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Abstract— The communication quality has a strong effect on
the stability and control performance of a networked control
system (NCS). To achieve superior control performance, better
communication quality is desired. However, high network cost
is induced. This paper aims at finding an optimal trade-off
between control performance and network cost. A Quality-of-
Service (QoS) communication network is introduced, where the
statistical properties of the transmission delay can be controlled
by adjusting its transition generator. The QoS concept enables a
conjoint control of communication network and control system
itself, which results in a Markovian jump linear system (MJLS)
with mode-dependent delays. A delay-dependent stability con-
dition ensuring stochastic mean-square stability is derived by
using the Lyapunov-Krasovskii functional. A guaranteed cost
of state evolutions is determined and the perturbation upper
bound on Markov process transition generator is obtained.
A performance-cost trade-off is achieved by optimizing the
Markov process transition generator within the perturbation
upper bound. The performance benefit of the proposed control
concept is demonstrated in a numerical example.

I. INTRODUCTION

Due to the affordability, well-developed infrastructure and
widespread usage, communication networks become more
and more attractive for the signal transmission in control
systems, such as unmanned aerial vehicles [1], Ethernet-
based car control networks [2] and teleoperation [3]. How-
ever, the use of a communication network comes at the
price of non-ideal signal transmission, such as packet loss
and transmission delay. Particularly, the transmission delay
is well-known as a source of instability and deteriorates
the control performance of closed-loop systems, see [4],
[5] for a general overview on the challenges and control
methodologies for networked control system (NCS). In the
most NCS literatures, the communication quality, e.g. the
transmission delay, is assumed to be known in advance and
the controller is accordingly designed [5].

In this paper, random transmission delay modeled by
Markov process is considered. Motivated by Quality-of-
Service networks a conjoint control of communication net-
work and control system is proposed. The QoS network
refers to the capability of a network to provide different
communication quality to different network traffic classes.
Guaranteed short transmission delay leads to good control
performance but needs the provision of large network re-
sources, i.e. high network cost. Opposed to the work in
[6] where the transmission delay of the communication
network can be set up instantaneously, a more realizable
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approach is considered. It is proposed to control the proba-
bility distribution of the transmission delay by setting the
transition generator of the Markov process. Furthermore,
a switching remote controller is considered. The remote
controller is able to monitor the transmission delay and
switches synchronously with the transmission delay such that
expected performance can be achieved.

As a result, a Markovian jump linear system (MJLS)
with mode-dependent delay is established. The MJLS is
a class of hybrid systems, whose discrete and continuous
states are modeled by Markov process and corresponding
linear differential equations [7]. The stability of an MJLS can
be analyzed by the notion of stochastic stability introduced
in [7]–[9]. MJLS with delay are widely studied in [10]–
[15]. In [10], an MJLS with constant delay is considered. A
delay-independent sufficient condition for stochastic mean-
square stability is established. The MJLS with time-varying
delay is addressed in [11]. Delay-dependent conditions for
stochastic stability and stochastic stabilization are proposed
in terms of linear matrix inequality (LMI). The H2/H∞
control is applied to MJLS with uncertain delay in [12].
In [13], the robust cost guaranteed control for MJLS with
mode-dependent delay is studied. An LMI delay-dependent
stability condition is proposed and the state evolutions of the
closed-loop system is shown to be bounded for all admissible
system uncertainties. The MJLS with mode-dependent time-
varying delay is discussed in [14]. The LMI conditions for
stochastic exponential mean-square stability and stabilization
are proposed. A great variety of approaches can be found in
[15]. The main difference of this paper among other existing
literatures is that i) a delay-dependent stability condition for
stochastic exponential stability is established, ii) a perturba-
tion upper bound on Markov process transition generator is
derived such that the stability condition holds and iii) a trade-
off between the control performance and network cost is
achieved by the optimal allocation of probability distribution
of transmission delays, i.e. optimal parameter designation of
Markov process transition generator. The proposed approach
is numerically validated. The simulation results demonstrates
the superior cost-performance benefit over the constant trans-
mission delay network with non-switching controller.

The remainder of the paper is organized into five sections.
In section 2, an MJLS with mode-dependent transmission
delay is introduced. In section 3, a stochastic exponential
mean square stability condition for MJLS is derived. Based
on the stability condition, a perturbation upper bound on
Markov process transition generator is determined. The nu-
merical validation and performance comparison are discussed
in section 4 and the summary is given in section 5.
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Fig. 1. Illustration of NCS interconnected by a remote controller (RC)
through a communication network with round-trip transmission delay τ(rt).

Notation. In this paper λmax(M) and λmin(M) denote
the maximal and the minimal eigenvalues of matrix M ,
whereas MT and ||M || denote the transpose and induced
Euclidean norm of matrix (or vector) M , respectively. The
symbol ∗ denotes the transpose of the blocks outside the
main diagonal block in symmetric matrices. E stands for
mathematical expectation and P for probability. {rt, t ≥ 0}
denotes a Markov process governing the mode switching in
the finite set S := {1, . . . , N} having the transition generator
A = (αi,j), i, j ∈ S, αi,j > 0, i 6= j, αi,i = −∑i6=j αi,j .
The Markov process transition probability can be defined
as

Pi,j(rt+δ = j|rt = i) =

{
αi,jδ + o(δ2), i 6= j

1 + αi,iδ + o(δ2), i = j,

where limδ→0 o(δ2)/δ = 0.

II. PROBLEM STATEMENT

Consider an LTI system as the plant

ẋ(t) = Ax(t) +Bu(t), (1)

where x ∈ Rn is the state and u ∈ Rm is the control input;
A and B are constant matrices with appropriate dimen-
sions and (A,B) is controllable. The plant is intercon-
nected by a remote controller (RC) through a communi-
cation network, see Fig. 1. The sensor-to-controller delay
τsc(rt) is random and modeled by a Markov process rt,
while the controller-to-actuator τca delay is assumed to
be constant (realizable through buffering technique). The
round-trip transmission delay resulting from the communica-
tion network is τ(rt) = τsc(rt) + τca, rt ∈ S := {1, . . . , N}.
The transition rate of delay from τ(rt = i) to τ(rt =
j), i, j ∈ S, is determined by a transition generator
A = (αi,j + ∆αi,j), where ∆αi,j denotes the uncertainties
satisfying i)

∑N
j=1 ∆αi,j = 0 and; ii) ∆αi,i < −αi,i, i = j

and ∆αi,j > −αi,j , i 6= j.
Assume the remote controller is able to monitor the trans-

mission delay and switches the feedback gains synchronously
with the transmission delay τ(rt). Therefore, the control laws
for the remote controllers are given as

u(t) = K(rt)x(t− τ(rt))

and the closed-loop system becomes

ẋ(t) = Ax(t) +BK(rt)x(t− τ(rt)). (2)

The closed-loop system (2) is an MJLS system with mode-
dependent delay. For the sake of simplicity, K(rt) is written
as Ki and τ(rt) = τi for each rt = i ∈ S.

Introduce a γ > 0, which is related to the convergence
rate of E{||x(t)||2} in (2) and consider a new variable
z(t) = eγtx(t). Substitute z(t) into (3), it yields

ż(t) = Âz(t) + Â1iz(t− τi), (3)

where Â = A+ γI , Â1i = eγτiBKi. Using the Newton-
Leibnitz formula

z(t− τi) = z(t)−
∫ t

t−τi

ż(s)ds,

and substituting it into (3), set ξT (t) = [zT (t) żT (t)]. Sys-
tem (3) has the descriptor form

Eξ̇(t) =
(
Ā+ Ā1i

)
ξ(t)− Ā2i

∫ t

t−τi

ξ(s)ds, (4)

where

E =
[
I 0
0 0

]
, Ā =

[
0 I

A+ γI −I
]
,

Ā1i =
[

0 0
eγτiBKi 0

]
, Ā2i =

[
0 0
0 eγτiBKi

]
.

Consider a set of positive matrices Ri, i ∈ S, a cost
function can be defined as

J = E
{∫ ∞

0

zT (t)Riz(t)dt
}
. (5)

Associated to the cost function (5), the cost guaranteed
control is defined as follows.

Definition 1: Consider the closed-loop system (3). If there
exists a positive scalar J̄ such that the cost function (5)
satisfies J ≤ J̄ , then J̄ is said to be a guaranteed cost for
the closed-loop system (3).

Before the main result is introduced, the following defini-
tion and lemmas have to be given.

Definition 2: System (3) is stochastic exponential mean
square stable if for any initial condition x(t0, rt0), there exist
positive constants b, and ρ such that for all t ≥ t0

E
{||x(t)||2|x(t0, rt0)

} ≤ b||x(t0, rt0)||2e−ρ(t−t0).
Lemma 1: [15] Let X and Y be real constant matrices

with appropriate dimensions. Then

XTY + Y TX ≤ εXTX +
1
ε
Y TY

holds for any ε > 0.
Lemma 2: Let X , Y be positive definite matrices and a, b

be scalars satisfying a > 0 and a > b. Then

λmax(aX + bY ) ≤ λmax(aX + aY ).
Proof: It is noted that

(aX + bY )T (aX + bY ) ≤ (aX + aY )T (aX + aY ).

Pre- and post-multiply the above inequality by the normal-
ized eigenvector vT and v, which corresponds to the maximal
eigenvalue, i.e. λmax(aX + bY ). It becomes

λ2
max(aX + bY ) = vT (aX + bY )T (aX + bY )v

≤ vT (aX + aY )T (aX + aY )v.
(6)



According to the definition of second order induced norm
(Euclidean norm) of matrix, it has

λ2
max(aX + aY ) = ||aX + aY ||2

= max
‖v‖2=1

vT (aX + aY )T (aX + aY )v

(7)

Combine (6) and (7), it yields

λmax(aX + bY ) ≤ λmax(aX + aY )

III. MAIN RESULT

The objective of this section is to derive a stability condi-
tion for NCS with mode-dependent delay and a perturbation
upper bound on Markov process transition generator. In The-
orem 1, the Markov transition generator uncertainties ∆αi,j
are assumed to be zero. A delay-dependent stability condition
is derived by using the Lyapunov-Krasovskii functional and
a guaranteed cost for the cost function (5) is found. Based
on the stability condition in Theorem 1, a perturbation upper
bound ∆αi,j on the Markov process transition generator is
determined in Theorem 2 such that the stability condition
and guaranteed cost in Theorem 1 are still valid.

Theorem 1: For the closed-loop system (3) with a given
scalar γ > 0, matrix Ri > 0 , if there exist Pi > 0 and
M > 0 such that the following matrix inequality holds for
all rt = i ∈ S [

Ω1i τiP
T
i Ā2i

∗ −τiM
]
< 0, (8)

where ᾱi = |αi,i| and

τ̄ = max
i∈S
{τi}, τ = min

i∈S
{τi}, τ̂ =

1
2

(τ̄2 − τ2),

Ω1i = (Ā+ Ā1i)TPi + PTi (Ā+ Ā1i) + ᾱiτ̂M

+
N∑
j=1

αi,jEPj + τiM +Ri,

then the system is stochastic exponential mean square stable
and the cost function (5) is bounded by

J ≤ J̄(Pr0 ,M, ᾱr0)

= ξT (0)EPr0ξ(0) +
∫ 0

−τr0

∫ 0

θ

ξT (s)Mξ(s)dsdθ

+ ᾱr0

∫ −τ
−τ̄

∫ 0

θ

ξT (s)Mξ(s)(s− θ)dsdθ.

(9)

Proof: Suppose rt = i ∈ S and denote ξ(t) = z(t+ s),
−maxi∈S{τi} ≤ s ≤ 0. Consider a Lyapunov candidate as
the following

V (ξ(t), i) = V1(ξ(t), i) + V2(ξ(t), i) + V3(ξ(t), i), (10)

where
V1(ξ(t), i) = ξT (t)EPiξ(t),

V2(ξ(t), i) =
∫ 0

−τi

∫ t

t+θ

ξT (s)Mξ(s)dsdθ,

V3(ξ(t), i) = ᾱi

∫ −τ
−τ̄

∫ t

t+θ

ξT (s)Mξ(s)(s− t− θ)dsdθ.

Define ᾱi = |αi,i|, then

LV1(ξ(t), i) = ξ̇T (t)EPiξ(t) + ξT (t)PTi Eξ̇(t)

+
N∑
j=1

αi,jξ
T (t)EPjξ(t)

= ξT (t)
[(
Ā+ Ā1i

)T
Pi + PTi

(
Ā+ Ā1i

)
+

N∑
j=1

αi,jEPj

]
ξ(t)

− 2ξT (t)PTi Ā2i

∫ t

t−τi

ξ(s)ds.

According to lemma 1, LV1(ξ(t), i) becomes

LV1(ξ(t), i) ≤ ξT (t)
[(
Ā+ Ā1i

)T
Pi + PTi

(
Ā+ Ā1i

)
+ τiP

T
i Ā2iM

−1ĀT2iPi

+
N∑
j=1

αi,jEPj

]
ξ(t)

+
∫ t

t−τi

ξT (s)Mξ(s)ds.

Similarly to [14], it has

LV2(ξ(t), i) ≤ τiξT (t)Mξ(t)−
∫ t

t−τi

ξT (s)Mξ(s)ds

+ ᾱi

∫ −τ
−τ̄

∫ t

t+θ

ξT (s)Mξ(s)dsdθ.

LV3(ξ(t), i) =
1
2
ᾱi(τ̄2 − τ2)ξT (t)Mξ(t)

− ᾱi
∫ −τ
−τ̄

∫ t

t+θ

ξT (s)Mξ(s)dsdθ.

It yields

LV (ξ(t), i) = ξT (t)
[(
Ā+ Ā1i

)T
Pi + PTi

(
Ā+ Ā1i

)
+ τiP

T
i Ā2iM

−1ĀT2iPi + (ᾱiτ̂ + τi)M

+
N∑
j=1

αi,jEPi

]
ξ(t)

= ξT (s)Θiξ(s),
(11)

where τ̂ = 1
2 (τ̄2 − τ2).

Since maxθ∈[−2τ̄ ,0]{||ξ(t+ θ)||} ≤ ϕ||ξ(t)|| for some
ϕ > 0 [16], the following can be established

V (ξ(t), i) ≤
[
λmax(EPi + ϕλmax(M)

]
||ξ(t)||2

≤ Λ̄i||ξ(t)||2,
(12)

where
ϕ =

1
2
τ̄2 +

1
6

(τ̄3 − τ3)ᾱi

Λ̄i = λmax(EPi + ϕλmax(M)).



Combining (11) and (12) yields

LV (ξ(t), i)
V (ξ(t), i)

≤ −min
i∈S

{
λmin(−Θi)

Λ̄i

}
, −ρ0

and
E
{LV (ξ(t), i)

} ≤ −ρ0E
{
V (ξ(t), i)

}
. (13)

By applying Dynkin’s formula into (13) it becomes

E
{
V (ξ(t), rt)

}− E
{
V (ξ(0), r0)

}
= E

{∫ t

0

LV (ξ(s), rs)ds
}

≤ −ρ0

∫ t

0

E
{LV (ξ(s), rs)ds

}
.

(14)

Using the Gronwall-Bellman lemma, (14) results in

E
{
V (ξ, rt)

} ≤ e−ρ0tE{V (ξ(0), r0)
}
.

Since

V (Ξ(t), i) ≥
[
λmin(EPi + ϕλmin(M)

]
||ξ(t)||2

= Λi||ξ(t)||2,
it is established that

E
{||ξ(t)||2} ≤ e−ρ0tE{V (ξ(0), r0)

}
mini∈S

{
Λi
} . (15)

Equation (15) provides the proof for stochastic exponential
mean square stability.

Due to the fact z(t) = [I 0]ξ(t), consider Dynkin’s for-
mula and (11), the cost function (5) becomes

J = E
{∫ T

0

ξT (t)
[
I
0

]
Ri
[
I 0
]
ξ(t)dt

}
= E

{∫ T

0

[
ξT (t)

[
I
0

]
Ri
[
I 0
]
ξ(t) + LV (ξ(t), i)

]
dt

}
− E

{∫ T

0

LV (ξ(t), i)dt
}

= E
{∫ T

0

[
ξT (t)

[
I
0

]
Ri
[
I 0
]
ξ(t) + LV (ξ(t), i)

]
dt

}
− E

{
V (ξ(T ), rT )

}
+ E

{
V (ξ(0), r0)

}
≤ E

{∫ T

0

ξT (t)Θ̄iξ(t)dt+ V (ξ(0), r0)
}
,

(16)

where Θ̄i = Θi +
[
I
0

]
Ri
[
I 0
]
. By the requirement Θ̄i < 0,

it results in (8) and concludes

J = E
{∫ T

0

ξT (t)ERiEξ(t)dt
}
≤ V (ξ(0), r0)

= J̄(Pr0 ,M, ᾱr0).
(17)

Apply Schur complement to Θ̄i, it results in (8) and com-
pletes the proof.

Remark 1: According to [14], inequality (15) can be
rewritten as

E||x(t)||2 ≤ e−(ρ0+2γ)tEV (Ξ(0), r0)
mini∈S

{
Λi
} . (18)

Therefore, the given γ in Theorem 1 ensures the decay
rate of trajectory E{||x(t)||2} and determines the control
performance.

Remark 2: For constant transmission delay, i.e. τi = τ
and αi,j = 0, Theorem 1 is applicable to systems with
constant delay.

Theorem 2: Consider an NCS in (3) satisfying the matrix
inequality (8) in Theorem 1. Let the Markov process transi-
tion generator be perturbed by ∆αi,j , for i, j ∈ S, satisfying∑N
j=1 ∆αi,j = 0 and{

∆αi,j > −αi,j , i 6= j,

∆αi,i < −αi,i, i = j.

If the perturbations on the Markov process transition gener-
ator satisfy

∆ᾱi ≤ χ̄i, (19)

where

∆ᾱi = |∆αi,i| =
N∑
j 6=1

∆αi,j ,

χ̄i = λ−1
max

(
τ̂M +

N∑
j 6=i

Pj − Pi
)
λmin(−Θ̄i),

Θ̄i =
(
Ā+ Ā1i

)T
Pi + PTi

(
Ā+ Ā1i

)
+

N∑
j=1

αi,jPi

+ τiP
T
i Ā2iM

−1ĀT2iPi + (ᾱiτ̂ + τi)M +Ri,

then the system is also stochastic exponential mean square
stable and the guaranteed cost of cost function (5) is bounded
by

J ≤ J̄(Pr0 ,M, ᾱr0)

= ξT (0)EPr0ξ(0) +
∫ 0

−τr0

∫ 0

θ

ξT (s)Mξ(s)dsdθ

+ (ᾱr0 + ∆αi,j)
∫ −τ
−τ̄

∫ 0

θ

ξT (s)Mξ(s)(s− θ)dsdθ.
(20)

Proof: The perturbed closed-loop system is exponential
mean-square stable, if the matrix inequality in (8) is satisfied,
i.e.

∆ᾱiτ̂M +
N∑
j=1

∆αi,jPj + Θ̄i < 0.

where Θ̄i < 0 is determined in Theorem 1 as

Θ̄i =
(
Ā+ Ā1i

)T
Pi + PTi

(
Ā+ Ā1i

)
+

N∑
j=1

αi,jPi

+ τiP
T
i Ā2iM

−1ĀT2iPi + (ᾱiτ̂ + τi)M +Ri.

Note that ∆ᾱi = |∆αi,i| =
∑N
j 6=1 ∆αi,j , it has

λmax

( N∑
j=1

∆αi,jPj

)
≤ λmax

(
∆αi,iPi + ∆ᾱi

N∑
j 6=i

Pj

)
.



Since Choose a ∆ᾱi such that the following inequality is
satisfied

∆ᾱiτ̂λmax(M) + ∆ᾱiλmax

( N∑
j 6=i

Pj − Pi
)
≤ λmin(−Θi).

Therefore, the upper bound of ∆ᾱi can be determined by

∆ᾱi ≤ χ̄i = λ−1
max

(
τ̂M +

N∑
j 6=i

Pj − Pi
)
λmin(−Θi).

Substituting the perturbed Markov process transition gener-
ator A = (αi,j + ∆αi,j) into the proof in Theorem 1 yields
the guaranteed cost in (20).

IV. QUALITY OF SERVICE CONTROL

Quality of service (QoS) refers to the capability of a
network to provide different communication quality to dif-
ferent network traffic. Therefore, it allows the adjustment
of the communication network, such as IPv6. Guaranteed
high communication quality, e.g. short transmission delay,
requires larger bandwidth and induces high network cost.
Due to the limited network resources, it is desirable to
allocate the resources to each application to certain level of
control performance. Inspired by the QoS concept, a conjoint
control of communication network and control system is
proposed.

The control structure is illustrated in Fig. 2. The remote
controller (RC) adjusts the communication quality, i.e. the
probability distribution of transmission delay, such that good
control performance and efficient usage of network resources
are achieved. In order to increase the control performance,
the feedback gain of the remote controller is synchronously
switched with the transmission delays [14].

The goal of the conjoint control of network and control
system is to balance the guaranteed control performance ver-
sus network cost. Assume that the switching feedback gains
Ki, i ∈ S, are found by Theorem 1. Then, a cost function
incorporating the trade-off between network resources and
control performance can be formulated in the following

J(AQoS) = lim
T→∞

E
{
J̄(Pr0 ,M, ν̄r0) +

1
T

∫ T

0

C(rt)dt
}
.

(21)
The first term in (21) refers to the expected guaranteed
control performance depending on the distribution of the
initial Markov process r0. The second term refers to the
network cost associated with the probability distribution of
transmission delays. The remaining degree of freedom in the
design procedure is the choice of transition generator AQoS
bounded by (19). The resulting optimization problem is given
by

min
AQoS∈A

J(AQoS), (22)

where A = {νi,j , i, j ∈ S} is the set of admissible transition
generators satisfying

∑N
j=1 νi,j = 0 and

αi,i ≥ νi,i ≥ αi,i + χ̄i.

AQoS

RC

plant

Network cost

QoS network

Fig. 2. Networked control systems with QoS communication network.

The perturbation χ̄i is determined by Theorem 2. The
optimal transition generator A∗QoS can be computed off-line
and set for the QoS network when the control action starts.

The benefit of QoS control is studied in the following
simulation example. A comparison between the QoS control
approach and non-switching approach is performed with
respect to control performance and network cost.

A. Example: NCS with QoS communication network

Consider an QoS communication network having two
different traffic classes, i.e. transmission delay τ1 = 80 ms
and τ2 = 150 ms. The associated network cost is given
by C1 = 1.7 and C2 = 1, meaning higher cost for shorter
transmission delay. The transition generator, i.e. A = (αi,j),
i, j ∈ S = {1, 2}, is considered as an QoS parameter of
network and controlled by the remote controller to affect
the final distribution of transmission delays.

Given an LTI plant (1) with values A = −1.7, B = 0.5,
set γ = 1.8, R1 = R2 = 10−5 and transition generator

A =
[−1 1

1 −1

]
.

Solving Theorem 1 by Penbmi solver in Matlab, the feasible
feedback gains in the closed-loop system (3) are K1 = −2.2
and K2 = −1.1 with the corresponding positive definite
matrices

P1 = 10−3

[
0.213 0.075
0.075 0.134

]
,

P2 = 10−3

[
0.266 0.109
0.109 0.212

]
,

M = 10−3

[
0.510 −0.017
−0.017 0.644

]
.

The perturbations of transition generator, ∆α1,1 = −∆α1,2

and ∆α2,2 = −∆α2,1, is determined by (19) and have the
values

0 ≤ ∆α1,2 ≤ 0.58, 0 ≤ ∆α2,1 ≤ 4.03.

The optimization problem (22) is solved numerically by
the fmincon algorithm from the Matlab optimization tool-
box. With the initial condition x(t0) = 10, t0 ∈ [−τ2, 0], the
cost function (22) is minimized by the transition generator

A∗QoS =
[−1.58 1.58

1 −1

]
with J = 1.30. The simulation is performed 1000 times
with uniformly distributed initial probability distribution of
transmission delay for a time horizon of T = 3 s. A sample



path and probability distribution of the transmission delay is
shown in Fig. 3 (a) and (b). Note that the final probability is
determined by transition generator and has the value 39% for
τ1 = 80 ms and 61% for τ2 = 150 ms. For comparison, two
communication networks are investigated. In the proposed
QoS communication network, the transition generator, i.e. the
probability distribution of transmission delays, is designated
such that the control performance and network cost are opti-
mized. Furthermore, the remote controller is synchronously
switched with the transmission delays. The benchmark com-
munication network has constant transmission delay and the
system is equipped with non-switching remote controller.
The remote controller has stronger feedback gain K1 for
shorter transmission delay τ1, and weaker feedback gain K2

for longer transmission delay τ2. The evolution of mean tra-
jectory x̄(t) is shown in Fig. 3 (c) for comparison. The mean
trajectory converges exponentially towards a ball around the
origin of radius ||x(t)|| = 0.05 after t0.05 = 1.94 s, close to
the non-switching controller with shorter transmission delay
(+12%), see Table. However, the network cost is 23.6% less
than non-switched with shorter transmission delay. Clearly,
the trade-off between control performance and network cost
is achieved.

TABLE I

Control performance and network cost.

t0.005 [s] Network cost [unit]
QoS network 1.94 1.27

K1 with delay τ1 1.71 1.7
K2 with delay τ2 2.26 1

Open problems that will be addressed in the future re-
search includes: i) the implementation of delay-dependent
switched controller over QoS communication network using
time-stamping technique. This requires precise synchroniza-
tion between sensors and controller; ii) the optimal Markov
process transition generator is solved off-line. An imple-
mentable online optimization algorithm is desirable.

V. CONCLUSIONS

Inspired by Quality-of-Service network, this paper intro-
duces a novel control approach toward a conjoint control
of communication network, i.e. the distribution probability
of transmission delays, and control system. The control ap-
proach is based on Markovian jump linear system with mode-
dependent delay. A sufficient condition ensuring stochas-
tic exponential mean-square stability is derived by using
Lyapunov-Krasovskii functional. Accordingly, a perturbation
upper bound on Markov process transition generator is
determined by the stability condition. An optimal trade-off
between the control performance and network resource usage
is achieved by optimal allocation of distribution probability
for transmission delays. The numerical example shows su-
perior performance benefit of the proposed control approach
over the traditional control design approach.
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Fig. 3. A sample path of the transmission delay (a), probability distribution
with initial distribution of 27% for τ1 and 73% for τ2 (b) and the mean
state trajectory of switching controller with QoS network (solid line), non-
switching controller with shorter delay network (dash-dotted line) and non-
switching controller with longer delay network (dashed line) (c).
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