundancy.

functions require several input data that are obtained from sensors.
For instance, the vehicle speed is delivered by either wheel sensors,
radar sensors, or via the analysis of GPS data. If a function receives
the current vehicle speed from all these sensors, the functionality
is not affected in case one of the sensors is still working properly.
However, due to the separate development of the functions, infor-
mation about this redundant presence of the vehicle speed in the
overall integrated system is commonly neglected. On the other
hand, the increase of reliability has to be traded against the ad-
ditional communication overhead. Due to the complexity of this
task, an automatic design flow, as illustrated in Fig. 1 and proposed
in the work at hand, is a promising approach for obtaining high
quality implementations in terms of the reliability and a set of re-
maining objectives.

Contributions of the paper: Increasing the reliability with a

minimal amount of additional cost is one of the most challeng-
ing tasks in the design of complex networked embedded systems,
cf. [1]. To tackle this problem, the work at hand proposes a novel
embedded system-level design methodology that aims to increase
the reliability of the networked embedded system by exploiting
its inherent data-redundancy. It contributes (a) algorithms that are
capable of identifying existing data-redundancy among functions,
resulting in a novel application model that includes existent data-
redundancy, and (b) a state-of-the-art design space exploration that
utilizes an analytical approach to quantify the reliability of a sys-
tem.

As illustrated in Fig. 1 (a), an identification of the data-reduncancy
of the distributed functions is carried out to obtain a redundancy-
aware application. For this purpose, it becomes necessary to gather
detailed information about the distributed functions, i.e., the pro-
duced and consumed signals. Here, a signal is the basic data unit.
One process consumes and produces multiple different signals, given
in a set-based representation. To add the additional data-redundancy
information directly to the application, this work presents both a
graph-based and a functional approach. The functional approach
extends the graph-based approach and is capable of modeling also
more complex data-dependencies as common in, e.g., data-fusion
scenarios.

The design space exploration as illustrated in Fig. 1 (b) follows
the Y-chart approach: For a given application and architecture, a
high quality implementation is determined within a multi-objective
optimization. The presented design space exploration performs
a resource allocation, process binding, and communication rout-
ing concurrently. For this purpose, the design space exploration
problem is encoded in linear constraints with multiple also non-
linear conflicting objectives such that a novel hybrid optimization
approach is utilized. This hybrid optimization approach uses an In-
teger Linear Program with binary variables (0-1 ILP) and an Evo-
lutionary Algorithm (EA). While the 0-1 ILP ensures that obtained
implementations are feasible, the EA iteratively improves the ob-
jectives of these implementations. In order to utilize the data-re-
dundancy and to increase the reliability of the implementations, a
quantification of the reliability becomes necessary. In this paper, a
reliability analysis is proposed based on the usage of Boolean func-
tions, efficiently encoded in Binary Decision Diagrams (BDDs) [2].
With a proposed construction scheme, a BDD representation of the
system structure can be derived and evaluated to obtain appropriate
measures like, e.g., the Mean-Time-To-Failure (MTTF).

Organization of the paper: The remainder of the paper is out-
lined as follows: Section 2 discusses related work. Section 3 intro-
duces the system model and the proposed extension for the model-
ing of the data-redundancy in the application. The algorithms for
identification of the inherent data-redundancy in the application are
presented in Section 4. The proposed design space exploration ap-
proach as well as the developed reliability analysis are introduced
in Section 5. Experimental results are given in Section 6 before the
paper is concluded in Section 7.

2. RELATED WORK

In the past, a lot of effort has been put in the improvement of
reliability of automotive electronic components, cf. [21]. Recently,
several approaches target a robust and reliable system design at var-
ious levels of hardware and software as a whole: At lower levels of
abstraction, reliability is increased by introducing techniques that
are tailored to special bus architectures like, e.g., TTP/C [5, 13]
and their communication layers. Other approaches like [6] deal
with the verification of reliability only, neglecting a possible re-
liability increase by utilizing given redundancy. At system level,
approaches to increase reliability are embedded in the tasks of re-
source allocation, task binding, message routing, and scheduling.

Fault-tolerance via checkpointing and power management based
on dynamic voltage scaling is introduced in [22]. In [11], fault-
tolerant quasi-static schedules with respect to given deadlines are
proposed. The same authors present an approach for hard real-time
systems in [4], using rollback recovery and active replication. Ap-
proaches such as [18, 20] try to maximize reliability by selective
redundancy-introduction strategies with reliability being the only
objective while other objectives are treated as constraints. The
system-level design approach presented in [12] introduces reliabil-
ity as an optimization objective, while using resource replication to
increase reliability. In [7], a reliability analysis and optimization
approach is presented, that is tailored to the toleration of hardware
defects in ECU networks by performing a multiple binding of tasks
to ECUs to create redundancy at task level. All approaches ac-
tively introduce redundancy using, e.g., task re-execution, multiple
task-binding, or resource multiplication without utilizing the ex-
isting data-redundancy. The result is additional overhead ranging
from relatively low cost solutions like task re-execution increasing
runtimes, over task multiplication increasing the necessary com-
putational capacities, up to resource multiplication that increases
monetary costs and the system size.

To the best of the authors knowledge, the work at hand is the first
embedded system-level design methodology that exploits existing
data-redundancy in networked embedded systems. The additional
overhead resulting from the utilization of this type of redundancy
is restricted to sending multi-cast messages, increasing the function
delay and busload marginally.

3. MODEL

This section presents the basic exploration model and proposes
an extension of the application model to allow the handling of re-
dundancy.

3.1 Basic Model

The exploration model is defined by a specification that consists
of an application and an architecture. From this specification, var-
ious implementations can be derived by defining the allocation of
the architecture, the mapping of the application, and the routing of
communication data. This Y-chart approach is illustrated in Fig. 1.

The specification consists of an architecture graph Gr and an
application graph G :

e The architecture is given by a directed graph Gr(R, ER).
The vertices R represent resources such as processors, mem-
ories, or buses. The directed edges E'r indicate available
communication connections between two resources.

e The application is given by a bipartite directed graph
Gr(T,Er) with T = P U C. The vertices T are either
process tasks p € P or communication tasks ¢ € C. Each
edge e € Er connects a vertex in P to one in C, or vice
versa. Each process task can have multiple incoming edges
that indicate the data-dependencies to communication infor-
mation of the predecessor communication tasks. On the other
hand, each communication task has exactly one predecessor
process task as the sender, but a process task can of course
have multiple successor communication tasks. To allow mul-
ticasts, each communication task can have multiple successor
process tasks.

Each process task p € P can be implemented on a resource from
R, with R, C R. Each communication task ¢ € C' can be routed
on a subset of resources from R. with R. C R. An example of
an application graph is illustrated in Fig. 2. An architecture and the
corresponding graph representation is given in Fig. 3.

@ input: {} @ input: {}

0] data: {v} 0 data: {v,a}
a input: {v} @ input: {v,a}
) data: {b} 0 data: {c}

@ input: {b} @ input: {c}

Figure 2: Sample application including two distributed func-
tions, each consisting of one sensor task, one processing task,
and one actuator task. The communication data passed be-
tween these tasks fulfills the input requirements.

el €2 €3 @

[[[
busi
gw =
buss

€4 €5

Figure 3: Sample architecture consisting of five ECUs
{e1, ez, e3,e4, €5}, two buses {bus1, busz}, and a gateway gw
as well as the corresponding graph representation.

One implementation consists of the allocation graph G 4 that is
deduced from the architecture graph and a function ¢ that maps the
application onto the allocation graph.

e The allocation is a directed graph G 4 (A, E4) that is an in-
duced subgraph of the architecture graph G r. The allocation
contains all resources that are available in the current imple-
mentation and the edges are induced from the graph G r such
that G 4 is aware of the communication connections.

e Each process task p € P is bound to exactly one allocated
resource i(p) such that i(p) € (A N Rp). Each communi-
cation task ¢ € C is routed on a tree that is a subgraph of
the allocation such that i(c) C G4 with all vertices in R.
These bindings and routings have to be performed such that
all data-dependencies given by the following two conditions
are satisfied:

1. For each communication task ¢ € C, the root of the rout-
ing has to equal the binding of the predecessor sender process
task p € P. It holds:

Y(p,c) € Er : root(i(c)) = i(p) (1)

2. For each process task p € P, the routings of the prede-
cessor communication tasks ¢ € C have to be routed on the
same resource as the binding of process p. It holds:

Y(e,p) € Er : i(p) € i(c) 2)

Figure 4: Example of a process task p with preceding communi-
cation tasks {c1, c2, cs}. The OR node indicates that the process
p requires c; or c2 as well as cs to work properly.

An implementation is feasible if all requirements regarding the
process and communication mapping as well as the data-dependencies
are fulfilled.

With the definition of a feasible implementation, the task of the
design space exploration can be formulated as the following multi-
objective optimization problem:

DEFINITION 1 (DESIGN SPACE EXPLORATION).
minimize f(x)
subject to:

x is a feasible implementation

In real-world problems, the objective function f consists of mul-
tiple functions including also non-linear calculations. In single-
objective optimization, the feasible set of networks is totally or-
dered, whereas in multi—objective optimization problems, the fea-
sible set is only partially ordered and, thus, there is generally not
only one global optimum, but a set of Pareto solutions. A Pareto-
optimal solution is better in at least one objective when compared
to any other feasible solution.

3.2 Model Extension

In order to allow the basic model to handle redundancy, the spe-
cification as well as the implementation have to be extended.

Regarding the specification, the architecture remains the same as
in the basic model. However, the application has to be extended
by an additional OR node type. Thus, the application graph is
Gr(T,Er) with T = P U C U O where O is a set of OR nodes.
Each OR node has multiple communication task predecessors from
the set C' and exactly one process task successor from the set P.
Thus, the OR node indicates that the succeeding process task re-
quires at least one preceding communication task. In Fig. 4, an
example of an application with an OR node is given: The process
task p € P requires the data either from c; or ¢z as well as the data
from cs3. This extension of the application is downward compatible
to the application in the basic model.

Regarding the implementation, the definition of an allocation re-
mains the same while the mapping function 7 has to be extended to
consider the OR nodes. The OR nodes are not mapped. The bind-
ing of process tasks and routing of communication tasks remains
the same. Instead, the two requirements for the satisfaction of data-
dependencies, i.e., Equation (1) and (2), have to be extended by a
third requirement:

e 3. For each process task p € P and preceding OR node
o € O, at least one preceding communication task ¢ € C' of
the OR node o has to be routed on the same resource as the
binding of process p. It holds:

Y(o,p) € Er (c,0) € Er :i(p) € i(c) 3)

This additional requirement ensures the correctness of the data-
dependencies for redundant communication data.

4. IDENTIFYING DATA-REDUNDANCY

To exploit information on data-redundancy methodically, the ba-
sic system model needs to be converted to the extended model with
OR nodes as presented in the previous section. In general, dis-
tributed functions are developed and specified separately by de-
signer teams. Thus, knowledge about data-redundancy within each
function can be exploited already in the specification phase. How-
ever, in the integration phase of the design process, the various dis-
tributed functions are combined to the system application such that
the data-redundancy between the distributed functions is mostly
neglected. Due to the immense size and complexity of the over-
all application, methodical approaches become necessary to reveal
existent data-redundancy. In this section, a graph-based and a func-
tional approach are presented that allow for an automatic identifi-
cation of existing data-redundancy. All proposed algorithms in this
section have a polynomial complexity. Thus, the runtime of these
algorithms is negligible small compared the design space explo-
ration and the reliability analysis.

Data-dependencies: In the used system model, the basic com-
munication data unit is a signal s € S. In general, each communi-
cation task, e.g., a message, can contain multiple signals. For each
communication task ¢ € C, the function data : C — 2° defines
the set of signals contained in c¢. On the other hand, each process
task performs some calculations that are based on the input signals.
Thus, for each process task p € P, the function input : P — 2°
returns the set of required signals for a proper functionality of p.

4.1 Graph-based Approach

Given the data and input functions for each communication
or process task, respectively, a fully graph-based approach is ap-
plied to extend the basic application graph (which is a collection of
the distributed functions) to a redundancy-aware application graph.
This procedure is achieved through the following three algorithms:
The first algorithm adds the OR nodes, while the subsequent two
algorithms simplify the application graph.

Algorithm 1 interconnects the communication and process tasks
with OR nodes to a redundancy-aware application graph.

Algorithm 1 Add redundancy (OR node) to application Gr.
Require: Gr (T, Er) withT = PUC

1: remove each (c,p) € Er withp € P,c € C

2: forp € Pdo

3: for s € input(p) do

4: add new OR node oto T’

5 add edge (o, p) to Er

6: for c € C do

7: if s € data(c) then

8: add edge (c,0) to Er
9: end if

10: end for

11: end for

12: end for

The algorithm requires a common application graph and it is as-
sumed that the data and input functions for each communication
or process task, respectively, are known, i.e., user-specified. First,
the edges from the communication tasks to the process task are re-
moved (line 1). The algorithm iterates over each process p € P
and each corresponding input signal s € input(p) (line 2, 3). For
each pair of p and s, exactly one OR node o is added to the graph
and connected to p (line 4, 5). Finally, the communication tasks

Figure 5: The application graph from Fig. 2 extended by OR
nodes to a redundancy-aware application graph. This figure
illustrates the application graph after applying Algorithm 1 (a)
and the same graph after the simplification (b).

¢ € C are interconnected with the OR nodes that contain the corre-
sponding signal s (line 6-10). Given the application graph in Fig. 2,
this algorithm results in the redundancy-aware application graph in
Fig. 5 (a).

Given a graph generated by Algorithm 1, two simplifications are
applied to remove redundant nodes and edges. Algorithm 2 re-
moves obviously redundant OR nodes from the graph. This is ap-
plied if an OR node has exactly one preceding communication task.

Algorithm 2 Remove redundant OR nodes from application graph
Gr.
Require: Gr(T, Er) withT = PUCUO
1: foro € O do
2 if|(c,0) € Er| =1A|(0,p) € Er| =1 then
3: remove OR node o from 7" and all incident edges
4: add edge (c,p) to Er
5
6:

end if
end for

The algorithm is applied to each OR node o € O in the graph
(line 1). If an OR node has exactly one predecessor ¢ € C and suc-
cessor p € P (line 2), it is redundant and can be removed (line 3).
Instead, an edge between c and p is added (line 4). For the ex-
ample in Fig. 5 (a), this algorithm removes the redundant OR node
between the communication task created by sen2 and pa.

Algorithm 3 applies the absorption law to the redundancy-aware
application graph and removes redundant edges and OR nodes.

Algorithm 3 Simplify application G by applying the absorption
law.
Require: Gr (T, Er) withT = PUCUO

1: forp € Pdo

2 fort,t' € CUO witht # t' and (¢,p), (t',p) € Er do
3 Cy = ({fL(th) e Ertu{th)nC

4 Cy = ({t|t,t") e BErtu{t'})nC

5: if C; C Cy then

6: remove OR node t’ from T and all incident edges
7 end if

8 end for

9: end for

The algorithm is applied for each process task p € P in the
graph (line 1). An iteration over all pairs t,t € C U O of pre-
ceding tasks or OR nodes, respectively, of p is performed (line 2).
Two sets C; and Cy are filled with the preceding communication
tasks ¢ € C (line 3, 4): If ¢ is a communication task, it is added
to C'y. Otherwise, t is an OR node and the predecessors of t are
communication tasks and added to C;. Correspondingly, this pro-
cedure is carried out for ¢’ and Cy. If C; is a subset of Cy/, the
node ¢’ is absorbed and, thus, the edge (', p) becomes redundant
and is removed (line 5-7).

Applying the previous and this simplification algorithm to the
application graph in Fig. 5(a) results in the graph in Fig. 5 (b).
Here, Algorithm 3 removes the dependency of the process p2 to the
communication task created by seni: The process task p> requires
the input data {v,a}. In case the communication task created by
seng fails to be sent to the process p2, the process p2 also fails
since it requires the signal a which is unique in the application. On
the other hand, the communication task created by sen; cannot in-
crease the reliability of the process p2 since the signal v is already
contained in the necessary communication task created by sena.

4.2 Functional Approach

In the following, an approach based on Boolean functions is pre-
sented that is capable of extending an application by OR nodes in
order to consider the inherent data-redundancy. This approach re-
places the graph-based Algorithm 1 and is more flexible due to its
capability to model more complex data-dependencies.

The functional approach requires a specific function r}, : 2¢
{0,1} for each process p € P. This function r, returns 1 if
a subset of received communications C' with their contained sig-
nals allows a proper functionality of p, and O otherwise. In the
following, the function r, is represented as a Boolean function
rp = {0, 1}‘0‘ — {0, 1} where the input C = (c1,...,¢|c|) is
a binary vector that contains a 0 or 1, respectively, for each ¢ € C.
A value of 1 indicates that the process p receives the corresponding
communication ¢ correctly, and O otherwise. The functional ap-
proach further requires that the Boolean function r, is given in con-
Jjunctive normal form (CNF). A CNF is a conjunction of clauses,
where a clause is a disjunction of literals. A literal is a variable
(positive) or a negated variable (negative). It is further required
that the literals of the CNF are always positive, inducing a mono-
tonicity that states that additional input data is never detrimental for
a process.

Given the Boolean functions 7, as CNF for each p € P, a trans-
formation from a common application graph to a redundancy-aware
application is given in Algorithm 4.

Algorithm 4 Add redundancy (OR node) to application G with
the corresponding Boolean functions 7, for each process p € P.
Require: Gr(T, Er) withT = PUC

1: remove each (¢,p) € Er withp € P,c € C

2: for p € P do

3: rp 1s the Boolean function for p as CNF

4: for clause a in 7, do

5: add new ORnode oto T’

6: add edge (o,p) to Er

7: for literal [in clause a do

8: c € C'is the positive variable of literal [
9: add edge (c,0) to Er

10: end for

11: end for
12: end for

Corresponding to Algorithm 1, the edges between the communi-

cation tasks and process tasks are removed (line 1). The algorithm
iterates over each process p € P (line 2). Each specific Boolean
function r, constructs the redundancy-aware application graph as
follows: For each clause, a new OR node is added and connected
to the corresponding process p (line 4-6). For each literal in the
clause, the communication c that corresponds to the literal is con-
nect to the OR node (line 7-9). If unit clauses, i.e., clauses with only
a single literal, are directly connected to the corresponding com-
munication task and the absorption law is applied to each Boolean
function 7, the simplification as provided by Algorithm 2 and 3 is
performed implicitly.

The Boolean function -, in CNF that corresponds to Algorithm 1

is
(€)= A \V e)
reinput(p) S et
Given the functional requirements for each process, an individual
Boolean function can be defined that represents the input require-
ments. For instance, a process p that performs a data-fusion from at
least two sensors can be stated as the following Boolean function:

€)= N () c>2). ©)
i€input(p) ﬁggﬁa(c)

This Boolean function has to be converted into a CNF by a con-

junction of all the disjunctions over all pairs of ¢, ¢’ € C.
Application Duality: The application graph can be dual such
that there exists (1) an application graph G for the minimal sys-
tem requirements and (2) an application graph Gé for the system
functionality. Here, the graph G'7 is used for the system design and
allows to model additional necessary redundancy by default. The
graph G§ models the requirement of a correct functionality of the
application and is used for the reliability analysis. Correspondingly
to the function r;, the functions r;, and r,f, respectively, are used

for the construction of G and Gé, respectively. Here, it holds
¥p € P:13(C) < r}(C) ©)

indicating that if the system requirement r,, is fulfilled, also the
functional requirement r,f has to be fulfilled.

For example, if a process p € P requires at least two redundant
inputs to work properly and the designer wants a redundancy with
one additional input, the requirement functions with four valid in-
put communication tasks co, 1, c2,c3 € C have to be defined as
follows:

r5(C) =((co + €1 + c2 + ¢3) > 2) 0)
5(C) =((co + €1 + c2 + c3) > 3) (8)

Converting these functions into a CNF is straightforward. In the
following, for the sake of simplicity, it is assumed that G =

Gy =Gl

S. DESIGN SPACE EXPLORATION

Recently, an efficient approach to solve discrete optimization
problems with stringent constraints has been proposed in [14]. This
hybrid optimization approach synergizes Integer Linear Programs
(ILPs) and Evolutionary Algorithms (EAs). Since the design space
exploration given in Def. 1 also has to cope with stringent con-
straints arising from the requirements for a feasible implementa-
tion, this section presents a transformation of the introduced prob-
lem to a constrained combinatorial problem. In order to use reli-
ability as an additional objective of the design space exploration,
a reliability analysis for an implementation exploiting the data-
redundancy as introduced is proposed.

| init

e M)

EA Variation O-TILP
(o,p)
Decoding
z=solve(a, p)

Selection

L J

v stop

Figure 6: Hybrid optimization approach for constrained com-
binatorial problems.

5.1 Efficient Optimization of Constrained Com-

binatorial Problems
A constrained combinatorial problem is defined as:

DEFINITION 2 (CONSTRAINED COMBINATORIAL PROBLEM).

minimize f(x)
subject to:
Ax < bwithx € {0,1}", A€ Z™" beZ™

The objective function f allows multi-dimensional and non-linear
calculations. Ax < b represents a set of linear constraints which
restrict the binary search space. Constraints that are not linearizable
have to be handled as an additional objective.

The general constrained combinatorial problem cannot be solved
by Integer Linear Program (ILP) solvers which are restricted to a
single linear objective function. On the other hand, meta-heuristic
optimization methods like Evolutionary Algorithms (EA) which
rely on the iterative variation and selection do not perform well
on optimization problems with many constraints and only a few
feasible solutions.

Recently, an efficient optimization methodology for constrained
combinatorial problems also known as the SAT decoding optimiza-
tion approach [14] has been proposed. This hybrid optimization
approach as illustrated in Fig. 6 is based on an EA and a backtrack-
ing based ILP with binary variables (0-1 ILP). The variation of the
backtracking search strategy (o, p) consisting of a binary vector for
the decision phases and a real valued vector for the priorities as well
as the selection based on the objective vector f(z) is performed
by the EA. The 0-1 ILP decodes the backtracking search strategy
(o, p) to a solution z that fulfills all linear constraints. This op-
timization approach iteratively improves found solutions such that
with a higher number of iterations and more evaluated solutions,
respectively, the quality of the results increases.

5.2 Model Encoding

In the following, the design space exploration problem formu-
lated in Definition 1 is transformed to a constrained combinatorial
problem as stated in Definition 2. A binary encoding and linear
constraints have to be defined such that each solution x of this
problem equals a feasible implementation z. The binary encoding
consists of the following variables:

r one variable for each resource r € R indicating whether this
resource is in the allocation (1) or not (0).

Ppr one variable for each process task p € P and the available re-
sources € R, indicating whether the process task is bound
on the resource (1) or not (0).

cy one variable for each communication task ¢ € C and the
available resources r € R, indicating whether the commu-
nication task is routed over the resource (1) or not (0).

cr,n one variable for each communication and resource pair indi-
cating on which communication step n € N (communication
tasks are propagated in steps) a communication is routed over
the resource.

The linear constraints are formulated as follows:

VpeP:
S ren, pr=1 %)
Vee C:
>ren, Cro =1 (9b)
Ve e C,p € {p|(p,c) € Er},r € RpNR::
Pr—Cro=0 90
Vp € P,c € {¢|(é¢,p) € Er}NC,r € RyNR.:
cr—pr >0 (9d)
Vp € P,o € {6|(6,p) € Er}NO,r € R, N{R.|(c,0) € Er}:
2 (c0)emy & —Pr 20 (%)
VYee C,r € R :
CritcCr2+...+cen<1 (91
Cr1tCr2t+..+Cn—cr >0 %g)
Vee C,r € Re,i ={1,...,n}:
Cr—¢Cri >0 (%h)
Vee C,r € Re,i={1,..,n—1}:
—Crjit1 + ZFGRuAe:('F,r)EER cri >0 (91)
Vpe PreRy:
r—p:2>0 ()]
VYee C,r € R :
r—c, >0 (9%)
VreR:

-r+ ZCEC/\TERC Cr + ZpEP/\rERp Pr Z 0 (91)

Equation (9a) ensures that each process task is bound exactly once.
The Equations (9b) and (9¢) imply that each communication task
has exactly one root that equals the used resource of the predeces-
sor process task. Analogously, for each process task the predeces-
sor communication tasks have to be routed on the corresponding
resources as stated in Equation (9d). Equation (9e) states that if
the predecessor is not a communication task but a an OR node, at
least one predecessor communication task has to be routed on the
corresponding resources. Equation (9f) ensures that a communica-
tion task can pass a resource at most once such that no loops occur.
A communication task has to be existent in one communication
step on a resource in order to be correctly routed on this resource
as implied by the Equations (9g) and (9h). Equation (9i) states
that a communication is only possible between adjacent resources.
The Equations (9j) and (9k) imply that a process or communication
task, respectively, is bound or routed on an allocated resource only.
On the other hand, Equation (9]) states that a resource is only allo-
cated if at least one process is bound or a communication is routed
on this resource. Moreover, this representation allows to specify

additional linear or linearizable constraints like, e.g., on maximal
computational load, maximal bus load, or maximal memory size
for each resource.

Given a single solution x of this linear search problem, the corre-
sponding implementation x is deduced by constructing the alloca-
tion from the r variables, the binding for each process task from the
pr variables, and the routing of the communication task from the
¢, and ¢, variables. Thus, the objective function in Definition 2 is
calculated such that a solution x is converted into a feasible imple-
mentation x and the objective function from Definition 1 is applied
directly.

5.3 Reliability as an Optimization Objective

In order to quantify the reliability in terms of an implementa-
tion, an automatic analysis is presented. In the work at hand, the
basic failure model are resource defects. Other errors like soft er-
rors within a process execution or incidental transmission errors
on the buses are assumed to be treated at lower levels of abstrac-
tion with techniques discussed in the related work section like, e.g.,
process re-execution or error-correcting codes. Thus, reliability is
assumed to be the capability of the system to work properly under
given resource defects. Here, the well-known Mean Time To Fail-
ure (MTTF) [10] is used as an appropriate measure of reliability.
The MTTF value is calculated based on the reliability specifica-
tions of each single resource. Due to resource sharing, it is not
possible to simply consider combinations of series/parallel struc-
tures as proposed in several former approaches, cf. [3, 12]. Instead,
the presented methodology is based on Boolean functions, using an
evaluation technique of reliability-related measures as introduced
in [8].

Structure Function Generation: In contrast to previous ap-
proaches, the presented methodology performs the analysis of each
function. This allows the design space exploration to focus on spe-
cific, safety-relevant functions instead of a potentially expensive re-
liability increase for the whole application. A function is typically
build of complex sensor-controller-actuator chains, including cy-
cles as well as multiple input, output, and controller processes. It is
sufficient to ensure a proper working of the corresponding actuator
processes for each function.

A structure function for any actuator process p* € P is gener-
ated from an implementation. This structure function is a Boolean
function @, : {0, 1}/ — {0,1} indicating if the process p* is
properly working (1) or not (0) under a given set of working re-

sources encoded in the binary vector R = (r1,...,r|g). This
Boolean function is defined as follows:
ep(R) = (10)
3pep P (10b)
p’ (10c)
AN (P —ip)) (10d)
pEP

AN

PEP,(p,c),(c,p)EET
AcEC

AN Y

pEP,(0,p)EED (p,c),(c,0)EET
No€eO

(P — (B A e(i(p)))) (10e)

(B A weli(p)))
(10f)

pelr) = {j A peld), T # root(i(e) with () € (o)

(10g)
Equation (10a) defines the Boolean function: The Boolean func-

tion depends on a binary vector R defining whether each corre-
sponding resource is working properly (1) or not (0). Internally,
the Boolean function also depends on the process variables P indi-
cating whether the process is active to ensure a proper functionality
of p* (1) or not (0). These process variables are eliminated with the
existence quantification in Term (10b) that states that there must
exist at least one activation of the process. Term (10c) states that
the process p™ is active. Term (10d) ensures that a process can only
be active if the target resource is working properly. Term (10e)
handles the data-dependency of process tasks without redundancy.
The term states that for each process p, each preceding process p
must be active and the all resources on the path between p and p
for the communication task must be working properly. The com-
munication path of task ¢ from a resources r to its root is deter-
mined by the recursive function in Equation (10g), resulting in a
Boolean function that is a conjunction of all resources along this
path. Correspondingly to Term (10e), the data-dependency of pro-
cess tasks with redundancy is handled in Term (10f). Here, for
each OR node, at least one preceding process task has to be active
and the resources on the path between these tasks must be properly
working.

Equation (10a) relies on P as a subset of all processes that are
reachable by a backward-traversal from p* only, since those pro-
cesses that are not backward-reachable do not contribute to the re-
liability of p*. Note that a straightforward enumeration and dis-
junction of all backward-paths from the process p* that could be
applied instead of Equation (10a) results in an explosion of the
number of paths for a growing number of OR nodes in the applica-
tion. Instead, the symbolic approach in the work at hand shows a
reasonable scalability due to the efficient encoding. Moreover, the
presented approach can even be applied on application graphs with
cycles.

Extending this approach to analyze the reliability of multiple
processes P* C P is done straightforward by the conjunction

er-(R)= /\ ¢p(R). (11)

p*EP*

Evaluation: In order to derive the desired MTTF value, the reli-
ability function R of the system needs to be evaluated. For a com-
pact representation of the Boolean function ¢, a Binary Decision
Diagram (BDD) is used [2]. A BDD is a directed acyclic graph
with one root and two sinks, the 0 and 1 sink. Traversing the BDD
from the root to the sink determines if the Boolean function evalu-
ates to 0 or 1 based on the path, determined by the assignment of
the variables.

Using a specific SHANNON-decomposition as proposed in [16],
the probability P of a proper working system at time ¢ is deter-
mined. This decomposition scheme can be applied to the BDD
directly and is defined as follows:

P(t,p) = Re(t) - Pt pr=1) + (1 = R (t)) - P(t, p1r=0) (12)

This function determines the probability of a structure function ¢
to evaluate to 1 at a given time ¢. The function R, : RT™ — Rio,1) is
the reliability function of a single system component 7 and returns
the probability of this component to work properly at time ¢. To
derive the reliability function R of the entire system, the structure
function ¢ has to fulfill the following condition:

p(x) > p(x),ifVi € {0,...,n}:x; > X5 (13)

In other words, a properly working component can only improve
the overall system performance, but not lead to a system defect.
Since this condition is trivially fulfilled by the presented approach
to generate ¢, the desired reliability function R, : Rt — Rio,1

€1 €2 €3
QUIOHI® o
A—

)
A ©®)
bus
wo ()
buss

0]
[2ECD)

S (=)

(b) Implementation that exploits the data-redundancy.

Figure 7: Two possible implementations of the same
redundancy-aware application from Fig. 5 (b) on the architec-
ture shown in Fig. 3.

of the overall system is given by:
Re(t) =Pt p) 14)

Based on the reliability function of the system, the desired MTTF
is calculated as follows:

MTTF(p) = / %Rw(t)dt (15)
0

Other reliability and reliability-related measures like, e.g., the Mission-

Time (MT), can be derived given the reliability function as well.
Using BDDs for a representation of the structure function, this ap-
proach is efficient and capable of evaluating complex functions.
Exemplarily, two implementations of the same redundancy-aware
application on the same target architecture are given in Fig. 7. Here,
the implementation (a) ignores the data-redundancy of process p1
while implementation (b) has an additional routing of the message
from seng to p1. Applying the presented approach for the quantifi-
cation of the reliability of the process act; results in the backward-
reachable application graphs illustrated in Fig. 8 and the following
structure functions:
Implementation (a):

@act, (R) =e1 A ez Aes Abus; (16)
Implementation (b):

Poct; (R) =(e1 V (ea A busy A gw))
A ez A es A bus 17)

\

(Bre-(zre-e()
(Bre-(zra-e()

(@ (b)

Figure 8: Backward reachability from the act; function for the
implementation variants from Fig. 7.

[Function | #processes | #messages | max. Delay [ms]]

ACC 18 17 100
BW 8 7 50
Cl 9 8 250
C2 10 9 150

Table 1: Detailed information about the application of the used
case study.

For any reliability function of the single components it holds
Rege, (1) <Ry, (), (18)

i.e., the reliability of implementation (b) is higher than the relia-
bility of implementation (a). Here, the increase of the reliability is
solely reached by the multi-cast routing of the message generated
by seni from e4, over busz, gw, and bus; to ez resulting in an
additional communication overhead.

6. EXPERIMENTAL RESULTS

The design space exploration approach is implemented using the
publicly-available tool OPT4J [15] that supports the optimization
of constraint combinatorial problems as presented in [14]. All fol-
lowing experimental results were carried out on an Intel Core 2
Quad 2.66 GHz with 3GB RAM.

A case study modeling a typical automotive subnetwork is used
to give evidence of the applicability of the proposed methodology.
The network architecture consists of 15 ECUs, connected via two
CAN buses, one FlexRay bus, and a central gateway. The 9 sen-
sors, and 5 actuators are connected via LIN buses to the ECUs.
The application consist of four functions, an adaptive cruise con-
trol (ACC), a brake-by-wire (BW), an air conditioning function
(C1), and a multimedia control (C2). In Table 1, the number of
processes and messages per functions is given as well as a maximal
end-to-end delay for each function. Thus, the application contains
46 processes and 42 messages in total.

6.1 Routing Exploration

First, a given reference implementation derived by hand is im-
proved by solely optimizing the routing of the messages as well
as some system parameters, i.e., the priorities of the processes and
messages. The reference implementation, listed in Table 2, has the
monetary cost of 216.80€ (Euro) and an energy consumption of
11745 mA (Milliamperes) and respects all real-time constraints of
the functions. The functions are distributed according to today’s

Costs | Energy ACC & BW

[€] [mA] Delay [ms] | MTTEF [a]
reference | 216.80 | 11,745 [99.8&30.2 [332
optimization:
common 216.80 | 11,745
red.-aware | 216.80 | 11,745

46.1 & 21.6 33.2
553 & 32.6 42.2

Table 2: Reference implementation, and two optimized imple-
mentations with and without using a redundancy-aware explo-
ration. Here, only the routing and system parameters were op-
timized.

real-world networks with the ACC being implemented in the Flex-
Ray subnetwork, BW and C1 each being implemented in one of
the CAN subnetworks, and C2 being implemented over both CAN
subnetworks.

Here, the routing and some parameters of the reference imple-
mentation are optimized, i.e., the mapping of the functions and the
resource allocation including the topology of the network is not
changed. Therefore, the monetary cost and the energy consump-
tion are not affected. Instead, the reliability of the ACC and BW
function measured in the Mean-time-to-Failure (MTTF) in years
(a) as well as the end-to-end delay are optimized. The end-to-end
delay is calculated by a non-linear timing model based on recur-
rence functions and a fix point search, cf. [9, 17]. The reliability
or MTTF of the ACC and BW function, respectively, is maximized
with the presented methodology. A higher utilization of an exist-
ing data-redundancy leads to an increased reliability but also to a
higher end-to-end latency due to the additional communication and
busload. Thus, these two objectives are conflicting.

The optimization is performed using 1350 objective evaluations.
Using a common optimization approach that optimizes the param-
eters of the system such as the priorities of the processes and the
tasks only improves the end-to-end latency. The result of this com-
mon optimization approach is given in Table 2. The runtime of this
optimization was 6.7 seconds. On the other hand, the optimization
that is able to utilize the data-redundancy improves the end-to-end
latency as well as the reliability of the system. Compared to the
common approach the runtime was slightly higher with 7.9 sec-
onds. The result of the redundancy-aware optimization, as given in
Table 2, shows an improvement of the MTTF of the ACC and BW
function by more than 25%. The end-to-end delay of the ACC and
BW function is improved compared to the reference solution but,
as expected, still worse than the best solution without the usage of
the data-redundancy. On the other hand, the end-to-end delay of the
BW function is worse than the reference solution but still meeting
the latency constraint. In automotive networks as well as in general,
meeting the given deadlines is typically sufficient. Therefore, from
the perspective of a designer, the implementation obtained by the
redundancy-aware optimization is better than the implementation
obtained by the common optimization.

6.2 Design Space Exploration

Finally, the presented methodology is applied in a complete de-
sign space exploration, i.e., the optimization of the allocation of the
architecture, mapping of the processes, routing of the messages,
and parameter determination. Here, the automotive network is op-
timized in terms of the monetary costs in Euro(€) and energy con-
sumption in Milliamperes (mA), and the reliability of the ACC and
BW function in years (a). The monetary costs are approximated
by a linear function based on the cost per resource with additional
cost like, e.g., wiring being neglected. The energy consumption is
approximated by a non-linear energy model based on the average

utilization of the ECUs.

Common automotive constraints such as the bus load (maximal
load 40% for the CAN bus) and ECU (maximal utilization 95%)
constraints have to be respected. Since these constraints are lin-
ear, they are directly integrated in the ILP formulation introduced
in Section 5.2 and, thus, implicitly respected. The real-time con-
straints regarding the end-to-end delay from the sensors to the cor-
responding actuators as given in Table 1 are determined by a non-
linear calculation. These non-linear constraints cannot be inte-
grated in the ILP formulation and are, therefore, calculated sepa-
rately for each implementation. If one end-to-end delay deadline is
not satisfied, the implementation is discarded.

The design space exploration of the subnetwork was performed
using a common optimization approach and the presented
redundancy-aware optimization approach. The optimization is con-
strained to 5100 objective evaluations. Here, the runtime of the
common optimization was 29.2 seconds and of the redundancy-
aware optimization 45.4 seconds. This difference in runtime is
explained by the larger search space of the redundancy-aware op-
timization as well as the larger BDDs that are necessary for the
reliability analysis due to the data-redundancy. The results of the
optimization are given in Figure 9.

Compared to the reference implementation, the optimization im-
proves the reference implementation in all three objectives, mon-
etary cost, energy consumption, and reliability. The found imple-
mentations allow to decrease the monetary cost by 13% to 18%
while decreasing the energy consumption by about 3.8% to 9.5%
at the same time, see Fig. 9(a). These results are obtained by
binding the processes such that a higher utilization is achieved and
some ECUs become redundant and can be removed from the im-
plementation. At the same time, the priorities of the messages and
processes are varied such that the real-time constraints are still re-
spected. Regarding the reliability, the MTTF of the ACC and BW
function can be increased by up to 40% compared to the reference
implementation, see Fig. 9 (b). Here, the implementations that are
obtained by the redundancy-aware optimization have a better relia-
bility than all implementations obtained by the common optimiza-
tion. At the same time, the monetary cost and energy consumption
of the redundancy-aware optimization are not worse. Due to the
larger search space and the higher number of feasible implemen-
tation, the redundancy-aware optimization even finds cost efficient
implementations with a clearly better energy consumption.

The short exploration time and the scalability analysis of the used
optimization methodology presented in [14] permit a projection
that the presented approach is also applicable on markedly more
complex systems.

7. CONCLUSION

This paper presents a design flow for the design of reliable net-
worked embedded systems. The paper covers the specification of
such networks by algorithms that are capable of identifying data-
redundancy of distributed functions. Here, a graph-based approach
is presented that utilizes detailed information of the signal trans-
missions to add the data-redundancy to the application. The func-
tional approach is a further extension that allows a generic def-
inition for the required signals of a process by Boolean functions.
Given a redundancy-aware application and a target architecture, the
presented design space exploration exploits the data-redundancy to
increase the reliability while optimizing the remaining objectives.
For the efficient determination of the reliability of an implementa-
tion, a symbolic approach based on Boolean functions, represented
by Binary Decision Diagrams (BDDs), is proposed.

The experimental results show a real-world case study from the
automotive area consisting of four complex functions implemented
on a multi-cluster system. First, an exploration of the routing and

I I I I
e} O common optimization
x redundancy-aware optimization
11,200 |- Q =
<
£
£ 11,000 - i
g
=
3]
x ® o X
10,800 |- ® —
X QTR X @)
XX O *Xx @

| | | | |
178 180 182 184 186 188 190

Costs [€]
(a)
O common optimization
50 - x redundancy-aware optimization | |
=
E X x XX X
| X %
s x X X
> L N
£ 40 X X
S X
2
@) @)
o oo 000 O
30| o |
| | | | |
178 180 182 184 186 188 190
Costs [€]
(b)

Figure 9: Results of the design space exploration of the case
study in two two-dimensional plots. The objectives are mone-
tary costs, energy consumption, and reliability, while the end-
to-end delay of the functions is handled as an additional non-
linear constraint.

bus parameters shows that the reliability is significantly improved
compared to the reference implementation, i.e., in the presented
case study approximately 25%. Here, the additional function delay
caused by the communication overhead does not affect the func-
tionality of the application. Finally, a full design space explo-
ration including resource allocation, process binding, communi-
cation routing, and parameter optimization is applied to the case
study. The results show that the additional data-redundancy leads
to more reliable implementations within an optimization, i.e., in the
presented case study up to 40%. On the other hand, the redundancy-
aware optimization is also capable of improving the remaining ob-
jectives like the energy consumption or monetary costs compared
to a common design space exploration without the capability of
handling data-redundancy.

8. REFERENCES

[1] M. Broy. Challenges in automotive software engineering. In
Proceedings of the 28th international conference on

Software engineering, pages 33-42, 2006.

[2] R. Bryant. Symbolic Boolean manipulation with ordered
binary-decision diagrams. ACM Computing Surveys (CSUR),
24(3):293-318, 1992.

[3] D. Coit and A. Smith. Reliability optimization of
series-parallel systems using a genetic algorithm. /EEE
Transactions on Reliability, 45(2):254-260, 1996.

[4] P. Eles, V. Izosimov, P. Pop, and Z. Peng. Synthesis of
fault-tolerant embedded systems. In Proc. of DATE 08,
pages 1117-1122, 2008.

[5] B. Gaujal and N. Navet. Optimal replica allocation for
TTP/C based systems. In Proc. of FeT "03, 2003.

[6] T. Gerke and D. Bollati. An Automated Model Based Design
Flow for the Design of Robust FlexRay Networks. In SAE
International, 2008-01-1031, 2008.

[7] M. GlaB, M. Lukasiewycz, F. Reimann, C. Haubelt, and
J. Teich. Symbolic Reliability Analysis and Optimization of
ECU Networks. In Proc. of DATE ’08, pages 158-163, 2008.

[8] M. GlaB, M. Lukasiewycz, T. Streichert, C. Haubelt, and
J. Teich. Reliability-Aware System Synthesis. In Proc. of
DATE °07, pages 409-414, 2007.

[9] M. G. Harbour, M. H. Klein, and J. P. Lehoczky. Timing
analysis for fixed-priority scheduling of hard real-time
systems. I[EEE Trans. Softw. Eng., 20(1):13-28, 1994.

[10] IEC 60050-191 (1990). Int. Electrotechnical Vocabulary,
Chapter 191 - Dependability and Quality of Service.
(Amend. 1, 1999, Amend, 2, 2002).

[11] V. Izosimov, P. Pop, P. Eles, and Z. Peng. Scheduling of
fault-tolerant embedded systems with soft and hard timing
constraints. In Proc. of DATE 08, pages 915-920, 2008.

[12] A.Jhumka, S. Klaus, and S. A. Huss. A dependability-driven
system-level design approach for embedded systems. In
Proc. of DATE 05, pages 372-377, 2005.

[13] H. Kopetz, G. Bauer, and S. Poledna. Tolerating Arbitrary
Node Failures in the Time-Triggered Architecture. SAE 2001
World Congress, Detroit, Mich. In SAE International, 2001.

[14] M. Lukasiewycz, M. GlaB3, C. Haubelt, and J. Teich.
SAT-Decoding in Evolutionary Algorithms for Discrete
Constrained Optimization Problems. In Proc. of CEC ’07,
pages 935-942, 2007.

[15] Opt4l]. Meta-heuristic Optimization Framework for Java.
http://www.opt4j.org/.

[16] A.Rauzy. New Algorithms for Fault Tree Analysis.
Reliability Eng. and System Safety, 40:202-211, 1993.

[17] K. Tindell, A. Burns, and A. Wellings. Calculating controller
area network (can) message response times. Control
Engineering Practice, 3:1163-1169, 1995.

[18] S. Tosun, N. Mansouri, E. Arvas, M. Kandemir, and Y. Xie.
Reliability-Centric High-Level Synthesis. In Proc. of DATE
"05, pages 1258-1263, 2005.

[19] C. Wilwert, F. Clement, T. LORIA, and F. Nancy. Evaluating
quality of service and behavioral reliability of steer-by-wire
systems. In Proceedings of ETFA’03, volume 1, 2003.

[20] Y. Xie, L. Li, M. Kandemir, N. Vijaykrishnan, and M. J.
Irwin. Reliability-Aware Cosynthesis for Embedded
Systems. In Proc. of ASAP '04, pages 41-50, 2004.

[21] E.Zanoni and P. Pavan. Improving the reliability and safety
of automotive electronics. IEEE Micro, 13(1):30-48, 1993.

[22] Y. Zhang, R. Dick, and K. Chakrabarty. Energy-aware
deterministic fault tolerance in distributed real-time
embedded systems. In Proc. of DATE ’05, pages 372-377,
2005.

