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Abstract. The progress of construction sites is in many cases unexpectedly delayed by external in-
fluences, for instance weather, changes in the client’s demands or involvement of residents. This may
cause changes in the construction cycle. The detailed initial plans become invalid and it is required to
immediately develop new plans taking the new circumstances into account. This will allow construction
companies to avoid unnecessary allocation of resources, idle time and costs. In this paper methods to de-
termine the volume of excavation pits based on point clouds obtained by image based 3D reconstruction
are investigated. Furthermore it explains how to introduce the results into a model of the construction
project which can be used to create new schedules. Additionally the possible benefits of re-planning
project schedules after observing a task to be faster or slower than expected are described.

1. Introduction

Unexpected delays in construction sites create huge costs each year. In order to be able to react
correctly it is required to acquire information about the progress as efficiently as possible. The ex-
cavation of pits is a major factor for many construction sites since most tasks of the project require
a pit to be finished. Previously reported methods of recording the progress using laser scanning
technology have some major pitfalls since the equipment required for laser scanning is very ex-
pensive and requires trained personnel. While there are many ways to collect data on construction
sites (Horenburg et al., 2012), this paper investigates the usability of point clouds created using
computational photogrammetry for estimating the volume of a partially excavated pit in order to
make predictions about the time still required to finish it. Those predictions can then be used to
create a new optimal schedule for the project, adapting to possible delays in the excavation pro-
cess. Patch-based Multi-view Stereo (PMVS) (Furukawa and Ponce, 2010) is used for dense point
cloud generation from a set of photographic images. The interest region is extracted by generating
a k-nearest neighbor graph and through subsequent processing of the resulting graph components.
A convex hull is generated from the final point cloud segment which is used to estimate the vol-
ume of the excavation site. In order to calculate optimal schedules an Integer Linear Programming
formulation of the problem is used (Mingozzi et al., 1998) in combination with a discrete event
simulation model.

2. Process Model

The simulation model is implemented as a discrete event simulation (DES). The tasks, resources
and respective dependencies are importet from a XML file. Resources include workers, machines,
the areas available to place equipment and expendable supplies. The simulation takes provided
performance factors of machines and allocation of resources into account. After a simulation has



been performed, a Gantt Chart, visualizing the order of task execution, is produced. The resulting
schedule can then be optimized with respect to execution time and costs (Wu et al., 2010). Further-
more data recorded during construction can be included to update the schedule.

In order to do this, a Mixed Integer Programming (MIP) approach is used. This approach
is based on maximizing (or minimizing) a given objective function (See Equation 1), while the
variables are subject to a number of constraints (See Equation 2) (Dantzig, 1951). To convert the
problem into a form that can be solved using a MIP solver, it is necessary to define the objective
function and all constraints required for a complete representation.

maximize c'x (1)
subject to Ax < b (2)
and x>0 3)

where x is a vector of variables to be optimized, c is the cost vector, A contains the left hand
sides of the constraints, and b contains the right hand sides.

The variables x are defined as the starting times for the individual processes and each prece-
dence constraint is converted into a linear constraint of the following form:

ta+da<tp 4)

where ¢ 4 is the start time and d 4 is the duration of task A.

When the precedence constraint does not require task A to be finished, but only to be started,
when task B starts, the constraint can be simplified to:

ty <tp (5)

To define constraints for resource usage and blockage of geometric areas, the forbidden sets
approach is used (Schaeffter, 1997). Each combination of tasks that cannot be executed simulta-
neously, due to resource constraints, is defined by a set of constraints. The following constraints
prevent tasks B and C' to be executed in parallel.

tp+dp — Mz, <tc (6)

tc +de+ Mx; — M < tp (7

where z; is a binary variable switching the precedence case and M is a very large number (Griva
et al., 2009).

The first constraint forces B to be executed prior to C, given x; = 0, while x; = 1 disables this
constraint by subtracting the very large number M from the left hand side. The opposite holds for
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the second constraint, which forces B to be executed after C' given x; = 1.

In order to perform time optimization on this problem an artificial task is introduced, which lists
all other tasks as precedence constraints, so this task is executed after all tasks have finished. The
objective function therefore only consists of the starting time of this final task, that is minimized.

A problem that arises when solving the resulting MIP, is the potentially large number of possible
forbidden sets. Consider 10 tasks, of which each requires one resource of the same type, while 5
of those resources are available. The number of forbidden sets would be (160) = 210, which is
the number of subsets of size 6. Since each forbidden set introduces a number of binary variables
into the problem, the time required to solve it in a deterministic manner increases exponentially
(Florian et al., 1980). Therefore the best projection heuristic is used (Brady and Catanzaro, 2008)
as well as the heuristic by Driebeck and Tomlin (Tomlin, 1971) included within the GNU Linear
Programming Toolkit (GLPK, 2013) to obtain a solution. Additionally forbidden sets of a size
larger than a certain threshold are neglected in order to reduce the number of binary variables.
Afterwards the result is simulated using the discrete event simulator to verify the feasibility of
the resulting schedule. If a larger forbidden set turns out to render the schedule unfeasible, the
respective constraints are added for this set and the procedure is repeated. This will always result
in a feasible schedule.

3. Data Acquisition

Recent advances in the field of computational photogrammetry allow for the detailed reconstruction
of 3D-models from photographic images. Through a combination of image feature point extraction
using, for example, the SIFT algorithm (Lowe, 2004), bundle adjustment algorithms and informa-
tion about photo-consistency and visibility consistency as used in the PMVS algorithm (Furukawa
and Ponce, 2010) it is possible to generate dense, colored 3D-point clouds. Point clouds can provide
valuable information about a scene such as volumetric data about an object. This paper presents a
way to extract and measure the volume of an excavation site and subsequently integrate the data
into the process model described in Section 2. To prove the feasibility of the approach the devel-
oped methods were tested on a real-world excavation pit. The image datasets were acquired using a
conventional HD camcorder extracting a frame every second. The point cloud was generated using
VisualSFM and PMVS (Wu, 2007, 2011; Wu et al., 2011). No fixed calibration or EXIF data was
provided to VisualSFM as the software can estimate intrinsic camera parameters on the fly. In the
following, an algorithm for the extraction of the excavation site geometry is given.

The initial dataset is shown in Figure 1a. An undirected k-nearest neighbor graph is generated
from the point cloud based on the euclidean distance (Equation 8) between each pair of points.

dpg = \/(xp —2g)? + (Yp — Yg)? + (2p — 29)? (8)

Depending on the dataset this generates a high amount of isolated connected components. In order
to exclude outliers and points that are unlikely to be significant from the dataset, components with
an order below a manually defined threshold ¢. are discarded. Hence, a component is discarded if
Equation 9 holds. The resulting point cloud can be seen in Figure 1b.
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In the next step, each graph component c; is searched for the point with the lowest y-coordinate.
The component is discarded if its lowest point is above the average y-coordinate i, of the entire
dataset times a factor a,,. This is illustrated in Equation 10.

miny (c;) > fly X ay (10)

Setting a,, = 0.5 seems to yield good results. Figure 1c¢ shows the resulting point cloud. This step
is implemented under two assumptions. At first, it is assumed that the ground of the excavation site
represents the lowest part of the point cloud. Therefore, it is desired to exclude graph components
with their lowest points much higher than this. Second, it is based on the assumption that the
excavation site forms multiple large clusters that connect the ground to the walls. Thus, the walls
of the excavation site are not cut off. Subsequently, the resulting extracted components are again
filtered for outliers starting from their highest point. Tests showed that this is necessary in order
to deal with high objects within the excavation site. The remaining components are processed as
follows: Search for the point p; with the highest y-coordinate (). For a number of iterations n
count the vertices where the conditions of Equation 11 and 12 are true.

) > Yn + Yinterval X { (11)

Y < Yn + Yintervar X (i + 1) (12)

Here y is the y-coordinate of the respective point, ¥;,terva; 1 @ defined iteration interval and ¢
is the number of the current iteration. If the number of vertices in that range is below a defined
threshold ¢;, then the all points from the interval are discarded. This step is done to exclude points
that are connected to the excavation site components but have points that higher than the assumed
edge. This is often the case for cranes and similar machines within the site.

In order to estimate the volume of the extracted point cloud, first a remeshing algorithm to
compute a convex hull from the points is employed. This is done using the quick hull algorithm
(Barber et al., 1996) which is included in the Qhull C libary. Applying this algorithm results in a
closed, triangulated mesh (See Figure 1f). Subsequently, an algorithm is applied to re-orient the
face normals of the mesh coherently using an implementation in the Meshlab software. To compute
the volume estimate, an technique described by Mirtich (Mirtich, 1996) which is included in the
VCG computer graphics library is used. The algorithm is also accessible through the Meshlab
interface.

The procedure is applied to both the point cloud reconstructed from the image collection (See
Figure 1d - 1f) and a reference point cloud acquired from a laser scan (See Figure 1g - 1i). The
resulting measurements are shown in Table 1. The estimate for the volume and the surface area of
the reconstructed point cloud deviates from the laser scanned dataset by approximately 10%. The
results shown in Table 1 are scaled arbitrarily as for evaluation purposes only the relative accuracy
is of interest.

Dataset Mesh Volume Mesh Surface
Camera 132.953125 197.169189
Laser 146.417969 210.682938

Table 1: Geometric measures of the camera and the laser scanned pointcloud.



The accuracy of the reconstructed point cloud is highly dependent on the distance of the camera
to the construction site but also on the resolution of the camera itself. Depending on the image
resolution and camera distance, PMVS is able to achieve accuracy to the millimeter, however, the
necessary image coverage might be infeasible. Hence, there is a trade-off between the complexity
of the input data and the accuracy of the final measurement.

(a) The initial point cloud dataset. (b) The excavation site after dis- (c) The dataset after discarding
carding surrounding components. top vertices.

(a) Camera reconstruction top (b) Camera reconstruction side (c¢) Camera reconstruction convex
view. view. hull.

-
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(d) Laser scan top view. (e) Laser scan side view. (f) Laser scan convex hull.



4. Data Integration

In order to include data recorded from the construction site, a new constraint is introduced for each
process that was executed and expected durations of processes which are currently in execution
are updated. Given a task A was executed at time ¢; a new constraint is introduced (13), which
constitutes the value for the associated variable ¢ 4. When a task’s progress was observed and does
not match the expectations, so is either going to finish later or earlier, the durations in the constraints
involving this task need to be updated. This is in most cases at least one instance of constraints (4)
and (5) and multiple instances of constraints (6) and (7).

ta =1 (13)

To illustrate the necessity of re-planning a schedule, as soon as more information is available,
an illustrative example project is provided. This project features four tasks, three resources and two
dependencies and is illustrated in Figure 1. It features two connected excavation areas A and B on a
slope and each area is fitted with a wall (C and D) on the back to hold back the soil. Tasks A and B
both need an excavator and tasks C and D need a team of workers to build the walls. While there are
2 excavators, there is only one team of workers, preventing both walls to be built simultaneously.
Figure 2 shows the created optimal schedule without any additional information used. Now the
first task A is assumed to be delayed by an amount d. Since the schedule demands the dependency
successor C to be executed next, which blocks the final task, the entire schedule is prolonged by a
time span d. Therefore the delay of the first task is propagated through the entire schedule. This
is illustrated in Figure 3. When the schedule is re-planned after the delay was recorded, Figure 4
shows that it would now be more efficient to swap the last two tasks. This results in the shorter
overall delay of ds.

Q Resource 1
E Resource 2

& Resource 3

Figure 3: Example case
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Figure 4: Initial schedule
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Figure 5: Initial schedule with delayed task
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Figure 6: Updated schedule with delayed task after re-planning

5. Conclusions

Introducing feedback from construction sites into process simulations can help to reduce the ef-
fects of delayed tasks on the overall execution time. This paper provided an illustrative example of
a project where current progress data helps to finish the overall project in less time, compared to
continuing the initial schedule. In order to obtain data on the progress of excavation tasks that were
presented an approach employing photogrammetric 3D reconstruction and subsequent processing
of a point cloud. It was shown how a point cloud can be segmented into graph components using
a nearest-neighbor search and proposed various domain dependent assumptions for the extraction
of the excavation site. Moreover, the generation of a convex hull was proposed in order to effi-
ciently compute a volume estimate which in turn was used as a metric for the progress ratio of the
excavation task.



6. Future Work

The progress information obtained through the volume estimation can be used to draw conclusions
on the consistency of the soil or the efficiency of the workers and equipment. The information
could be used to make estimations for delays of other excavation tasks on the site. This would
allow for further improvements on the efficiency of the schedules. Several possible extensions for
the point cloud segmentation as well as for the volume calculation can be suggested. Since every
point generated using the PMVS algorithm contains a normal vector, normals could be employed
to achieve a more robust extraction of the excavation site. Moreover, feature sets for identifying
pits in a 3D point can could be identified in order to train automatic classifiers for the segmentation
task. For the volume computation, a more accurate hull can be computed using Poisson Surface
Reconstruction (Kazhdan et al., 2006) or a marching cube approach.
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