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Abstract—Optimization of transmit strategies with linear
transceivers in multiple-input multiple-output (MIMO) broadcast
channels generally leads to nonconvex problems, which cannot
be solved efficiently in a globally optimal manner. Instead, it is
necessary to resort to suboptimal algorithms. In this paper, we
evaluate the application of a gradient descent algorithm for the
optimization of the energy efficiency in such a system. Since
the quality of the obtained locally optimal solutions depends
on the initialization, a successive stream allocation is introduced
and combined with the gradient algorithm. Comparison with a
globally optimal reference algorithm for the special case of single
receive antennas shows that the obtained solutions are close to
the global optimum. For the MIMO case, the energy per bit
achievable with dirty paper coding, which is a lower bound for
the case of linear transceivers, is used as benchmark, and good
performance of the gradient-based methods is shown for MIMO
systems as well.

I. INTRODUCTION

In the last few years, energy efficiency has become an

important design criterion for wireless communication systems

(e.g., [1]–[3]). Of course, an important task in this context is to

develop circuits with reduced energy consumption. However,

even for a given value of the energy consumption of the circuit

elements (modeled as a constant in this paper), the energy

efficiency can be improved by adapting the transmit power

such that it fits best to the channel conditions and the circuit

power (e.g., [4]). In this paper, we consider this optimization

for a multiple-input multiple-output (MIMO) broadcast chan-

nel. Therefore, the following literature review concentrates on

works considering energy efficiency of broadcast channels [5]–

[12]. Publications on the energy efficiency of point-to-point

transmission (e.g., in multicarrier settings [4], [13], [14] or

multiantenna systems [15]) are not discussed in detail.

From an information theoretic point of view, the optimal

transmit strategy in MIMO broadcast channels is an inter-

ference precompensation technique called dirty paper cod-

ing (DPC) [16], [17]. This technique is also needed as an

ingredient for the optimal solution to the energy efficiency

problem in MIMO broadcast channels, and algorithms based

on this technique were proposed in [5]–[7]. However, even

approximate DPC as in [18] has prohibitive complexity for

online implementation since it involves vector quantization,

and additional problems arise, e.g., due to imperfect channel

state information at the transmitter. Also an approximate

implementation with Tomlinson-Harashima precoding (THP)

has drawbacks such as the shaping, power, and modulo loss

(e.g., [19]). Thus, MIMO techniques with linear transceivers—

i.e., the case where nonlinear operations (encoding, detection,

. . . ) are only applied to single data streams while all operations

that involve more than one data stream have to be linear

(e.g., [20])—have been intensively studied by researchers and

widely applied in practical systems.

In the context of energy efficiency optimization, broadcast

channels with linear transceivers were considered for the

special case of single-antenna receivers in [8]–[11]. The works

[8], [9] concentrated mainly on the question of user selection

in systems with more users than transmit antennas. In [10],

[11], the combination of fairness and energy efficiency was

the main topic of the investigations, which is not considered

in this paper. In other works on energy efficiency, the case

of imperfect channel state information was studied (e.g., [12],

[21]), which is outside of the focus of our work as well.

The aim of our work is to propose a good suboptimal

solution for the energy efficiency optimization with linear

transceivers in broadcast channels with multiple antennas at

the transmitter and receivers. In the literature on MIMO

broadcast channels with linear transceivers, efficient subop-

timal algorithms have been proposed, amongst others, for

the sum rate maximization problem (e.g., [22]–[27]). These

methods are based on alternating optimization of transmit and

receive filters [22], [23], successive stream allocation and zero-

forcing [24], [25], or on gradient algorithms [26], [27]. In this

work, we focus on the application of gradient-based methods

[26], [27] to the problem of energy efficiency optimization

(Section III). Applying other methods known from sum rate

maximization to the energy efficiency problem is left open as

a topic for future research.

Since optimization problems in MIMO broadcast channels

with linear transceivers are generally nonconvex, the above-

mentioned approaches cannot be expected to always converge

to the global optimum. To find good local optima, a gradient

algorithm was combined with a successive stream allocation

in [27]. A significant improvement due to this modification

compared to a pure gradient method as in [26] was observed

for the sum rate maximization in [27]. In Section IV, we

introduce the combination of a gradient method and successive

allocation for the energy efficiency optimization.

Since the obtained solutions are not globally optimal, nu-

merical simulations have to be performed to evaluate how good

the obtained solutions are on average and to study the influence

of the successive allocation on the quality of the obtained



solutions. As we need a benchmark for these simulations,

we discuss how the energy efficiency problem with linear

transceivers can be solved in a globally optimal manner for

the special case of single-antenna receivers (Section V). Even

though the proposed method based on monotonic optimization

has prohibitive complexity for application in a real system, it

is very helpful for judging the quality of the solutions obtained

by the gradient method.

For systems with arbitrary numbers of receive antennas,

we do not have such a globally optimal reference algorithm

for linear transceivers. Therefore, we resort to a comparison

with the globally optimal dirty paper coding solution, which

provides a lower bound on the energy per bit achievable with

linear transceivers. Although this bound is not tight in general,

it gives an indication how good the linear solutions are.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider the downlink of a communication system that

consists of a base station equipped with M antennas and

K user terminals, where the kth terminal is equipped with

Nk antennas. We assume frequency flat channels Hk,DL ∈
C

Nk×M and additive circularly symmetric Gaussian noise

ηk ∼ CN (0,Ck). Due to the uplink-downlink duality for

MIMO broadcast channels with linear transceivers [28], we

can perform the optimization in the dual uplink with channel

matrices Hk = HH

k,DLC
− 1

2

k ∈ C
M×Nk , where the same per-

user rates can be achieved with the same sum transmit power

as in the downlink. The solution can be transformed back to

the downlink afterwards as described in [28].

In the dual uplink, data transmission with linear transceivers

can be described by

y =
K
∑

k=1

HkTkxk + η (1)

where Tk ∈ C
Nk×Sk are beamforming matrices, xk ∼

CN (0, ISk
) are circularly symmetric Gaussian data symbols,

and η ∼ CN (0, IM ). The number of data streams of user

k is given by Sk ≤ min{M,Nk}. As described in [27], the

multiplexing gain might be degraded if too many streams are

transmitted. Therefore, it can make sense to choose Sk smaller

than the highest possible value. To account for this fact, we

consider a successive stream allocation in Section IV.

The data rate of a user can be computed as a function of

the beamforming matrices in the dual uplink:

rk(T1, . . . ,TK) = log
2
det

(

ISk
+ TH

k HH

k X−1

k HkTk

)

(2)

with

Xk = IM +
∑

ℓ 6=k

HℓTℓT
H

ℓ HH

ℓ . (3)

The sum transmit power

P =

K
∑

k=1

trace[TkT
H

k ] (4)

is a function of the beamforming matrices as well.

Our aim is to maximize the energy efficiency, which is the

reciprocal value of the energy per bit. Therefore, the problem

is equivalent to minimizing the energy per bit Eb, which is

given by

Eb =
PtotalT

RT
=

Ptotal

R
= α

P + c

R
. (5)

In (5), T is the total transmission time, and R =
∑K

k=1
rk(T1, . . . ,TK) is the sum rate. The total power Ptotal is

expressed as the sum of a scaled version of the transmit power

αP and a constant term αc modeling the power consumed by

the circuit electronics apart from the power amplifier (cf., e.g.,

[4]). Without loss of generality, we will assume that α = 1.
The optimization problem can be written as

min
T1,...,TK

P (T1, . . . ,TK) + c

R(T1, . . . ,TK)
(6)

which is a nonconvex problem. Unlike the energy efficiency

optimization problems in many other publications (e.g. [4],

[7], [13]–[15]), this problem is not a convex-concave fractional

program since the rate in (2) is not a concave function due to

the use of linear transceivers.

III. GRADIENT ALGORITHM

The derivative of the sum rate R with respect to the complex

conjugate of the beamforming matrix T ∗
k is given by [26], [27]

∂R

∂T ∗
k

=
1

ln 2
HH

k

(

KX−1 −
∑

ℓ 6=k

X−1

ℓ

)

HkTk (7)

where Xℓ is defined as in (3), and

X = IM +

K
∑

k=1

HkTkT
H

k HH

k . (8)

Using the quotient rule, we get the conjugate of the gradient

matrices of the energy per bit, which read

∂Eb

∂T ∗
k

=
1

R2

(

RTk − (P + c)
∂R

∂T ∗
k

)

. (9)

We study the application of a gradient descent algorithm

with the update rule

Tk ← Tk + d
∂Eb

∂T ∗
k

(10)

which is performed for all users in a synchronous manner. For

the step size d, a simple step size adaptation is implemented:

in each iteration, we start with the initial step size dinit, and

whenever the gradient step would lead to an increased energy

per bit, we repeatedly reduce the step size by a factor of

two and retry the gradient step until a decrease in energy can

eventually be achieved.

Unlike in [26], [27], a projection is not necessary after the

gradient step since (6) is an unconstrained optimization.

Convergence of the cost function value is guaranteed since

the energy per bit is bounded by the optimal value and since

above step size adaptation guarantees a decrease of the energy

per bit in each iteration. To detect convergence, the decrease

of the energy per bit from one step to the next is tracked.



As initialization, we use truncated identity matrices of size

Nk × Sk as in [27]. For the basic algorithm, we choose

Sk = min{M,Nk}. A modified algorithm, which starts with

Sk = 0 ∀k and successively increases Sk, is introduced in the

following section.

IV. SUCCESSIVE STREAM ALLOCATION

In [27], a successive stream allocation was proposed to

improve the solutions obtained using the gradient projection

method for the sum rate maximization. We adopt the principle

idea of this algorithm and adapt it to the energy efficiency

problem.

Let s = [S1, . . . , SK ]T be the stream allocation in step

i of the allocation procedure. Then, for each user k with

Sk < min{M,Nk}, a stream allocation s(k) = s + ek is

created, where ek is the kth canonical unit vector, which has

a one in the kth component and zeros elsewhere. For each such

allocation s(k), the resulting energy per bit Eb(k) is computed

by executing the gradient algorithm described in the previous

section using a truncated identity matrix of size Nℓ×Sℓ(k) for
user ℓ ∈ {1, . . . ,K} where Sℓ(k) are the components of s(k).
Finally, the allocation sk that leads to the lowest energy per

bit in step i is used as initial allocation s in the next allocation

step i+ 1.
The allocation procedure terminates as soon as the energy

per bit no longer decreases or even starts to increase. As

initialization, s = 0 is used.

V. REFERENCE ALGORITHMS

Since a reference implementation is necessary to judge the

quality of the gradient-based solutions, we implement a glob-

ally optimal solver based on monotonic optimization for the

special case of single-antenna receivers, i.e., for the multiple-

input single-output (MISO) case. Monotonic optimization has

already been applied to various communication systems (e.g.,

[29]–[31]). The drawback of approaches based on monotonic

optimization is a computational complexity that is exponential

in the number of optimization varibables, in our case the

number of users. Therefore, such an approach is not meant

to be implemented in a real system, but is only meant to serve

as a reference algorithm in numerical simulations.

For the special case of single-antenna receivers, we have

Sk ≤ 1 ∀k, and the transmit filters become scalars tk. The

transmit strategy can be completely described by the uplink

powers pk = |tk|2, which are the squared absolute values of

these scalars. The data rate of user k is then given by

rk(p) = log
2






1 + pkh

H

k



IM +
∑

ℓ 6=k

pℓhℓh
H

ℓ





−1

hk






(11)

where p = [p1, . . . , pK ]T. Let r(p) = [r1(p), . . . , rK(p)]T,
and let

q(ρ) =

{

r−1(ρ) if ρ ∈ R,

[∞, . . . ,∞]T otherwise
(12)

where R = {r(p) | p ≥ 0} denotes the set of rate vectors

achievable with finite sum power. According to [32], the

inverse function r−1 exists and can be evaluated, e.g., using

one of the algorithms in [33], [34]. The feasibility condition

ρ ∈ R can be checked with the feasibility test described in

[35].

Using above definitions, the energy efficiency problem (6)

can be rewritten as

min
ρ≥0

log
(

1
Tq(ρ) + c

)

− log
(

1
Tρ

)

(13)

where 1 denotes the all-ones vector. It was shown in [32]

that 1Tq(ρ) is monotonic in each component of ρ. Therefore,

the objective function of (13) is a difference of monotonic

functions, and the globally optimal rate vector ρ can be found

using the branch-reduce-and-bound method from [36].

A similar approach was used for the problem of energy-

efficient rate balancing (with fairness considerations) in our

previous work [10]. An important difference is that the so-

lution in [10] can be found in polynomial time due to the

special structure of energy-efficient rate balancing in MISO

broadcast channels with linear transceivers. This is not true for

the corresponding energy efficiency problem without fairness

constraints so that the method introduced in this section is

prohibitively complex for practical implementation.

For the case of multiple antennas at the receivers, i.e., for

the MIMO case, above procedure cannot be applied. However,

we can use the following loose lower bound to the achievable

energy per bit. The optimal energy-efficient transmit strategy

in MIMO broadcast channels relies on dirty paper coding

and can be computed as described in [5]–[7]. With linear

transceivers, the energy per bit must always lie above this

globally optimal energy per bit. However, it is not clear which

part of the energy gap between the suboptimal solution and the

lower bound is inherent to the restriction to linear transceivers

and which part is due to the incapability of the gradient

algorithm to find the best linear strategy.

VI. NUMERICAL RESULTS

To evaluate the quality of the solutions obtained from the

gradient-based optimization methods, we present numerical

simulation results that are averaged over 1000 channel real-

izations with i.i.d. circularly symmetric Gaussian coefficients.

The noise is assumed to be white with constant power across

all receive antennas, and we normalize the transmit power

and the circuit power to the noise power. Thus, the noise

covariances are Ck = INk
.

The first considered system is a MISO system with K = 3
users and M = 3 transmit antennas. For such a system, the

globally optimal linear strategy can be computed as described

in Section V. In Fig. 1, we compare this globally optimal

solution to the basic gradient method, which is initialized

with Sk = min{M,Nk} data streams per user, as well as to

the combination of successive stream allocation and gradient

descent. To this end, we have plotted the relative increase of

the average energy per bit when using the gradient algorithms

instead of the globally optimal linear strategy for various



3 transmit antennas, 3 users with 1 receive antenna each
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Fig. 1. Increase of the energy per bit when using the gradient-based solutions
instead of the optimal linear strategy.

values of the circuit power constant c, which is normalized

to the noise power and given in dB.

It can be seen that the energy increase is most notable when

using the gradient method with the basic allocation in the case

of a high circuit power constant. Since a high circuit power

penalizes slow transmission (cf. (5) and, e.g., [9]), the optimal

solution requires transmission with a high data rate in this case.

This corresponds to transmission in the high SNR regime. For

this regime, a significant performance loss was also observed

for the case of sum rate maximization with a pure gradient

method in [27]. We observe that most of the gap between

the gradient scheme and the globally optimal linear solution

can be closed by performing a successive stream allocation as

explained in Section IV.

This improvement in energy efficiency comes at the cost of

a significantly increased computational complexity since the

gradient algorithm has to be executed not only once, but once

for each considered stream allocation s(k) in each allocation

step i. According to the discussion of the multiplexing gain

degradation in [27], we expect that a decrease of the energy

per bit is observed only during the first M allocation steps.

Therefore, we expect no more than (M + 1)K executions of

the gradient algorithm, i.e., the extended version has up to

(M +1)K times the complexity of the basic gradient method.

However, the most important observation in Fig. 1 is that

both gradient methods perform very close to the optimal

solution. Even for high values of the circuit power constant,

the computationally efficient basic gradient method requires

only 2% more energy than the globally optimal solution.

Therefore, for a practical application, it might not be sensible

to invest the additional computational complexity required by

the successive stream allocation.

We get a similar situation in the case of multiple receive

antennas, for which we have simulated two different scenarios.

In Fig. 2, we have plotted simulation results for a setting with

M = 4 transmit antennas and K = 3 users with Nk = 2
antennas each, which was already considered for the sum rate

4 transmit antennas, 3 users with 2 receive antennas each
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Fig. 2. Increase of the energy per bit when using the gradient-based linear
solutions instead of the optimal nonlinear DPC strategy.

maximization in [27]. We again observe a difference between

the basic gradient descent and the successive stream allocation

with gradient descent especially for high values of the circuit

power constant c, i.e., in the high SNR regime. However, this

difference is again relatively small.

In the MIMO case, the reference value is not the globally

optimal linear strategy since the algorithm from Section V is

not applicable in case of multiple receive antennas. Instead,

the increase in energy is given in relation to the optimal

nonlinear strategy which applies dirty paper coding [5]–[7]. In

the MISO case, we have observed a very small gap between

the gradient method with successive allocation and the optimal

linear strategy. Therefore, we conjecture that also in the MIMO

case, the gradient algorithms perform close to the optimal

linear solution, i.e., a large portion of the energy gap comes

from the difference between linear transceivers and nonlinear

DPC (and not from the suboptimality of the gradient method).

We have to keep in mind that linear transceivers as well

as gradient methods can be easily implemented in practice

while DPC is not appropriate for implementation in a practical

system due to the computationally complex coding operation

[18]. Therefore, we find it remarkable that the linear strategy

obtained using the basic gradient method without successive

allocation increases the energy per bit only by about 5% to

8% compared to the optimal DPC solution.

For the larger MIMO system with M = 10 transmit

antennas, K = 4 users, and Nk = 5 receive antennas at each

user terminal, which was considered for the simulation results

in Fig. 3, the qualitative results are the same.

VII. CONCLUSION

For computationally efficient optimization of the energy ef-

ficiency of MIMO broadcast channels under the assumption of

linear transceivers, only suboptimal algorithms are available.

However, the numerical studies in this paper show that sub-

optimal solutions obtained using the gradient-descent method

perform very close to the optimal linear strategy. Moreover,



10 transmit antennas, 4 users with 5 receive antennas each
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Fig. 3. Increase of the energy per bit when using the gradient-based linear
solutions instead of the optimal nonlinear DPC strategy.

the size of the energy gap between the obtained solutions and

the optimal nonlinear dirty paper coding is satisfactory, too,

when keeping in mind the prohibitive complexity of practical

implementations of dirty paper coding.
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